
Chapter 8

The Equipartition
Theorem

Topics

Equipartition and kinetic energy. The one-dimensional harmonic oscillator. Degrees
of freedom and the equipartition theorem. Rotating particles in thermal equilibrium.
Heat capacities revisited.

There is an important principle lurking behind many
of the calculations we have carried out so far – the
principle of the Equipartition of Energy. This is a
very powerful concept in classical statistical physics
and has general applicability for systems in ther-
mal equilibrium. We will find that the principle
has to be somewhat modified when we take quan-
tum concepts into account, but let us first develop
the classical version of the principle.

8.1 Equipartition and Kinetic Energy

In Section 3.4, our numerical simulations demon-
strated that, using Newton’s laws of motion and the
randomising effects of collisions, the same Maxwellian
velocity distribution is set up in the (x, y, z) di-
rections. Furthermore, by averaging over the one-
dimensional and three dimensional Maxwell distri-
butions, we showed in Section 4.4.2 that the aver-
age energies in the three directions and the total
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kinetic energy are:

1
2mv2

x = 1
2kT ; (8.1)
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y = 1
2kT ;
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2mv2

z = 1
2kT ;

1
2mv2 = 1

2mv2
x + 1

2mv2
y + 1

2mv2
z = 3

2kT. (8.2)

Then, in Section 5.3, we extended the simulations
to mixtures of gases, the particles having masses m1

and m2. Again, using only Newton’s laws of motion
and the randomising effect of collisions, we found
that 1

2m1v2
1 = 1

2m2v2
2 = 3

2kT . In other words, in
thermal equilibrium,

1
2m1v2

x1 = 1
2m1v2

y1 = 1
2m1v2

z1

= 1
2m2v2

x2 = 1
2m2v2

y2 = 1
2m2v2

z2 = 1
2kT. (8.3)

This is the first example of the equipartition theo-
rem. It states that:

In thermal equilibrium, each indepen-
dent mode in which energy can be stored
is awarded 1

2kT of energy.

This principle clearly works for the energy stored in
the kinetic energy of the particles. The theorem is,
however, much more widely applicable. Let us next
consider the case of the one-dimensional harmonic
oscillator.

8.2 The One-dimensional Harmonic Os-
cillator

Let us revise some of the important ideas expounded
in the Fields, Oscillations and Waves course. Con-
sider the motion of a one-dimensional harmonic os-
cillator, such as a mass m on the end of a spring.
The equation of motion is

m
d2x

dt2
= m

dvx

dt
= −αx,

meaning that the acceleration of the mass m is due
to the restoring force −αx. The solution of this
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equation is simple harmonic motion

x = x0 sinωt and vx =
dx

dt
= x0ω cosωt, (8.4)

where ω =
√

α/m.

We find the energy of the oscillator by multiplying
through by vx and integrating with respect to time.
Thus,

Revision
Recall that the total work done is

Work done =
∫ r

0
f · dr =

∫ x

0
fx dx,

=
∫ t

0
fx

dx

dt
dt,

=
∫ t

0
vx fx dt.

∫
mvx

dvx

dt
dt +

∫
αxvx dt = 0,

m

∫
vx

dvx

dt
dt +

∫
αx

dx

dt
dt = 0,

1
2m

∫
d(vx)2

dt
dt + 1

2α

∫
d(x2)

dt
dt = 0,

1
2mv2

x + 1
2αx2 = constant.

The first term represents the kinetic energy of the
mass and the second term the potential energy stored
in the spring. As the mass oscillates, the sum of the
two energies is constant and energy is passed back
and forth between the kinetic energy of motion and
the potential energy of the compressed or extended
spring.

We can now work out the average kinetic and po-
tential energies in the spring. Taking averages over
one period of the oscillation, T = 2π/ω, we find:

Mean kinetic energy Mean potential energy

=
1
T

∫ T

0

1
2mv2

x dt, =
1
T

∫ T

0

1
2αx2 dt,

=
1
T

∫ T

0

1
2mx2

0ω
2 cos2 ωt dt, =

1
T

∫ T

0

1
2αx2

0 sin2 ωtdt,

=
1
T

1
2mx2

0ω
2 T

2
, =

1
T

1
2αx2

0

T

2
,

= 1
4mx2

0ω
2, = 1

4αx2
0,

where we have used the relations
∫ T

0
cos2 ωt dt =

∫ T

0
sin2 ωt dt =

T

2
. (8.5)

But ω2 = α/m and so the mean kinetic energy is
equal to the mean potential energy.
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Now, in thermal equilibrium, we know that the
mean kinetic energy of the one-dimensional oscil-
lator is 1

2kT and so the potential energy term must
also be awarded 1

2kT in thermal equilibrium. There-
fore, the mean energy of a one-dimensional oscilla-
tor in thermal equilibrium at temperature T is

E = kT. (8.6)

This is a very important and fundamental result
for any oscillator in thermal equilibrium according
to classical physics.

Thermal Fluctuations of a Spring
There is an important consequence of this
calculation. Any spring in thermal equi-
librium at temperature T possesses an av-
erage energy E = kT but the spring fluc-
tuates randomly about the mean position
because of these thermal motions. The
typical displacement of the spring is

1
2kT = 1

2αx2 x2 =
kT

α

This is the mean square random variation
in the position of the mass, by virtue of
being in thermal equilibrium at tempera-
ture T . This sets an important limitation
to the precision of instruments such as an
atomic force microscope.

8.3 Degrees of Freedom and the Equipar-
tition Theorem

Notice an important aspect of this calculation. We
have associated the mean energy 1

2kT with each of
the squared terms in the expression for the mean
energy of the oscillator, 1

2mv2
x and 1

2αx2. This is
part of a more general way of looking at the law
of equipartition of energy. The factor 1

2kT arises
from the form of the integral performed over the
Boltzmann distribution. Consider what happens if
there is a term in the energy which is proportional
to some quantity squared E = 1

2az2 – in the case
of kinetic energy a = m and z = vx. Recalling that
the Boltzmann factor has the form exp(−E/kT ),
the expression for the mean energy associated with
the quantity z is:

E =

∫ ∞

−∞
1
2az2 exp

(
− az2

2kT

)
dz

∫ ∞

−∞
exp

(
− az2

2kT

)
dz

Making the usual substitution x2 = az2/2kT , we
find

E =
a

2

(
2kT

a

)3/2

(
2kT

a

)1/2

∫ ∞

−∞
x2 exp(−x2) dx

∫ ∞

−∞
exp(−x2) dx

,

= kT
π1/2/2
π1/2

= 1
2kT. (8.7)
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This is an extremely important result. The aver-
age energy is independent of the form of the motion
and is always equal to 1

2kT . For the translational
motion of a particle we associated 1

2kT with the
motion in each of the x, y and z directions because
they were independent – the details of this calcula-
tion were given in chapter 4.

Generalising this result, in thermal equilibrium, we
award 1

2kT of energy to each independent part of
the motion associated with an energy which de-
pends upon the square of some independent vari-
able. We define the number of degrees of freedom

Degrees of freedom
The number of independent squared terms
that enter into the total energyas the number of independent squared terms that

enter into the total energy.

This is the final version of the classical theorem of
the equipartition of energy : Equipartition theorem

In thermal equilibrium, each degree of
freedom is awarded 1

2kT of energyIn thermal equilibrium, each degree of
freedom is awarded 1

2kT of energy.

8.4 Rotating Particles in Thermal Equi-
librium

We can apply the equipartition theorem to the rota-
tion of a rigid body about a fixed axis. In this case
the kinetic energy is 1

2Iω2, where I is the moment
of inertia about the fixed axis and ω its angular
velocity. The mean energy associated with this ro-
tational motion in thermal equilibrium is therefore

Erot = 1
2Iω2 = 1

2kT. (8.8)

We now need to generalise this result to rigid par-
ticles which both move and rotate in three dimen-
sions without any fixed axis of rotation. We have
already seen in the Mechanics and Relativity course
that we can describe the motion of a rigid body of
mass m as the translational motion of the centre of
mass with a velocity v together with rotation about
the centre of mass. Furthermore the total kinetic
energy is the sum of the kinetic energy associated
with the translational motion plus the kinetic en-
ergy of rotation about the centre of mass,

E = 1
2mv2 + 1

2Iω2. (8.9)
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The translational motion has three degrees of free-
dom

Etrans = 1
2mv2

x + 1
2mv2

y + 1
2mv2

z .

In three dimensions the rotational motion also has
three degrees of freedom associated with rotation
about three distinct axes. These axes however are The motion of the body in space is complicated

since rotation about an axis fixed with respect to
the body rotates the axes of the body with respect
to fixed axes in space. The average behaviour can
still be described with respect to the axes fixed
with respect to the body.

not the x, y and z axes which are fixed in space, but
instead the rotational motion is best described in
terms of axes fixed with respect to the rigid body.

It can be shown that for any rigid body we can de-
fine three axes about which the rotational motion
is independent. We shall call these axes 1, 2 and
3 and associated with each there is a moment of
inertia I1, I2 and I3 and an angular velocity ω1, ω2

and ω3 respectively. ω1, ω2 and ω3 form the com-
ponents of a vector and the total rotational kinetic
energy is given by:

Erot = 1
2I1ω

2
1 + 1

2I2ω
2
2 + 1

2I3ω
2
3. (8.10)

In thermal equilibrium, since these axes are inde-
pendent, there are three degrees of freedom associ-
ated with the rotational motion:

Erot = 1
2I1ω2

1 + 1
2I2ω2

2 + 1
2I3ω2

3

= 1
2kT + 1

2kT + 1
2kT

= 3
2kT (8.11)

Rotational motion in thermal equi-
librium
For a rigid body there are three indepen-
dent rotation axes giving three rotational
degrees of freedom:

Erot = 1
2I1ω2

1 + 1
2I2ω2

2 + 1
2I3ω2

3

= 3
2kT

For completeness a table of equivalences between
translational and rotational motion is given below
including the vector nature of the rotation in three
dimensions. We recall that:

• The linear displacement dr corresponds to
the angular displacement dθ;

• The linear velocity dv corresponds to the an-
gular velocity dω;

• The mass m corresponds to the moment of
inertia I ;

• The linear momentum p corresponds to the
angular momentum L = Iω = (I1ω1, I2ω2, I3ω3);
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• The linear kinetic energy = 1
2mv2 = p2/2m

corresponds to the rotational kinetic energy
1
2Iω2 = L2/2I.

Description Linear Motion Rotational Motion

Small displacement dr dθ

Velocity v =
dr

dt
ω =

dθ

dt
= (vx, vy, vz) = (ω1, ω2, ω3)

Inertia Mass m Moment of Inertia
I =

∑
mr2

Momentum p = (px, py, pz) L = (L1, L2, L3)
= mv = (mvx,mvy,mvz) = Iω = (I1ω1, I2ω2, I3ω3)

Magnitude of |p|2 = p2
x + p2

y + p2
z |L|2 = L2

1 + L2
2 + L2

3

Momentum = |Iω|2 = (Ixω1)2 + (Iyω2)2 + (Izω3)2

Energy Kinetic = 1
2mv2 =

p2

2m
Kinetic = 1

2Iω2 =
L2

2I

The model for the rotating particles is exactly the
same as that which we adopted for the case of linear
velocity, but now the collisions between the parti-
cles cause them to exchange angular velocity and
rotational energy rather than linear velocity and
linear kinetic energy.

Finally, we note that we can apply Boltzmann’s
statistics to the rotational motion and so obtain the
distribution function for rotational motion about
any of the axes of the body. Using the equivalences
given in the above table, we see that

f1(vx) dvx =
√

m

2πkT
e−mv2

x/2kT dvx

↓

f1(ω1) dω1 =

√
I1

2πkT
e−I1ω2

1/2kT dω1.

As an exercise, or using the general result (8.7), we
see that the average kinetic energy of rotation is

E1 = 1
2I1ω2

1 = 1
2kT.
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8.5 Summary

The important lesson of this chapter is that, ac-
cording to classical statistical mechanics, we award
1
2kT of energy to each degree of freedom of the sys-
tem. This was the result which caused so much grief
for Maxwell and Boltzmann. As was mentioned in
Section 6.4.2, we expect the internal kinetic energy
of a gas of particles, which have both linear and
rotational motion, to be U = NA×6× 1

2kT = 3RT
per mole. Hence, CV = (dU/dT ) = 3R and so the
ratio of specific heats should be

γ =
Cp

CV
=

CV + R

CV
= 4/3 = 1.333.

Diatomic gases have γ = 1.4. This result greatly
depressed Maxwell. In the last sentence of his great
paper, in which he first derived the Maxwell distri-
bution, he wrote:

‘Finally, by establishing a necessary re-
lation between the motions of transla-
tion and rotation of all particles not spher-
ical, we proved that a system of such
particles could not possibly satisfy the
known relation between the two specific
heats of all gases’.

In his report to the British Association for the Ad-
vancement of Science of 1860, Maxwell stated that
this discrepancy ‘overturned the whole hypothesis’.

We will see that quite new concepts were needed
to resolve this nasty problem, which threatened to
overturn the principle of equipartition of energy
and consequently the kinetic theory of gases itself.


