Chapter 2

Distributions in
Physics

Topics

How to handle distributions in physics. Discrete distributions, averages and true
means, variance and standard deviation. Continuous distributions, distribution

functions and probability densities. Exzamples.

We need to spend a little time revising the con-
cepts of discrete and continuous distributions and
how to describe them mathematically. Many of the
parameters involved will be related to physically
measurable quantities. More details of these topics
are contained in Section 16 of the Maths Handbook.

2.1 Discrete Distributions

Let us begin with a splendid old example from my
favorite statistics book, Teach Yourself Statistics.
In 1951, the heights of all the service personnel born
in 1933 were measured — typically, they were about
18 years old. There were 58,703 personnel and the
distribution of their heights to the nearest inch is
listed in Table 2.1 and presented as a histogram in
Figure 2.1. The box 60 inches means heights in the
interval 60 < h < 61 so that the mean is 60.5.

Table 2.1. Heights of national service
personnel born in 1933 in the 1951 intake.

Height Number Probability
(h/inches) p(h)
<59 23 0.0004
60 169 0.0029
61 439 0.0075
62 1030 0.0175
63 2116 0.0360
64 3947 0.0672
65 5965 0.1016
66 8012 0.1365
67 9089 0.1548
68 8763 0.1493
69 7132 0.1215
70 5314 0.0905
71 3320 0.0566
72 1884 0.0321
73 876 0.0149
74 383 0.0065
75 153 0.0026
76 63 0.0011
> 77 25 0.0004
Total 58703 1.0000
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Table 2.1 The probability distribution of heights of national service personnel in 1951.
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We need to be able to characterise such distribu-
tions and so let us revise some of these measures.

2.1.1 Averages and True Means

The average or sample average of a set of N quan-
tities x1, z9, 3 ...z is defined as

_ xitaetazt--tary Y
T N N (2.1)
We can also define a weighted average by
= 2 Wit (2.2)

> Wi

where the quantities w; are the weights. The values
with larger weights have more influence in defining
the ‘typical’ value. The ordinary average (2.1) has
the same weight, w; = 1, for every value x; and so

Ziwi:N.

Now, consider some physical quantity x, for which
we wish to measure the average value as precisely as
possible. We could imagine taking a very large, or,
in the limit, an infinite set of measurements. The
average of such an infinite set of measurements is
known as the mean or true mean value of x, and
is written as p or pg, or (z). It is sometimes also
written as T, but we shall use this symbol for the
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average of a finite sample. This may look some-
what pedantic, but it emphasises the point that
the sample average of a finite set of measurements
provides only an estimate of the true mean and not
the true mean itself. Physicists have to live with
such uncertainties and try to improve the precision
of their experiments.

2.1.2 Probabilities

Let us define the probability p(z;) of obtaining a
given value of z; for a discrete distribution. p(z;)
is normalised so that the total probability of ob-
taining any value of z; is unity. Therefore,
N ()

p(x;) = =———, 2.3
where N(z;) is the number of occurrences of z;.
The data shown in Table 2.1 are also shown as a
set of probabilities p(h) by dividing all the numbers
in the second column 2 by 58,703.

Thus, we can equally well write the average as
T = Z x; p(T;). (2.4)
i

Taking the extreme values < 59 and > 77 to be 59.5
and 77.5 respectively, the sample average height in
Table 2.1 is 67.87 inches ~ 5 feet 8 inches.

2.1.3 Variance and Standard Deviation

For any set of data, an important quantity is the
spread of the data about the average value. This
quantity has many applications in physics.

The quantity ¢; = x; — p for any particular mea-
surement x; is called the deviation or, in the case
of the analysis of errors, the error. Notice that we
have written the expression for € in terms of the
true mean p. For very large samples, the mean de-
viation is, from the definition of the mean, zero.
The mean square deviation o2 is, however, finite
and is called the variance,

1 1
variance = o2 = (£?) = N Zs? = Z(wi—,u)g,
i i

(2.5)
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that is, the variance is the quantity (z; — u)? aver-
aged over an infinite number of measurements.

Notice that, in (2.5), we compared the deviation
with the true mean and normally we will not know
the value of p. If instead we refer the deviations
g; to the sample average ¢; = (x; — T), the sample
variance s® is defined to be

1
sample variance = s% = (¢?) = N1 Z g2
i

! 2 (26)

The —1 in the N — 1 takes account of the fact
that we have already used one piece of information
about the properties of the data-set in determining
the sample average T. Generally speaking, when
dealing with large enough samples, the distinction
between N and N — 1 is not important, but it is
best to use N — 1 to be strictly correct if the data
are referred to the sample average.

If the data are presented as a histogram of proba-
bilities, as in Table 2.1, we can equally well write
the sample variance in terms of the probabilities

p(xi)
(2.7)

We often need a suitable measure of the typical de-
viation from the sample mean and we define the
standard deviation, or the standard error in the
case of errors, as o or s, the square root of the
variance — this quantity is often referred to as the
root mean square deviation.

A measure of the spread in heights of the service
personnel in Table 2.1 is found from s?> = 7.530
inches? and the standard deviation s = 2.74 inches.
About 70% of the heights lie between +s.

2.2 Continuous Distributions

In the case of very large samples, for example, the
6 x 10* molecules in one mole of gas, we need to
think in terms of, say, their velocities as having a
continuous range of values, rather than each having
a discrete value. The probability of finding some

A Useful simplification to find o2
Rather than having to work out z; — pu,
square and add, we can use the following
simplifiation.

=Y = S ),

7 %
:%Zm?—%Zme%-%z,u?,
PR DY

% %

But, (3, z;)/N = p and so

1
0'2 = N;x?—MQ
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particular value exactly is now zero, and this is not
a helpful idea.

Instead, we use the concept that the probability
that v lies in some narrow range between, say, v
and v+dv. We express this in terms of the distribu-
tion function f(v), which is the probability density
per unit range of the velocity v. The probability
dp that v lies in the narrow range of velocity v to
v + do is defined to be

dp(v) = f(v) dv.

The probability on the left hand side is a dimen-
sionless number between zero and one. dv has the
dimensions of velocity and so the function f(v)
must have dimensions 1/v, that is, it is the proba-
bility per unit range of velocity.

(2.8)

Consider the case of the one-dimensional velocity
distribution of the molecules in a gas. This means
that we consider only, say, the z-component of the
particles’ velocities. Therefore, the value of v, can
range between +o0o and —oco. The function, which
we will derive later, is

1 02 /902
e vz /2 dvy,

Ja) o = L omyire

(2.9)
where o = (kT /m)'/?, and is shown in Figure 2.5.
The key point is that areas under the f(vy) curve,
and mot the values of f(v,) represent the proba-
bilities. This obviously has to be the case since a
probability has to be a dimensionless number and
f(vz) has dimensions [velocity]~'. Thus, the lit-
tle shaded area is f(v;)dv, tells us the probability
that the velocity of the molecule lies in the veloc-
ity range v, to vy + dvz. The total area under the
curve represents the total probability that v, has
some value and so must be equal to unity. There-
fore,

/OO f(vg) du, = 1. (2.10)

We say that the probability distribution f(v,) has
been normalised.

You should check for yourselves that the expres-
sion (2.14) has been correctly normalised using the
integral relation

/ e da = /7.

—00

(2.11)

Figure 2.5 The probability density

floz) = o va/2e"

a(2m)1/2

Gaussian or Normal Distribution
The one-dimensional velocity distribution
is an example of the Gaussian or Normal
Distribution.

1

—z2/2
(277)1/26 dzx.

fz)de =

Continuous probability distributions
Areas under the f(v,) curve fgff f(vy) dog,
and not the values of f(v,), represent the
probabilities.
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It takes a little while to get used to the use of
continuous functions and it may seem strange that
probability density functions have dimensions. The
key thing to remember is that the function itself
only becomes a probability when multiplied by dv,.
We can make dv, as small as we like and so ob-
tain the probability for an infinitesimal range of
dv, about the value v, in which we are interested.

It is now straightforward to define the statistical
measures we discussed above, but now for continu-
ous probability density distributions. Now we deal
with integrals rather than sums.

e The mean value of v, is

o = [vado= [~ vaf(e)du. (@212)

—00

e The variance is

o0

o = / (Vg — o, )2 f (vg) dvg.  (2.13)

—00

As an exercise, you should confirm the following
results for the velocity distribution shown in Figure
2.5.

® fiy, = 0;

e c2=0c’and 0 = a; -

Hint: integrate ffooo 22~ da by parts
to reduce the integral to [ e~ da, for
which the result has already been quoted.



