
Chapter 14

Solving
Schrödinger’s Wave
Equation - (2)

Topics

Examples of quantum mechanical tunnelling: radioactive α-decay, the ammonia
molecule, tunnel diodes, the scanning tunnelling microscope. The quantisation of
angular momentum, the rotational spectra of diatomic molecules. The quantum har-
monic oscillator. Vibrations of a diatomic molecule.

14.1 Radioactive α-Decay

The most famous application of quantum mechan-
ical tunnelling is to the process of radioactive α-
decay of heavy nuclei, first described by George
Gamow in 1928. An α-particle is a helium nucleus
consisting of two protons and two neutrons. In such
a radioactive decay, the parent nucleus decays into
a lighter nucleus with two fewer protons and two
fewer neutrons, ejecting an α-particle in the pro-
cess. Perhaps the most famous α-decay is the decay
of radium into radon discovered by Marie Curie,

226
88 Ra → 222

86 Rn +4
2 He,

where the superscripts are the mass numbers and
the subscripts the atomic numbers of the nuclei.
The half-life of this isotope of radium is 1,602 years.
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Solving Schrödinger’s Wave Equation 2

In general, in the process of α-decay, the kinetic
energies of the ejected α-particles range from Eα =
1.9 MeV to 9.2 MeV. These energetic particles are important in

cancer therapy – on passing through the
cancerous cells, the α-particles are decel-
erated and their kinetic energies are de-
posited as heat which kills the cells.

One of the features of α-decay is that, although
there is a relatively narrow range in the kinetic en-
ergies of the α-particles, the range of their half-lives
t1/2 is enormous, from about 3 × 10−7 seconds to
2× 1017 years. There is a relation between Eα and
t1/2 which is known as the Geiger-Nuttall law,

log t1/2 = AE−1/2
α − constant. (14.1)

Let us see if we can account for this relation in
terms of quantum mechanical tunnelling.

The de Broglie wavelength of a 5 MeV α-particle is
λ = h/p = h/

√
2mE = 7× 10−15 m. This is of the

same order as the size of the nucleus and suggests
a model in which the α-particle is trapped within
the potential well of the nucleus, which can be ap-
proximated as a square well potential. Outside the
sphere of influence of the strong nuclear forces, the
potential experienced by the α-particle is just the
repulsive electrostatic force of the remaining pos-
itive charge of the nucleus, as demonstrated by
Rutherford’s α-particle scattering experiments. If
the nuclear charge is initially Z, then outside the
nucleus the electrostatic potential energy of the α-
particle is

V =
2× (Z − 2)e2

4πε0r

A simple model for the potential experienced by the
α-particle is shown in Figure 14.1, where r0 is the
radius of the nuclear potential well, which we can
think of as the radius of the nucleus. Within r0,
the nucleus is held together by the strong nuclear
force which is represented by the negative potential
at r ≤ r0.

Figure 14.1. Model potential for α decayWe can imagine that the protons and neutrons mov-
ing within the nuclear potential are continually as-
sembling themselves into loose associations of α-
particles which rapidly dissociate. If the energy of
the α-particle association in the nucleus is nega-
tive, as represented, for example, by the line X in
Figure 14.1, it cannot escape from the nucleus. If,
however, it has positive energy, for example, the
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line Y in Figure 14.1, it can escape by quantum
mechanical tunnelling. By the same types of ran-
dom collision processes which we discussed in con-
nection with the Boltzmann and Maxwell distribu-
tions, α-particles can acquire a significant amount
of kinetic energy and so can have positive energy,
as illustrated by the line Y.

We can develop a simple model to work out the
rate at which such α-decays should take place. We
suppose that the α-particle associations in the nu-
cleus have speed v and, every time one of these
crosses the nucleus, there is a probability p that
it will tunnel through the potential barrier. The
number of attempted tunnelling events per second
is ∼ Nv/2r0, where N is the average number of α-
particle associations present in the nucleus. If the
kinetic energy of the particle is Eα, the width of the
potential barrier is from r0 to r1, where the value of
r1 is found from the condition that the kinetic en-
ergy of the α-particles is equal to the electrostatic
potential energy at r1,

r1 =
2(Z − 2)e2

4πε0Eα
. (14.2)

The probability of successful tunnelling is

p =
|ψ(r > r1)|2
|ψ(r < r0)|2 ,

and hence the rate of decay, that is, the probability
λ that the particle decays in one second is

λ ≈ Nv

2r0

|ψ(r > r1)|2
|ψ(r < r0)|2 . (14.3)

The following mathematical details are non-
examinable

The only problem is that, unlike our previous anal-
ysis, the barrier is no longer of constant height. We
can take account of this approximately by treating
the barrier as the sum of many small barriers of
width ∆r, across each of which the amplitude of the
wavefunction decreases by exp[−

√
2m(V − E)∆r/h̄] =
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exp(−α ∆r) (Figure 14.2). Therefore the decrease
in amplitude of the wavefunction is

ψ(r > r1)
ψ(r < r0)

≈
∏

i

exp(−α ∆ri)

= exp

(
−

∑

i

α ∆ri

)
,

noting that α is a function of r.

Figure 14.2. Model potential for α decay
approximated by a series of constant

potential steps of width ∆ri.

In the limit, we can replace the sum by an integra-
tion and then,

ψ(r > r1)
ψ(r < r0)

≈ exp
(
−

∫ r1

r0

α dr

)

= exp

{
−

∫ r1

r0

√
2m

h̄

[
2(Z − 2)e2

4πε0r
− E

]1/2

dr

}
.

and the probability is the square of this ratio.

The details of how to carry out this integral are
given in the margin note. The result is

λ ≈ Nv

2r0
exp

{
−2

[
mr1(Z − 2)e2

πε0h̄
2

]1/2
[
cos−1

(
r0

r1

)1/2

−
(

r0

r1

)1/2 (
1− r0

r1

)1/2
]}

.

(14.4)

Let us assume that the potential barrier is thick so
that r1 À r0. Then, inspecting the second term in
square brackets, the term in cos−1 becomes π/2 and
the second term becomes very small. Therefore,
from (14.4), we find

λ ≈ Nv

2r0
exp

{
−2

[
mr1(Z − 2)e2

πε0h̄
2

]1/2

× π

2

}
,

=
Nv

2r0
exp

{
−

[
2(Z − 2)e2π

4πε0h̄

](
2m

Eα

)1/2
}

.

(14.5)

Performing the integral
The first thing to do is to simplify the integral
so that it has the form

∫ r1

r0

constant
(

1
r
− 1

r1

)1/2

dr.

Substituting y = (r/r1)1/2, the integral be-
comes

2r
1/2
1

∫ y1

y0

(1− y2)1/2 dy.

Then, using y = sin θ, or y = cos θ, the solu-
tion

r
1/2
1 [sin θ cos θ − θ]θ1

θ0

is found. Substituting the limits of the integral
and rearranging the result, we find

r
1/2
1

[
cos−1

(
r0

r1

)1/2

−
(

r0

r1

)1/2 (
1− r0

r1

)1/2
]

Therefore, the typical half-life of the parent nucleus
for α-decay is t1/2 ≈ λ−1, that is

t1/2 ≈
2r0

Nv
exp

{[
2(Z − 2)e2π

4πε0h̄

](
2m

Eα

)1/2
}

.

(14.6)
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Taking logarithms and substituting for the values
of the constants, we find

log10 t1/2 = log10

(
2r0

Nv

)
+ 1.71(Z − 2)E−1/2

α ,

(14.7)
where the energy of the particle Eα is in MeV.

This is the Geiger-Nuttall law and it has a num-
ber of important features. Notice that the quan-
tities which we do not know very well, N and v,
appear inside the logarithm and so we do not need
to know them very accurately. The half-life is, how-
ever, very sensitive to the values of Z and Eα. For
isotopes with Z ≈ 90, a change of a factor of four in
Eα results in a change in t1/2 by a factor of about
1077! Although this is a bit on the large side, it
does show that a very wide range of half-lives is
obtained for a small change in the energy of the
α-particle.

Figure 14.3. The ammonia molecule.The importance of this result, first derived by Gamow,
was that it was the first successful application of
quantum mechanics to the physics of the nucleus.

14.2 Other examples

14.2.1 The Ammonia Molecule

The ammonia molecule NH3 has the form of a tetra-
hedron and is shown in Figure 14.3 with the nitro-
gen atom at the top. If the nitrogen atom were to

Figure 14.4. Illustrating the potential bar-
rier between the two states of the ammonia
molecule.

try to move downwards towards the plane of the
triangle of hydrogen atoms, it would be repelled by
the hydrogen atoms and so classically cannot pass
through the triangle to the other side. This barrier
is represented in Figure 14.4.

According to quantum mechanics, however, the ni-
trogen atom can penetrate the barrier and, in fact,
does so with a frequency of about 1010 oscillations
per second.
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14.2.2 The Tunnel Diode

Tunnel diodes are semiconductor devices in which
the conduction electrons encounter a potential bar-
rier of the type shown in the diagram. Classically,
the electrons cannot penetrate the barrier but they
can pass through quantum mechanically. The im-

Figure 14.5. The potential barrier for a
tunnel diode. The height of the barrier

potential can be altered by changing the bias
voltage Vb.

portant feature of the tunnel diode is that the rate
at which electrons pass through the potential bar-
rier can be regulated by varying the height of the
voltage barrier. This can be done very rapidly and
so switching frequencies of 109 Hz or more can be
achieved.

14.2.3 Scanning Tunneling Microscope

This device was invented by Gerd Binnig and Hein-
rich Rohrer in 1982 and enables surfaces to be im-
aged with atomic precision. An extremely sharp
conducting needle is scanned across the surface and
a small bias voltage is applied between the tip and
the surface. As a result of quantum mechanical
tunnelling, a current flows. The height of the nee-
dle is continually adjusted to keep the current con-
stant and as a result the contours of the surface of
the material can be measured with an accuracy of
better than 0.01 nm.

In Figure 14.6, a scanning tunnel microscope image
is shown of a ring of 36 cobalt atoms which have
been placed in an elliptical ring on a copper sur-
face. Within the ring, a series of concentric ellipses
can be seen which represent the total probabilities
associated with the wave functions of all the cobalt
atoms adding coherently within the ring.

Figure 14.6. A scanning tunnel microscope
image of an ellipse of 36 cobalt atoms. If a

cobalt atom is placed at one focus, a ‘mirage’
atom is observed at the other focus. If the

atoms is not at a focus, no mirage is
observed.

An ellipse has the property that the sum of the dis-
tances from a point on the ellipse to the two foci is a
constant. In the experiment shown in the left hand
images of Figure 14.6, a cobalt atom is placed at
one focus of the ellipse and a ‘mirage’ of that atom
is observed in the other focus. The wave functions
from the atom at one focus add coherently at the
other focus, since all paths from the one focus to
the other are the same for the ‘reflection’ of the
wave functions by the ellipse. The intensity of the
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mirage is about one third of that of the real atom.
The same image is shown in Figure 14.7.

If the cobalt atom is not placed at the focus, as in
the right hand panels in Figure 14.6, no mirage is
observed.

14.3 The quantisation of angular momen-
tum and the rotational spectra of diatomic
molecules

Figure 14.7. A prettier version of Figure
14.6, showing the ellipse of cobalt atoms, as
well as the real and ‘mirage’ cobalt atoms at

the foci.

In our development of the Bohr model of the hy-
drogen atom, we noted the central role which the
quantisation of angular momentum plays in deter-
mining the energy levels in the hydrogen atom.

J = mevr = nh̄

or, in vector form,

J2 = n2h̄2 with n = 1, 2, 3, . . . (14.8)

The quantisation of angular momentum carries over
into the full quantum theory, but with some impor-
tant differences. For motion about a single axis, say
the z-axis, the result has the same form as we met
for the hydrogen atom

Jz = mj h̄ with mj = 1, 2, 3 . . . (14.9)

The explanation of this result is very similar to

Quantisation of a component of
angular momentum

Jz = mj h̄ with mj = 1, 2, 3 . . .the argument we developed for the Bohr atom – the
wave function must form a standing wave pattern
in the angular direction about the z axis.

When we consider the total angular momentum, the
result is however more complicated and takes the
form

J2 = j(j + 1)h̄2 with j = 0, 1, 2, 3, . . . (14.10) Quantisation of the total angular
momentum

J2 = j(j + 1)h̄2 with j = 0, 1, 2, 3, . . .One of the js in Bohr’s formula (14.8) has been
replaced by j + 1. There are all sorts of other rules
about angular momentum in quantum mechanics,
some of which we will describe later in this section.

We can understand qualitatively why the expres-
sion for the total angular momentum should be
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somewhat more complicated than the simple Bohr
picture from the uncertainty principle and the equiv-
alences which we developed between linear and ro-
tational motion in Section 8.4. We recall that the
laws of classical dynamics result in correspondences
between linear displacement dr and the angular
displacement dθ and between the linear momentum
dp and the angular momentum dL. In quantum
mechanics, the uncertainty principle sets a lower
limit to the uncertainty with which we can deter-
mine p and x, ∆p∆x ≥ h̄/2. In exactly the same
way, we cannot know simultaneously both L and
θ. Thus, the term 1 in (j +1) can be thought of as
an expression of uncertainty principle as applied to
rotational motion. The combination of (14.9) and
(14.10) tells us that we cannot project the total
angular momentum onto a given axis, essentially
because of the uncertainty principle.

There is one very pleasant example of the applica-
tion of the expression for the quantisation of an-
gular momentum. Consider the simplest case of a
diatomic molecule such as carbon monoxide CO or
hydrogen chloride HCl. We can treat the molecule
as a classical rigid body and work out the rela-
tion between its kinetic energy of rotation and its
angular momentum. We recall that the rotational
kinetic energy Erot and angular momentum J are

Erot =
1
2
Iω2 and J = Iω, (14.11)

where I is the moment of inertia of the molecule
about its centre of mass. Therefore, the classical
relation between energy and angular momentum is

Erot =
J2

2I
. (14.12)

We suppose that the masses of the atoms are m1

and m2. Then, if r1 and r2 are the distances of
the two atoms from their centre of mass, the dis-
tance between the atoms is R = r1 + r2 and, from
the definition of the centre of mass, m1r1 = m2r2.
Consequently, we can express r1 and r2 in terms of
R, m1 and m2.

r1 =
m2

m1 + m2
R r2 =

m1

m1 + m2
R.
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Therefore, the moment of inertia I of the molecule
about its centre of mass is

I = m1r
2
1 + m2r

2
2 =

(m1m
2
2 + m2

1m2)R2

(m1 + m2)2
,

=
m1m2

m1 + m2
R2,

I = µR2r, (14.13)

where µ = m1m2/(m1 +m2) is the reduced mass of
the molecule.

In the same way as we identified the quantum me-
chanical energy with the kinetic energy E = p2/2m,
we identify the quantum mechanical rotational ki-
netic energy as

E =
J2

2I
. (14.14)

Inserting (14.10) for the quantisation of angular
momentum into (14.14),

Ej =
J2

2µR2
=

j(j + 1)h̄2

2µR2
, (14.15)

where j = 0, 1, 2, . . . . These quantised rotational
energy levels of the molecule are illustrated in Fig-
ure 14.8. in which the energies are shown in units
of h̄2/2µR2. Figure 14.8. Energy Level Diagram

for a Quantum Rotator
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l = 0 E = 0
l = 1 E = 2

l = 2 E = 6

l = 3 E = 12

l = 4 E = 20

l = 5 E = 30

Ej = j(j + 1)
h2

8π2I

Only the first 5 levels
above the ground state

are shown.

Now, just as in the case of the hydrogen atom,
the molecule emits a photon of energy hν when
it changes from one rotational state to another.
We need, however, rules which tell us which of all
the possible transitions are allowed. For the sim-
plest transitions, which are known as electric dipole
transitions, the rule is that the angular momen-
tum quantum number j should change by only one
unit, that is, for the case of emission of radiation
j → j−1 while in the case of absorption of a photon
j → j + 1. We can therefore work out the energy
of the photons emitted in the rotational transition
j → j − 1.

∆Ej→j−1 = hν = [j(j + 1)− (j − 1)j]
h̄2

2µR2
,

=
jh̄2

µR2
. (14.16)
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Hence,

ν =
∆Ej→j−1

h
=

jh

4π2µR2
=

jh̄

2πµR2

where j = 0, 1, 2, . . .

Thus, the transitions are equally spaced in frequency
and this results in the characteristic rotational lad-
der for the rotational spectra of diatomic molecules.
This finds application is many different fields. Many
of the transitions fall in the far infrared region and
millimetre regions of the spectrum. A beautiful ex-
ample is the carbon monoxide molecule which is the
next most abundant molecule in interstellar space
after molecular hydrogen. In the problem sheet,
we ask you to show that the j = 1 → 0 transition
occurs at 115 GHz, or a wavelength of 2.6 mm,
j = 2 → 1 at 230 GHz, or a wavelength of 1.3 mm,
j = 3 → 2 at 345 GHz, or a wavelength of 0.87
mm and so on. The giant molecular clouds which
are the birth places of the stars are most readily
identified by their CO line emission.

Figure 14.9. An image of the distribution of
CO molecules in the constellation of Orion
from observations of the CO molecular line

at 2.6 mm.

Notice also that we can carry out the calculation
backwards to understand the structure of the di-
atomic molecules. If we measure the rotational lad-
der of a diatomic molecule, we are able to work out
the separation between the atoms in the molecule.
For example, in the case of hydrogen chloride molecules,
the separation between the spectral lines is ∆ν =
6.234 × 1011 Hz and, since ∆ν = h̄/2πµR2, we
can show that the separation of the atoms is about
10−10 m.

14.4 The Harmonic Oscillator

You have spent a great deal of time this year inves-
tigating the classical harmonic oscillator and have
seen how important it is in a variety of contexts.
The same is true in quantum mechanics. The har-
monic oscillator, or more strictly the harmonic po-
tential, is a good model for many physical systems,
for example, a chemical bond. We shall therefore
develop the quantum theory of the harmonic oscil-
lator in some detail. We start by using the approx-
imate methods developed in Chapter 13 and then
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use this insight to find a formal (non-examinable)
solution and derive the energy levels.

14.4.1 Approximate Solution

The potential has the form V = 1
2ax2. Now con-

sider the ground state of the system and apply the
ideas of section 13.1 to obtain an approximate form
for the wave function.

• The ground state must minimise the curva-
ture of the wave function and as before we do
not expect any nodes in the function.

• If the ground state energy is E, then clas-
sically the particle cannot enter the region
with E ≥ 1

2ax2, that is, the regions |x| >

(2E/a)1/2. However, just as in the case of
the finite depth potential well, we expect the
wavefunction to fall off roughly exponentially
in this region. For large x, E ¿ 1

2ax2 and
Schrödinger’s equation becomes:

The time-independent Schrödinger
wave equation

− h̄2

2m

∂2ψ

∂x2
+ V ψ = Eψ.d2ψ

dx2
≈ 2m

h̄2

1
2
ax2ψ =

am

h̄2 x2ψ (14.17)

To find an approximate solution, we guess a
trial solution of the form ψ = A exp(−1

2βx2).
Then,

dψ

dx
= A exp(−1

2βx2)× (−βx),

= (−βx)ψ.

d2ψ

dx2
= −βψ + (−βx)

dψ

dx
,

= −βψ + β2x2ψ,

≈ β2x2ψ,

where the last approximation holds good when
x2 is large. Therefore, from (14.17), the so-
lution is approximately A exp(−1

2βx2) with
β2 = am/h̄2.

Remember
The curvature of the wavefunction is
found from the rate of change of the gra-
dient of ψ,

d
dx

(
dψ

dx

)
= −2m

h̄2 [E − V (x)]ψ.
• For |x| ≤ (2E/a)1/2 the wavefunction has its

greatest curvature near x = 0 where E − V
is a maximum and decreases systematically
until at |x| = (2E/a)1/2 the curvature is zero
and so there is a point of inflection.
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The solution is shown in Figures 14.10 and 14.11.

The higher energy states can be found by an anal-
ogous procedure to that used in the analysis of the
finite potential well. Assuming the energy is quan-
tised and the energy of the nth level is En, the
ground state corresponds to n = 0.

• The first excited state has one node and, since
the potential is symmetric, the node must be
at the origin; the second will have two nodes
and so on. Clearly for even n the wave func-
tion is even and for odd n it is an odd, anti-
symmetric function.

n=3

n=2

n=1

n=0

V(x)

Figure 14.10. Wave functions for the
harmonic oscillator

• The point at which we enter the classically
forbidden region depends on the energy, for
the nth state, |x| > (2En/a)1/2. At this point
the wave function has a point of inflection.

• As we approach the point of inflection the
kinetic energy (E − V ) decreases – we have
already argued that this corresponds to de-
creasing curvature of the wave function and
to increasing wavelength. This corresponds
classically to decreasing kinetic energy and
hence to a decreasing speed as the oscillator
reaches the limits of its motion. The quantum
analogy of this is that we expect an increased
probability of finding the particle in these re-
gions compared to those locations in which
(E − V ) is large – in other words the ampli-
tude of the wave function increases in regions
of small (E − V ).

n=3

n=2

n=1

n=0

V(x)

Figure 14.11. Probability densities for the
harmonic oscillator.

Figures 14.10 and 14.11 show some of the excited
states of the harmonic oscillator. These are in fact
the exact solutions, but it is clear that our qualita-
tive analysis has described all the main features.

Our qualitative arguments are not sufficient to prove
that the energy levels are quantised, and of course
we cannot obtain expressions for the energy. In
fact, the answers are very simple. If we introduce,
by analogy with the classical harmonic oscillator,
the frequency, ω

ω =
√

a

m
,
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then the energy levels are given by Energy levels of the quantum har-
monic oscillator

En =
(
n + 1

2

)
h̄ω

En =
(
n + 1

2

)
h̄ω. (14.18)

(see Figure 14.12).

Figure 14.12. Energy Level Diagram for a
Quantum Harmonic Oscillator
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n = 0n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

En =
(
n + 1

2

)
hν

Only the first 10 levels
above the ground state

are shown.

Note that for n = 0 the energy is E0 = 1
2 h̄ω –

this is a further example of a zero-point energy and
arises for the same physical reasons as we discussed
for the infinitely deep potential well. In the next
section we shall go through the formal solution of
the harmonic oscillator and derive the energy levels
– the next section is, however, strictly non exam-
inable.

14.4.2 Formal Derivation

The material of this section is strictly non
examinable

We can use the qualitative arguments of the previ-
ous section as the starting point for the solution of
Schrödinger’s equation for a harmonic oscillator.

d2ψ

dx2
+

2m

h̄2

(
E − 1

2ax2
)
ψ = 0.

In the previous section, we showed that, at large x,
an approximate solution is A exp(−1

2βx2), where
β2 = am/h̄2. First of all, we change variables to
ξ =

√
βx and it is easy to show that Schrödinger’s

equation becomes

d2ψ

dξ2
+

(
Λ− ξ2

)
ψ = 0,

where Λ = 2E/(h̄ω) and ω =
√

a/m. Using our
knowledge of the limiting behaviour as a guide, we
adopt a trial solution of the form

ψ = H(ξ) exp(−1
2ξ2).

Substituting this expression into the above equa-
tion we obtain a new differential equation for H(ξ):

d2H

dξ2
− 2ξ

dH

dξ
+ (Λ− 1)H = 0.
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To solve this equation we use a trial solution in the
form of a series

H(ξ) =
∑

n=0

anξn.

We then find that the terms in the differential equa-
tion with the same powers of ξ are

d2H

dξ2
=

∑
n

a2+n(n + 2)(n + 1)ξn

−2ξ
dH

dξ
= −

∑
n

an2nξn

(Λ− 1)H = (Λ− 1)
∑

n

anξn

We now substitute these back into the differential
equation. For this to be a solution for all values of
ξ, the coefficients of each power of ξ must be equal.
Therefore, we find that

a2+n(n + 2)(n + 1) = an(2n− Λ + 1) (14.19)

• An equation of this form is called a recurrence
relation; given say a0 we can find a2 and so
on. Note however that we only find the even
terms in this way – we find the odd terms by
starting with a1 and then find a3 and so on.

• We therefore have two types of solution – even
solutions a0+a2ξ

2+a4ξ
4+. . . or odd solutions

a1ξ + a3ξ
3 + a5ξ

5 + . . . – these correspond to
the odd and even solutions we found from our
qualitative analysis.

• For the wave function to go to zero at ±∞
we have to make sure the series is truncated
at some point. From (14.19), this will be the
case if, for a particular value of n,

2n− Λ + 1 = 0.

Therefore, from the definition Λ = 2E/h̄ω,

E =
(
n + 1

2

)
h̄ω.

The series defined in this way, Hn(ξ) are called Her-
mite polynomials.
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14.5 Vibrational Energies of Diatomic Molecules

A simple model of a diatomic molecule is of two
masses m1 and m2 interacting via a force which
gives rise to a harmonic potential (the classical model
is two masses joined by a spring) of the form V =
1
2ax2 where x is the interatomic separation. We can
easily write down the total energy of this system:

E =
1
2
m1v

2
1 +

1
2
m2v

2
2 +

1
2
ax2.

In the zero of momentum frame this expression
takes on a particularly simple form since we can
re-write the energy expression in terms of the mo-
menta which are equal and opposite:

E =
p2

2m1
+

p2

2m2
+

1
2
ax2.

We now introduce the reduced mass

1
µ

=
1

m1
+

1
m2

,

and the energy expression is just

E =
p2

2µ
+

1
2
ax2.

This has exactly the same form as the energy of
a harmonic oscillator but with the mass replaced
by the reduced mass. The quantum solution to
this problem must therefore be precisely that of the
quantum harmonic oscillator we have just discussed
with energy levels given by

En =
(

n +
1
2

)
h̄ω,

where in this case ω =
√

a/µ. The constant a we
interpret as a force constant.


