
Chapter 13

Solving
Schrödinger’s Wave
Equation - (1)

Topics

Qualitative Solutions of the Schrödinger Equation. The Finite Depth Potential Well.
Quantum Mechanical Tunnelling.

In this chapter we investigate solutions of Schrödinger’s
wave equation and apply these to a number of prob-
lems. In many cases we shall only find approxi-
mate solutions, since, in all but a few simple cases,
the general exact solutions of Schrödinger’s equa-
tion are highly non-trivial. We will develop a semi-
quantitative approach, which involves simple calcu-
lation and quantitative sketching. For the impor-
tant case of the harmonic oscillator, we will go one
stage further and find a solution to the differential
equation.

Another important aspect of this chapter is that
it enables us to understand more clearly the phys-
ical meaning of second-order differential equations
which are omnipresent throughout physics, for the
simple reason that we need to know how physical
quantities vary in space and time, as well as all the
other spaces we work in.
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13.1 Qualitative Solution of the Schrödinger
Equation

In this section we develop approximate techniques
for ‘solving’ Schrödinger’s wave equation. We con-
sider only one-dimensional problems initially although
the techniques can mostly be extended to higher di-
mensions.

In chapter 12 we introduced the wave function as
a means of deriving a probability density, in the
sense that the probability of finding a particle in
the range x to x + dx is

p(x) dx = |ψ|2 dx = ψψ∗ dx. (13.1)

The wave function is normalised so that
∫ ∞

−∞
ψψ∗dx = 1. (13.2)

Let us now consider in a little more detail the bound-
ary conditions that the wave function must satisfy.
We have already met these in passing when we con-
sidered the infinitely deep square-well potential in
Chapter 12. First of all, we note that, since the
wave function must be normalisable, the function
must tend to zero as x → ±∞. We start with the
time independent one-dimensional Schrödinger’s equa-
tion in the form:

− h̄2

2m

d2ψ

dx2
+ V ψ = Eψ. (13.3)

Re-arranging, we find

d2ψ

dx2
= −2m

h̄2 (E − V )ψ.

Integrating once from −∞ to some general position
x,

dψ

dx
= −2m

h̄2

∫ x

−∞
(E − V )ψ dx (13.4)

Thus, even if there are discontinuities in (E − V ),

Figure 13.1 Integrating over a step:
F (x) =

∫
f(x) dx. Although f(x) is

discontinuous, F (x) =
∫

f(x) dx is
continuous.

for example, potential steps such as the walls of
our square well, the integral (13.4) changes contin-
uously (see Figure 13.1). Further, since dψ/dx is
continuous, taking the next integral to find ψ, ψ
must also be continuous.
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Hence, the three essential conditions for acceptable
solutions of the wave equation are:

• ψ falls to zero as x → ±∞

• dψ

dx
is continuous

• ψ is continuous

Conditions on ψ

• ψ falls to zero as x → ±∞

• dψ

dx
is continuous

• ψ is continuous

Schrödinger’s equation also gives us directly impor-
tant information about the shape of the wave func-
tion. d2ψ/dx2 = d/dx(dψ/dx) describes the rate
of change of the gradient of ψ, in other words, it de-
scribes the change of gradient of the wave function
with x, that is,

d
dx

(
dψ

dx

)
= −2m

h̄2 [E − V (x)]ψ (13.5)

We note some important consequences:

• To find the stationary ‘wave-like’ solutions of
the equation, we require E−V (x) to be posi-
tive. Otherwise, the wavefunction decays ex-
ponentially, if V (x) > E. We therefore see
that (13.5) tells us that the change in gradi-
ent is always negative when moving from x
to x+∆x. In other words, the function is al-
ways concave with respect to the x-axis (Fig-
ure 13.2). Furthermore, the rate of change of
the gradient of ψ is given by the magnitude
of E − V (x). Hence, the lowest energy state

Figure 13.2. Illustrating the form of solution of
Schrödinger’s wave equation.
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has the minimum value of E − V (x) and the
wave function has the least curvature.

• In regions in which V is a constant, Schrödinger’s
equation reduces to

d2ψ

dx2
=

2m

h̄2 (V − E)ψ

Adopting a trial solution ψ = A exp(ikx),

d2ψ

dx2
= −k2ψ and so k2 =

2m

h̄2 (E − V )

or
k = ±1

h̄
[2m(E − V )]1/2 (13.6)
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• This result has an important physical inter-
pretation. (E − V ) is the kinetic energy and
therefore the greater the kinetic energy the
greater the wave number and the shorter the
wavelength.

• Although (13.6) is strictly correct only in re-
gions in which V is a constant, we can use it
approximately in regions in which V is chang-
ing to help us work out what the wave func-
tion looks like. We will give some examples
in what follows.

13.2 The Finite Depth Potential Well

We now apply the discussion of section 13.1 to the
problem of a potential well of finite depth. The
potential function V (x) is illustrated in Figure 13.3
and has the form:

V (x) =





V0 x < 0,
0 0 ≤ x ≤ L,
V0 x > L.

Figure 13.3. The finite depth potential wellUnlike the potential well we met in Chapter 12 the
potential containing the particle is no longer infi-
nite. The full solution of this problem is surpris-
ingly tough mathematically, but the main physical
results can be obtained using physical arguments.

First, we need to find the form of the wave function
for the lowest energy state. Then, we will investi-
gate how the ground-state energy differs from that
of an infinitely deep potential well. We will answer
these questions qualitatively. We will also assume
that the potential well is sufficiently deep that the
particle is confined within the well in the classical
sense – we say that we seek a bound state solution,
corresponding physically to the case when E < V0.

We first consider the region with x > L. Classically
a particle with total energy E < V0 cannot enter
these regions. As the particle approaches the wall,
it would feel an infinite force for a vanishingly short
time and be reflected. Quantum mechanically the Remember f = −dV

dxsolution is very different. The region x > L is a
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region of constant potential and so we can apply
(13.6):

k =
1
h̄

[2m(E − V0)]
1/2 ,

= i
1
h̄

[2m(V0 − E)]1/2 ,

= iα,

where α is a real number. What is the meaning
of an imaginary wavenumber? Inserting the result
into our trial solution, we find

ψ = A exp(ikx) = A exp(−αx) (13.7)

This result is perfectly sensible. It states that the
wave function falls off exponentially in the classi-
cally forbidden region. The requirement that the
wave function falls to zero at infinity is satisfied,
but more important, since |ψ|2 is non-zero for x >
L, there is a finite probability of finding the particle
in the classically forbidden region. We call a wave
which falls off exponentially in this way an evanes-
cent wave and, although we have met this in the
context of quantum mechanics, classical examples
of evanescent waves also exist. These include the
incidence of electromagnetic waves upon a material
of large, but finite, conductivity, viscous waves in a
fluid, and so on.

Similar behaviour must exist for x < 0, but in this
case the wave function must fall to zero at −∞.
This boundary condition is matched by taking the
negative root of (13.6) so that k = −iα and ψ =
B exp(αx) for x < 0.

We can now sketch the lowest energy state, the
ground state, of the finite potential well. To do
so we shall use the following ideas, which we have
already discussed.

• The wave function falls off exponentially in
the classically forbidden regions.

• The ground state has the lowest energy E and
therefore the wave function has the smallest
curvature in the region 0 ≤ x ≤ L. This
means that the waves must have the largest
allowable wavelength. This is very similar to
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the requirements for the infinitely deep well,
except that now the wave function does not
go to zero at the walls. Instead this part of
the wave function must join smoothly onto
the exponentially decaying part of the solu-
tion.

• Taking these considerations together and re-
membering that both ψ and dψ/dx must be
continuous functions through the walls of the
potential well, we see that we must obtain a
function similar to a harmonic wave in the
region 0 ≤ x ≤ L with wavelength such that
λ > 2L. A sketch of the wave function for
such a ground state is shown in the top dia-
gram of Figure 13.4.

• For the infinitely deep potential well we showed
that λ∞ = 2L and, since the wavelength is
now greater than this case, the energy of the
ground state of the finite depth potential well
must be less than the energy of an infinitely
deep well of the same width,

Figure 13.4. A sketch of the ground state
wave function in the finite depth potential

well

E <
h̄2k2∞
2m

=
h̄2π2

2mL2

Once again, the ground state energy is not equal to
zero – there is a zero-point energy, as we found for
the infinitely deep potential well. The physical rea-
sons for this are the same as discussed earlier. This
type of argument is extremely useful. We obtain
an understanding of the form of the wave function
and can say something important about the energy
of the state.

We can extend the argument to higher energy states.
Remember that, for the infinitely deep well, each
successively higher energy level had an extra node
in the wave function. We expect exactly the same
behaviour in this case, and so the first energy level
above the ground state – the first excited state –
must have one node. We can again use symme-
try arguments to understand the form of the wave
function. The potential is symmetrical about the
point x = L/2 and therefore we expect on physical
grounds that the probability of finding our parti-
cle should also be symmetric about this point as is
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clearly true for the ground state. Now the first ex-
cited state |ψ|2 must be symmetric about x = L/2,
but this can be achieved if ψ is either symmetric or
anti-symmetric. By the latter, we mean that the
function changes sign about the point x = L/2. To
meet these symmetry requirements with one node
means that the node must be at x = L/2. The
sketch solution is shown in the second diagram from
the top of Figure 13.4.

The second excited state has two nodes and so the
wave function can be symmetric about the point
x = L/2 (see bottom diagram of Figure 13.4), while
the third has three nodes and the wave function is
antisymmetric about x = L/2 and so on. This
feature of alternating between symmetric and anti-
symmetric solutions is a common feature of any
potential which is symmetric about a point.

We can extend these arguments to any form of po-
tential to obtain an intuitive grasp of the form of
the wave function and also obtain some constraints
upon the energy of the states. We will consider
further examples below.

13.3 Quantum Mechanical Tunnelling

Consider the finite rectangular potential barrier shown
in Figure 13.5

V (x) =





∞ x < 0,
0 0 ≤ x ≤ L1,
V0 L1 < x < L2,
0 x ≥ L2.

We first need to find the bound states of this sys-

Figure 13.5. A finite rectangular potential
barrier

tem in the interval 0 ≤ x ≤ L1 for particles with
E < V0. We apply the arguments just developed to
obtain a semi-quantitative solution to this problem.

• In the regions in which V = 0, from (13.5)
there are harmonic-like solutions with

k =
√

2mE/h̄.

By ‘harmonic-like’, we mean that they are not
quite complete sine or cosine functions be-
cause they ‘leak’ into the ‘forbidden’ region
L1 < x < L2, as discussed in the last section.
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• In the classically forbidden region, L1 < x <
L2, the wave functions are evanescent-like func-
tions with

α =
√

2m(V0 − E)/h̄.

Again, the solution is not perfectly exponen-
tial decay since we need to ensure continuity
with the wave functions on either side of the
barrier.

• The wave function must be zero at x = 0 and
the whole solution must join smoothly across
the boundaries at x = L1 and x = L2.

This solution is sketched in Figure 13.6. Some-
thing quite remarkable has happened. We have
simply applied the rules we developed earlier and
have found a surprising, but very important, re-
sult. Classically, if the particle were in the region
0 ≤ x ≤ L1, it would be trapped there forever since
it could not pass through the barrier.

Figure 13.6. The probability distribution
ψψ∗ in the presence of a potential barrier.
Note that the wave function exists outside
the region in which the classical particle

would be confined.

In seeking a solution of the Schrödinger equation,
however, we have shown that it is possible for the
wave function to have a non-zero solution for x >
L2 and hence for there to be a probability of finding
the particle in this region. The question is ‘Does
the wave function have non-zero amplitude at x >
L2?’ The answer to this question is ‘Yes’. Consider
the solution in the region L1 < x < L2; the fastest
the wave function can fall off in this region is as
exp(−αx), but it cannot fall to zero in the finite
distance L2−L1. The wave function must be non-
zero at x = L1 to join on smoothly to the solution
inside the well and therefore the wave function must
be non-zero for x > L2.

This is the phenomenon known as quantum mech-
nical tunnelling. According to quantum mechanics,
there is a finite probability of finding a particle out-
side a potential well in which, classically, it would
be trapped. If we compare the amplitude of the
wave function across the potential barrier, we see
that it has decreased by exp[−α(L2 −L1)]. Hence,
the probability of finding the particle just outside,
compared to just inside, the barrier is the square of
this ratio, exp[−2α(L2 − L1)].
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According to the precepts developed so far, the
wave function describes the probability of finding
a particle in the interval x to x + dx. Alterna-
tively, if there are many particles trapped in the
potential well, we can think of the wave function
as describing the density of particles at different
locations in the x-direction. Furthermore, we can This analogy is correct if the particles are

non-interacting.think of a stream of particles incident from the
left upon the barrier shown in Figure 13.7. We

Figure 13.7. Tunnelling of particles as they
approach a barrier

can now apply the ideas we have just developed to
this problem. Even if the particle energy is less
than the barrier height E < V0, a few particles
can still pass through the barrier by quantum me-
chanical tunnelling. The fraction of the particles
incident on the barrier which are transmitted is
|ψ(x > L)|2/|ψ(x < 0)|2. But this ratio follows
from our approximate analysis given above, result-
ing in a transmission coefficient, T :

T =
|ψ(x > L)|2
|ψ(x < 0)|2 ≈ exp[−2α(L2 − L1)] (13.8)

= exp[−2
√

2m(V0 − E)(L2 − L1)/h̄] (13.9)

In the next chapter, we will apply these ideas to a
variety of important physical processes which per-
vade much of modern physics and other sciences.


