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This Guide establishes general rules for evaluating and expressing uncertainty in measurement that are
intended to be applicable to a broad spectrum of measurements. The basis of the Guide is
Recommendation 1 (CI-1981) of the Comité International des Poids et Mesures (CIPM) and Recommendation
INC-1 (1980) of the Working Group on the Statement of Uncertainties. The Working Group was convened by
the Bureau International des Poids et Mesures (BIPM) in response to a request of the CIPM. The CIPM
Recommendation is the only recommendation concerning the expression of uncertainty in measurement
adopted by an intergovernmental organization.

This Guide was prepared by a joint working group consisting of experts nominated by the BIPM, the
International Electrotechnical Commission (IEC), the International Organization for Standardization (ISO), and
the International Organization of Legal Metrology (OIML).

The following seven organizations* supported the development of this Guide, which is published in their name:

BIPM: Bureau International des Poids et Mesures

IEC: International Electrotechnical Commission
IFCC: International Federation of Clinical Chemistry**
ISO: International Organization for Standardization

IUPAC: International Union of Pure and Applied Chemistry
IUPAP: International Union of Pure and Applied Physics
OIML: International Organization of Legal Metrology

Users of this Guide are invited to send their comments and requests for clarification to any of the seven
supporting organizations, the mailing addresses of which are given on the inside front cover***,

*  Footnote to the 2008 version:

In 2005, the International Laboratory Accreditation Cooperation (ILAC) officially joined the seven founding international
organizations.

*%

Footnote to the 2008 version:

The name of this organization has changed since 1995. It is now:
IFCC: International Federation of Clinical Chemistry and Laboratory Medicine

*** Footnote to the 2008 version:

Links to the addresses of the eight organizations presently involved in the JCGM (Joint Committee for Guides in Metrology)
are given on http://www.bipm.org/en/committees/jc/jcgm.
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Foreword

In 1977, recognizing the lack of international consensus on the expression of uncertainty in measurement, the
world's highest authority in metrology, the Comité International des Poids et Mesures (CIPM), requested the
Bureau International des Poids et Mesures (BIPM) to address the problem in conjunction with the national
standards laboratories and to make a recommendation.

The BIPM prepared a detailed questionnaire covering the issues involved and distributed it to 32 national
metrology laboratories known to have an interest in the subject (and, for information, to five international
organizations). By early 1979 responses were received from 21 laboratories [1].1) Almost all believed that it
was important to arrive at an internationally accepted procedure for expressing measurement uncertainty and
for combining individual uncertainty components into a single total uncertainty. However, a consensus was not
apparent on the method to be used. The BIPM then convened a meeting for the purpose of arriving at a
uniform and generally acceptable procedure for the specification of uncertainty; it was attended by experts
from 11 national standards laboratories. This Working Group on the Statement of Uncertainties developed
Recommendation INC-1(1980), Expression of Experimental Uncertainties [2]. The CIPM approved the
Recommendation in 1981 [3] and reaffirmed it in 1986 [4].

The task of developing a detailed guide based on the Working Group Recommendation (which is a brief
outline rather than a detailed prescription) was referred by the CIPM to the International Organization for
Standardization (1SO), since ISO could better reflect the needs arising from the broad interests of industry and
commerce.

Responsibility was assigned to the ISO Technical Advisory Group on Metrology (TAG 4) because one of its
tasks is to coordinate the development of guidelines on measurement topics that are of common interest to
ISO and the six organizations that participate with ISO in the work of TAG 4: the International Electrotechnical
Commission (IEC), the partner of ISO in worldwide standardization; the CIPM and the International
Organization of Legal Metrology (OIML), the two worldwide metrology organizations; the International Union of
Pure and Applied Chemistry (IUPAC) and the International Union of Pure and Applied Physics (IUPAP), the
two international unions that represent chemistry and physics; and the International Federation of Clinical
Chemistry (IFCC).

TAG 4 in turn established Working Group 3 (ISO/TAG 4/WG 3) composed of experts nominated by the BIPM,
IEC, ISO, and OIML and appointed by the Chairman of TAG 4. It was assigned the following terms of
reference:

To develop a guidance document based upon the recommendation of the BIPM Working Group on the
Statement of Uncertainties which provides rules on the expression of measurement uncertainty for use
within standardization, calibration, laboratory accreditation, and metrology services;

The purpose of such guidance is
— to promote full information on how uncertainty statements are arrived at;

— to provide a basis for the international comparison of measurement results.

1) See the Bibliography.
*  Footnote to the 2008 version:

In producing this 2008 version of the GUM, necessary corrections only to the printed 1995 version have been introduced
by JCGM/WG 1. These corrections occur in subclauses 4.2.2, 4.2.4,5.1.2, B.2.17, C.3.2, C.3.4, E.4.3, H4.3, H5.2.5 and
H.6.2.
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This corrected version of JCGM 100:2008 incorporates the following corrections:

— on page v, Footnote ** has been corrected;

— in4.1.1, the note has been indented,;

— in the first line of the example in 5.1.5, AV has been replaced with AV ;
— in the first lines of B.2 and C.2, Clause 0 has been corrected to Clause 2;
— in G.3.2, (G,1c) has been changed to (G.1c¢);

— in H.1.3.4, the formatting of the first equation has been improved.
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0 Introduction

0.1 When reporting the result of a measurement of a physical quantity, it is obligatory that some quantitative
indication of the quality of the result be given so that those who use it can assess its reliability. Without such
an indication, measurement results cannot be compared, either among themselves or with reference values
given in a specification or standard. It is therefore necessary that there be a readily implemented, easily
understood, and generally accepted procedure for characterizing the quality of a result of a measurement, that
is, for evaluating and expressing its uncertainty.

0.2 The concept of uncertainty as a quantifiable attribute is relatively new in the history of measurement,
although error and error analysis have long been a part of the practice of measurement science or metrology.
It is now widely recognized that, when all of the known or suspected components of error have been
evaluated and the appropriate corrections have been applied, there still remains an uncertainty about the
correctness of the stated result, that is, a doubt about how well the result of the measurement represents the
value of the quantity being measured.

0.3 Just as the nearly universal use of the International System of Units (SI) has brought coherence to all
scientific and technological measurements, a worldwide consensus on the evaluation and expression of
uncertainty in measurement would permit the significance of a vast spectrum of measurement results in
science, engineering, commerce, industry, and regulation to be readily understood and properly interpreted. In
this era of the global marketplace, it is imperative that the method for evaluating and expressing uncertainty
be uniform throughout the world so that measurements performed in different countries can be easily
compared.

0.4 The ideal method for evaluating and expressing the uncertainty of the result of a measurement should
be:

— universal: the method should be applicable to all kinds of measurements and to all types of input data
used in measurements.

The actual quantity used to express uncertainty should be:

— internally consistent: it should be directly derivable from the components that contribute to it, as well as
independent of how these components are grouped and of the decomposition of the components into
subcomponents;

— transferable: it should be possible to use directly the uncertainty evaluated for one result as a component
in evaluating the uncertainty of another measurement in which the first result is used.

Further, in many industrial and commercial applications, as well as in the areas of health and safety, it is often
necessary to provide an interval about the measurement result that may be expected to encompass a large
fraction of the distribution of values that could reasonably be attributed to the quantity subject to measurement.
Thus the ideal method for evaluating and expressing uncertainty in measurement should be capable of readily
providing such an interval, in particular, one with a coverage probability or level of confidence that
corresponds in a realistic way with that required.

0.5 The approach upon which this guidance document is based is that outlined in Recommendation
INC-1 (1980) [2] of the Working Group on the Statement of Uncertainties, which was convened by the BIPM in
response to a request of the CIPM (see Foreword). This approach, the justification of which is discussed
in Annex E, meets all of the requirements outlined above. This is not the case for most other methods
in current use. Recommendation INC-1 (1980) was approved and reaffirmed by the CIPM in its own
Recommendations 1 (CI-1981) [3] and 1 (CI-1986) [4]; the English translations of these CIPM Recommendations
are reproduced in Annex A (see A.2 and A.3, respectively). Because Recommendation INC-1 (1980) is the
foundation upon which this document rests, the English translation is reproduced in 0.7 and the French text,
which is authoritative, is reproduced in A.1.

Viii © JCGM 2008 — Al rights reserved
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0.6 A succinct summary of the procedure specified in this guidance document for evaluating and
expressing uncertainty in measurement is given in Clause 8 and a number of examples are presented in detail
in Annex H. Other annexes deal with general terms in metrology (Annex B); basic statistical terms and
concepts (Annex C); “true” value, error, and uncertainty (Annex D); practical suggestions for evaluating
uncertainty components (Annex F); degrees of freedom and levels of confidence (Annex G); the principal
mathematical symbols used throughout the document (Annex J); and bibliographical references (Bibliography).
An alphabetical index concludes the document.

0.7 Recommendation INC-1 (1980) Expression of experimental uncertainties

1)

4)

5)

The uncertainty in the result of a measurement generally consists of several components which may
be grouped into two categories according to the way in which their numerical value is estimated:

A. those which are evaluated by statistical methods,
B. those which are evaluated by other means.

There is not always a simple correspondence between the classification into categories A or B and
the previously used classification into “random” and “systematic” uncertainties. The term “systematic
uncertainty” can be misleading and should be avoided.

Any detailed report of the uncertainty should consist of a complete list of the components, specifying
for each the method used to obtain its numerical value.

The components in category A are characterized by the estimated variances siz, (or the estimated
“‘standard deviations” s;) and the number of degrees of freedom v;. Where appropriate, the
covariances should be given.

The components in category B should be characterized by quantities u]2 which may be considered
as approximations to the corresponding variances, the existence of which is assumed. The quantities
uj2 may be treated like variances and the quantities u; like standard deviations. Where appropriate,
the covariances should be treated in a similar way.

The combined uncertainty should be characterized by the numerical value obtained by applying the
usual method for the combination of variances. The combined uncertainty and its components should
be expressed in the form of “standard deviations”.

If, for particular applications, it is necessary to multiply the combined uncertainty by a factor to obtain
an overall uncertainty, the multiplying factor used must always be stated.

© JCGM 2008 — All rights reserved ix
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Evaluation of measurement data — Guide to the expression of
uncertainty in measurement

1 Scope

1.1 This Guide establishes general rules for evaluating and expressing uncertainty in measurement that
can be followed at various levels of accuracy and in many fields — from the shop floor to fundamental
research. Therefore, the principles of this Guide are intended to be applicable to a broad spectrum of
measurements, including those required for:

— maintaining quality control and quality assurance in production;
— complying with and enforcing laws and regulations;
— conducting basic research, and applied research and development, in science and engineering;

— calibrating standards and instruments and performing tests throughout a national measurement system in
order to achieve traceability to national standards;

— developing, maintaining, and comparing international and national physical reference standards, including
reference materials.

1.2 This Guide is primarily concerned with the expression of uncertainty in the measurement of a
well-defined physical quantity — the measurand — that can be characterized by an essentially unique value. If
the phenomenon of interest can be represented only as a distribution of values or is dependent on one or
more parameters, such as time, then the measurands required for its description are the set of quantities
describing that distribution or that dependence.

1.3 This Guide is also applicable to evaluating and expressing the uncertainty associated with the
conceptual design and theoretical analysis of experiments, methods of measurement, and complex
components and systems. Because a measurement result and its uncertainty may be conceptual and based
entirely on hypothetical data, the term “result of a measurement” as used in this Guide should be interpreted in
this broader context.

1.4 This Guide provides general rules for evaluating and expressing uncertainty in measurement rather
than detailed, technology-specific instructions. Further, it does not discuss how the uncertainty of a particular
measurement result, once evaluated, may be used for different purposes, for example, to draw conclusions
about the compatibility of that result with other similar results, to establish tolerance limits in a manufacturing
process, or to decide if a certain course of action may be safely undertaken. It may therefore be necessary to
develop particular standards based on this Guide that deal with the problems peculiar to specific fields of
measurement or with the various uses of quantitative expressions of uncertainty.* These standards may be
simplified versions of this Guide but should include the detail that is appropriate to the level of accuracy and
complexity of the measurements and uses addressed.

NOTE There may be situations in which the concept of uncertainty of measurement is believed not to be fully
applicable, such as when the precision of a test method is determined (see Reference [5], for example).

*

Footnote to the 2008 version:

Since the initial publication of this Guide, several general and specific applications documents derived from this document
have been published. For information purposes, nonexhaustive compilations of these documents can be found on
http://www.bipm.org/en/committees/jc/jcam/wg1_bibliography.html.

© JCGM 2008 — All rights reserved 1
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2 Definitions

2.1 General metrological terms

The definition of a number of general metrological terms relevant to this Guide, such as “measurable quantity”,
“‘measurand”, and “error of measurement’, are given in Annex B. These definitions are taken from the
International vocabulary of basic and general terms in metrology (abbreviated VIM)* [6]. In addition, Annex C
gives the definitions of a number of basic statistical terms taken mainly from International Standard
ISO 3534-1 [7]. When one of these metrological or statistical terms (or a closely related term) is first used in
the text, starting with Clause 3, it is printed in boldface and the number of the subclause in which it is defined
is given in parentheses.

Because of its importance to this Guide, the definition of the general metrological term “uncertainty of
measurement” is given both in Annex B and 2.2.3. The definitions of the most important terms specific to this
Guide are given in 2.3.1 to 2.3.6. In all of these subclauses and in Annexes B and C, the use of parentheses
around certain words of some terms means that these words may be omitted if this is unlikely to cause
confusion.

2.2 The term “uncertainty”
The concept of uncertainty is discussed further in Clause 3 and Annex D.

221 The word “uncertainty” means doubt, and thus in its broadest sense “uncertainty of measurement”
means doubt about the validity of the result of a measurement. Because of the lack of different words for this
general concept of uncertainty and the specific quantities that provide quantitative measures of the concept,
for example, the standard deviation, it is necessary to use the word “uncertainty” in these two different senses.

222 In this Guide, the word “uncertainty” without adjectives refers both to the general concept of
uncertainty and to any or all quantitative measures of that concept. When a specific measure is intended,
appropriate adjectives are used.

2.2.3 The formal definition of the term “uncertainty of measurement” developed for use in this Guide and in
the VIM [6] (VIM:1993, definition 3.9) is as follows:

uncertainty (of measurement)
parameter, associated with the result of a measurement, that characterizes the dispersion of the values that
could reasonably be attributed to the measurand

NOTE 1 The parameter may be, for example, a standard deviation (or a given multiple of it), or the half-width of an
interval having a stated level of confidence.

NOTE 2  Uncertainty of measurement comprises, in general, many components. Some of these components may be
evaluated from the statistical distribution of the results of series of measurements and can be characterized by
experimental standard deviations. The other components, which also can be characterized by standard deviations, are
evaluated from assumed probability distributions based on experience or other information.

NOTE 3 It is understood that the result of the measurement is the best estimate of the value of the measurand, and
that all components of uncertainty, including those arising from systematic effects, such as components associated with
corrections and reference standards, contribute to the dispersion.

2.2.4 The definition of uncertainty of measurement given in 2.2.3 is an operational one that focuses on the
measurement result and its evaluated uncertainty. However, it is not inconsistent with other concepts of
uncertainty of measurement, such as

*

Footnote to the 2008 version:

The third edition of the vocabulary was published in 2008, under the title JCGM 200:2008, International vocabulary of
metrology — Basic and general concepts and associated terms (VIM).

2 © JCGM 2008 — All rights reserved
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— a measure of the possible error in the estimated value of the measurand as provided by the result of a
measurement;

— an estimate characterizing the range of values within which the true value of a measurand lies (VIM:1984,
definition 3.09).

Although these two traditional concepts are valid as ideals, they focus on unknowable quantities: the “error” of
the result of a measurement and the “true value” of the measurand (in contrast to its estimated value),
respectively. Nevertheless, whichever concept of uncertainty is adopted, an uncertainty component is always
evaluated using the same data and related information. (See also E.5.)

2.3 Terms specific to this Guide

In general, terms that are specific to this Guide are defined in the text when first introduced. However, the
definitions of the most important of these terms are given here for easy reference.

NOTE Further discussion related to these terms may be found as follows: for 2.3.2, see 3.3.3 and 4.2; for 2.3.3, see
3.3.3 and 4.3; for 2.3.4, see Clause 5 and Equations (10) and (13); and for 2.3.5 and 2.3.6, see Clause 6.

2.31
standard uncertainty
uncertainty of the result of a measurement expressed as a standard deviation

23.2
Type A evaluation (of uncertainty)
method of evaluation of uncertainty by the statistical analysis of series of observations

233
Type B evaluation (of uncertainty)
method of evaluation of uncertainty by means other than the statistical analysis of series of observations

234

combined standard uncertainty

standard uncertainty of the result of a measurement when that result is obtained from the values of a number
of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or
covariances of these other quantities weighted according to how the measurement result varies with changes
in these quantities

2.3.5

expanded uncertainty

quantity defining an interval about the result of a measurement that may be expected to encompass a large
fraction of the distribution of values that could reasonably be attributed to the measurand

NOTE 1 The fraction may be viewed as the coverage probability or level of confidence of the interval.

NOTE 2 To associate a specific level of confidence with the interval defined by the expanded uncertainty requires
explicit or implicit assumptions regarding the probability distribution characterized by the measurement result and its
combined standard uncertainty. The level of confidence that may be attributed to this interval can be known only to the
extent to which such assumptions may be justified.

NOTE 3  Expanded uncertainty is termed overall uncertainty in paragraph 5 of Recommendation INC-1 (1980).

2.3.6

coverage factor

numerical factor used as a multiplier of the combined standard uncertainty in order to obtain an expanded
uncertainty

NOTE A coverage factor, £, is typically in the range 2 to 3.
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3 Basic concepts

Additional discussion of basic concepts may be found in Annex D, which focuses on the ideas of “true” value,
error and uncertainty and includes graphical illustrations of these concepts; and in Annex E, which explores
the motivation and statistical basis for Recommendation INC-1 (1980) upon which this Guide rests. Annex J is
a glossary of the principal mathematical symbols used throughout the Guide.

3.1 Measurement

3.1.1  The objective of a measurement (B.2.5) is to determine the value (B.2.2) of the measurand (B.2.9),
that is, the value of the particular quantity (B.2.1, Note 1) to be measured. A measurement therefore begins
with an appropriate specification of the measurand, the method of measurement (B.2.7), and the
measurement procedure (B.2.8).

NOTE The term “true value” (see Annex D) is not used in this Guide for the reasons given in D.3.5; the terms “value
of a measurand” (or of a quantity) and “true value of a measurand” (or of a quantity) are viewed as equivalent.

3.1.2 In general, the result of a measurement (B.2.11) is only an approximation or estimate (C.2.26) of
the value of the measurand and thus is complete only when accompanied by a statement of the uncertainty
(B.2.18) of that estimate.

3.1.3 In practice, the required specification or definition of the measurand is dictated by the required
accuracy of measurement (B.2.14). The measurand should be defined with sufficient completeness with
respect to the required accuracy so that for all practical purposes associated with the measurement its value
is unique. It is in this sense that the expression “value of the measurand” is used in this Guide.

EXAMPLE If the length of a nominally one-metre long steel bar is to be determined to micrometre accuracy, its
specification should include the temperature and pressure at which the length is defined. Thus the measurand should be
specified as, for example, the length of the bar at 25,00 °C* and 101 325 Pa (plus any other defining parameters deemed
necessary, such as the way the bar is to be supported). However, if the length is to be determined to only millimetre
accuracy, its specification would not require a defining temperature or pressure or a value for any other defining parameter.

NOTE Incomplete definition of the measurand can give rise to a component of uncertainty sufficiently large that it
must be included in the evaluation of the uncertainty of the measurement result (see D.1.1, D.3.4, and D.6.2).

3.1.4 In many cases, the result of a measurement is determined on the basis of series of observations
obtained under repeatability conditions (B.2.15, Note 1).

3.1.5 Variations in repeated observations are assumed to arise because influence quantities (B.2.10) that
can affect the measurement result are not held completely constant.

3.1.6 The mathematical model of the measurement that transforms the set of repeated observations into
the measurement result is of critical importance because, in addition to the observations, it generally includes
various influence quantities that are inexactly known. This lack of knowledge contributes to the uncertainty of
the measurement result, as do the variations of the repeated observations and any uncertainty associated
with the mathematical model itself.

3.1.7 This Guide treats the measurand as a scalar (a single quantity). Extension to a set of related
measurands determined simultaneously in the same measurement requires replacing the scalar measurand
and its variance (C.2.11, C.2.20, C.3.2) by a vector measurand and covariance matrix (C.3.5). Such a
replacement is considered in this Guide only in the examples (see H.2, H.3, and H.4).

*  Footnote to the 2008 version:

According to Resolution 10 of the 22nd CGPM (2003) “... the symbol for the decimal marker shall be either the point on the
line or the comma on the line...”. The JCGM has decided to adopt, in its documents in English, the point on the line.
However, in this document, the decimal comma has been retained for consistency with the 1995 printed version.
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3.2 Errors, effects, and corrections

3.21 In general, a measurement has imperfections that give rise to an error (B.2.19) in the measurement
result. Traditionally, an error is viewed as having two components, namely, a random (B.2.21) component
and a systematic (B.2.22) component.

NOTE Error is an idealized concept and errors cannot be known exactly.

3.2.2 Random error presumably arises from unpredictable or stochastic temporal and spatial variations of
influence quantities. The effects of such variations, hereafter termed random effects, give rise to variations in
repeated observations of the measurand. Although it is not possible to compensate for the random error of a
measurement result, it can usually be reduced by increasing the number of observations; its expectation or
expected value (C.2.9, C.3.1) is zero.

NOTE 1 The experimental standard deviation of the arithmetic mean or average of a series of observations (see 4.2.3)
is not the random error of the mean, although it is so designated in some publications. It is instead a measure of the
uncertainty of the mean due to random effects. The exact value of the error in the mean arising from these effects cannot
be known.

NOTE 2 In this Guide, great care is taken to distinguish between the terms “error” and “uncertainty”. They are not
synonyms, but represent completely different concepts; they should not be confused with one another or misused.

3.2.3 Systematic error, like random error, cannot be eliminated but it too can often be reduced. If a
systematic error arises from a recognized effect of an influence quantity on a measurement result, hereafter
termed a systematic effect, the effect can be quantified and, if it is significant in size relative to the required
accuracy of the measurement, a correction (B.2.23) or correction factor (B.2.24) can be applied to
compensate for the effect. It is assumed that, after correction, the expectation or expected value of the error
arising from a systematic effect is zero.

NOTE The uncertainty of a correction applied to a measurement result to compensate for a systematic effect is not
the systematic error, often termed bias, in the measurement result due to the effect as it is sometimes called. It is instead
a measure of the uncertainty of the result due to incomplete knowledge of the required value of the correction. The error
arising from imperfect compensation of a systematic effect cannot be exactly known. The terms “error” and “uncertainty”
should be used properly and care taken to distinguish between them.

3.24 It is assumed that the result of a measurement has been corrected for all recognized significant
systematic effects and that every effort has been made to identify such effects.

EXAMPLE A correction due to the finite impedance of a voltmeter used to determine the potential difference (the
measurand) across a high-impedance resistor is applied to reduce the systematic effect on the result of the measurement
arising from the loading effect of the voltmeter. However, the values of the impedances of the voltmeter and resistor, which
are used to estimate the value of the correction and which are obtained from other measurements, are themselves
uncertain. These uncertainties are used to evaluate the component of the uncertainty of the potential difference
determination arising from the correction and thus from the systematic effect due to the finite impedance of the voltmeter.

NOTE 1 Often, measuring instruments and systems are adjusted or calibrated using measurement standards and
reference materials to eliminate systematic effects; however, the uncertainties associated with these standards and
materials must still be taken into account.

NOTE 2  The case where a correction for a known significant systematic effect is not applied is discussed in the Note to
6.3.1andin F.2.4.5.

3.3 Uncertainty

3.3.1 The uncertainty of the result of a measurement reflects the lack of exact knowledge of the value of the
measurand (see 2.2). The result of a measurement after correction for recognized systematic effects is still
only an estimate of the value of the measurand because of the uncertainty arising from random effects and
from imperfect correction of the result for systematic effects.
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NOTE The result of a measurement (after correction) can unknowably be very close to the value of the measurand
(and hence have a negligible error) even though it may have a large uncertainty. Thus the uncertainty of the result of a
measurement should not be confused with the remaining unknown error.

3.3.2 In practice, there are many possible sources of uncertainty in a measurement, including:

a) incomplete definition of the measurand;

b) imperfect realization of the definition of the measurand;

c) nonrepresentative sampling — the sample measured may not represent the defined measurand;

d) inadequate knowledge of the effects of environmental conditions on the measurement or imperfect
measurement of environmental conditions;

e) personal bias in reading analogue instruments;
f)  finite instrument resolution or discrimination threshold;
g) inexact values of measurement standards and reference materials;

h) inexact values of constants and other parameters obtained from external sources and used in the
data-reduction algorithm;

i) approximations and assumptions incorporated in the measurement method and procedure;
j)  variations in repeated observations of the measurand under apparently identical conditions.

These sources are not necessarily independent, and some of sources a) to i) may contribute to source j). Of
course, an unrecognized systematic effect cannot be taken into account in the evaluation of the uncertainty of
the result of a measurement but contributes to its error.

3.3.3 Recommendation INC-1 (1980) of the Working Group on the Statement of Uncertainties groups
uncertainty components into two categories based on their method of evaluation, “A” and “B” (see 0.7, 2.3.2,
and 2.3.3). These categories apply to uncertainty and are not substitutes for the words “random” and
“systematic”. The uncertainty of a correction for a known systematic effect may in some cases be obtained by
a Type A evaluation while in other cases by a Type B evaluation, as may the uncertainty characterizing a
random effect.

NOTE In some publications, uncertainty components are categorized as “random” and “systematic’ and are
associated with errors arising from random effects and known systematic effects, respectively. Such categorization of
components of uncertainty can be ambiguous when generally applied. For example, a “random” component of uncertainty
in one measurement may become a “systematic” component of uncertainty in another measurement in which the result of
the first measurement is used as an input datum. Categorizing the methods of evaluating uncertainty components rather
than the components themselves avoids such ambiguity. At the same time, it does not preclude collecting individual
components that have been evaluated by the two different methods into designated groups to be used for a particular
purpose (see 3.4.3).

3.3.4 The purpose of the Type A and Type B classification is to indicate the two different ways of evaluating
uncertainty components and is for convenience of discussion only; the classification is not meant to indicate
that there is any difference in the nature of the components resulting from the two types of evaluation. Both
types of evaluation are based on probability distributions (C.2.3), and the uncertainty components resulting
from either type are quantified by variances or standard deviations.

3.3.5 The estimated variance u? characterizing an uncertainty component obtained from a Type A
evaluation is calculated from series of repeated observations and is the familiar statistically estimated variance
s2 (see 4.2). The estimated standard deviation (C.2.12, C.2.21, C.3.3) u, the positive square root of 2, is
thus u=s and for convenience is sometimes called a Type A standard uncertainty. For an uncertainty
component obtained from a Type B evaluation, the estimated variance 2 is evaluated using available
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knowledge (see 4.3), and the estimated standard deviation u is sometimes called a Type B standard
uncertainty.

Thus a Type A standard uncertainty is obtained from a probability density function (C.2.5) derived from an
observed frequency distribution (C.2.18), while a Type B standard uncertainty is obtained from an assumed
probability density function based on the degree of belief that an event will occur [often called subjective
probability (C.2.1)]. Both approaches employ recognized interpretations of probability.

NOTE A Type B evaluation of an uncertainty component is usually based on a pool of comparatively reliable
information (see 4.3.1).

3.3.6 The standard uncertainty of the result of a measurement, when that result is obtained from the values
of a number of other quantities, is termed combined standard uncertainty and denoted by u.. It is the
estimated standard deviation associated with the result and is equal to the positive square root of the
combined variance obtained from all variance and covariance (C.3.4) components, however evaluated, using
what is termed in this Guide the law of propagation of uncertainty (see Clause 5).

3.3.7 To meet the needs of some industrial and commercial applications, as well as requirements in the
areas of health and safety, an expanded uncertainty U is obtained by multiplying the combined standard
uncertainty u. by a coverage factor k. The intended purpose of U is to provide an interval about the result of a
measurement that may be expected to encompass a large fraction of the distribution of values that could
reasonably be attributed to the measurand. The choice of the factor &, which is usually in the range 2 to 3, is
based on the coverage probability or level of confidence required of the interval (see Clause 6).

NOTE The coverage factor & is always to be stated, so that the standard uncertainty of the measured quantity can be
recovered for use in calculating the combined standard uncertainty of other measurement results that may depend on that
quantity.

3.4 Practical considerations

3.4.1 If all of the quantities on which the result of a measurement depends are varied, its uncertainty can be
evaluated by statistical means. However, because this is rarely possible in practice due to limited time and
resources, the uncertainty of a measurement result is usually evaluated using a mathematical model of the
measurement and the law of propagation of uncertainty. Thus implicit in this Guide is the assumption that a
measurement can be modelled mathematically to the degree imposed by the required accuracy of the
measurement.

3.4.2 Because the mathematical model may be incomplete, all relevant quantities should be varied to the
fullest practicable extent so that the evaluation of uncertainty can be based as much as possible on observed
data. Whenever feasible, the use of empirical models of the measurement founded on long-term quantitative
data, and the use of check standards and control charts that can indicate if a measurement is under statistical
control, should be part of the effort to obtain reliable evaluations of uncertainty. The mathematical model
should always be revised when the observed data, including the result of independent determinations of the
same measurand, demonstrate that the model is incomplete. A well-designed experiment can greatly facilitate
reliable evaluations of uncertainty and is an important part of the art of measurement.

3.4.3 In order to decide if a measurement system is functioning properly, the experimentally observed
variability of its output values, as measured by their observed standard deviation, is often compared with the
predicted standard deviation obtained by combining the various uncertainty components that characterize the
measurement. In such cases, only those components (whether obtained from Type A or Type B evaluations)
that could contribute to the experimentally observed variability of these output values should be considered.

NOTE Such an analysis may be facilitated by gathering those components that contribute to the variability and those
that do not into two separate and appropriately labelled groups.

3.4.4 In some cases, the uncertainty of a correction for a systematic effect need not be included in the
evaluation of the uncertainty of a measurement result. Although the uncertainty has been evaluated, it may be
ignored if its contribution to the combined standard uncertainty of the measurement result is insignificant. If the
value of the correction itself is insignificant relative to the combined standard uncertainty, it too may be
ignored.
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3.4.5 It often occurs in practice, especially in the domain of legal metrology, that a device is tested through
a comparison with a measurement standard and the uncertainties associated with the standard and the
comparison procedure are negligible relative to the required accuracy of the test. An example is the use of a
set of well-calibrated standards of mass to test the accuracy of a commercial scale. In such cases, because
the components of uncertainty are small enough to be ignored, the measurement may be viewed as
determining the error of the device under test. (See also F.2.4.2.)

3.4.6 The estimate of the value of a measurand provided by the result of a measurement is sometimes
expressed in terms of the adopted value of a measurement standard rather than in terms of the relevant unit
of the International System of Units (SI). In such cases, the magnitude of the uncertainty ascribable to the
measurement result may be significantly smaller than when that result is expressed in the relevant Sl unit. (In
effect, the measurand has been redefined to be the ratio of the value of the quantity to be measured to the
adopted value of the standard.)

EXAMPLE A high-quality Zener voltage standard is calibrated by comparison with a Josephson effect voltage
reference based on the conventional value of the Josephson constant recommended for international use by the CIPM.
The relative combined standard uncertainty u.(Vs)/Vs (see 5.1.6) of the calibrated potential difference Vg of the Zener
standard is 2 x 1078 when Vg is reported in terms of the conventional value, but uy(Vs)/Vs is 4 x 1077 when Vg is reported
in terms of the Sl unit of potential difference, the volt (V), because of the additional uncertainty associated with the SI
value of the Josephson constant.

3.4.7 Blunders in recording or analysing data can introduce a significant unknown error in the result of a
measurement. Large blunders can usually be identified by a proper review of the data; small ones could be
masked by, or even appear as, random variations. Measures of uncertainty are not intended to account for
such mistakes.

3.4.8 Although this Guide provides a framework for assessing uncertainty, it cannot substitute for critical
thinking, intellectual honesty and professional skill. The evaluation of uncertainty is neither a routine task nor a
purely mathematical one; it depends on detailed knowledge of the nature of the measurand and of the
measurement. The quality and utility of the uncertainty quoted for the result of a measurement therefore
ultimately depend on the understanding, critical analysis, and integrity of those who contribute to the
assignment of its value.

4 Evaluating standard uncertainty

Additional guidance on evaluating uncertainty components, mainly of a practical nature, may be found in
Annex F.

4.1 Modelling the measurement

4.1.1 In most cases, a measurand Y is not measured directly, but is determined from N other quantities
X1, X5, ..., Xy, through a functional relationship f-

Y = f(Xq, X2, Xy) (1)

NOTE 1 For economy of notation, in this Guide the same symbol is used for the physical quantity (the measurand) and
for the random variable (see 4.2.1) that represents the possible outcome of an observation of that quantity. When it is
stated that X; has a particular probability distribution, the symbol is used in the latter sense; it is assumed that the physical
quantity itself can be characterized by an essentially unique value (see 1.2 and 3.1.3).

NOTE 2 In a series of observations, the kth observed value of X; is denoted by X; ;; hence if R denotes the resistance
of a resistor, the kth observed value of the resistance is denoted by R,.

NOTE 3  The estimate of X; (strictly speaking, of its expectation) is denoted by x;.
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EXAMPLE If a potential difference 7 is applied to the terminals of a temperature-dependent resistor that has a
resistance R at the defined temperature 7, and a linear temperature coefficient of resistance o, the power P (the
measurand) dissipated by the resistor at the temperature ¢ depends on V, R, o, and ¢ according to

P=f(V,Rg, o, 1) = VZ/{RO [1+a(t—t0)J}
NOTE Other methods of measuring P would be modelled by different mathematical expressions.

4.1.2 The input quantities X, X5, ..., Xy upon which the output quantity Y depends may themselves be
viewed as measurands and may themselves depend on other quantities, including corrections and correction
factors for systematic effects, thereby leading to a complicated functional relationship /' that may never be
written down explicitly. Further, f may be determined experimentally (see 5.1.4) or exist only as an algorithm
that must be evaluated numerically. The function f as it appears in this Guide is to be interpreted in this
broader context, in particular as that function which contains every quantity, including all corrections and
correction factors, that can contribute a significant component of uncertainty to the measurement result.

Thus, if data indicate that f does not model the measurement to the degree imposed by the required accuracy
of the measurement result, additional input quantities must be included in f to eliminate the inadequacy (see
3.4.2). This may require introducing an input quantity to reflect incomplete knowledge of a phenomenon that
affects the measurand. In the example of 4.1.1, additional input quantities might be needed to account for a
known nonuniform temperature distribution across the resistor, a possible nonlinear temperature coefficient of
resistance, or a possible dependence of resistance on barometric pressure.

NOTE Nonetheless, Equation (1) may be as elementary as Y= X; — X,. This expression models, for example, the
comparison of two determinations of the same quantity X.

4.1.3 The set of input quantities X;, X,, ..., X); may be categorized as:

— quantities whose values and uncertainties are directly determined in the current measurement. These
values and uncertainties may be obtained from, for example, a single observation, repeated observations,
or judgement based on experience, and may involve the determination of corrections to instrument readings
and corrections for influence quantities, such as ambient temperature, barometric pressure, and humidity;

— quantities whose values and uncertainties are brought into the measurement from external sources, such
as quantities associated with calibrated measurement standards, certified reference materials, and
reference data obtained from handbooks.

4.1.4 An estimate of the measurand Y, denoted by y, is obtained from Equation (1) using input estimates
X1, Xo, ..., Xy for the values of the N quantities X, X5, ..., Xj. Thus the output estimate y, which is the result of
the measurement, is given by

= f (43200 xy) )

NOTE In some cases, the estimate y may be obtained from

= 1L 1<
y=Y ==Y == f( X1 Xopo o Xy
n n
k=1 k=1
That is, y is taken as the arithmetic mean or average (see 4.2.1) of n independent determinations Y, of Y, each
determination having the same uncertainty and each being based on a complete set of observed values of the N input
quantities X; obtained at the same time. This way of averaging, rather than y = f(X1, Xo, .o XN), where

_ 1<
X; :_ZXi,k
=

is the arithmetic mean of the individual observations X; ,, may be preferable when f'is a nonlinear function of the input
quantities X4, X, ..., Xy, but the two approaches are identical if /'is a linear function of the X; (see H.2 and H.4).

41.5 The estimated standard deviation associated with the output estimate or measurement result y,
termed combined standard uncertainty and denoted by u.(y), is determined from the estimated standard
deviation associated with each input estimate x;, termed standard uncertainty and denoted by u(x;) (see 3.3.5
and 3.3.6).
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4.1.6 Each input estimate x; and its associated standard uncertainty «(x;) are obtained from a distribution of
possible values of the input quantity .X;. This probability distribution may be frequency based, that is, based on
a series of observations Xk of X, or it may be an a priori distribution. Type A evaluations of standard
uncertainty components are founded on frequency distributions while Type B evaluations are founded on a
priori distributions. It must be recognized that in both cases the distributions are models that are used to
represent the state of our knowledge.

4.2 Type A evaluation of standard uncertainty

4.21 In most cases, the best available estimate of the expectation or expected value y, of a quantity ¢ that
varies randomly [a random variable (C.2.2)], and for which » independent observations g, have been
obtained under the same conditions of measurement (see B.2.15), is the arithmetic mean or average ¢
(C.2.19) of the n observations:

_ 1
7==>a (3)
=1

Thus, for an input quantity .X; estimated from » independent repeated observations X; ik the arithmetic mean
X obtained from Equation (_) is used as the input estimate x; in Equation (2) to determlne the measurement
result y; that is, x; = X,. Those input estimates not evaluated from repeated observations must be obtained by
other methods, such as those indicated in the second category of 4.1.3.

4.2.2 The individual observations g, differ in value because of random variations in the influence quantities,
or random effects (see 3.2.2). The experimental variance of the observations, which estimates the variance
o2 of the probability distribution of ¢, is given by

$2(g)=— i(q,—?)z 4)

n—1j:1

This estimate of variance and its positive square root s(¢;), termed the experimental standard deviation
(B.2.17), characterize the variability of the observed values ¢, or more specifically, their dispersion about their
mean q.

4.2.3 The best estimate of 02((7) = az/n, the variance of the mean, is given by

S2 (5): Sz(qk) (9)

n

The experimental variance of the mean sz(c_l) and the experimental standard deviation of the mean s(g)
(B.2.17, Note 2), equal to the positive square root of s2(c7), quantify how well ¢ estimates the expectation Uy
of ¢, and either may be used as a measure of the uncertainty of 4.

Thus, for an input quantity .X; determined from » independent repeated observations X;,, the standard
uncertainty u(x;) of its estimate x; = =X, is u(x; )= s(X;), with 52()( ) calculated according to Equation (5). For
convenience, uz(x)—sz(X) and u(x )=s(X,) are sometimes called a Type A variance and a Type A
standard uncertainty, respectively.

NOTE 1 The number of observations »n should be large enough to ensure that g provides a rellable estimate of the
expectation x, of the random variable q and that s (q) provides a reliable estimate of the variance o (q 0'2/n (see
4.3.2, note). The difference between s (q) and o (q) must be considered when one constructs confidence intervals (see
6.2.2). In this case, if the probability distribution of ¢ is a normal distribution (see 4.3.4), the difference is taken into account
through the ¢-distribution (see G.3.2).

NOTE 2  Although the variance s2(67) is the more fundamental quantity, the standard deviation s(g) is more
convenient in practice because it has the same dimension as ¢ and a more easily comprehended value than that of the
variance.
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4.2.4 For a well-characterized measurement under statistical control, a combined or pooled estimate of
variance sg (or a pooled experimental standard deviation sp) that characterizes the measurement may be
available. In such cases, when the value of a measurand ¢ is determined from » independent observations,
the experimental variance of the arithmetic mean g of the observations is estimated better by s n than by
s2(g;)/n and the standard uncertainty is u = sp/\/_ (See also the Note to H.3.6.)

4.2,5 Often an estimate x; of an input quantity X is obtained from a curve that has been fitted to
experimental data by the method of least squares. The estimated variances and resulting standard
uncertainties of the fitted parameters characterizing the curve and of any predicted points can usually be
calculated by well-known statistical procedures (see H.3 and Reference [8]).

4.2.6 The degrees of freedom (C.2.31) v; of u(x;) (see G.3), equal to n — 1 in the simple case where x; = )_(,-
and u(x;)=s(X;) are calculated from »n independent observations as in 4.2.1 and 4.2.3, should always be
given when Type A evaluations of uncertainty components are documented.

4.2.7 If the random variations in the observations of an input quantity are correlated, for example, in time,
the mean and experimental standard deviation of the mean as given in 4.2.1 and 4.2.3 may be inappropriate
estimators (C.2.25) of the desired statistics (C.2.23). In such cases, the observations should be analysed by
statistical methods specially designed to treat a series of correlated, randomly-varying measurements.

NOTE Such specialized methods are used to treat measurements of frequency standards. However, it is possible
that as one goes from short-term measurements to long-term measurements of other metrological quantities, the
assumption of uncorrelated random variations may no longer be valid and the specialized methods could be used to treat
these measurements as well. (See Reference [9], for example, for a detailed discussion of the Allan variance.)

4.2.8 The discussion of Type A evaluation of standard uncertainty in 4.2.1 to 4.2.7 is not meant to be
exhaustive; there are many situations, some rather complex, that can be treated by statistical methods. An
important example is the use of calibration designs, often based on the method of least squares, to evaluate
the uncertainties arising from both short- and long-term random variations in the results of comparisons of
material artefacts of unknown values, such as gauge blocks and standards of mass, with reference standards
of known values. In such comparatively simple measurement situations, components of uncertainty can
frequently be evaluated by the statistical analysis of data obtained from designs consisting of nested
sequences of measurements of the measurand for a number of different values of the quantities upon which it
depends — a so-called analysis of variance (see H.5).

NOTE At lower levels of the calibration chain, where reference standards are often assumed to be exactly known
because they have been calibrated by a national or primary standards laboratory, the uncertainty of a calibration result
may be a single Type A standard uncertainty evaluated from the pooled experimental standard deviation that
characterizes the measurement.

4.3 Type B evaluation of standard uncertainty

4.3.1 For an estimate x; of an input quantity X; that has not been obtained from repeated observations, the
associated estimated vanance uz(x) or the standard uncertainty u(x;) is evaluated by scientific judgement
based on all of the available information on the possible variability of .X;. The pool of information may include

— previous measurement data;

— experience with or general knowledge of the behaviour and properties of relevant materials and instruments;
— manufacturer's specifications;

— data provided in calibration and other certificates;

— uncertainties assigned to reference data taken from handbooks.

For convenience, uz(xi) and u(x;) evaluated in this way are sometimes called a Type B variance and a Type B
standard uncertainty, respectively.

NOTE When x; is obtained from an a priori distribution, the associated variance is appropriately written as »2(X;), but
for simplicity, #2(x;) and u(x;) are used throughout this Guide.
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4.3.2 The proper use of the pool of available information for a Type B evaluation of standard uncertainty
calls for insight based on experience and general knowledge, and is a skill that can be learned with practice. It
should be recognized that a Type B evaluation of standard uncertainty can be as reliable as a Type A
evaluation, especially in a measurement situation where a Type A evaluation is based on a comparatively
small number of statistically independent observations.

NOTE If the probability distribution of ¢ in Note 1 to 4.2.3 is normal, then o[s(g)]/o(g), the standard deviation of s(g)
relative to o(7), is approximately [2(n — 1)]7"2. Thus, taking o[s(7)] as the uncertainty of s(7), for n =10 observations, the
relative uncertainty in s(¢) is 24 percent, while for n = 50 observations it is 10 percent. (Additional values are given in
Table E.1 in Annex E.)

4.3.3 If the estimate x; is taken from a manufacturer's specification, calibration certificate, handbook, or
other source and its quoted uncertainty is stated to be a particular multiple of a standard deviation, the
standard uncertainty u(x;) is simply the quoted value divided by the multiplier, and the estimated variance
uz(xi) is the square of that quotient.

EXAMPLE A calibration certificate states that the mass of a stainless steel mass standard mg of nominal value one
kilogram is 1 000,000 325 g and that “the uncertainty of this value is 240 pg at the three standard deviation level”’. The
standard uncertainty of the mass standard is then simply u(mg) = (240 pg)/3 =80 pg. This corresponds to a relative
standard uncertainty u(mg)/mg of 80 x 107 (see 5.1.6). The estimated variance is u2(mg) = (80 ug)2 = 6,4 x 1072 g2,

NOTE In many cases, little or no information is provided about the individual components from which the quoted
uncertainty has been obtained. This is generally unimportant for expressing uncertainty according to the practices of this
Guide since all standard uncertainties are treated in the same way when the combined standard uncertainty of a
measurement result is calculated (see Clause 5).

4.3.4 The quoted uncertainty of x; is not necessarily given as a multiple of a standard deviation as in 4.3.3.
Instead, one may find it stated that the quoted uncertainty defines an interval having a 90, 95, or 99 percent
level of confidence (see 6.2.2). Unless otherwise indicated, one may assume that a normal distribution
(C.2.14) was used to calculate the quoted uncertainty, and recover the standard uncertainty of x; by dividing
the quoted uncertainty by the appropriate factor for the normal distribution. The factors corresponding to the
above three levels of confidence are 1,64; 1,96; and 2,58 (see also Table G.1 in Annex G).

NOTE There would be no need for such an assumption if the uncertainty had been given in accordance with the
recommendations of this Guide regarding the reporting of uncertainty, which stress that the coverage factor used is always
to be given (see 7.2.3).

EXAMPLE A calibration certificate states that the resistance of a standard resistor Rg of nominal value ten ohms is
10,000 742 Q £ 129 uyQ at 23 °C and that “the quoted uncertainty of 129 uyQ defines an interval having a level of
confidence of 99 percent”. The standard uncertainty of the resistor may be taken as u(Rg) = (129 pQ)/2,58 = 50 pQ, which
corresponds to a relative standard uncertainty u(Rg)/Rs of 5,0x 1078 (see 5.1.6). The estimated variance is
u2(Rg) = (50 pQ)2 = 2,5 x 1079 Q2.

4.3.5 Consider the case where, based on the available information, one can state that “there is a fifty-fifty
chance that the value of the input quantity X; lies in the interval a_ to a,” (in other words, the probability that X;
lies within this interval is 0,5 or 50 percent). If it can be assumed that the distribution of possible values of .X; is
approximately normal, then the best estimate x; of .X; can be taken to be the midpoint of the interval. Further, if
the half-width of the interval is denoted by a = (a, — a_)/2, one can take u(x;) = 1,484, because for a normal
distribution with expectation ¢ and standard deviation o the interval u+ ¢/1,48 encompasses approximately
50 percent of the distribution.

EXAMPLE A machinist determining the dimensions of a part estimates that its length lies, with probability 0,5, in the
interval 10,07 mm to 10,15 mm, and reports that /= (10,11 + 0,04) mm, meaning that £ 0,04 mm defines an interval having
a level of confidence of 50 percent. Then « = 0,04 mm, and if one assumes a normal distribution for the possible values of
[, the standard uncertainty of the length is u(/)=1,48 x0,04 mm=0,06 mm and the estimated variance is
u?(l)= (1,48 x 0,04 mm)2 = 3,5 x 1073 mm?2.

4.3.6 Consider a case similar to that of 4.3.5 but where, based on the available information, one can state
that “there is about a two out of three chance that the value of X; lies in the interval a_ to a,” (in other words,
the probability that X; lies within this interval is about 0,67). One can then reasonably take u(x;) = a, because
for a normal distribution with expectation 4 and standard deviation ¢ the interval 4+ ¢ encompasses about
68,3 percent of the distribution.
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NOTE It would give the value of u(x;) considerably more significance than is obviously warranted if one were to use
the actual normal deviate 0,967 42 corresponding to probability p=2/3, that is, if one were to write
u(x;) = al0,967 42 = 1,033a.

4.3.7 In other cases, it may be possible to estimate only bounds (upper and lower limits) for X;, in particular,
to state that “the probability that the value of X; lies within the interval a_ to a, for all practical purposes is
equal to one and the probability that X; lies outside this interval is essentially zero”. If there is no specific
knowledge about the possible values of X; within the interval, one can only assume that it is equally probable
for X; to lie anywhere within it (a uniform or rectangular distribution of possible values — see 4.4.5 and
Figure 2 a). Then x;, the expectation or expected value of .X;, is the midpoint of the interval, x; = (a_ + a,)/2,
with associated variance

uz(xi)z(a+—a_)2/12 (6)
If the difference between the bounds, a, — a_, is denoted by 24, then Equation (6) becomes

uz(xi)zaz/3 (7)
NOTE When a component of uncertainty determined in this manner contributes significantly to the uncertainty of a

measurement result, it is prudent to obtain additional data for its further evaluation.

EXAMPLE 1 A handbook gives the value of the coefficient of linear thermal expansion of pure copper at 20 °C,
o0(Cu), as 16,52 x 1076 °C~1 and simply states that “the error in this value should not exceed 0,40 x 1076 °C~"". Based
on this limited information, it is not unreasonable to assume that the value of o,g(Cu) lies with equal probability in the
interval 16,12 x 1078 °C~1 to 16,92 x 1076 °C", and that it is very unlikely that ayo(Cu) lies outside this interval. The
variance of this symmetric rectangular distribution of possible values of a»o(Cu) of half-width « = 0,40 x 1076 °C~" is then,
from  Equation (7), u%(op) = (0,40 x 10°8°C™1)2/3=533x10715°C2, and the standard uncertainty is
u(ong) = (0,40 x 1076 °C™1) //3 = 0,23 x 1076 °C~1,

EXAMPLE 2 A manufacturer's specifications for a digital voltmeter state that “between one and two years after the
instrument is calibrated, its accuracy on the 1V range is 14 x 1076 times the reading plus 2 x 107% times the range’.
Consider that the instrument is used 20 months after calibration to measure on its 1 V range a potential difference 7, and
the arithmetic mean of a number of independent repeated observations of /' is found to be ¥ =0,928 571 V with a Type A
standard uncertainty u(V) =12 yV. One can obtain the standard uncertainty associated with the manufacturer's
specifications from a Type B evaluation by assuming that the stated accuracy provides symmetric bounds to an additive
correction to ¥, AV, of expectation equal to zero and with equal probability of lying anywhere within the bounds. The
half-width a« of the symmetric rectangular distribution of possible values of AF is then
a=(14x107%) x (0,928 571 V) + (2 x 1076) x (1 V) = 15 pV, and from Equation (7), u2(A17): 75 uV2 and u(AV)=8,7 uV.
The estimate of the value of the measurand 7, for simplicity denoted by the same symbol V, is given by
V=V+AV =0,928 571V. One can obtain the combined standard uncertainty of this estimate by combining the 12 pv
Type A standard uncertainty of ¥ with the 8,7 uV Type B standard uncertainty of A¥. The general method for combining
standard uncertainty components is given in Clause 5, with this particular example treated in 5.1.5.

4.3.8 In 4.3.7, the upper and lower bounds a, and a_ for the input quantity X; may not be symmetric with
respect to its best estimate x;; more specifically, if the lower bound is written as a_ =x,—b_ and the upper
bound as a, =x; - b,, then b_=# b,. Since in this case x; (assumed to be the expectation of X)) is not at the
centre of the interval a_ to a,, the probability distribution of X; cannot be uniform throughout the interval.
However, there may not be enough information available to choose an appropriate distribution; different
models will lead to different expressions for the variance. In the absence of such information, the simplest
approximation is

(by+6.)° _(a-a)’
12 12

u? (xi) =

(8)

which is the variance of a rectangular distribution with full width 5, + b_. (Asymmetric distributions are also
discussed in F.2.4.4 and G.5.3.)
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EXAMPLE If in Example1 of 4.3.7 the value of the coefficient is given in the handbook as
o0(Cu) = 16,52 x 1078 °C~1 and it is stated that “the smallest possible value is 16,40 x 1076 °C~" and the largest possible
value is 16,92x106°C™", then 5.=0,12x10%°C™!, 5,=040x10"%°C', and, from Equation (8),
u(0np) = 0,15 x 1076 °C1.,

NOTE 1 In many practical measurement situations where the bounds are asymmetric, it may be appropriate to apply a
correction to the estimate x; of magnitude (b, — 5-)/2 so that the new estimate x’; of X; is at the midpoint of the bounds:
x’;=(a- + a4)/2. This reduces the situation to the case of 4.3.7, with new values b’y = b_ = (by + b_)/2 = (ay — a_)2 = a.

NOTE 2 Based on the principle of maximum entropy, the probability density function in the asymmetric case
may be shown to be p(X;) = 4 exp[- AX; — x;)], with A=[b_exp(Ab_) + b, exp(- Ab,)]™ and
A= {exp[A(b_ + b,)] — 1}/{b- exp[A(b- + b,)] + b,}. This leads to the variance u2(x;) = b,b_ — (bs — b_)IA; for b, > b_, A>0 and
for b, <b_, 1<0.

4.3.9 In4.3.7, because there was no specific knowledge about the possible values of X; within its estimated
bounds a_ to a,, one could only assume that it was equally probable for X; to take any value within those
bounds, with zero probability of being outside them. Such step function discontinuities in a probability
distribution are often unphysical. In many cases, it is more realistic to expect that values near the bounds are
less likely than those near the midpoint. It is then reasonable to replace the symmetric rectangular distribution
with a symmetric trapezoidal distribution having equal sloping sides (an isosceles trapezoid), a base of width
a, —a_=2a, and a top of width 244, where 0 < < 1. As #— 1, this trapezoidal distribution approaches the
rectangular distribution of 4.3.7, while for =0, it is a triangular distribution [see 4.4.6 and Figure 2 b)].
Assuming such a trapezoidal distribution for X, one finds that the expectation of X; is x; = (a_ + a,)/2 and its
associated variance is

uz(xl-)=a2(1+ﬂ2)/6 (9a)
which becomes for the triangular distribution, g =0,
uz(xi)=a2/6 (9b)

NOTE 1 For a normal distribution with expectation ¢ and standard deviation o, the interval u+ 30 encompasses
approximately 99,73 percent of the distribution. Thus, if the upper and lower bounds a, and a_ define 99,73 percent limits
rather than 100 percent limits, and X; can be assumed to be approximately normally distributed rather than there being no
specific knowledge about X; between the bounds as in 4.3.7, then u2(x;) = 4%9. By comparison, the variance of a
symmetric rectangular distribution of half-width « is @2/3 [Equation (7)] and that of a symmetric triangular distribution of
half-width « is ¢2/6 [Equation (9b)]. The magnitudes of the variances of the three distributions are surprisingly similar in
view of the large differences in the amount of information required to justify them.

NOTE 2  The trapezoidal distribution is equivalent to the convolution of two rectangular distributions [10], one with a
half-width a4 equal to the mean half-width of the trapezoid, a4 = a(1 + §)/2, the other with a half-width a, equal to the mean
width of one of the triangular portions of the trapezoid, a, = a(1 — 8)/2. The variance of the distribution is u? = a$/3+ a§/3 .
The convolved distribution can be interpreted as a rectangular distribution whose width 2a4 has itself an uncertainty
represented by a rectangular distribution of width 24, and models the fact that the bounds on an input quantity are not
exactly known. But even if a5 is as large as 30 percent of a4, u exceeds a1/\/§ by less than 5 percent.

4.3.10 It is important not to “double-count” uncertainty components. If a component of uncertainty arising
from a particular effect is obtained from a Type B evaluation, it should be included as an independent
component of uncertainty in the calculation of the combined standard uncertainty of the measurement result
only to the extent that the effect does not contribute to the observed variability of the observations. This is
because the uncertainty due to that portion of the effect that contributes to the observed variability is already
included in the component of uncertainty obtained from the statistical analysis of the observations.

4.3.11 The discussion of Type B evaluation of standard uncertainty in 4.3.3 to 4.3.9 is meant only to be
indicative. Further, evaluations of uncertainty should be based on quantitative data to the maximum extent
possible, as emphasized in 3.4.1 and 3.4.2.
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4.4 Graphical illustration of evaluating standard uncertainty

4.4.1 Figure 1 represents the estimation of the value of an input quantity X; and the evaluation of the
uncertainty of that estimate from the unknown distribution of possible measured values of X;, or probability
distribution of X}, that is sampled by means of repeated observations.

4.4.2 In Figure 1a), it is assumed that the input quantity X; is a temperature ¢ and that its unknown

distribution is a normal distribution with expectation x,=100°C and standard deviation o=1,5°C. Its
probability density function (see C.2.14) is then

o=z 32 |

NOTE The definition of a probability density function p(z) requires that the relation [p(z)dz = 1 is satisfied.

4.4.3 Figure 1Db) shows a histogram of n=20 repeated observations ¢, of the temperature ¢ that are
assumed to have been taken randomly from the distribution of Figure 1 a). To obtain the histogram, the
20 observations or samples, whose values are given in Table 1, are grouped into intervals 1 °C wide.
(Preparation of a histogram is, of course, not required for the statistical analysis of the data.)

Table 1 — Twenty repeated observations of the temperature ¢
grouped in 1 °C intervals

Interval Temperature
<t<ty
141°C t21°C t/°C
94,5 95,5 —
95,5 96,5 —
96,5 97,5 96,90
97,5 98,5 98,18; 98,25
98,5 99,5 98,61; 99,03; 99,49
99,5 100,5 99,56; 99,74; 99,89; 100,07; 100,33; 100,42
100,5 101,5 100,68; 100,95; 101,11; 101,20
101,5 102,5 101,57; 101,84; 102,36
102,5 103,5 102,72
103,5 104,5 —
104,5 105,5 —

The arithmetic mean or average ¢ of the »=20 observations calculated according to Equation (3) is
t =100,145 °C = 100,14 °C and is assumed to be the best estimate of the expectation x, of ¢ based on the

available data. The experimental standard deviation s(z) calculated from Equation (4) is
s(t,)=1,489°C=1,49°C, and the experimental standard deviation of the mean s(7) calculated
from  Equation (5), which is the standard uncertainty u(f) of the mean f, s
u(t)=s(r)= s(tk)/@ =0,333 °C = 0,33 °C. (For further calculations, it is likely that all of the digits would be
retained.)

NOTE Although the data in Table 1 are not implausible considering the widespread use of high-resolution digital

electronic thermometers, they are for illustrative purposes and should not necessarily be interpreted as describing a real
measurement.
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Figure 1 — Graphical illustration of evaluating the standard uncertainty of an input quantity
from repeated observations
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Figure 2 — Graphical illustration of evaluating the standard uncertainty of an input quantity
from an a priori distribution
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4.4.4 Figure 2 represents the estimation of the value of an input quantity X; and the evaluation of the
uncertainty of that estimate from an a priori distribution of possible values of .X;, or probability distribution of X,
based on all of the available information. For both cases shown, the input quantity is again assumed to be a
temperature .

44,5 For the case illustrated in Figure 2 a), it is assumed that little information is available about the input
quantity ¢ and that all one can do is suppose that ¢ is described by a symmetric, rectangular a priori probability
distribution of lower bound a_=96 °C, upper bound a, =104 °C, and thus half-width a =(a, —a_)/2=4°C
(see 4.3.7). The probability density function of ¢ is then

p(t)=1/(2a), a_<t<a,

p(t)=0, otherwise.

As indicated in 4.3.7, the best estimate of ¢ is its expectation ;= (a; + a_)/2 =100 °C, which follows from
C.3.1. The standard uncertainty of this estimate is u(,ut)=a/\/§z2,3°C, which follows from C.3.2 [see
Equation (7)].

4.4.6 For the case illustrated in Figure 2 b), it is assumed that the available information concerning ¢ is less
limited and that ¢ can be described by a symmetric, triangular a priori probability distribution of the same lower
bound a_ =96 °C, the same upper bound a, = 104 °C, and thus the same half-width ¢ = (a, - a_)/2=4 °C as
in 4.4.5 (see 4.3.9). The probability density function of 7 is then

p()=(t-a_)fa®,  a_<r<(a,+a)/2
p(t)=(a.=1)/a®,  (a,+a )2<i<a,
p(1)=0, otherwise.

As indicated in 4.3.9, the expectation of ¢ is u; = (a, + a_)/2 = 100 °C, which follows from C.3.1. The standard
uncertainty of this estimate is u(x,) = a/\/g =1,6 °C, which follows from C.3.2 [see Equation 9 b)].

The above value, u(x,)=1,6 °C, may be compared with u(x,) =2,3 °C obtained in 4.4.5 from a rectangular
distribution of the same 8 °C width; with o= 1,5 °C of the normal distribution of Figure 1 a) whose —2,58¢ to
+2,580 width, which encompasses 99 percent of the distribution, is nearly 8 °C; and with u(7)=0,33 °C
obtained in 4.4.3 from 20 observations assumed to have been taken randomly from the same normal
distribution.

5 Determining combined standard uncertainty

5.1 Uncorrelated input quantities

This subclause treats the case where all input quantities are independent (C.3.7). The case where two or
more input quantities are related, that is, are interdependent or correlated (C.2.8), is discussed in 5.2.

5.1.1 The standard uncertainty of y, where y is the estimate of the measurand Y and thus the result of the
measurement, is obtained by appropriately combining the standard uncertainties of the input estimates
X4, Xo, ..., Xy (8€€ 4.1). This combined standard uncertainty of the estimate y is denoted by u(y).

NOTE For reasons similar to those given in the note to 4.3.1, the symbols u.(y) and ug(y) are used in all cases.
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5.1.2 The combined standard uncertainty u.(y) is the positive square root of the combined variance ug(y),
which is given by

2 m:i[%]zu%xi) (10

where f'is the function given in Equation (1). Each u(x;) is a standard uncertainty evaluated as described in 4.2
(Type A evaluation) or as in 4.3 (Type B evaluation). The combined standard uncertainty u.(y) is an estimated
standard deviation and characterizes the dispersion of the values that could reasonably be attributed to the
measurand Y (see 2.2.3).

Equation (10) and its counterpart for correlated input quantities, Equation (13), both of which are based on a
first-order Taylor series approximation of Y= f(X,, X5, ..., Xy), express what is termed in this Guide the law of
propagation of uncertainty (see E.3.1 and E.3.2).

NOTE When the nonlinearity of f'is significant, higher-order terms in the Taylor series expansion must be included in
the expression for uc(y) Equation (10). When the distribution of each X; is normal, the most important terms of next
highest order to be added to the terms of Equation (10) are

ShallL ’ LI 3P | 2 2
ZZ; E{axax J 3, arar? w? (x;)u? (x;)

i=1

See H.1 for an example of a situation where the contribution of higher-order terms to ug(y) needs to be considered.

5.1.3 The partial derivatives df/ox; are equal to df/dX; evaluated at X;=x; (see Note 1 below). These
derivatives, often called sensitivity coefficients, describe how the output estimate y varies with changes in the
values of the input estimates xq, x,, ..., x5. In particular, the change in y produced by a small change Ax; in
input estimate x; is given by (Ay); = (af/ax )(Ax;). If this change is generated by the standard uncertainty of the
estimate x;, the corresponding variation in y is (9f/dx;)u(x;). The combined variance uc(y) can therefore be
viewed as a sum of terms, each of which represents the estimated variance associated with the output
estimate y generated by the estimated variance associated with each input estimate x,. This suggests writing
Equation (10) as

()= ew()] = 22 () (112

where

=9f/ox;, u~(y)E|cl~|u(xi) (11b)

4

NOTE 1 Strictly speaking, the partial derivatives are df/dx; = 9f/dX; evaluated at the expectations of the X;. However, in
practice, the partial derivatives are estimated by

of _df

o; aX’ X4y X0, ey Xy

NOTE 2  The combined standard uncertainty us(y) may be calculated numerically by replacing c;u(x;) in Equation (11a)
with

Z; =%{f[x1, o X u(x;), xN]—f[)q, o X = (x;), xNJ}

That is, u;(y) is evaluated numerically by calculating the change in y due to a change in x; of +u(x;) and of —u(x;). The value
of u;(y) may then be taken as |Z,-| and the value of the corresponding sensitivity coefficient ¢; as Z;/u(x;).
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EXAMPLE For the example of 4.1.1, using the same symbol for both the quantity and its estimate for simplicity of
notation,

cr=0Pfav =2 {Ro[1+a(t-1) || = 2P/V

cy = aP/aRO = _VZ/{Rg [1+a(t-10) ]} =-P/Ro

s EaP/aaz—Vz(t—to)/{Ro [trali-10) | =-rli-t0) [1+ali-10)]
cy = ap/at = —Vza/{RO [1+a(t—t0)J2} = —Pa/[1+ a(t—tg )]

(3—5J2 (o) vetro (32 {5
[equ(v)]? +[cou(Ro) ] +[equ(a )] “+[equ(r)]”

—uf (P)+u3 (P)+ub (P)+u3 (P)

and
2

5.1.4 Instead of being calculated from the function f, sensitivity coefficients df/dx; are sometimes
determined experimentally: one measures the change in Y produced by a change in a particular X; while
holding the remaining input quantities constant. In this case, the knowledge of the function f (or a portion of it
when only several sensitivity coefficients are so determined) is accordingly reduced to an empirical first-order
Taylor series expansion based on the measured sensitivity coefficients.

5.1.5 If Equation (1) for the measurand Y is expanded about nominal values X; ; of the input quantities X;

then, to first order (which is usually an adequate approximation), Y=Y, + c4 51 +p0p +... + o\ Oy, where
Yo =/f(Xq,0, X200 -+ Xy 0)s ¢;=(9f/0X;) evaluated at X; =X, ,, and &, =X; —X; . Thus, for the purposes of an
analysis of uncertainty, a measurand is usually approximated by a linear function of its variables by

transforming its input quantities from X; to ¢, (see E.3.1).

EXAMPLE From Example 2 of 4.3.7, the estimate of the value of the measurand 7 is V_=I7+Al7,
where ¥ =0,928 571V, u(V)=12pV, the additive correction AV =0, and u(AV)=8,7uV. Since dV/dV =1, and
dV/d(AV)=1, the combined variance associated with Vis given by

w2 (V) =u? (V) +u?(a7) = (12uV)? +(8,7uV)? = 219x10712 v2

and the combined standard uncertainty is u(V) =15 pV, which corresponds to a relative combined standard uncertainty
ug(¥)/V of 16 x 1078 (see 5.1.6). This is an example of the case where the measurand is already a linear function of the
quantities on which it depends, with coefficients ¢; = +1. It follows from Equation (10) that if Y = c¢41Xq + coX) +... + ¢y Xy and
if the constants ¢; = +1 or -1, then u2(y) = >k u?(x;).

51.6 |If Yis oftheform Y = ch” X52 ...X]{j,N and the exponents p; are known positive or negative numbers
having negligible uncertainties, the combined variance, Equation (10), can be expressed as

[ue (/2] = i[l’i"(xi)/xi]z (12)

i=1

This is of the same form as Equation (11a) but with the combined variance uc(y) expressed as a relative
combined variance [uc(y)/y]2 and the estimated variance u2(x) associated with each input estimate expressed
as an estimated relative variance [u(x;)/x; 12. [The relative combined standard uncertainty is uc(y)/l y| and the
relative standard uncertainty of each input estimate is u(x,)/| x;|, | »| #0and |x,| #0.]

NOTE 1 When Y has this form, its transformation to a linear function of variables (see 5.1.5) is readily achieved by
setting X; = X; o(1 + &), for then the following approximate relation results: (Y—Yy)/Yy = Z i]\; p; 6;. On the other hand, the
logarithmic transformation Z=InY and W,=InX; leads to an exact linearization in terms of the new variables:

N
=In C+Zi:1Pin
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NOTE 2  If each p; is either +1 or —1, Equation (12) becomes [uc(y)/y]z = f\; [u(xl-)/xi]z, which shows that, for this
special case, the relative combined variance associated with the estimate y is simply equal to the sum of the estimated
relative variances associated with the input estimates x;.

5.2 Correlated input quantities

5.2.1 Equation (10) and those derived from it such as Equations (11a) and (12) are valid only if the input
quantities X; are independent or uncorrelated (the random variables, not the physical quantities that are
assumed to be invariants — see 4.1.1, Note 1). If some of the X; are significantly correlated, the correlations
must be taken into account.

5.2.2 When the input quantities are correlated, the appropriate expression for the combined variance ug(y)
associated with the result of a measurement is

of af of N-1 N o o
Zzax Bx ( x-/) Z(dx (xi)+22 z ggu(x,-,xj) (13)
= i=1 j=i+1 J

where x; and x; are the estimates of X; and X; and u(x;, x;) = u(x;, x;) is the estimated covariance associated

with x; and The degree of correlatlon between X; and X; is characterlzed by the estimated correlation
coefflment (é

(x, x/):M (14)

where r(x;, x)— r(x x;), and =1 < r(x;, x) < +1. If the estimates x; and x; are independent, »(x;, xj) =0,and a
change in one does not imply an expected change in the other. (See C.2.8, C.3.6, and C.3.7 for further
discussion.)

In terms of correlation coefficients, which are more readily interpreted than covariances, the covariance term
of Equation (13) may be written as

N-1 N
J o
22 Z ggu(xi)u(xj)r(xi,xj) (15)
Equation (13) then becomes, with the aid of Equation (11b),

ug(y) +22 Z ciCj u ( j)r(x,,xj) (16)

i=1 i=1 j=i+1

NOTE 1 For the very special case where all of the input estimates are correlated with correlation coefficients
r(x;, x;) = +1, Equation (16) reduces to

T

i=1

N

ug(y)z{z:ciu(xi) =

i=1

The combined standard uncertainty uc(y) is thus simply a linear sum of terms representing the variation of the output
estimate y generated by the standard uncertainty of each input estimate x; (see 5.1.3). [This linear sum should not be
confused with the general law of error propagation although it has a similar form; standard uncertainties are not errors
(see E.3.2).]
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EXAMPLE Ten resistors, each of nominal resistance R;=1 000 Q, are calibrated with a negligible uncertainty of
comparison in terms of the same 1 000 Q standard resistor Rg characterized by a standard uncertainty u(Rs) = 100 mQ as
given in its calibration certificate. The resistors are connected in series with wires having negligible resistance in order to
obtain a reference resistance R of nominal value 10 kQ. Thus R = f(R;) = ,1»21R,». Since r(x;, x;) = r(R;, R;) = +1 for
each resistor pair (see F.1.2.3, Example 2), the equation of this note applies. Since for each resistor df/dx; = dRe/OR; = 1,
and u(x;) = u(R;) = u(Rs) (see F.1.2.3, Example 2), that equatlon yields for the comblned standard uncertainty of R,

u(Ryef) = z ,101u( R,)=10x(100 mQ)=1Q. The result uy(R ) = [Z 201 u?(R } = 0,32 Q obtained from Equation (10)
is incorrect because it does not take into account that all of the calibrated values of the ten resistors are correlated.

NOTE 2  The estimated variances u2(x;) and estimated covariances u(x;, x ;) may be considered as the elements of a
covariance matrix with elements Ujj. The diagonal elements u;; of the matrix are the variances u2(x;), while the off-diagonal
elements u;(i#/) are the covariances u(x; x;) = u(x; x;). If two input estimates are uncorrelated, their associated
covariance and the corresponding elements u; and u; of the covariance matrix are 0. If the input estimates are all
uncorrelated, all of the off-diagonal elements are zero and the covariance matrix is diagonal. (See also C.3.5.)

NOTE 3  For the purposes of numerical evaluation, Equation (16) may be written as

ZZZZ r(x X )

i=1j=1

where Z; is given in 5.1.3, Note 2.

NOTE 4 If the X; of the special form considered in 5.1.6 are correlated, then the terms

25 3 [t [l ] ()

i=1 j=i+1

must be added to the right-hand side of Equation (12).

5.2.3 Consider two arithmetic means ¢ and r that estimate the expectations Uy and u, of two randomly
varying quantities ¢ and r, and let ¢ and r be calculated from n independent pairs of simultaneous
observations of ¢ and » made under the same conditions of measurement (see B.2.15). Then the covariance
(see C.3.4) of ¢ and 7 is estimated by

S(7.7) =y ok 7) (1)

where g, and r, are the individual observations of the quantities ¢ and » and ¢ and 7 are calculated from the
observations according to Equation (3). If in fact the observations are uncorrelated, the calculated covariance
is expected to be near 0.

Thus the estimated covariance of two correlated input quantities X; and X; that are estimated by the means
X and X determmed from independent pairs of repeated S|multaneous observations is given by
u(xl, X; ) —s( ) with s(X X, ;) calculated according to Equation (17). This apphca’uon of Equation (17) is
a TypeA evaluatlon of covarlance The estlmated correlation coefficient of X, and X is obtained from

Equation (14): r(x;, x;) =r(X;, X,)=s(X; )/[s(X )s(X;)]. l

NOTE Examples where it is necessary to use covariances as calculated from Equation (17) are given in H.2 and H.4.

5.2.4 There may be significant correlation between two input quantities if the same measuring instrument,
physical measurement standard, or reference datum having a significant standard uncertainty is used in their
determination. For example, if a certain thermometer is used to determine a temperature correction required in
the estimation of the value of input quantity X;, and the same thermometer is used to determine a similar
temperature correction required in the estimation of input quantity XJ the two input quantities could be
significantly correlated. However, if X; and X; in this example are redefined to be the uncorrected quantities
and the quantities that define the calibration curve for the thermometer are included as additional input
quantities with independent standard uncertainties, the correlation between X; and Xj is removed. (See F.1.2.3
and F.1.2.4 for further discussion.)
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5.2.5 Correlations between input quantities cannot be ignored if present and significant. The associated
covariances should be evaluated experimentally if feasible by varying the correlated input quantities (see
C.3.6, Note 3), or by using the pool of available information on the correlated variability of the quantities in
question (Type B evaluation of covariance). Insight based on experience and general knowledge (see 4.3.1
and 4.3.2) is especially required when estimating the degree of correlation between input quantities arising
from the effects of common influences, such as ambient temperature, barometric pressure, and humidity.
Fortunately, in many cases, the effects of such influences have negligible interdependence and the affected
input quantities can be assumed to be uncorrelated. However, if they cannot be assumed to be uncorrelated,
the correlations themselves can be avoided if the common influences are introduced as additional
independent input quantities as indicated in 5.2.4.

6 Determining expanded uncertainty

6.1 Introduction

6.1.1 Recommendation INC-1 (1980) of the Working Group on the Statement of Uncertainties on which this
Guide is based (see the Introduction), and Recommendations 1 (CI-1981) and 1 (CI-1986) of the CIPM
approving and reaffirming INC-1 (1980) (see A.2 and A.3), advocate the use of the combined standard
uncertainty u(y) as the parameter for expressing quantitatively the uncertainty of the result of a measurement.
Indeed, in the second of its recommendations, the CIPM has requested that what is now termed combined
standard uncertainty u.(y) be used “by all participants in giving the results of all international comparisons or
other work done under the auspices of the CIPM and Comités Consultatifs”.

6.1.2  Although u(y) can be universally used to express the uncertainty of a measurement result, in some
commercial, industrial, and regulatory applications, and when health and safety are concerned, it is often
necessary to give a measure of uncertainty that defines an interval about the measurement result that may be
expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the
measurand. The existence of this requirement was recognized by the Working Group and led to paragraph 5
of Recommendation INC-1 (1980). It is also reflected in Recommendation 1 (CI-1986) of the CIPM.

6.2 Expanded uncertainty

6.2.1 The additional measure of uncertainty that meets the requirement of providing an interval of the kind
indicated in 6.1.2 is termed expanded uncertainty and is denoted by U. The expanded uncertainty U is
obtained by multiplying the combined standard uncertainty u.(y) by a coverage factor k:

Uzkuc(y) (18)

The result of a measurement is then conveniently expressed as Y=y + U, which is interpreted to mean that
the best estimate of the value attributable to the measurand Y is y, and that y — U to y + U is an interval that
may be expected to encompass a large fraction of the distribution of values that could reasonably be
attributed to Y. Such an interval is also expressedasy - U< Y <y + U.

6.2.2 The terms confidence interval (C.2.27, C.2.28) and confidence level (C.2.29) have specific
definitions in statistics and are only applicable to the interval defined by U when certain conditions are met,
including that all components of uncertainty that contribute to u.(y) be obtained from Type A evaluations. Thus,
in this Guide, the word “confidence” is not used to modify the word “interval” when referring to the interval
defined by U; and the term “confidence level” is not used in connection with that interval but rather the term
“level of confidence”. More specifically, U is interpreted as defining an interval about the measurement result
that encompasses a large fraction p of the probability distribution characterized by that result and its combined
standard uncertainty, and p is the coverage probability or level of confidence of the interval.

6.2.3 Whenever practicable, the level of confidence p associated with the interval defined by U should be
estimated and stated. It should be recognized that multiplying u.(») by a constant provides no new information
but presents the previously available information in a different form. However, it should also be recognized
that in most cases the level of confidence p (especially for values of p near 1) is rather uncertain, not only
because of limited knowledge of the probability distribution characterized by y and u.(y) (particularly in the
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extreme portions), but also because of the uncertainty of u(y) itself (see Note 2 to 2.3.5, 6.3.2, 6.3.3 and
Annex G, especially G.6.6).

NOTE For preferred ways of stating the result of a measurement when the measure of uncertainty is uc(y) and when
itis U, see 7.2.2 and 7.2.4, respectively.

6.3 Choosing a coverage factor

6.3.1 The value of the coverage factor k is chosen on the basis of the level of confidence required of the
interval y — U to y + U. In general, k£ will be in the range 2 to 3. However, for special applications £ may be
outside this range. Extensive experience with and full knowledge of the uses to which a measurement result
will be put can facilitate the selection of a proper value of k.

NOTE Occasionally, one may find that a known correction b for a systematic effect has not been applied to the
reported result of a measurement, but instead an attempt is made to take the effect into account by enlarging the
“uncertainty” assigned to the result. This should be avoided; only in very special circumstances should corrections for
known significant systematic effects not be applied to the result of a measurement (see F.2.4.5 for a specific case and
how to treat it). Evaluating the uncertainty of a measurement result should not be confused with assigning a safety limit to
some quantity.

6.3.2 Ideally, one would like to be able to choose a specific value of the coverage factor k& that would
provide an interval Y=y + U=y * kuy(y) corresponding to a particular level of confidence p, such as 95 or
99 percent; equivalently, for a given value of &, one would like to be able to state unequivocally the level of
confidence associated with that interval. However, this is not easy to do in practice because it requires
extensive knowledge of the probability distribution characterized by the measurement result y and its
combined standard uncertainty u(y). Although these parameters are of critical importance, they are by
themselves insufficient for the purpose of establishing intervals having exactly known levels of confidence.

6.3.3 Recommendation INC-1(1980) does not specify how the relation between k£ and p should be
established. This problem is discussed in Annex G, and a preferred method for its approximate solution is
presented in G.4 and summarized in G.6.4. However, a simpler approach, discussed in G.6.6, is often
adequate in measurement situations where the probability distribution characterized by y and u(y) is
approximately normal and the effective degrees of freedom of u(y) is of significant size. When this is the case,
which frequently occurs in practice, one can assume that taking £ =2 produces an interval having a level of
confidence of approximately 95 percent, and that taking k=3 produces an interval having a level of
confidence of approximately 99 percent.

NOTE A method for estimating the effective degrees of freedom of u.(y) is given in G.4. Table G.2 of Annex G can
then be used to help decide if this solution is appropriate for a particular measurement (see G.6.6).

7 Reporting uncertainty

7.1 General guidance

711 In general, as one moves up the measurement hierarchy, more details are required on how a
measurement result and its uncertainty were obtained. Nevertheless, at any level of this hierarchy, including
commercial and regulatory activities in the marketplace, engineering work in industry, lower-echelon
calibration facilities, industrial research and development, academic research, industrial primary standards
and calibration laboratories, and the national standards laboratories and the BIPM, all of the information
necessary for the re-evaluation of the measurement should be available to others who may have need of it.
The primary difference is that at the lower levels of the hierarchical chain, more of the necessary information
may be made available in the form of published calibration and test system reports, test specifications,
calibration and test certificates, instruction manuals, international standards, national standards, and local
regulations.

7.1.2 When the details of a measurement, including how the uncertainty of the result was evaluated, are
provided by referring to published documents, as is often the case when calibration results are reported on a
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certificate, it is imperative that these publications be kept up-to-date so that they are consistent with the
measurement procedure actually in use.

7.1.3 Numerous measurements are made every day in industry and commerce without any explicit report of
uncertainty. However, many are performed with instruments subject to periodic calibration or legal inspection.
If the instruments are known to be in conformance with their specifications or with the existing normative
documents that apply, the uncertainties of their indications may be inferred from these specifications or from
these normative documents.

7.1.4 Although in practice the amount of information necessary to document a measurement result depends
on its intended use, the basic principle of what is required remains unchanged: when reporting the result of a
measurement and its uncertainty, it is preferable to err on the side of providing too much information rather
than too little. For example, one should

a) describe clearly the methods used to calculate the measurement result and its uncertainty from the
experimental observations and input data;

b) list all uncertainty components and document fully how they were evaluated;

c) present the data analysis in such a way that each of its important steps can be readily followed and the
calculation of the reported result can be independently repeated if necessary;

d) give all corrections and constants used in the analysis and their sources.

A test of the foregoing list is to ask oneself “Have | provided enough information in a sufficiently clear manner
that my result can be updated in the future if new information or data become available?”

7.2 Specific guidance

7.21 When reporting the result of a measurement, and when the measure of uncertainty is the combined
standard uncertainty «(y), one should

a) give a full description of how the measurand Y is defined;

b) give the estimate y of the measurand Y and its combined standard uncertainty u(y); the units of y and
u(y) should always be given;

c) include the relative combined standard uncertainty u,(»)/|»|, || # 0, when appropriate;
d) give the information outlined in 7.2.7 or refer to a published document that contains it.

If it is deemed useful for the intended users of the measurement result, for example, to aid in future
calculations of coverage factors or to assist in understanding the measurement, one may indicate

— the estimated effective degrees of freedom v (see G.4);

— the Type A and Type B combined standard uncertainties u () and u g(y) and their estimated effective
degrees of freedom vggp and vggg (see G.4.1, Note 3).

7.22 When the measure of uncertainty is u.(y), it is preferable to state the numerical result of the
measurement in one of the following four ways in order to prevent misunderstanding. (The quantity whose
value is being reported is assumed to be a nominally 100 g standard of mass mg; the words in parentheses
may be omitted for brevity if u is defined elsewhere in the document reporting the resuilt.)

1) “mg=100,021 47 g with (a combined standard uncertainty) u, = 0,35 mg.”

2) “mg=100,02147(35) g, where the number in parentheses is the numerical value of (the combined
standard uncertainty) u referred to the corresponding last digits of the quoted result.”
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3) “mg=100,021 47(0,000 35) g, where the number in parentheses is the numerical value of (the combined
standard uncertainty) u. expressed in the unit of the quoted result.”

4) “mg=(100,021 47 + 0,000 35) g, where the number following the symbol * is the numerical value of (the
combined standard uncertainty) . and not a confidence interval.”

NOTE The * format should be avoided whenever possible because it has traditionally been used to indicate an
interval corresponding to a high level of confidence and thus may be confused with expanded uncertainty (see 7.2.4).
Further, although the purpose of the caveat in 4) is to prevent such confusion, writing Y=y u(y) might still be
misunderstood to imply, especially if the caveat is accidentally omitted, that an expanded uncertainty with k= 1 is intended
and that the interval y — u(y) < Y < y + uc(y) has a specified level of confidence p, namely, that associated with the normal
distribution (see G.1.3). As indicated in 6.3.2 and Annex G, interpreting uc(y) in this way is usually difficult to justify.

7.2.3 When reporting the result of a measurement, and when the measure of uncertainty is the expanded
uncertainty U = ku(y), one should

a) give a full description of how the measurand Y is defined;
b) state the result of the measurement as Y=y = U and give the units of y and U;
c) include the relative expanded uncertainty U/|y|, | »| # 0, when appropriate;

d) give the value of k used to obtain U [or, for the convenience of the user of the result, give both k£ and
ug(y)l;

e) give the approximate level of confidence associated with the interval y+ U and state how it was
determined,;

f)  give the information outlined in 7.2.7 or refer to a published document that contains it.

7.2.4 When the measure of uncertainty is U, it is preferable, for maximum clarity, to state the numerical
result of the measurement as in the following example. (The words in parentheses may be omitted for brevity
if U, u., and k are defined elsewhere in the document reporting the result.)

“mg = (100,021 47 £ 0,000 79) g, where the number following the symbol + is the numerical value of (an
expanded uncertainty) U = kug, with U determined from (a combined standard uncertainty) u; = 0,35 mg
and (a coverage factor) k= 2,26 based on the #distribution for v =9 degrees of freedom, and defines an
interval estimated to have a level of confidence of 95 percent.”

7.2.5 If a measurement determines simultaneously more than one measurand, that is, if it provides two or
more output estimates y; (see H.2, H.3, and H.4), then, in addition to giving y; and u(y,), give the covariance
matrix elements u(y;, yj) or the elements r(y;, yj) of the correlation coefficient matrix (C.3.6, Note 2) (and
preferably both).

7.2.6 The numerical values of the estimate y and its standard uncertainty u(y) or expanded uncertainty U
should not be given with an excessive number of digits. It usually suffices to quote u.(y) and U [as well as the
standard uncertainties u(x;) of the input estimates x;] to at most two significant digits, although in some cases it
may be necessary to retain additional digits to avoid round-off errors in subsequent calculations.

In reporting final results, it may sometimes be appropriate to round uncertainties up rather than to the nearest
digit. For example, u(y) = 10,47 mQ might be rounded up to 11 mQ. However, common sense should prevail
and a value such as u(x;) = 28,05 kHz should be rounded down to 28 kHz. Output and input estimates should
be rounded to be consistent with their uncertainties; for example, if y =10,057 62 Q with u.(y) =27 mQ,
y should be rounded to 10,058 Q. Correlation coefficients should be given with three-digit accuracy if their
absolute values are near unity.
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7.2.7 In the detailed report that describes how the result of a measurement and its uncertainty were
obtained, one should follow the recommendations of 7.1.4 and thus

a) give the value of each input estimate x; and its standard uncertainty u(x;) together with a description of
how they were obtained;

b) give the estimated covariances or estimated correlation coefficients (preferably both) associated with all
input estimates that are correlated, and the methods used to obtain them;

c) give the degrees of freedom for the standard uncertainty of each input estimate and how it was obtained;

d) give the functional relationship Y=f(X;, X,, ..., X)) and, when they are deemed useful, the partial
derivatives or sensitivity coefficients df/ox;. However, any such coefficients determined experimentally
should be given.

NOTE Since the functional relationship f'may be extremely complex or may not exist explicitly but only as a computer
program, it may not always be possible to give fand its derivatives. The function f may then be described in general terms
or the program used may be cited by an appropriate reference. In such cases, it is important that it be clear how the
estimate y of the measurand Y and its combined standard uncertainty u(y) were obtained.

8 Summary of procedure for evaluating and expressing uncertainty

The steps to be followed for evaluating and expressing the uncertainty of the result of a measurement as
presented in this Guide may be summarized as follows:

1) Express mathematically the relationship between the measurand Y and the input quantities X; on which
Y depends: Y= f(X;, X, ..., Xy). The function f'should contain every quantity, including all corrections and
correction factors, that can contribute a significant component of uncertainty to the result of the
measurement (see 4.1.1 and 4.1.2).

2) Determine x;, the estimated value of input quantity X;, either on the basis of the statistical analysis of
series of observations or by other means (see 4.1.3).

3) Evaluate the standard uncertainty u(x;) of each input estimate x;. For an input estimate obtained from the
statistical analysis of series of observations, the standard uncertainty is evaluated as described in 4.2
(Type A evaluation of standard uncertainty). For an input estimate obtained by other means, the standard
uncertainty u(x;) is evaluated as described in 4.3 (Type B evaluation of standard uncertainty).

4) Evaluate the covariances associated with any input estimates that are correlated (see 5.2).

5) Calculate the result of the measurement, that is, the estimate y of the measurand Y, from the functional
relationship f using for the input quantities X; the estimates x; obtained in step 2 (see 4.1.4).

6) Determine the combined standard uncertainty uy(y) of the measurement result y from the standard
uncertainties and covariances associated with the input estimates, as described in Clause 5. If the
measurement determines simultaneously more than one output quantity, calculate their covariances (see
7.2.5,H.2,H.3, and H.4).

7) If it is necessary to give an expanded uncertainty U, whose purpose is to provide an interval y — U to
y+ U that may be expected to encompass a large fraction of the distribution of values that could
reasonably be attributed to the measurand Y, multiply the combined standard uncertainty u(y) by a
coverage factor k, typically in the range 2 to 3, to obtain U = ku.(y). Select k on the basis of the level of
confidence required of the interval (see 6.2, 6.3, and especially Annex G, which discusses the selection of
a value of £, that produces an interval having a level of confidence close to a specified value).

8) Report the result of the measurement y together with its combined standard uncertainty u.(») or expanded
uncertainty U as discussed in 7.2.1 and 7.2.3; use one of the formats recommended in 7.2.2 and 7.2.4.
Describe, as outlined also in Clause 7, how y and u.(y) or U were obtained.
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Annex A

Recommendations of Working Group and CIPM

A.1 Recommendation INC-1 (1980)

The Working Group on the Statement of Uncertainties (see Foreword) was convened in October 1980 by the
Bureau International des Poids et Mesures (BIPM) in response to a request of the Comité International des
Poids et Mesures (CIPM). It prepared a detailed report for consideration by the CIPM that concluded with
Recommendation INC-1 (1980) [2]. The English translation of this Recommendation is given in 0.7 of this
Guide and the French text, which is authoritative, is as follows [2]:

Expression des incertitudes expérimentales

Recommandation INC-1 (1980)

1)

2)

3)

4)

5)

L'incertitude d'un résultat de mesure comprend généralement plusieurs composantes qui peuvent
étre groupées en deux catégories d'aprés la méthode utilisée pour estimer leur valeur numérique:

A. celles qui sont évaluées a l'aide de méthodes statistiques,
B. celles qui sont évaluées par d'autres moyens.

Il n'y a pas toujours une correspondance simple entre le classement dans les catégories A ou B et le
caractére «aléatoire» ou «systématique» utilisé antérieurement pour classer les incertitudes.
L'expression «incertitude systématique» est susceptible de conduire a des erreurs d'interprétation;
elle doit étre évitée.

Toute description détaillée de lincertitude devrait comprendre une liste compléte de ses
composantes et indiquer pour chacune la méthode utilisée pour lui attribuer une valeur numérique.

Les composantes de la catégorie A sont caractérisées par les variances estimées s,~2 (ou les
«écart-types» estimés s;) et les nombres v; de degrés de liberté. Le cas échéant, les covariances
estimées doivent étre données.

Les composantes de la catégorie B devraient étre caractérisées par des termes uj2 qui puissent étre
considérés comme des approximations des variances correspondantes dont on admet I'existence.
Les termes u? peuvent étre traités comme des variances et les termes u; comme des écarts-types.
Le cas échéant, les covariances doivent étre traitées de facon analogue.

L'incertitude composée devrait étre caractérisée par la valeur obtenue en appliquant la méthode
usuelle de combinaison des variances. L'incertitude composée ainsi que ses composantes devraient
étre exprimées sous la forme d'«écart-types».

Si pour des utilisations particulieres on est amené a multiplier par un facteur l'incertitude composée
afin d'obtenir une incertitude globale, la valeur numérique de ce facteur doit toujours étre donnée.
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A.2 Recommendation 1 (CI-1981)

The CIPM reviewed the report submitted to it by the Working Group on the Statement of Uncertainties and
adopted the following recommendation at its 70th meeting held in October 1981 [3]:

Recommendation 1 (CI-1981)

Expression of experimental uncertainties

The Comité International des Poids et Mesures

considering

— the need to find an agreed way of expressing measurement uncertainty in metrology,
— the effort that has been devoted to this by many organizations over many years,

— the encouraging progress made in finding an acceptable solution, which has resulted from the
discussions of the Working Group on the Expression of Uncertainties which met at BIPM in 1980,

recognizes

— that the proposals of the Working Group might form the basis of an eventual agreement on the
expression of uncertainties,

recommends
— that the proposals of the Working Group be diffused widely;

— that BIPM attempt to apply the principles therein to international comparisons carried out under its
auspices in the years to come;

— that other interested organizations be encouraged to examine and test these proposals and let their
comments be known to BIPM;

— that after two or three years BIPM report back on the application of these proposals.

A.3 Recommendation 1 (CI-1986)

The CIPM further considered the matter of the expression of uncertainties at its 75th meeting held in October
1986 and adopted the following recommendation [4]:

Recommendation 1 (CI-1986)
Expression of uncertainties in work carried out under the auspices of the CIPM
The Comité International des Poids et Mesures,

considering the adoption by the Working Group on the Statement of Uncertainties of
Recommendation INC-1 (1980) and the adoption by the CIPM of Recommendation 1 (CI-1981),

considering that certain members of Comités Consultatifs may want clarification of this Recommendation
for the purposes of work that falls under their purview, especially for international comparisons,
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recognizes that paragraph 5 of Recommendation INC-1 (1980) relating to particular applications,
especially those having commercial significance, is now being considered by a working group of the
International Standards Organization (ISO) common to the ISO, OIML and IEC, with the concurrence and
cooperation of the CIPM,

requests that paragraph 4 of Recommendation INC-1 (1980) should be applied by all participants in
giving the results of all international comparisons or other work done under the auspices of the CIPM and
the Comités Consultatifs and that the combined uncertainty of type A and type B uncertainties in terms of
one standard deviation should be given.
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Annex B

General metrological terms

B.1 Source of definitions

The definitions of the general metrological terms relevant to this Guide that are given here have been taken
from the International vocabulary of basic and general terms in metrology (abbreviated VIM), second edition,
1993* [6], published by the International Organization for Standardization (ISO), in the name of the seven
organizations that supported its development and nominated the experts who prepared it: the Bureau
International des Poids et Mesures (BIPM), the International Electrotechnical Commission (IEC), the
International Federation of Clinical Chemistry (IFCC), I1SO, the International Union of Pure and Applied
Chemistry (IUPAC), the International Union of Pure and Applied Physics (IUPAP), and the International
Organization of Legal Metrology (OIML). The VIM should be the first source consulted for the definitions of
terms not included either here or in the text.

NOTE Some basic statistical terms and concepts are given in Annex C, while the terms “true value”, “error”, and
“uncertainty” are further discussed in Annex D.

B.2 Definitions

As in Clause 2, in the definitions that follow, the use of parentheses around certain words of some terms
means that the words may be omitted if this is unlikely to cause confusion.

The terms in boldface in some notes are additional metrological terms defined in those notes, either explicitly
or implicitly (see Reference [6]).

B.2.1

(measurable) quantity

attribute of a phenomenon, body or substance that may be distinguished qualitatively and determined
quantitatively

NOTE 1 The term quantity may refer to a quantity in a general sense (see Example 1) or to a particular quantity (see
Example 2).

EXAMPLE 1 Quantities in a general sense: length, time, mass, temperature, electrical resistance, amount-of-substance
concentration.

EXAMPLE 2 Particular quantities:

— length of a given rod

— electrical resistance of a given specimen of wire

— amount-of-substance concentration of ethanol in a given sample of wine.

NOTE 2  Quantities that can be placed in order of magnitude relative to one another are called quantities of the same
kind.

*  Footnote to the 2008 version:

The third edition of the vocabulary was published in 2008, under the title JCGM 200:2008, International vocabulary of
metrology — Basic and general concepts and associated terms (VIM).
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NOTE 3  Quantities of the same kind may be grouped together into categories of quantities, for example:
— work, heat, energy
— thickness, circumference, wavelength.

NOTE 4  Symbols for quantities are given in ISO 317,
[VIM:1993, definition 1.1]

B.2.2
value (of a quantity)
magnitude of a particular quantity generally expressed as a unit of measurement multiplied by a number

EXAMPLE 1 Length of a rod: 5,34 m or 534 cm.

EXAMPLE 2 Mass of a body: 0,152 kg or 152 g.

EXAMPLE 3 Amount of substance of a sample of water (H,0): 0,012 mol or 12 mmol.

NOTE 1 The value of a quantity may be positive, negative or zero.

NOTE 2  The value of a quantity may be expressed in more than one way.

NOTE 3  The values of quantities of dimension one are generally expressed as pure numbers.

NOTE 4 A quantity that cannot be expressed as a unit of measurement multiplied by a number may be expressed by
reference to a conventional reference scale or to a measurement procedure or to both.

[VIM:1993, definition 1.18]

B.2.3
true value (of a quantity)
value consistent with the definition of a given particular quantity

NOTE 1 This is a value that would be obtained by a perfect measurement.
NOTE 2  True values are by nature indeterminate.

NOTE 3 The indefinite article “a”, rather than the definite article “the”, is used in conjunction with “true value” because
there may be many values consistent with the definition of a given particular quantity.

[VIM:1993, definition 1.19]

Guide Comment: See Annex D, in particular D.3.5, for the reasons why the term “true value” is not used in this
Guide and why the terms “true value of a measurand” (or of a quantity) and “value of a measurand” (or of a
quantity) are viewed as equivalent.

B.2.4

conventional true value (of a quantity)

value attributed to a particular quantity and accepted, sometimes by convention, as having an uncertainty
appropriate for a given purpose

EXAMPLE 1 At a given location, the value assigned to the quantity realized by a reference standard may be taken as
a conventional true value.

EXAMPLE 2 The CODATA (1986) recommended value for the Avogadro constant: 6,022 136 7 x 1023 mol™".

*

Footnote to the 2008 version:

The ISO 31 series is under revision as a series of ISO 80000 and IEC 80000 documents. (Some of these documents have
already been published.)
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NOTE 1 “Conventional true value” is sometimes called assigned value, best estimate of the value, conventional
value or reference value. “Reference value”, in this sense, should not be confused with “reference value” in the sense
used in the Note to VIM:1993, definition 5.7.

NOTE 2 Frequently, a number of results of measurements of a quantity is used to establish a conventional true value.
[VIM:1993, definition 1.20]
Guide Comment: See the Guide Comment to B.2.3.

B.2.5
measurement
set of operations having the object of determining a value of a quantity

NOTE The operations may be performed automatically.
[VIM:1993, definition 2.1]

B.2.6
principle of measurement
scientific basis of a measurement

EXAMPLE 1 The thermoelectric effect applied to the measurement of temperature.

EXAMPLE 2 The Josephson effect applied to the measurement of electric potential difference.
EXAMPLE 3 The Doppler effect applied to the measurement of velocity.

EXAMPLE 4 The Raman effect applied to the measurement of the wave number of molecular vibrations.
[VIM:1993, definition 2.3]

B.2.7
method of measurement
logical sequence of operations, described generically, used in the performance of measurements

NOTE Methods of measurement may be qualified in various ways such as:
— substitution method
— differential method

— null method.
[VIM:1993, definition 2.4]

B.2.8

measurement procedure

set of operations, described specifically, used in the performance of particular measurements according to a
given method

NOTE A measurement procedure is usually recorded in a document that is sometimes itself called a “measurement

procedure” (or a measurement method) and is usually in sufficient detail to enable an operator to carry out a
measurement without additional information.

[VIM:1993, definition 2.5]
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B.2.9
measurand
particular quantity subject to measurement

EXAMPLE Vapour pressure of a given sample of water at 20 °C.
NOTE The specification of a measurand may require statements about quantities such as time, temperature and
pressure.

[VIM:1993, definition 2.6]

B.2.10
influence quantity
quantity that is not the measurand but that affects the result of the measurement

EXAMPLE 1 Temperature of a micrometer used to measure length.
EXAMPLE 2 Frequency in the measurement of the amplitude of an alternating electric potential difference.

EXAMPLE 3 Bilirubin concentration in the measurement of haemoglobin concentration in a sample of human blood
plasma.

[VIM:1993, definition 2.7]

Guide Comment: The definition of influence quantity is understood to include values associated with
measurement standards, reference materials, and reference data upon which the result of a measurement
may depend, as well as phenomena such as short-term measuring instrument fluctuations and quantities such
as ambient temperature, barometric pressure and humidity.

B.2.11
result of a measurement
value attributed to a measurand, obtained by measurement

NOTE 1 When a result is given, it should be made clear whether it refers to:
— the indication

— the uncorrected result

— the corrected result

and whether several values are averaged.

NOTE 2 A complete statement of the result of a measurement includes information about the uncertainty of
measurement.

[VIM:1993, definition 3.1]
B.2.12

uncorrected result
result of a measurement before correction for systematic error

[VIM:1993, definition 3.3]
B.2.13
corrected result

result of a measurement after correction for systematic error

[VIM:1993, definition 3.4]
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B.2.14
accuracy of measurement
closeness of the agreement between the result of a measurement and a true value of the measurand

NOTE 1 “Accuracy” is a qualitative concept.

NOTE 2  The term precision should not be used for “accuracy’.
[VIM:1993, definition 3.5]

Guide Comment: See the Guide Comment to B.2.3.

B.2.15

repeatability (of results of measurements)

closeness of the agreement between the results of successive measurements of the same measurand carried
out under the same conditions of measurement

NOTE 1 These conditions are called repeatability conditions.

NOTE 2 Repeatability conditions include:

— the same measurement procedure

— the same observer

— the same measuring instrument, used under the same conditions
— the same location

— repetition over a short period of time.

NOTE 3  Repeatability may be expressed quantitatively in terms of the dispersion characteristics of the results.
[VIM:1993, definition 3.6]

B.2.16

reproducibility (of results of measurements)

closeness of the agreement between the results of measurements of the same measurand carried out under
changed conditions of measurement

NOTE 1 A valid statement of reproducibility requires specification of the conditions changed.

NOTE 2  The changed conditions may include:
— principle of measurement

— method of measurement

— observer

— measuring instrument

— reference standard

— location

— conditions of use

— time.
NOTE 3 Reproducibility may be expressed quantitatively in terms of the dispersion characteristics of the results.

NOTE 4  Results are here usually understood to be corrected results.

[VIM:1993, definition 3.7]
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B.2.17

experimental standard deviation

for a series of n» measurements of the same measurand, the quantity s(q,) characterizing the dispersion of the
results and given by the formula:

q; being the result of the kth measurement and g being the arithmetic mean of the » results considered

NOTE 1 Considering the series of n values as a sample of a distribution, g is an unbiased estimate of the mean yrm
and s2(¢,) is an unbiased estimate of the variance ¢2, of that distribution.

NOTE 2 The expression s(qk)/JZ is an estimate of the standard deviation of the distribution of ¢ and is called the
experimental standard deviation of the mean.

NOTE 3  “Experimental standard deviation of the mean” is sometimes incorrectly called standard error of the mean.
NOTE 4 Adapted from VIM:1993, definition 3.8.

Guide Comment: Some of the symbols used in the VIM have been changed in order to achieve consistency
with the notation used in 4.2 of this Guide.

B.2.18

uncertainty (of measurement)

parameter, associated with the result of a measurement, that characterizes the dispersion of the values that
could reasonably be attributed to the measurand

NOTE 1 The parameter may be, for example, a standard deviation (or a given multiple of it), or the half-width of an
interval having a stated level of confidence.

NOTE 2 Uncertainty of measurement comprises, in general, many components. Some of these components may be
evaluated from the statistical distribution of the results of series of measurements and can be characterized by
experimental standard deviations. The other components, which can also be characterized by standard deviations, are
evaluated from assumed probability distributions based on experience or other information.

NOTE 3 It is understood that the result of the measurement is the best estimate of the value of the measurand, and
that all components of uncertainty, including those arising from systematic effects, such as components associated with
corrections and reference standards, contribute to the dispersion.

[VIM:1993, definition 3.9]

Guide Comment: It is pointed out in the VIM that this definition and the notes are identical to those in this
Guide (see 2.2.3).

B.2.19
error (of measurement)
result of a measurement minus a true value of the measurand

NOTE 1 Since a true value cannot be determined, in practice a conventional true value is used [see VIM:1993,
definitions 1.19 (B.2.3) and 1.20 (B.2.4)].

NOTE 2  When it is necessary to distinguish “error” from “relative error”, the former is sometimes called absolute error
of measurement. This should not be confused with absolute value of error, which is the modulus of the error.

[VIM:1993, definition 3.10]
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Guide Comment: If the result of a measurement depends on the values of quantities other than the
measurand, the errors of the measured values of these quantities contribute to the error of the result of the
measurement. Also see the Guide Comment to B.2.22 and to B.2.3.

B.2.20
relative error
error of measurement divided by a true value of the measurand

NOTE Since a true value cannot be determined, in practice a conventional true value is used [see VIM:1993,
definitions 1.19 (B.2.3) and 1.20 (B.2.4)].

[VIM:1993, definition 3.12]

Guide Comment: See the Guide Comment to B.2.3.

B.2.21

random error

result of a measurement minus the mean that would result from an infinite number of measurements of the
same measurand carried out under repeatability conditions

NOTE 1 Random error is equal to error minus systematic error.

NOTE 2 Because only a finite number of measurements can be made, it is possible to determine only an estimate of
random error.

[VIM:1993, definition 3.13]

Guide Comment: See the Guide Comment to B.2.22.

B.2.22

systematic error

mean that would result from an infinite number of measurements of the same measurand carried out under
repeatability conditions minus a true value of the measurand

NOTE 1 Systematic error is equal to error minus random error.

NOTE 2 Like true value, systematic error and its causes cannot be completely known.

NOTE 3  For a measuring instrument, see “bias” (VIM:1993, definition 5.25).

[VIM:1993, definition 3.14]

Guide Comment: The error of the result of a measurement (see B.2.19) may often be considered as arising
from a number of random and systematic effects that contribute individual components of error to the error of
the result. Also see the Guide Comment to B.2.19 and to B.2.3.

B.2.23

correction

value added algebraically to the uncorrected result of a measurement to compensate for systematic error
NOTE 1 The correction is equal to the negative of the estimated systematic error.

NOTE 2  Since the systematic error cannot be known perfectly. the compensation cannot be complete.

[VIM:1993, definition 3.15]
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B.2.24
correction factor

numerical factor by which the uncorrected result of a measurement is multiplied to compensate for systematic
error

NOTE Since the systematic error cannot be known perfectly, the compensation cannot be complete.

[VIM:1993, definition 3.16]
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Annex C

Basic statistical terms and concepts

C.1 Source of definitions

The definitions of the basic statistical terms given in this annex are taken from International Standard
ISO 3534-1:1993* [7]. This should be the first source consulted for the definitions of terms not included here.
Some of these terms and their underlying concepts are elaborated upon in C.3 following the presentation of
their formal definitions in C.2 in order to facilitate further the use of this Guide. However, C.3, which also
includes the definitions of some related terms, is not based directly on ISO 3534-1:1993.

C.2 Definitions

As in Clause 2 and Annex B, the use of parentheses around certain words of some terms means that the
words may be omitted if this is unlikely to cause confusion.

Terms C.2.1 to C.2.14 are defined in terms of the properties of populations. The definitions of terms C.2.15 to
C.2.31 are related to a set of observations (see Reference [7]).

C.21
probability
a real number in the scale 0 to 1 attached to a random event

NOTE It can be related to a long-run relative frequency of occurrence or to a degree of belief that an event will occur.
For a high degree of belief, the probability is near 1.

[ISO 3534-1:1993, definition 1.1]

C.2.2

random variable

variate

a variable that may take any of the values of a specified set of values and with which is associated a
probability distribution [ISO 3534-1:1993, definition 1.3 (C.2.3)]

NOTE 1 A random variable that may take only isolated values is said to be “discrete”. A random variable which may
take any value within a finite or infinite interval is said to be “continuous”.

NOTE 2  The probability of an event A is denoted by Pr(A) or P(A).
[ISO 3534-1:1993, definition 1.2]

Guide Comment: The symbol Pr(A) is used in this Guide in place of the symbol P (A) used in
ISO 3534-1:1993.

*

Footnote to the 2008 version:

ISO 3534-1:1993 has been cancelled and replaced by ISO 3534-1:2006. Note that some of the terms and definitions have
been revised. For further information, see the latest edition.
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C.23

probability distribution (of a random variable)

a function giving the probability that a random variable takes any given value or belongs to a given set of
values

NOTE The probability on the whole set of values of the random variable equals 1.
[ISO 3534-1:1993, definition 1.3]

C.24
distribution function
a function giving, for every value x, the probability that the random variable X be less than or equal to x:

F(x) = Pr(X < x)
[ISO 3534-1:1993, definition 1.4]

C.25
probability density function (for a continuous random variable)
the derivative (when it exists) of the distribution function:

f(x) = dF(x)/dx
NOTE f(x)dx is the “probability element”:

f(x)dx:Pr(x<X<x+dx)

[ISO 3534-1:1993, definition 1.5]

C.2.6

probability mass function

a function giving, for each value x; of a discrete random variable X, the probability p; that the random variable
equals x;.

p; = Pr(X = xi)
[1ISO 3534-1:1993, definition 1.6]
Cc.2.7
parameter
a quantity used in describing the probability distribution of a random variable
[ISO 3534-1:1993, definition 1.12]
Cc.2.8
correlation

the relationship between two or several random variables within a distribution of two or more random variables

NOTE Most statistical measures of correlation measure only the degree of linear relationship.

[ISO 3534-1:1993, definition 1.13]
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C.29

expectation (of a random variable or of a probability distribution)
expected value

mean

1) For a discrete random variable X taking the values x; with the probabilities p;, the expectation, if it exists, is
Iu=E(X)=Zpixi
the sum being extended over all the values x; which can be taken by X.
2) For a continuous random variable X having the probability density function f(x), the expectation, if it exists, is
p=E(X)=[xf(x)dx
the integral being extended over the interval(s) of variation of X.
[ISO 3534-1:1993, definition 1.18]
Cc.2.10
centred random variable
a random variable the expectation of which equals zero
NOTE If the random variable X has an expectation equal to x4, the corresponding centred random variable is (X — u).
[ISO 3534-1:1993, definition 1.21]
c.2.1

variance (of a random variable or of a probability distribution)
the expectation of the square of the centred random variable [ISO 3534-1:1993, definition 1.21 (C.2.10)]:

o? =V (X)= E{[X—E(X)]Z}

[ISO 3534-1:1993, definition 1.22]
C.212
standard deviation (of a random variable or of a probability distribution)
the positive square root of the variance:
o=,V(X)
[ISO 3534-1:1993, definition 1.23]

C.213
central moment 2! of order ¢
in a univariate distribution, the expectation of the ¢gth power of the centred random variable (X — w):

o]

NOTE The central moment of order 2 is the variance [ISO 3534-1:1993, definition 1.22 (C.2.11)] of the random
variable X.

[ISO 3534-1:1993, definition 1.28]

2) If, in the definition of the moments, the quantities X, X—a, Y, Y — b, etc. are replaced by their absolute values, i.e. |X|
| X=al, | 7|, | Y- b|, etc., other moments called “absolute moments” are defined.
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C.2.14

normal distribution

Laplace-Gauss distribution

the probability distribution of a continuous random variable X, the probability density function of which is

f(x)=$e)(p[_%(x;ﬂj2]

for —oo < x < 400,

NOTE M is the expectation and ¢ is the standard deviation of the normal distribution.
[1ISO 3534-1:1993, definition 1.37]

C.2.15
characteristic
a property which helps to identify or differentiate between items of a given population

NOTE The characteristic may be either quantitative (by variables) or qualitative (by attributes).
[ISO 3534-1:1993, definition 2.2]

C.2.16
population
the totality of items under consideration

NOTE In the case of a random variable, the probability distribution [ISO 3534-1:1993, definition 1.3 (C.2.3)] is
considered to define the population of that variable.

[ISO 3534-1:1993, definition 2.3]

C.217
frequency
the number of occurrences of a given type of event or the number of observations falling into a specified class

[ISO 3534-1:1993, definition 2.11]

C.218

frequency distribution

the empirical relationship between the values of a characteristic and their frequencies or their relative
frequencies

NOTE The distribution may be graphically presented as a histogram (1SO 3534-1:1993, definition 2.17), bar chart
(1SO 3534-1:1993, definition 2.18), cumulative frequency polygon (1ISO 3534-1:1993, definition 2.19), or as a two-way
table (1ISO 3534-1:1993, definition 2.22).

[ISO 3534-1:1993, definition 2.15]

C.2.19

arithmetic mean

average

the sum of values divided by the number of values

NOTE 1 The term “mean” is used generally when referring to a population parameter and the term “average” when
referring to the result of a calculation on the data obtained in a sample.

NOTE 2  The average of a simple random sample taken from a population is an unbiased estimator of the mean of this

population. However, other estimators, such as the geometric or harmonic mean, or the median or mode, are sometimes
used.

[ISO 3534-1:1993, definition 2.26]
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C.2.20

variance

a measure of dispersion, which is the sum of the squared deviations of observations from their average
divided by one less than the number of observations

EXAMPLE For n observations x4, xy, ..., x, with average
x =(1/n) Z x;
the variance is
2 1 —\2
sT = 1 Z(xi—x)

NOTE 1 The sample variance is an unbiased estimator of the population variance.
NOTE 2  The variance is n/(n — 1) times the central moment of order 2 (see note to ISO 3534-1:1993, definition 2.39).

[ISO 3534-1:1993, definition 2.33]

Guide Comment: The variance defined here is more appropriately designated the “sample estimate of the
population variance”. The variance of a sample is usually defined to be the central moment of order 2 of the
sample (see C.2.13 and C.2.22).

c.2.21
standard deviation
the positive square root of the variance

NOTE The sample standard deviation is a biased estimator of the population standard deviation.
[1ISO 3534-1:1993, definition 2.34]

C.2.22

central moment of order ¢

in a distribution of a single characteristic, the arithmetic mean of the ¢gth power of the difference between the
observed values and their average Xx:

¥ (w5

where n is the number of observations

NOTE The central moment of order 1 is equal to zero.
[ISO 3534-1:1993, definition 2.37]

C.2.23
statistic
a function of the sample random variables

NOTE A statistic, as a function of random variables, is also a random variable and as such it assumes different
values from sample to sample. The value of the statistic obtained by using the observed values in this function may be
used in a statistical test or as an estimate of a population parameter, such as a mean or a standard deviation.

[ISO 3534-1:1993, definition 2.45]

C.2.24

estimation

the operation of assigning, from the observations in a sample, numerical values to the parameters of a
distribution chosen as the statistical model of the population from which this sample is taken
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NOTE A result of this operation may be expressed as a single value [point estimate; see 1SO 3534-1:1993,
definition 2.51 (C.2.26)] or as an interval estimate [see ISO 3534-1:1993, definitions 2.57 (C.2.27) and 2.58 (C.2.28)].

[ISO 3534-1:1993, definition 2.49]

C.2.25
estimator
a statistic used to estimate a population parameter

[1SO 3534-1:1993, definition 2.50]

C.2.26
estimate
the value of an estimator obtained as a result of an estimation

[ISO 3534-1:1993, definition 2.51]

C.2.27

two-sided confidence interval

when T, and T, are two functions of the observed values such that, 8 being a population parameter to be
estimated, the probability Pr(Ty < 8 < T) is at least equal to (1 — &) [where (1 — ) is a fixed number, positive
and less than 1], the interval between T, and T, is a two-sided (1 — &) confidence interval for 6

NOTE 1 The limits 74y and T, of the confidence interval are statistics [ISO 3534-1:1993, definition 2.45 (C.2.23)] and as
such will generally assume different values from sample to sample.

NOTE 2 In a long series of samples, the relative frequency of cases where the true value of the population parameter 6
is covered by the confidence interval is greater than or equal to (1 — &).

[ISO 3534-1:1993, definition 2.57]

C.2.28

one-sided confidence interval

when T is a function of the observed values such that, 8 being a population parameter to be estimated, the
probability Pr(7 > ) [or the probability Pr(7T < 8)] is at least equal to (1 — &) [where (1 — «) is a fixed number,
positive and less than 1], the interval from the smallest possible value of & up to T (or the interval from T up to
the largest possible value of 8) is a one-sided (1 — &) confidence interval for 6

NOTE 1 The limit 7 of the confidence interval is a statistic [ISO 3534-1:1993, definition 2.45 (C.2.23)] and as such will
generally assume different values from sample to sample.

NOTE 2  See Note 2 of ISO 3534-1:1993, definition 2.57 (C.2.27).
[1SO 3534-1:1993, definition 2.58]

C.2.29

confidence coefficient

confidence level

the value (1 — a) of the probability associated with a confidence interval or a statistical coverage interval
[See ISO 3534-1:1993, definitions 2.57 (C.2.27), 2.58 (C.2.28) and 2.61 (C.2.30).]

NOTE (1 — o) is often expressed as a percentage.
[1ISO 3534-1:1993, definition 2.59]

C.2.30

statistical coverage interval

an interval for which it can be stated with a given level of confidence that it contains at least a specified
proportion of the population
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NOTE 1 When both limits are defined by statistics, the interval is two-sided. When one of the two limits is not finite or
consists of the boundary of the variable, the interval is one-sided.

NOTE 2  Also called “statistical tolerance interval”. This term should not be used because it may cause confusion with
“tolerance interval” which is defined in ISO 3534-2:1993.

[ISO 3534-1:1993, definition 2.61]
C.2.31
degrees of freedom

in general, the number of terms in a sum minus the number of constraints on the terms of the sum

[ISO 3534-1:1993, definition 2.85]

C.3 Elaboration of terms and concepts

C.3.1 Expectation
The expectation of a function g(z) over a probability density function p(z) of the random variable z is defined by
E[g(z)] = J.g(z)p(z)dz

where, from the definition of p(z), [p(z)dz = 1. The expectation of the random variable z, denoted by ., and
which is also termed the expected value or the mean of z, is given by

U.=E(z)= Izp(z)dz

It is estimated statistically by z, the arithmetic mean or average of » independent observations z; of the
random variable z, the probability density function of which is p(z):

C.3.2 Variance

The variance of a random variable is the expectation of its quadratic deviation about its expectation. Thus the
variance of random variable z with probability density function p(z) is given by
2
o?(2)=[(z- 1) p(z)az

where u, is the expectation of z. The variance 02(z) may be estimated by

sz(zi): 11i(zj—2)2

n =

where

and the z; are n independent observations of z.

NOTE 1 The factor n — 1 in the expression for s2(z;) arises from the correlation between z; and z and reflects the fact
that there are only n — 1 independent items in the set {z; -z }.
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NOTE 2  If the expectation u, of z is known, the variance may be estimated by

$2(z;) =

I | =

n
2
(Zi —,le)
i=1

1

The variance of the arithmetic mean or average of the observations, rather than the variance of the individual
observations, is the proper measure of the uncertainty of a measurement result. The variance of a variable z
should be carefully distinguished from the variance of the mean z. The variance of the arithmetic mean of a
series of n independent observations z; of z is given by 02(2) = az(zi )/n and is estimated by the experimental
variance of the mean

() 1 L

n _n(n—1) (Z._E)

1

i=1

C.3.3 Standard deviation

The standard deviation is the positive square root of the variance. Whereas a Type A standard uncertainty is
obtained by taking the square root of the statistically evaluated variance, it is often more convenient when
determining a Type B standard uncertainty to evaluate a nonstatistical equivalent standard deviation first and
then to obtain the equivalent variance by squaring the standard deviation.

C.3.4 Covariance

The covariance of two random variables is a measure of their mutual dependence. The covariance of random
variables y and z is defined by

cov(y,z) =cov(z )= £{[y=£() [+ £(2)]
which leads to
cov(y, z) =cov(z, y)
= [[(v=s,)(z=p) p (v, z)dvetz
= ”yzp(y, z)dydz— i,

where p(y, z) is the joint probability density function of the two variables y and z. The covariance cov(y, z) [also
denoted by wv(y,z)] may be estimated by s(y,, z;) obtained from n independent pairs of simultaneous
observations y; and z; of y and z,

spz) =—= (- 7)(z - )

n—1

j=1
where
_ 1%
y= —Z%‘
=
and
.
zZ = —Z Zi
i
NOTE The estimated covariance of the two means » and z is given by s(¥,z)=s(y;, z;)/n.
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C.3.5 Covariance matrix

For a multivariate probability distribution, the matrix ¥ with elements equal to the variances and covariances
of the variables is termed the covariance matrix. The diagonal elements, v(z, z) = 62(z) or S(z;, z;) = sz(zi), are
the variances, while the off-diagonal elements, v(y, z) or s(y;, z;), are the covariances.

C.3.6 Correlation coefficient

The correlation coefficient is a measure of the relative mutual dependence of two variables, equal to the ratio
of their covariances to the positive square root of the product of their variances. Thus

v(yz)  _ v(n2)
v(y, y)v(z2) o(¥)o(z)

p(»z)=p(zy)=

with estimates

s(ir zi) _ s(vizi)
s(yi,yi)s(zi,zi) S(yi)s(zi)

r(yi,zi)=r(zi,yl-)=\/

The correlation coefficient is a pure number such that -1 < p <+1or-1 <r(y;, z;) < +1.

NOTE 1 Because p and r are pure numbers in the range —1 to +1 inclusive, while covariances are usually quantities
with inconvenient physical dimensions and magnitudes, correlation coefficients are generally more useful than
covariances.

NOTE 2  For multivariate probability distributions, the correlation coefficient matrix is usually given in place of the
covariance matrix. Since p(y, y) = 1 and r(y;, y;) = 1, the diagonal elements of this matrix are unity.

NOTE 3  If the input estimates x; and x; are correlated (see 5.2.2) and if a change &; in x; produces a change &; in x;,
then the correlation coefficient associated with x; and x; is estimated approximately by

() =u(x)3, [l )3

This relation can serve as a basis for estimating correlation coefficients experimentally. It can also be used to calculate the
approximate change in one input estimate due to a change in another if their correlation coefficient is known.

C.3.7 Independence

Two random variables are statistically independent if their joint probability distribution is the product of their
individual probability distributions.

NOTE If two random variables are independent, their covariance and correlation coefficient are zero, but the
converse is not necessarily true.

C.3.8 The r-distribution; Student's distribution

The rdistribution or Student's distribution is the probability distribution of a continuous random variable ¢
whose probability density function is

] r(vz”j 2 )2
+

, —o0< <400

where T is the gamma function and v > 0. The expectation of the sdistribution is zero and its variance is
vli(v—2) for v>2. As v — oo, the ¢-distribution approaches a normal distribution with £x=0 and o =1 (see
C.2.14).
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The probability distribution of the variable (z —u,)/s(z) is the #distribution if the random variable z is normally
distributed with expectation x,, where z is the arithmetic mean of » independent observations z; of z, s(z;) is
the experimental standard deviation of the n observations, and s(z) =s(z,-)/\/; is the experimental standard
deviation of the mean z with v=n — 1 degrees of freedom.
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Annex D

“True” value, error, and uncertainty

The term true value (B.2.3) has traditionally been used in publications on uncertainty but not in this Guide for
the reasons presented in this annex. Because the terms “measurand”, “error”, and “uncertainty” are frequently
misunderstood, this annex also provides additional discussion of the ideas underlying them to supplement the
discussion given in Clause 3. Two figures are presented to illustrate why the concept of uncertainty adopted in
this Guide is based on the measurement result and its evaluated uncertainty rather than on the unknowable

quantities “true” value and error.

D.1 The measurand

D.1.1 The first step in making a measurement is to specify the measurand — the quantity to be measured;
the measurand cannot be specified by a value but only by a description of a quantity. However, in principle, a
measurand cannot be completely described without an infinite amount of information. Thus, to the extent that
it leaves room for interpretation, incomplete definition of the measurand introduces into the uncertainty of the
result of a measurement a component of uncertainty that may or may not be significant relative to the
accuracy required of the measurement.

D.1.2 Commonly, the definition of a measurand specifies certain physical states and conditions.

EXAMPLE The velocity of sound in dry air of composition (mole fraction) N, = 0,780 8, O, = 0,209 5, Ar = 0,009 35,
and CO, = 0,000 35 at the temperature 7= 273,15 K and pressure p = 101 325 Pa.

D.2 The realized quantity

D.2.1 Ideally, the quantity realized for measurement would be fully consistent with the definition of the
measurand. Often, however, such a quantity cannot be realized and the measurement is performed on a
quantity that is an approximation of the measurand.

D.3 The “true” value and the corrected value

D.3.1 The result of the measurement of the realized quantity is corrected for the difference between that
quantity and the measurand in order to predict what the measurement result would have been if the realized
quantity had in fact fully satisfied the definition of the measurand. The result of the measurement of the
realized quantity is also corrected for all other recognized significant systematic effects. Although the final
corrected result is sometimes viewed as the best estimate of the “true” value of the measurand, in reality the
result is simply the best estimate of the value of the quantity intended to be measured.

D.3.2 As an example, suppose that the measurand is the thickness of a given sheet of material at a
specified temperature. The specimen is brought to a temperature near the specified temperature and its
thickness at a particular place is measured with a micrometer. The thickness of the material at that place and
temperature, under the pressure applied by the micrometer, is the realized quantity.

D.3.3 The temperature of the material at the time of the measurement and the applied pressure are
determined. The uncorrected result of the measurement of the realized quantity is then corrected by taking
into account the calibration curve of the micrometer, the departure of the temperature of the specimen from
the specified temperature, and the slight compression of the specimen under the applied pressure.
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D.3.4 The corrected result may be called the best estimate of the “true” value, “true” in the sense that it is
the value of a quantity that is believed to satisfy fully the definition of the measurand; but had the micrometer
been applied to a different part of the sheet of material, the realized quantity would have been different with a
different “true” value. However, that “true” value would be consistent with the definition of the measurand
because the latter did not specify that the thickness was to be determined at a particular place on the sheet.
Thus in this case, because of an incomplete definition of the measurand, the “true” value has an uncertainty
that can be evaluated from measurements made at different places on the sheet. At some level, every
measurand has such an “intrinsic” uncertainty that can in principle be estimated in some way. This is the
minimum uncertainty with which a measurand can be determined, and every measurement that achieves such
an uncertainty may be viewed as the best possible measurement of the measurand. To obtain a value of the
quantity in question having a smaller uncertainty requires that the measurand be more completely defined.

NOTE 1 In the example, the measurand's specification leaves many other matters in doubt that might conceivably
affect the thickness: the barometric pressure, the humidity, the attitude of the sheet in the gravitational field, the way it is
supported, etc.

NOTE 2  Although a measurand should be defined in sufficient detail that any uncertainty arising from its incomplete
definition is negligible in comparison with the required accuracy of the measurement, it must be recognized that this may
not always be practicable. The definition may, for example, be incomplete because it does not specify parameters that
may have been assumed, unjustifiably, to have negligible effect; or it may imply conditions that can never be fully met and
whose imperfect realization is difficult to take into account. For instance, in the example of D.1.2, the velocity of sound
implies infinite plane waves of vanishingly small amplitude. To the extent that the measurement does not meet these
conditions, diffraction and nonlinear effects need to be considered.

NOTE 3  Inadequate specification of the measurand can lead to discrepancies between the results of measurements of
ostensibly the same quantity carried out in different laboratories.

D.3.5 The term “true value of a measurand” or of a quantity (often truncated to “true value”) is avoided in
this Guide because the word “true” is viewed as redundant. “Measurand” (see B.2.9) means “particular
quantity subject to measurement”, hence “value of a measurand” means “value of a particular quantity subject
to measurement”. Since “particular quantity” is generally understood to mean a definite or specified quantity
(see B.2.1, Note 1), the adjective “true” in “true value of a measurand” (or in “true value of a quantity”) is
unnecessary — the “true” value of the measurand (or quantity) is simply the value of the measurand (or
quantity). In addition, as indicated in the discussion above, a unique “true” value is only an idealized concept.

D.4 Error

A corrected measurement result is not the value of the measurand — that is, it is in error — because of
imperfect measurement of the realized quantity due to random variations of the observations (random effects),
inadequate determination of the corrections for systematic effects, and incomplete knowledge of certain
physical phenomena (also systematic effects). Neither the value of the realized quantity nor the value of the
measurand can ever be known exactly; all that can be known is their estimated values. In the example above,
the measured thickness of the sheet may be in error, that is, may differ from the value of the measurand (the
thickness of the sheet), because each of the following may combine to contribute an unknown error to the
measurement result:

a) slight differences between the indications of the micrometer when it is repeatedly applied to the same
realized quantity;

b) imperfect calibration of the micrometer;
c) imperfect measurement of the temperature and of the applied pressure;

d) incomplete knowledge of the effects of temperature, barometric pressure, and humidity on the specimen
or the micrometer or both.
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D.5 Uncertainty

D.5.1 Whereas the exact values of the contributions to the error of a result of a measurement are unknown
and unknowable, the uncertainties associated with the random and systematic effects that give rise to the
error can be evaluated. But, even if the evaluated uncertainties are small, there is still no guarantee that the
error in the measurement result is small; for in the determination of a correction or in the assessment of
incomplete knowledge, a systematic effect may have been overlooked because it is unrecognized. Thus the
uncertainty of a result of a measurement is not necessarily an indication of the likelihood that the
measurement result is near the value of the measurand; it is simply an estimate of the likelihood of nearness
to the best value that is consistent with presently available knowledge.

D.5.2 Uncertainty of measurement is thus an expression of the fact that, for a given measurand and a given
result of measurement of it, there is not one value but an infinite number of values dispersed about the result
that are consistent with all of the observations and data and one's knowledge of the physical world, and that
with varying degrees of credibility can be attributed to the measurand.

D.5.3 It is fortunate that in many practical measurement situations, much of the discussion of this annex
does not apply. Examples are when the measurand is adequately well defined; when standards or instruments
are calibrated using well-known reference standards that are traceable to national standards; and when the
uncertainties of the calibration corrections are insignificant compared to the uncertainties arising from random
effects on the indications of instruments, or from a limited nhumber of observations (see E.4.3). Nevertheless,
incomplete knowledge of influence quantities and their effects can often contribute significantly to the
uncertainty of the result of a measurement.

D.6 Graphical representation

D.6.1 Figure D.1 depicts some of the ideas discussed in Clause 3 of this Guide and in this annex. It
illustrates why the focus of this Guide is uncertainty and not error. The exact error of a result of a
measurement is, in general, unknown and unknowable. All one can do is estimate the values of input
quantities, including corrections for recognized systematic effects, together with their standard uncertainties
(estimated standard deviations), either from unknown probability distributions that are sampled by means of
repeated observations, or from subjective or a priori distributions based on the pool of available information;
and then calculate the measurement result from the estimated values of the input quantities and the combined
standard uncertainty of that result from the standard uncertainties of those estimated values. Only if there is a
sound basis for believing that all of this has been done properly, with no significant systematic effects having
been overlooked, can one assume that the measurement result is a reliable estimate of the value of the
measurand and that its combined standard uncertainty is a reliable measure of its possible error.

NOTE 1 In Figure D.1 a), the observations are shown as a histogram for illustrative purposes [see 4.4.3 and
Figure 1 b)].

NOTE 2  The correction for an error is equal to the negative of the estimate of the error. Thus in Figure D.1, and in
Figure D.2 as well, an arrow that illustrates the correction for an error is equal in length but points in the opposite direction
to the arrow that would have illustrated the error itself, and vice versa. The text of the figure makes clear if a particular
arrow illustrates a correction or an error.

D.6.2 Figure D.2 depicts some of the same ideas illustrated in Figure D.1 but in a different way. Moreover, it
also depicts the idea that there can be many values of the measurand if the definition of the measurand is
incomplete [entry g) of Figure D.2]. The uncertainty arising from this incompleteness of definition as measured
by the variance is evaluated from measurements of multiple realizations of the measurand, using the same
method, instruments, etc. (see D.3.4).

NOTE In the column headed “Variance”, the variances are understood to be 