
Chapter 4

The Kinetic Theory
of Gases (1)

Topics

Motivation and assumptions for a kinetic theory of gases. Joule expansion. The role
of collisions. Probabilities and how to combine them. The velocity distribution in 1-
and 3D. Normalisation. The Maxwell-Boltzmann distribution. Mean energy in one
and three dimensions.

4.1 Introduction

In the preceding sections we have discussed why
we need a statistical description of complex phys-
ical systems. Ideal gases are the simplest systems
to which we can apply our statistical description.
In this Chapter and the next, we will develop the
kinetic theory of gases and examine some of its
consequences. The aim is to explain the macro-
scopic properties of gases, described in Section 1.3,
in terms of molecular motions.

4.2 Motivation and Assumptions for a Ki-
netic Theory of Gases

The kinetic theory of gases is a splendid example
of model building in physics. We find all the fea-
tures of the best physical theories: the need to fol-
low up clues in setting up the framework of the
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model, the need to understand clearly the simplify-
ing assumptions on which the model is based and
then the confrontation of the theory with the ex-
perimental evidence. At each stage, we need to
assess the successes and failures of the model and
consider carefully which successes are so compelling
that the model must be along the correct general
lines. Alternatively, the failures may be so serious
that some new physical insight is needed to resolve
the inconsistencies with the experimental evidence
– it is all there in the kinetic theory of gases.

4.2.1 Clues: Joule expansion and the Earth’s
atmosphere

The starting point for the kinetic theory is the at-
tempt to build a model for a gas based on the mo-
tions of individual atoms or molecules. We will
often refer to gases as consisting of particles and it
is to be understood that ‘particle’ may refer to an
‘atom or molecule’.

Figure 4.1. Joule’s apparatus for inves-
tigating the internal work done by a gas
during expansion. The dry air in volume
A was initially at 22 atmospheres and B
was evacuated.

What was not clear in the early 19th century was
the nature of the attractive or repulsive forces act-
ing between atoms or molecules. Important clues
were provided by the great experiments of James
Joule. One of his experiments concerned the ex-
pansion of gases from a smaller to a large volume
(Fig. 4.1). The volume A was filled with dry air and
the volume B evacuated. On opening the valve, no
temperature change in the thermometer reading in
the surrounding heat bath could be detected, al-
though he could have detected a change as small
as 0.003 K. Suppose there were significant forces Footnote

A footnote to this story is that, if very sen-
sitive measurements are made, small changes
in temperature can be measured, particu-
larly if the gas is close to those temperatures
and pressures at which the gas can change
state. These small temperature changes pro-
vide information about the weak intermolec-
ular forces in the gas. This phenomenon is
known as the Joule-Kelvin or Joule-Thomson
effect.

between the molecules of the gas. Then, when the
gas expanded from A to (A + B), work would to
be done either on or by the gas, resulting in a tem-
perature change of the water. The null result of
Joule’s experiment meant that the forces between
the atoms or molecules of the gas must be very
weak indeed. To a first approximation, we can set
them equal to zero (but see footnote).

This completes what we need to define a perfect
gas. A perfect gas has the following properties:
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1. Its equation of state is pV = NkT ;

2. No heat is liberated or absorbed in a Joule
expansion.

Definition of a Perfect or Ideal Gas

1. Its equation of state is pV = NkT ;

2. No heat is liberated or absorbed in
a Joule expansion.

The second clue is that the Earth’s atmosphere ex-
ists and so the atoms and molecules of the gas must
be in motion, since otherwise they would all fall to
Earth, which would be very bad news.

4.2.2 Assumptions Underlying the Kinetic
Theory of Gases

The basic postulates of the model are as follows:

• Gases consist of particles, atoms or molecules,
in motion. Each particle has kinetic energy
1
2mv2 and the velocities of the particles are
in random directions.

• The particles are modelled as solid spheres,
with very small, but finite, diameters a.

• The long-range forces between atoms are weak,
being undetectable in a Joule expansion and
are taken to be zero. The atoms can, however,
collide with each other and with the walls of
the containing vessel and when they do so
they collide elastically, meaning that there is Historical note: The key concept of the ori-

gin of pressure was published by Waterston in
Edinburgh in 1843, 14 years before Clausius.
Waterston’s paper was sent to the Royal So-
ciety in 1845, but was rejected for publication
by a harsh referee. Waterston’s key contribu-
tion was only published by Lord Rayleigh in
1892, eight years after Waterston’s death.

no loss of kinetic energy in each collision.

• The origin of the pressure on the walls of a
vessel is the force per unit area due to the
elastic collisions of enormous numbers of par-
ticles of the gas with the walls.

• The temperature is related to the average ki-
netic energy of the molecules of the gas. If
we do work on the gas, we increase the ki-
netic energy of the particles.

4.3 The Distribution of Velocities in a Per-
fect Gas

The evolution of the velocity distribution of the
particles of a gas from an arbitrary initial distri-
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bution of velocities to a normal or gaussian distri-
bution was demonstrated by the simulations in the
last Chapter. The distribution is gaussian in both
the x and y directions of that two-dimensional sim-
ulation and we would have obtained the same result
if we had repeated it in three-dimensions. The key
point was that, once the gaussian distribution is es-
tablished, the velocity distribution in each direction
remain unchanged, however long we let the simula-
tion run. In other words, the average properties of
the gas are constant; in particular, the mean energy
of the particles in three-dimensions must be a con-
stant. This energy can only be in the form of the
kinetic energy of the particles, since there are no
long-range forces between the particles. Therefore,
it must be the case that, in thermal equilibrium:

1
2mv2 = constant. (4.1)

The main points to note are:

• Once equilibrium is established, the directions
of velocity vectors are randomised by colli-
sions and therefore the final state of the gas
can be characterised by the gaussian distri-
bution of particle velocities in the x, y and z
directions and each particle by the speed v.

• The only energy term is the kinetic energy
per particle 1

2mv2.

4.3.1 The 1-dimensional distribution func-
tion.

We can now relate the form of the distribution func-
tion to the Boltzmann distribution. We have al-
ready two vital clues. The first is that, empirically,
from the simulations, we see that the one-dimension
distribution is of the form

df1(vx) ∝ exp
(−αv2

x

)
dvx (4.2)

∝ exp
(−α′Ex

)
dvx, (4.3)

since the only energy in the problem is the kinetic
energy of the particle in the x-direction.



Statistical and Quantum Physics 5

The second is that we know that the probability of
an energy state being occupied in thermal equilib-
rium at temperature T is proportional to exp(−E/kT ).
It follows that the one-dimensional velocity distri-
bution at temperature T must be

df1(vx) ∝ exp (−E/kT ) dvx = exp
(−mv2

x/2kT
)

dvx.
(4.4)

This is the one-dimensional Maxwell distribution
which we have been seeking.

4.3.2 Probabilities and How to Combine Them

Let us revise the theory of combining probabilities.
If we study some event, such as tossing a coin, in
which we may or may not get a particular outcome
A, such as getting a ‘head’, the probability pA of A
means the expected fraction of events in which A
occurs.

We can mean two things by this ‘expected fraction’.
We can make a theoretical analysis. If we toss a
symmetrical coin, the expected fractions of ‘heads’
and ‘tails’ must be equal and so each must be 1

2 .
Alternatively, we can use the idea of statistical con-
vergence: if we consider an increasingly large num-
ber of events, the fraction actually observed should
approach the ‘expected fraction’. Thus if we exam-
ine N events, and outcome A happens nA times,
we can define the probability pA of A as

pA = nA/N (4.5)

in the limit when N is very large.

• Adding probabilities

When different outcomes are alternatives, we
add their probabilities. For example, if we
throw a die, in 1

6 of the throws we get a
‘three’, and in another 1

6 of the throws we
get a ‘five’. Therefore, in 1

3 of the throws, we
shall obtain either a ‘three’ or a ‘five’. Thus

p(A orB) = pA + pB, (4.6)

if A and B are alternatives.
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• Multiplying probabilities

We are often interested in two outcomes A
and B which can both happen in the same
trial. For example, what is the probability
that the next person to come into the room
might be over 6 ft tall and blue-eyed? If 40%
of people have blue eyes, and 10% of peo-
ple are over 6 ft, what is the probability that
the next person will be over 6 ft and blue-
eyed? The answer depends on whether height
and eye-colour are statistically independent.
If they are, then to find the probability of ob-
taining both at once, we must multiply the
probabilities: of the 40% who are blue-eyed,
10% will be over 6 ft and so 4% will be blue-
eyed and over 6 ft. Thus

p(A andB) = pApB (4.7)

4.3.3 The Three-dimensional Velocity Distri-
bution

We can now extend the arguments which led to the
one-dimensional Maxwell distribution to three di-
mensions. We need to determine the probability
that the particles have components of velocity in
the narrow range vx to vx + dvx, vy to vy + dvy,
and vz to vz + dvz. We know the answer for each
direction independently. Now, because of the ran-
doming effects of the collision, these distributions
are statistically independent and so the joint prob-
ability of find the particle with velocity in the range
vx to vx + dvx, vy to vy + dvy, and vz to vz + dvz is

f(vx, vy, vz) dvx dvy dvz = f1(vx) f1(vy) f1(vz) dvx dvy dvz

∝ exp
(−mv2

x/2kT
)

dvx

× exp
(−mv2

y/2kT
)

dvy

× exp
(−mv2

z/2kT
)

dvz, (4.8)

= exp
[−m(v2

x + v2
y + v2

z)/2kT
]

dvx dvy dvz

(4.9)

Therefore,

f(v) dvx dvy dvz ∝ exp
(−mv2/2kT

)
dvx dvy dvz,

(4.10)
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since v2 = v2
x+v2

y+v2
z . The combination dvx dvy dvz

defines an element of volume in velocity space.
Notation
We will use the convention that the one-
dimensional velocity distribution will be
written f1(vx), f1(vy) and f1(vz). The
three-dimensional distribution for the
speeds of the particles will be written
f(v). The probabilities associated with
the Boltzmann factor will be written p(E).

4.4 Normalisation of the Velocity Distri-
butions

We have only one final step to determine the com-
plete one- and three-dimensional probability distri-
butions. We need to ensure that the total proba-
bility of finding the particle with some velocity in
one or three dimensions is unity.

4.4.1 The One-dimensional Velocity Distri-
bution

Taking the one-dimensional distribution first, this
means that
∫ ∞

−∞
df1(vx) = A

∫ ∞

−∞
exp

(−mv2
x/2kT

)
dvx = 1.

(4.11)

Example: Normalising the one-dimensional veloc-
ity distribution
To find the normalisation constant A, we use the
standard integral (see Maths Handbook)

∫ ∞

−∞
e−x2

dx =
√

π.

We require

A

∫ ∞

−∞
e−mv2

x/2kT dvx = 1.

We transform the integral to standard form by sub-
stituting x = vx

√
m/2kT . Then, remembering to

substitute for the dvx as well, we obtain

A

(
2kT

m

)1
2

∫ ∞

−∞
e−x2

dx = 1,

and solving gives A =
√

m/2πkT .
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Hence, the one-dimensional velocity distribution func-
tion is as follows:

The One-dimensional Maxwell Dis-
tribution

f1(vx) dvx =
√

m

2πkT
e−mv2

x/2kT dvx
f1(vx) =

√
m

2πkT
e−mv2

x/2kT (4.12)

This expression is called the Maxwell distribution of
one-component velocity and is shown in Figure 4.2.
As we have discussed, this distribution has the form
of the normal curve, a gaussian, and is symmetrical
about the origin. The other components of velocity
are distributed in the same way. Figure 4.2. One dimensional velocity

distribution function

f1(vx) dvx =
√

m

2πkT
e−mv2

x/2kT dvx
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Let us use the function to determine the mean ki-
netic energy of a particle in the x-direction.

Example: Calculate mean kinetic energy of one
component of the velocity
We calculate 1

2mv2
x, that is,

v2
x =

∫ ∞

−∞
v2
x f1(vx) dvx

=
√

m

2πkT

∫ ∞

−∞
v2
x e−mv2

x/2kT dvx

We transform this integral to a standard form by
setting x = vx ×

√
m/2kT , then

Note See the hint on page 10 of Chapter
2 for determining

∫∞
−∞ x2 e−x2

dx.

v2
x =

√
m

2πkT

(
2kT

m

)3/2 ∫ ∞

−∞
x2 e−x2

dx

=
√

m

2πkT

(
2kT

m

)3/2

× 1
2
√

π

=
kT

m

Therefore 1
2mv2

x = 1
2kT

This is an important result – the average energy of
one component of velocity is 1

2kT . The same result
must be true in the vy and vz directions as well.
Thus,

1
2mv2

x = 1
2mv2

y = 1
2mv2

z = 1
2kT. (4.13)
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Figure 4.3. Summing over all the
vectors with magnitude v to v + dv.
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Example: Show that vx = 0
The mean x-component of velocity is given by

vx =
∫ ∞

−∞
vxf1(vx) dvx = 0

since vx is an odd function and f1(vx) is even.

4.4.2 Distribution Function for the Speed -
the Three-dimensional Maxwell Distribution

We have argued that the answer should only de-
pend on the speed and so, to complete our analy-
sis, we need to re-write our result for the normalised
three-dimensional velocity distribution Figure 4.4. The Maxwell-Boltzmann dis-

tribution

f(v) dv =
( m

2πkT

) 3
2 4πv2 e−mv2/2kT dv
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f(v) dvx dvy dvz =
( m

2πkT

)3/2
e−mv2/2kT dvx dvy dvz,

(4.14)
in terms of the speed v alone.

To find the distribution function in terms of v we
note that there are many different combinations
of velocity which give the same speed v. In the
language of statistical physics, there is a degen-
eracy g(v) dv. To find the probability of a given
speed irrespective of the direction of the velocity,
we must sum the volumes dvx dvy dvz in velocity
space which all have the same speed; these form
the region of velocity space in a narrow spherical
shell between v and v + dv where v2 = v2

x + v2
y + v2

z

– one octant of this spherical shell is shown in Fig-
ure 4.3. The complete shell has a volume 4πv2dv
and so the corresponding distribution function is
f1(vx) f1(vy) f1(vz) 4πv2 dv. Therefore,

f(v) dv =
( m

2πkT

)3/2
4πv2 e−mv2/2kT dv. (4.15)

The expression (4.15) is the Maxwell-Boltzmann

The Maxwell-Boltzmann Distribu-
tion

f(v) dv =
( m

2πkT

)3/2
4πv2 e−mv2/2kT dv.distribution for the speeds of the particles and is

shown in Figure 4.4.

In a similar fashion to our calculation for 1
2mv2

x, we
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can show that (see problem sheet):
1
2mv2 = 3

2kT (4.16)

v =

√
8kT

πm
(4.17)

Properties of the Maxwell-Boltmann
Distribution

1
2mv2 = 3

2kT

v =

√
8kT

πm

Therefore, we find that
1
2mv2

x + 1
2mv2

y + 1
2mv2

z = 1
2mv2 = 3

2kT. (4.18)

4.5 Summary

The Maxwell Distribution, or the Maxwell-Boltzmann
Distribution, has the form

f(v) dv = 4π
( m

2πkT

)3/2
v2 exp

(
−mv2

2kT

)
dv

=
( m

2πkT

)3/2

︸ ︷︷ ︸
normalisation

constant

× exp
(
−mv2

2kT

)

︸ ︷︷ ︸
Boltzmann

factor

× 4πv2 dv︸ ︷︷ ︸
volume of

velocity space

We have split up the expression into three parts.

• The normalisation constant
( m

2πkT

)3/2
(4.19)

ensures that the integral over all velocities v
is unity.

• The Boltzmann factor

p(Ei) ∝ exp
(
− Ei

kT

)
(4.20)

with Ei = 1
2mv2 describes the probability

that a state of energy Ei will be occupied.

• The number of available states for particles
with velocities between v and v+dv in veloc-
ity space,

g(v) dv = 4πv2 dv, (4.21)

describes the degeneracy of the state Ei, the
total number of different ways of obtaining a
total velocity |v|.

Our next task is to apply these results to under-
stand the properties of perfect gases.


