
Chapter 3

The Boltzmann,
Normal and
Maxwell
Distributions

Topics

The heart of the matter, numerical simulation of the Boltzmann distribution. The
two-dimensional Maxwell distribution. The isothermal atmosphere. Degeneracies.
The complete answer.

3.1 The Heart of the Matter

It may come as a surprise, but we have actually
come remarkably close to some of the most im-
portant results in statistical physics. Rather than
spend a lot of time grinding through mathematics,
we will use the power to computers to demonstrate
directly some of the most important aspects of sta-
tistical and thermal physics. We will then relate
these statistical ideas to the properties of real gases,
liquids and solids.

Let me give you the answer we are seeking straight-
away. The probability that a state of energy Ei is
occupied in thermal equilibrium is

p(Ei) ∝ g(Ei) exp(−Ei/kT ), (3.1)

where T is the temperature and g(Ei) is the degen-
eracy of the state of energy Ei – by degeneracy, we
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mean the number of states of energy Ei which are
accessible to the particle. For continuous probabil-
ity distributions, (3.1) becomes

p(E) dE ∝ g(E) exp(−E/kT ) dE. (3.2)

It might look as though this must be a simple For the enthusiast, I have given a simple
derivation using the calculus of variations
in Theoretical Concepts in Physics, Cam-
bridge University Press, 2003.

function to derive, but it is not all that easy to do
this rigorously. The quickest route is to use the
calculus of variations which you will meet in the
Mathematics course next year. Rather, let us look
at some illustrative examples.

3.2 A Numerical Simulation of the Ap-
proach to Statistical Equilibrium

The key idea is that the particles of the system are
in thermal equilibrium. By this we mean that all
the processes by which the particles can exchange
energy are perfectly balanced. If, for example, a
particle i exchanges energy with another particle j,
the opposite process by which a particle j transfers
the same energy to the particle i are in exact bal-
ance statistically. These exchanges of energy go on
all the time and, although they might get slightly
out of balance for a short while, over a long pe-
riod they all balance out. This long term average
is the equilibrium energy distribution, but equally
we recognise that there must be fluctuations about
the equilibrium distribution. These are key ideas
in statistical physics.

Let us demonstrate how such a system evolves to-
wards equilibrium through a simple simulation. Here
are the rules of the simulation.

• Begin with an array of cells and suppose that
energy comes in unit packets which we can
allocate to each cell. We need not be specific
about the system, or about the nature of the
interactions between the elements.

• Allow the cells to interact with each other
at random by some unspecified process. The
rules of exchange are as follows.

1. Choose a cell i of the array at random.
2. Choose another cell j of the array at ran-

dom,
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3. Give one unit of energy from i to j, un-
less there is no energy in the element i,

• Start off with all the elements having the same
energy, so that the initial histogram of energy
has a single peak.

• After many thousands of interactions, equi-
librium is reached when the interchanges be-
tween each energy element of the array and
every other have come into statistical equilib-
rium.

Two versions of the simulation are shown in Figures
3.1 and 3.2.

In the first case, we watch the evolution of the ar-
ray in slow motion. We start off with an array of
100 cells and allocate 5 energy elements to each of
them, as shown in Figure 3.1 (first panel). The
energy distribution among the cells is shown in the
panels on the right. The second panel shows the en-
ergy distribution after 100 random exchanges. The
energy distribution begins to spread out and resem-
ble a normal or gaussian distribution. After about
200 exchanges, the low energy side of the distri-
bution hits the origin, but there are no negative
energy states and the distribution begins to pile up
at E = 0, as shown by the evolution after 300 ex-
changes. After 1000 exchanges, the shape of the
distribution begins to stabilise. The distribution is
roughly exponential, but there are significant fluc-
tuations about the mean distribution. The result
is that the distribution is very different from the
initial monoenergetic distribution of energies. The
numbers are small and so we cannot say precisely
what the distribution is, but it is roughly an expo-
nential.

In the second case, we deal with a very much larger
array and allow very large numbers of exchanges to
take place in each time step, without displaying
the evolution. In this simulation, we begin with an
array of 10,000 cells and each cell has initially 20
quanta. The initial energy distribution is shown in
the top diagram of Figure 3.2. We again allow the
random exchange of energy units between pairs of
cells. The second diagram shows the energy distri-
bution after 300,000 random exchanges of energy
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Figure 3.1: The evolution of the distribution of quanta between cells. The initial distri-
bution has 5 quanta per cell (top). Pairs of cells are selected at random and one quantum
exchanged between them; after approximately 100 exchanges the distribution approaches a
gaussian distribution (middle upper). After approximately 300 exchanges a significant num-
ber of cells have zero or one quanta and the distribution now departs from a gaussian since
we cannot have negative numbers of quanta per cell (middle lower). After approximately
1000 exchanges the final form of the distribution is reached; given the small number of cells
large fluctuations are observed.
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Figure 3.2: The evolution of a system of 104 cells. The initial distribution has 20 quanta
in every cell (top). After 3×105 exchanges of quanta between pairs of cells, the distribution
function approximates a gaussian (middle upper). After 1.8 × 106 exchanges a significant
number of cells have zero quanta and the distribution function begins to broaden. Finally,
after approximately 4 × 106 exchanges, a steady-state is reached; the distribution function
is accurately described by an exponential function, shown by the solid line.
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quanta. Again, the energy distribution begins to
spread out to roughly a gaussian or normal dis-
tribution, but again it hits the origin and begins
to climb the y-axis. The third diagram shows the
distribution after 1.8 million exchanges. There are
now a number of cells with zero energy. Finally,
after 4 million exchanges, an exponential distribu-
tion is reached, as is illustrated by the solid line in
the final panel of Figure 3.2. If we continue to run
the simulation, we find that the exponential shape
does not change, although the energy of an indi-
vidual cell can vary very widely. In this state, the
system is said to have reached a state of statistical
equilibrium.

The final distribution is of exponential form,

p(Ei) ∝ exp(−αEi). (3.3)

This is the primitive form of the exponential Boltz-
mann distribution.

Notice a key feature of these simulations. There
are fluctuations about the mean and some cells
can have very large energies relative to the aver-
age. These features are crucial in understanding
the evolution of many different types of system in
physics, chemistry and biology. The evolution of
biological systems depends upon these fluctuations
and the fact that spontaneously the properties of
cells can far exceeding the average. The statistics
are governed by the Boltzmann distribution.

3.3 The Two-dimensional Maxwell Distri-
bution

Let us now work out the velocity or, equally im-
portant, the momentum distribution of the parti-
cles in a two-dimensional gas, assuming they all
have the same mass m. Let us demonstrate this
using a numerical simulation similar to that of the
last section, but now we follow the velocities, or
momenta, of the particles as they exchange energy
and momentum in collisions, as we illustrated on
the air-table.

Suppose the colliding particles have momenta p1

and p2. In two dimensions, these vectors are

p1 ≡ [p1x, p1y] p2 ≡ [p2x, p2y] (3.4)
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We leave it as an optional exercise to work out the
momenta with which the particles leave the elastic
collision. We carry out exactly the same calculation
as in Section 1.2, but now allow both particles to
be moving.

Figure 3.3. Elastic collision of two point masses
with momenta p1 and p2.
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Example: First find the velocity V ≡ [Vx, Vy] of the
centre of momentum frame of reference. The compo-
nents of this frame are found as usual by adding V to
the components of the momentum vectors so that

(p1x + mVx) + (p2x + mVx) = 0 (3.5)
(p1y + mVy) + (p2y + mVy) = 0. (3.6)

Therefore,

V ≡ [Vx, Vy] = − 1
2m

[p1x + p2x, p1y + p2y] (3.7)

In this frame of reference, the momenta of the particles
are

1.
[
1
2 (p1x − p2x), 1

2 (p1y − p2y)
]
,

2.
[
1
2 (p2x − p1x), 1

2 (p2y − p1y)
]
.

Figure 3.4. Elastic collision in the centre
of momentum frame of reference.
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In this frame of reference, the total momentum is zero,
the particles have equal and opposite momenta and so
after the collision, conserving energy, the particles are
sent out in opposite directions with velocities of the
same magnitude, but at some angle θ with respect to the
original axis of the collision. To rotate the momentum
vectors, we use the rotation formulae (see Mathematics
Handbook):

A′x = Ax cos θ + Ay sin θ, (3.8)
A′y = −Ax sin θ + Ay cos θ. (3.9)

Therefore, for particle 1, we find

p′1x = 1
2 (p1x − p2x) cos θ + 1

2 (p1y − p2y) sin θ,

p′1y = − 1
2 (p1x − p2x) sin θ + 1

2 (p1y − p2y) cos θ.

Figure 3.5. Elastic collision in the centre
of momentum frame of reference.
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Similarly for particle 2, we obtain

p′2x = 1
2 (p2x − p1x) cos θ + 1

2 (p2y − p1y) sin θ],

p′2y = − 1
2 (p2x − p1x) sin θ + 1

2 (p2y − p1y) cos θ].

The value of θ can be chosen at random. Finally, we re-
turn to the laboratory frame of reference by adding the
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centre of momentum velocity to both particles. There-
fore, the final answer for particle 1 is,

p
′′
1x = 1

2 [(p1x − p2x) cos θ + (p1y − p2y) sin θ + (p1x + p2x)],
(3.10)

p
′′
1y = 1

2 [−(p1x − p2x) sin θ + (p1y − p2y) cos θ + (p1y + p2y)].
(3.11)

Similarly, for particle 2,

p
′′
2x = 1

2 [(p2x − p1x) cos θ + (p2y − p1y) sin θ + (p1x + p2x),
(3.12)

p
′′
2y = 1

2 [−(p2x − p1x) sin θ + (p2y − p1y) cos θ + (p1y + p2y).
(3.13)

The expressions (3.10) to (3.13) are the key rela-
tions. Notice that the new components of the mo-

Figure 3.6. Outcome of elastic collision in
the laboratory frame of reference.
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menta depend only upon θ, the rotation angle of
the collision. Therefore, we can set up the same ar-
ray of cells as in the previous simulation, but each
box now has px and py components. We need to
ensure that the system has no net momentum and
so we arrange the initial state of the molecules of
the gas so that

Table 3.1. An array of pxi, pyi values.
-12 , 12 -11 , 7 -10 , 2 -9 , -3 -8 , -8
-7 , 11 -6 , 6 -5 , 1 -4 , -4 -3 , -9
-2 , 10 -1 , 5 0 , 0 1 , -5 2 , -10
3 , 9 4 , 4 5 , -1 6 , -6 7 , -11
8 , 8 9 , 3 10 , -2 11 , -7 12 , -12

∑

i

pxi = 0,
∑

i

pyi = 0. (3.14)

An arbitrary example of such an array is shown in
Table 3.1, where the momenta are given integral
values.

The simulation proceeds as follows:

1. Choose an element i of the array at random.

2. Choose another element of the array at ran-
dom j.

3. Allow i and j to collide and choose the angle
θ at random.

4. Determine the values of [p
′′
1x, p

′′
1y] and [p

′′
2x, p

′′
2y]

using the expressions (3.10) to (3.13).

5. Replace the original values of the [p1x, p1y]
and [p2x, p2y] by the new [p

′′
1x, p

′′
1y] and [p

′′
2x, p

′′
2y].

6. Choose a new pair of cells at random and re-
peat the process.



Statistical and Quantum Physics 8

7. Repeat this procedure thousands of times.

The outcomes of these simulations are shown in
Figure 3.6. We can set the system up with any
distribution of momentum we like. For illustrative
purposes, we show an example in which there are
10,000 particles and the momentum distribution of
these particles is flat in the x and y directions be-
tween ±10 units in both directions.

The second panel shows the change in the momen-
tum distribution after 1000 collisions. It can be
seen that already the momentum distribution is
becoming bell-shaped. After 25,000 random colli-
sions, the momentum distribution has already set-
tled down to a gaussian, or normal, distribution
in both the x and y directions. Furthermore, the
widths of the distribution, or more precisely, their
standard deviations are identical in the two orthog-
onal directions. Again, as we leave the simulation
running, notice that the momentum distributions
are stationary in the x and y directions – the sys-
tem has reached a state of statistical equilibrium,
but now in ‘momentum space’.

Therefore, writing the distributions in terms of the
velocities in the x and y directions,

f1(vx) dvx ∝ exp
(
− v2

x

2σ2

)
dvx, (3.15)

f1(vy) dvy ∝ exp

(
− v2

y

2σ2

)
dvy. (3.16)

But we notice that the v2
x and v2

y are just propor-
tional to the kinetic energies of the particles in the
x and y directions and so the probability distribu-
tions for the energies of the particles in each coor-
dinate are

f1(Ex) ∝ exp (−αEx) f1(Ey) ∝ exp (−αEy) .
(3.17)

Again we have recovered a version of the Boltzmann
distribution.

3.4 The isothermal atmosphere

We have not yet worked out what the constant α
is in the Boltzmann distribution. Let us find it
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Figure 3.6: The evolution of a two-dimensional gas of 104 particles. The initial distribution
of momenta is flat between ±10 units (top). After only ∼ 103 collisions the distribution
function becomes bell-shaped (middle). After ∼ 25× 103 collisions, a gaussian distribution
(shown by the solid curve) is obtained in both the x and y directions with the same standard
deviation.



Statistical and Quantum Physics 10

by a calculation in classical physics. An isothermal
atmosphere is an atmosphere in a gravitational field
in which the temperature is the same everywhere.
We assume that the gravitational acceleration is
uniform locally for heights h small compared with
the radius of the Earth rE and so we approximate
the gravitational potential as follows:

φ(h) = − GME

rE + h
= −GME

rE

(
1 +

h

rE

)−1

(3.18)

= −GME

rE
+

GMEh

r2
E

. (3.19)

If we measure the gravitational potential relative
to the value at the surface of the Earth φ(0) =
−GME/rE, we can write

φ(h) =
GMEh

r2
E

= |g|h = gh. (3.20)

Let us now solve the problem of the pressure distri-
bution in a uniform gravitational field. We consider
the equilibrium of an element of the atmosphere of
thickness dh at height h above the surface of the
Earth, as illustrated in the diagram. The density
of the atmosphere is ρ.

Figure 3.7. Variation of atmospheric
pressure with depth
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The pressure on the cylindrical element is isotropic
at each point, meaning the same in all directions
at that point, and so we can write the pressure
at the top surface as p + dp and that on the bot-
tom as p. The weight of the element of atmosphere
ρA dh × g is balanced by the pressure difference
between the top and bottom surfaces. Therefore,
taking account of the directions of the forces shown
in Figure 3.7,

A(p + dp) + ρAg dh = Ap

A

(
p +

dp

dh
dh

)
+ ρAg dh = Ap

dp

dh
= −ρg (3.21)

Now, the equation of state of the gas, which relates
the pressure to its density and temperature in ther-
mal equilibrium is p = nkT , where n is the number
density of molecules. Therefore, if m is the average
mass of the molecules of the atmosphere, its density
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is ρ = mn. Substituting into (3.21), we find

dp = −ρg dh = −nmg dh = −mg p

kT
dh

dp

p
= −mg

kT
dh (3.22)

Integrating from 0 to h, we find

∫ p(h)

p(0)

dp

p
= −

∫ h

0

mg

kT
dh

p = p0 exp
(
−mgh

kT

)
(3.23)

Table 3.2
Height Pressure Relative Isothermal
(h/km) (p/millibar∗) pressure atmosphere

0.0 1013 1 1
1.5 840 0.83 0.83
2.4 752 0.74 0.74
3.0 697 0.69 0.69
6.1 465 0.46 0.47
8.5 333 0.33 0.35

∗ 1 millibar = 100 Pascal = 100 Pa = 0.75
mm of mercury. Normal atmospheric pressure
is 1,013.2 millibar.

Thus, the pressure and density of an isothermal
atmosphere decrease exponentially with increasing
height above the surface of the Earth. This is ac-
tually quite a good approximation for the pressure
distribution in the Earth’s atmosphere, which is
given in Table 3.2.

Certainly when I have been observing on the sum-
mit of Mauna Kea in Hawaii at 4.2 km altitude, you
really feel the effects of the decreased atmospheric
pressure. Notice that the scale height of the atmo-
sphere, meaning the height at which the pressure
is only 1/e = 0.368 of its value at sea level is about
8 km. You can understand the problems of scaling
8,000 m peaks in the Himalayas.

There are all sorts of other consequences. You can
measure altitude by measuring local atmospheric
pressure. Provided you calibrate the pressure gauge
at a known altitude, you can get accuracies of about
5 metres. You notice the difference in performance
of propeller-driven aircraft at high altitude – heli-
copters really have problems in the Himalayas. Wa-
ter boils at a lower temperature at high altitude, as
we will demonstrate in Chapter 7.

Let us now rewrite the expression for the pressure
at height h in terms of the number density of par-
ticles using p = nkT . Then,

n = n0 exp
(
−mgh

kT

)
(3.24)

We recognise that the quantity mgh represents the
potential energy of a molecule of mass m at height h
above the ground. If we set the energy equal to zero
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at the ground, we can write E = mgh. Therefore,
we can also write

n = n0 exp
(
− E

kT

)
(3.25)

This is a highly suggestive result. We could equally
well interpret it as meaning that, if the system is in
equilibrium at temperature T , the probability pi(E)
of finding a molecule i in a state of energy E above
zero energy is

pi(E) = pi(0) exp
(
− E

kT

)
or pi ∝ exp

(
− E

kT

)

(3.26)
We see that the constant α which appears in the
exponential is just 1/kT , where T is the tempera-
ture.

This is, in fact, a special case of the very general
result which we quoted in the introduction. To re-
peat it somewhat more formally,

If a system, or element of a system,
can exist in one of a number of differ-
ent states, each with a different energy,
then, in thermal equilibrium, the prob-
ability pi of finding it in the ith state
with energy Ei is

pi ∝ exp
(
− Ei

kT

)
(3.27)

This is 50% of the content of the Boltzmann distri-
bution.

3.5 Degeneracies

The other 50% of the Boltzmann distribution in-
volves how many states there are available to parti-
cles with energy Ei. If we are dealing with discrete
states of energy Ei, as we will find in quantum sys-
tems, the answer is straightforward. If there are
gi(Ei) states, all with the same energy Ei, we say
that the degeneracy of the state is gi(Ei). Then, the
probability of a particle being found in any state of
energy Ei is

pi ∝ gi(Ei) exp
(
− Ei

kT

)
(3.28)
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This is the complete expression for the Boltzmann
distribution.

We will find a similar result when we deal with a
continuous distribution of energy, or momentum,
states,

p(E) dE ∝ g(E) exp
(
− E

kT

)
dE (3.29)

The simplest example we will deal with will be
the three-dimensional Maxwellian velocity distribu-
tion, which we will discuss in Section 4.4.2.

3.6 Conclusion

These arguments make it entirely plausible that the
equilibrium distribution contains two factors:

• the Boltzmann factor which describes the prob-
ability that a state of energy Ei is occupied in
thermal equilibrium at temperature T , pi ∝
exp (−Ei/kT ).

• the number of states of energy Ei which can
be occupied by the particles, what we have
called the degeneracy gi of the energy state
Ei.

These are the principles which we will develop in
the following chapters.


