Chapter 6

Introduction to
thermodynamics

Topics

First law of thermodynamics. Definitions of internal energy and work done, lead-
ing to dU = dq + dw. Heat capacities, C, = Cy + R. Reversible and irreversible
processes. Various types of expansion, isothermal, adiabatic. Cy and C), accord-
ing to kinetic theory, monatomic gases, other gases. The meaning of temperature,
empirical temperature scale, perfect gas scale, the second law of thermodynamics,
thermodynamic temperature scale.

So far, we have concentrated upon developing a mi-
croscopic model for the behaviour of gases. We
now turn our attention to the macroscopic descrip-
tion of solids, liquids and gases, which is concerned
with the bulk properties of properties of substances.
This is the subject of thermodynamics and, in con-
trast to our analysis so far, we deny that the various
forms of matter are actually composed of atoms
and molecules. Thermodynamics is a large and
very powerful branch of physics. In this chapter,
we show how thermodynamics can provide crucial
clues about the physics of our microscopic model.

6.1 First Law of Thermodynamics

The first law of thermodynamics is a statement
about the conservation of energy.
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Energy is conserved when heat is taken
into account.

This is a somewhat more subtle statement than
might appear at first sight. We have defined the
heat capacity in terms of the amount of heat needed
to raise the temperature of a substance by one de-
gree, but we have not stated what heat is. The
most rigorous approach is to define first of all the
internal energy U of the system. We have already
introduced this concept in our discussion of the in-
ternal energy of an ideal gas, but we can now gen-
eralise it to any substance or system.

A material can store energy in many different ways
besides molecular motions - the molecules may vi-
brate and rotate, the material may be placed in an
electric or magnetic field, the energy density of ra-
diation may be important and so on. Therefore, we
need a general way of coping with all these possi-
bilities.

In general, there are two ways in which the system
can acquire internal energy

e We can do work on the system and so increase
its internal energy.

e We can allow heat @ to enter the system.

The first statement is fundamental since it asserts
that, by doing work on the system alone, we can
raise the internal energy to any given value, quite
independent of what we might mean by heat. This
is the clue to how we define what heat is. We write
down the expression for the change in internal en-
ergy due to both causes.

AU = dQ + dw, (6.1)

where dW is the work done on the system. This
expression is a formal statement of the first law of
thermodynamics.

Note how we interpret this statement. The internal
energy U is a well-defined physical quantity which
we can measure. The amount of work done dW can

The first law of thermodynamics

AU = dQ + dW
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be measured also. We define the heat entering the
system d@ to be the quantity

dQ = dU — dW. (6.2)

This may look like a slightly back-to-front defini-
tion of heat, but it is logically self-consistent.

Now consider the case of a gas filling a cylinder
with a piston. Figure 6.1 shows the force exerted
by the gas on the piston, F' = pA, where A is the
surface area of the piston. Suppose now that the
piston moves a tiny distance dx under the influence
of F'. Then, the work done by the gas is

Work done = F'dz = pAdz = pdV. (6.3)

Since the gas is doing work, this energy must be
abstracted from the internal energy of the gas U.
Notice the importance of the signs in this calcula-
tion. If dV is positive, there is a loss of internal
energy from the gas. Therefore, the expression for
the change of internal energy of the gas dU is

dU = dQ — pdV. (6.4)

If dV is negative, the volume decreases and work s
done on the gas.

Now let us consider the expansion of one mole of
the gas under conditions of either constant volume
or constant pressure.

Constant volume In this case, dV = 0 and so

AU = dQ = <g§> dT = Cy dT, (6.5)
1%

where Cy is the molar heat capacity at constant
volume, which we have already introduced.

Constant pressure Work is done by the gas as
it expands at constant pressure and so more heat
d@ has to be supplied to provide the same increase
in temperature. From (6.3)

dQ =dU + pdV. (6.6)
But dU = Cy dT and so
dQ = Cy dT + pdV. (6.7)

Figure 6.1. The cylinder and piston.

Heat capacity at constant volume

oQ
dU <8T>Vd Cyd
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We can now use the equation of state of the perfect
gas to determine the change in volume at constant

pressure,
pV = RT, pdV = RdT. (6.8)
Therefore,
d@Q = Cy dT' + RdT. (6.9)
We can therefore find the heat capacity at constant
pressure,
9Q
Cp <(3T>p Cv+R (6.10)
This is the famous relation between the molar heat [Relation between C, and Cy for a
capacities at constant pressure and constant vol- | perfect gas
ume
C,—Cy =R (6.11) C,—Cy =R

6.2 Reversible and Irreversible Processes

We need to introduce an important, but subtle,
idea here. We are interested in how a thermal sys-
tem, such as an expansion, evolves from one state
to another and hence how much work is done on or
by the system and how much heat is exchanged
with the surroundings. However, our picture is
based upon systems in thermodynamic equilibrium
at a particular temperature. We need to be careful
about using these concepts when the system evolves
from one state to another. This is where the con-
cept of reversible processes plays a key role.

We assume that, in passing from one state to an-
other, the system passes through a continuous set
of equilibrium states. There is no loss of energy due
to friction, turbulence, sound waves, and so on. In
order to achieve this, the passage from one state to
another must take place very slowly indeed so that
there are no unbalanced forces at any stage. The
important idea is that, if we perform the change in
this idealised way, we could reverse the process ex-
actly and get back to where we started without any
change in the whole Universe as compared with the
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wnitial state. This is what we mean by a reversible
process.

This is a very highly idealised picture and should be
contrasted with the real world in which we cannot
eliminate entirely heat losses due to, say, friction or
turbulence. A number of systems can approach re-
versible behaviour, but it is impossible to eliminate
unwanted losses of internal energy entirely.

Nonetheless, the importance of these idealised re-

versible processes is that they set the standard against

which we can compare real systems. They also pro-
vide us, as a matter of principle, with the means of
setting up the whole foundations of classical ther-
modynamics.

6.3 Isothermal and Adiabatic Expansions

Let us show how these idealisations enable us to un-
derstand the thermodynamic behaviour of thermal
systems. We can contrast two limiting cases.

6.3.1 Isothermal Expansion

Let us allow the gas in the cylinder to expand re-
versibly at constant temperature. The gas does
work on the piston in expanding and so the gas
would lose internal energy and cool, unless heat is
allowed to flow into the gas from the surroundings
to compensate for the work done. Now, for a per-
fect gas, the internal energy U is a function of T
alone, U = U(T'), and since T is constant so is U:

AU =dQ —pdV =0, dQ=pdV (6.12)

in an isothermal expansion. There must therefore
be a (reversible) heat flow dQ = pdV into the vol-
ume of the gas to maintain the temperature at 7.

6.3.2 Adiabatic Expansion

The opposite extreme is that the gas is allowed to
expand reversibly, completely isolated from its sur-
roundings so that no energy flows into or out of the

Isothermal
Isothermal means at constant tempera-
ture.
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system. In this case d@Q = 0, and hence the first
law of thermodynamics becomes

dU = —paV. (6.13)

We can now reorganise this expression to find a
relation between the pressure and volume of the
gas in such an expansion. We recall that

dU = Cy dT (6.14)

and we can also find an expression for pdV from
the perfect gas law by differentiation.

pV = RT
dpV +pdV = RAT (6.15)

We can eliminate d7" from (6.14) and (6.15) so that
Cy

and then substitute for dU in (6.13). This results
in an expression involving only p and V.

C
fV (dpV + pdV) = —pdV. (6.17)

This can be reorganised as follows

R R
R+ Cy
=— dv;,
p () v
CyVdp=—-pC,dV, (6.18)

where we have used the relation C), — Cy = R. If
we now write the ratio of heat capacities as v =
Cp,/Cy, we obtain a simple integral
dp dVv
; =7 Vv
Inp = —vInV + constant,
In (pV7) = constant,

pV"7 = constant. (6.19)

This is the famous expression for the relation be-
tween pressure and volume in a reversible adiabatic
expansion. The gas must cool in such an expansion

Adiabatic
Adiabatic means without the transference
of heat.
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since the piston has done work and the only source
of work is the internal energy of the gas. Therefore,
using pV = RT to substitute for p, we find

TV~! = constant. (6.20)

Alternatively, eliminating V', we find

()
pl— = constant,
p

p(l_“*)/'yT = constant. (6.21)

This is the principle used in adiabatic refrigerators
for cooling gases.

Notice that we have carried out a calculation in
classical thermodynamics. There was no mention
of the microscopic structure of the gas. The next
step is to compare the predictions of the kinetic
theory of gases with the measured values of ~.

6.4 C, and Cy according to kinetic theory

6.4.1 Monatomic gases

In the case of monatomic gases, such as helium,
argon and so on, the internal energy is entirely as-
sociated with the kinetic energy of the atoms and
so we already know that the internal energy U for
one mole is

U = Na3kT. (6.22)

The molar heat capacity at constant volume is there-
fore

— ou _ 3 _ 3
Cy = (8T>V — 3Nk = 3R, (6.23)

and the heat capacity at constant pressure is
Cp,=Cy+R=2R. (6.24)

The ratio of heat capacities v therefore has the
value

Cp

=& = 5. (6.25)

v

This value is in excellent agreement with the mea-
sured values of v for monatomic gases.
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6.4.2 Other Gases

This calculation works very well for monatomic gases,
but it gives the wrong answer for molecular gases
such as oxygen and nitrogen. At room tempera-
ture, their ratios of heat capacities are about 1.4.
This means that the internal energy density must
be greater than U = NA%/-{:T. In other words, there
must be more ways of storing energy in the gas than
simply in the translational motion of the molecules.

One solution would be to store the energy in the
rotational energy of the molecules about their three
independent rotational axes. The additional terms
in the internal energy would then be

sLw? + 1w + 1 Lw?, (6.26)

where I, 1, I, are the moments of inertia about
the x, y and z axes and w;,wy,w, their angular
frequencies of rotation about these axes. We could
have performed exactly the same sort of simulation
which we carried out for the translation motion of
the particles and we would have found again that
in statistical equilibrium, each of these terms would
have an energy %kT. Therefore, the total internal
energy of the gas would be 3NokT', Cy = 3R, C), =
4R and so the ratio of heat capacities would be

v =S 333 (6.27)

Cy

This flew in the face of the experimental evidence
which clearly demonstrated that v = 1.4 for di-
atomic gases. This was a major problem for the ki-
netic theory of gases and it was only resolved once
the concept of quantisation was introduced by Ein-
stein in 1905. This is a story which we will take up
in the Easter term.

6.5 The Meaning of Temperature

Let us reflect on a problem lurking behind our treat-
ment of thermal physics so far. We have unambigu-
ous definitions of pressure and volume, but we lack
a satisfactory definition of temperature in terms of
fundamental physics.
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6.5.1 Thermometers and empirical scales of
temperature

Pressure difference

We have a physiological sense of hotness, and it
has long been realised that certain physical sys-
tems, such as the length of the mercury column in
a glass thermometer, vary systematically with our
physiological appreciation of temperature. Defin-
ing temperature using such an approach leads to
what is called an empirical temperature scale.

-Mercu
Constant v

volume

We have already seen how the concept of temper- Figure 6.2. The constant volume gas
ature enters directly into our definition of an ideal thermometer.
gas from Boyle’s and Charles law. In setting up
Charles law,
V/Vo =T/Ty,

we define a scale of temperature which has a zero
point fixed on physical grounds, in this case the
temperature of an ideal gas as its volume tends to
zero; the linear scaling with volume defines how
temperature relates to a physically measurable quan-
tity. This is the basis of the constant volume gas
thermometer which uses p/po = T/Tp to estimate
T (Figure 6.2). The reference volumes, pressures
and temperatures are arbitrary, but their choice
only leads to an overall linear scaling. Defining
temperature in this way leads to the ideal gas scale
for temperature; this is a better temperature scale
than one arbitrarily associated with a mercury-in-
glass thermometer. However, it breaks down at
high pressures and close to values of p and V at
which the gas condenses. In fact, the Joule-Kelvin
effect shows that gases in fact depart from ideal
behaviour if sufficiently accurate measurements are
made. Therefore, the ideal gas temperature scale
still does not provide us with a truly fundamental
definition of the temperature scale.

6.5.2 Hotness and the second law of thermo-
dynamics

What does it mean to say that A is hotter than B?
Although we each have a sense of this we need a
proper definition. An objective definition of hot-
ness concerns the direction of heat flow. If A is
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hotter than B then we mean that, if the two sys-
tems are brought into thermal contact, heat flows
of its own accord from A to B and not in the other
direction. This certainly agrees with our physiolog-
ical definition — we get hot or burnt in contact with
a hot object.

The idea that heat flows only from hot to cold is
so important that we encapsulate it in the Second
Law of Thermodynamics. The statement of the law
by Clausius is:

No process exists whose sole effect is the
transfer of heat from a colder to a hotter
body.

This is a very deep and profound statement and
turns out to be the basis of a rigorous definition of
temperature which is known as the thermodynamic
temperature scale. In addition, we need to relate
this definition of temperature to the appropriate
measure of temperature according to the concepts
of statistical physics. We will look a little more
deeply into these issues in the quantum physics half
of the course.

The Second Law of Thermodynamics
No process exists whose sole effect is the
transfer of heat from a colder to a hotter
body.




