
Chapter 1

Statistical and
Quantum Physics

Topics

Introduction. The importance of statistical and quantum concepts in physics. Parti-
cles undergoing collisions, experiments with air tables, the concept of distributions of
velocities and statistical equilibrium. What we aim to explain – the macroscopic prop-
erties of gases, Boyle’s law, Charles/Gay-Lussac law, perfect gas law, Avogadro’s
number, Boltzmann’s constant, Dalton’s law of partial pressures. Black-body radia-
tion, spectral energy distribution as a function of temperature.

1.1 Introduction

The third part of the first year physics course is
called Statistical and Quantum Physics. Let us re-
view relevant aspects of what we have learned so
far and what we will do in this part of the course.

In the Mechanics and Relativity course, the central
themes were:

• Newton’s Laws of Motion for point particles
and then extended to bodies of finite size.
The central concepts of kinetic and potential
energies were introduced for these systems,
as well as rotational motion.

• The elements of the Special Theory of Relativ-
ity. The Galilean transformations of Newto-
nian mechanics were replaced by the Lorentz
transformations of Special Relativity. In turn,
the Lorentz transformations lead to Einstein’s

1



Statistical and Quantum Physics: Course A 2

relation between mass and energy E = mc2. The energy-frequency relation for
photons

E = hν.

where h = 6.6261 × 10−34 J s is Planck’s
constant

This tells us that mass and energy are the
same thing. We will need the concept that
there is an inertial mass associated with any
type of energy we care to think of, in particu-
lar, even ‘massless particles’ such as photons,
the particles of light, have energy E, which is
related to the frequency ν of the associated
electromagnetic wave by the fundamental re-
lation

E = hν.

where h is Planck’s constant. Photons also
have momenta p according to the quantum
relation which we will develop in the last part
of the course,

E = pc. The energy-momentum relation for
photons

E = pc.
In the last part of the course Fields, Oscillations
and Waves, wave concepts were extended to derive
the Schrödinger wave equation and we will use it
a great deal in the last part of this course to de-
scribe the behaviour of quantum phenomena at a
fundamental level.

To generalise rather sweepingly, so far we have been
dealing with individual objects, either particles or
waves, and understanding their mechanical and dy-
namical properties. We developed rules about how
Newton’s laws can be extended to deal with ex-
tended bodies such as tables, chairs and elephants,
but these extended objects were taken to be rigid
bodies.

In the first part of this course, we extend the basic
concepts of Newtonian and relativistic mechanics to
very large assemblies of particles. We have no hope
of being able to follow the paths of all the particles
and waves and so we need a statistical description
of these large assemblies and from this we aim to
derive the bulk properties of the system. This is the
beginning of an absolutely vast subject which ex-
tends into some of the deepest aspects of physics.
These will ultimately provide an understanding of
the nature of the two great Laws of Thermodynam-
ics, which are probably the most fundamental of all
the laws of physics.



Statistical and Quantum Physics: Course A 3

The second part of this course will concern quan-
tum physics, in which we are forced to abandon the
classical picture, which has proved so successful so
far, and replace it with a wholly new type of physics
in which probabilities play a central role in deter-
mining the outcome of any experiment at the most
elementary level. Although quantum phenomena
occur at the level of the interaction between parti-
cles on the atomic scale, these determine the large
scale properties of matter, for example, the forces
which hold material objects together.

Thus, there is a strong statistical and probabilistic
flavour running through this course. Fundamental
to these studies is an understanding how to deal
with distributions of energy, momenta and so on.
In this first lecture, we deal with two of the most
important distributions in physics:

• the equilibrium distribution of energies, or
speeds, of particles which continually undergo
collisions with each other;

• the energy distribution of the radiation of a
hot body.

Between these, we will review the properties of ideal
gases, which we will endeavour to explain by pro-
cesses occurring at the atomic or molecular level.

1.2 Particles Continually Undergoing Col-
lisions

Figure 1.1. Elastic collision of two point masses
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Let us first recall one of the collision calculations
carried out in the Mechanics and Relativity course.
The incoming particle has velocity vector u and the
other particle is stationary. By an elastic collision,
we mean that there is no loss of kinetic energy in
the collision. Also, linear momentum must always
be conserved. Figure 1.1 shows the collision of two
identical point masses in the laboratory frame of
reference.

First, we find the zero momentum frame of ref-
erence. We transform to a frame of reference S′

moving at some velocity V through the laboratory
frame of reference. Then, the velocities of the par-

Figure 1.2. The collision in the moving frame S′
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ticles in the moving frame S′ are u − V and −V ,
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so that the total momentum in the frame S′ is

P ′ = m(u− V )−mV (1.1)

In the zero momentum frame, this must be zero
and so V = u/2.

We now redraw the vector diagram in the S′ frame
of reference, which moves at speed u/2 with respect
to S in the positive x-direction (Figure 1.2). In S′,

Figure 1.3. In the moving frame S′ after the collision
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the total momentum is zero and, since the collision
is elastic, there is no loss of kinetic energy. The ve-
locity vectors must have the same magnitude after
the collision and so in S′, after the collision, the ve-
locity vectors must be rotated with respect to the
initial direction, as shown in Figure 1.3.

Now, to transform back to the frame S, we need to
add vectors u/2 to the rotated vectors, as shown in
Figure 1.4, and it is just a piece of geometry to work
out the angle between the two resultant vectors. I

Figure 1.4. In laboratory frame S after the collision
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have completed the parallelograms for the two par-
ticles and it can be seen that, for both the upper
and lower parallelograms, the sides are all of equal
magnitude. Therefore, each of the triangles involv-
ing the |u|/2 vectors is an isosceles triangle and so
the diagonals intersect at right-angles. Therefore,
by geometry, we see that the two masses come out
of the collision at right angles to each other.

In the special case, in which the collision is precisely
head-on, the final result is that the ball which was
originally stationary goes off at velocity u paral-
lel to the initial direction, while the incoming par-
ticle is stopped. All the kinetic energy has been
transferred from the incoming particle to the other
(Figure 1.5).

Figure 1.5. The outcome of a head-on collision
between two point masses
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The opposite extreme is that of a glancing colli-
sion. In this case, the incoming particle is unde-
flected and carries on with the same velocity u that
it started with and no kinetic energy is transferred
to the stationary particle.

Between these extremes, different amounts of en-
ergy are shared between the particles. Thus, elas-
tic collisions provide a means of sharing energy be-
tween particles – different amounts of energy are
transferred depending upon the angle through which
the particles are deflected.
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1.3 Experiments with an Air Table

Suppose we now allow very large numbers of parti-
cles to collide. What is the distribution of energies
among the particles after a long time? We can illus-
trate what happens using a simulation of the col-
lisions of many particles using an air table (Figure
1.6). Air flows through tiny holes in the air-table
and this keeps the little discs suspended just above
its surface. Each of the discs is magnetic and the
polarities of the little magnets are all the same so
that the discs repel each other. Thus, the collisions
between the little discs are essentially perfect, in-
volving no actual contact between the discs – if this
were to happen, there would be frictional losses of
energy.

Figure 1.6. Discs on an air-table
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Let us start the simulation with all the discs at rest
except one. We start off that disc with a significant
velocity and observe the subsequent behaviour. We
can see that, in due course, all the discs are in mo-
tion as a result of collisions – the initial kinetic
energy is shared among the discs. This shows how
the particles share kinetic energy through elastic
collisions. But there is much more to observe.

• First, although energy has been shared be-
tween the discs, some are going faster and
others slower. In other words, there is a dis-
tribution of energy among the discs. Although
they are now sharing the energy, they do not
all come to the same energy because differ-
ent amounts of energy are continually being
exchanged randomly in each collision.

• Secondly, if we were to measure the speeds
of the discs very carefully at different times,
we would find that, although the discs are
exchanging energy continually, after a long
time, the distribution of energies among them
remains unchanged. We say that the distri-
bution has reached a state of statistical equi-
librium – this is a really important concept.

Figure 1.7. Maxwell Distribution
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The expression for the distribution of particle speeds
in such a system was discovered by James Clerk
Maxwell, the first Cavendish Professor of Experi-
mental Physics – the velocity distribution is known
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as the Maxwell distribution and has the form shown
in Figure 1.7 for the distribution of the speeds u of
a random distribution of particles in three dimen-
sions at temperature T . For the moment, the im-
portant concept is that elastic collisions automati-
cally lead to a stationary distribution of speeds.

1.4 The Macroscopic Properties of Gases

We want to use the ideas of the last section to un-
derstand the bulk properties of gases. First, we
review some of the basic laws of what are known as
perfect or ideal gases.

1.4.1 Boyle’s law

Figure 1.8 Demonstration of Boyle’s law.
The fluid shown in black was mercury in
old versions of Boyle’s experiments.

In about 1660, Robert Boyle discovered his famous
law that, for a fixed amount of gas at a fixed tem-
perature, the product of the pressure p and the
volume V is a constant (Figure 1.8),

pV = constant (1.2)

The perfect gas law holds good for low density gases
at high temperatures. It begins to break down at
high densities and close to temperatures at which
the gas makes a phase transition to a fluid – the
gas condenses.

1.4.2 Charles’ or Gay-Lussac’s Law and the
Perfect Gas Temperature Scale

Figure 1.9. Gay-Lussac’s experiment to
find the dependence of the volume of a
gas upon temperature. M is a mercury
plug which could move along the tube as
the gas expanded at constant pressure.

The French physicists Charles (1787) and Gay-Lussac
(1802) established the expansion law for gases at
constant pressure (Figure 1.9). For a given mass
of gas maintained at constant pressure, the volume
increases linearly with the temperature t,

V = V0(1 + αt), (1.3)

where t is measured in degrees Celsius and V0 is the
volume of the gas at some reference temperature.
This is the behaviour of a perfect gas. For such a
gas, we can define the zero of the temperature scale
as that corresponding to zero volume.

Nowadays, the reference temperature is taken to
correspond to the unique value at which the three
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phases of water – solid, liquid and gas – can co-
exist. It is known as the triple point of water.
Using the Celsius temperature scale, the constant
α is 1/273.16 and so the zero of the perfect gas
scale of temperature is at -273.16◦C. Temperatures
T = t+273.16 are measured from this zero of tem-
perature and are called kelvins (K). We can rewrite
(1.3) as

V/V0 = T/T0, (1.4)

where V0 and T0 are some reference values and the
temperature is measured in kelvins.

Strictly, we call this temperature scale the perfect
gas temperature scale since it is based upon the
physical properties of perfect gases, which don’t re-
ally exist in nature. When we look more deeply into
classical thermodynamics, we will find that the per-
fect gas temperature scale is identical to the ther-
modynamic temperature scale (see later).

1.4.3 The Perfect Gas Law

Experimentally we find that, if the volume of a
gas is kept constant, the pressure increases linearly
with the temperature and the constant describing
the proportionality is exactly the same as that in
Charles’ law. Thus,

p/p0 = T/T0, (1.5)

where p0 and T0 are suitable reference values and
the temperature is measured in kelvins. We can
therefore combine all three results (1.2), (1.4) and
(1.5) to form the relation

pV = (constant)T. (1.6)

The value of the constant depends upon the quan-
tity of gas used but, for a given gas, the constant is
proportional to the mass of gas present. Even more
important, Avogadro established that the constant
is the same for one mole of any gas.

Let us recall the definition of the mole. Note: In the SI system, the carbon-12 atom
is used as the standard for atomic weights.
Therefore, we can define the mole as being the
mass of a substance which contains the same
number of chemical units (atoms or molecules)
as exactly 12 grams of carbon-12. Since the
molecular weight of oxygen is 31.9988, one
mole of oxygen has mass 31.9988 grams.

One mole is the mass in grams of a sub-
stance which is equal to its molecular
weight.
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Thus, we can write (1.6)

pV = RT R = 8.31 JK−1mole−1 (1.7)

where R is known as the gas constant or molar gas
constant. If there are N moles of gas present, then

Equation of State for one mole of a
Perfect gas

pV = RT R = 8.31 J K−1mole−1pV = NRT .

The expression (1.7) is known as the equation of
state of the perfect gas. Equations of state are de-
fined to be the relation which determines the pres-
sure of any substance as a function of its volume
(or density) and temperature. Equations of state
can become very complex and are very important
indeed in all physics.

Avogadro’s constant

NA = 6.02× 1023 mol−1

Let us now introduce Avogadro’s constant NA, the
number of atoms or molecules per mole,

NA = 6.02× 1023 mol−1 (1.8)

This enables us to write the perfect gas law (1.7)
in an important and suggestive form. We define

Boltzmann’s constant

k =
R

NA
= 1.38× 10−23 JK−1

Boltzmann’s constant k to be the gas constant per
molecule. In other words,

k =
R

NA
= 1.38× 10−23 JK−1 (1.9)

We can therefore write the perfect gas law in the
form

Equation of State of a Gas in Molec-
ular Terms

p =
RT

V
=

NAkT

V
= nkTp =

RT

V
=

NAkT

V
= nkT (1.10)

where n = NA/V is the number density of molecules,
that is, the number of molecules of the gas per unit
volume.

Boltzmann’s constant k is one of the key fundamen-
tal constants of physics and it will dominate much
of the development of the first part of this course.
Whenever you see k in a formula, you immediately
think ‘thermal physics’.

1.4.4 Dalton’s Law of Partial Pressures

Among other important laws is Dalton’s law of par-
tial pressures (Figure 1.10). Dalton found that, at
a fixed temperature, the pressure of a mixture of

Figure 1.10. The apparatus used by
Dalton to establish his law of partial

pressures.

gases is equal to the sum of the pressures which
they would exerted separately, if the other con-
stituents were not there.
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1.5 Black-body Radiation

In the second example of distributions in physics,
we study the distribution of radiant energy emitted
by a hot body. We will study this radiation in much
more detail in the quantum physics part of the
course. We are familiar with the spectrum of white
light from the appearance of rainbows, in which
the raindrops act as tiny ‘prisms’ which disperse
the light of the Sun into its different colours. More
precisely, we observe that light possesses a spectrum
of radiation and a spectral energy distribution. Let
us perform an experiment which demonstrates the
same phenomenon. As the source of light, we use a

Figure 1.11. The Tungsten Light Bulb
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Table 1.1
Voltage Current Resistance R/R0 Temp.

V I R = V/I (K)
- - 0.36 1 293

3.0 1.06 2.83 7.92 1622
6.0 1.45 4.14 11.59 2265
8.0 1.68 4.76 13.33 2572
10.0 1.88 5.32 14.89 2846
12.0 2.05 5.85 16.39 3109

tungsten light bulb, and allow the current through
the filament to be variable. We can estimate the
temperature of the filament from the fact that its
resistance is a strong function of temperature, as
illustrated in Figure 1.11. Also shown is the layout
of the experiment. I have already calibrated the
temperature scale as a function of the resistance of
the filament (Table 1.1). The light from the lamp is
collimated and passed through a prism to disperse
the light into its spectral components.

You will observe the following points about this
experiment:

Figure 1.12. Illustrating the experimen-
tally determined change of the spectrum
of black-body radiation with temperature.
Note the abscissa is in wavelength units.

• The spectrum of the radiation from the lamp
is a continuous function of the frequency. Thus,
we need to find some suitable way of describ-
ing the variation of its spectral energy distri-
bution with frequency, specifically, we need to
define the power per unit frequency (or wave-
length) interval.

• As the temperature is raised, there is a greater
intensity in the green and blue region of the
spectrum. Indeed, if we were to measure the
intensity spectrum of the radiation, we would
find that it has a maximum frequency and
that the frequency of this maximum is pro-
portional to the absolute temperature of the
filament,

νmax ∝ T.

This is one aspect of Wien’s Displacement
Law, which we will derive in the quantum
physics section of the course.
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If we took sufficient care in the design of the source
of radiation, we would find that the intensity is a
universal function of frequency. By this, we mean
that we would maintain an enclosure at a fixed tem-
perature for a very long time until all the matter
and radiation were at the same single temperature.
Radiation of this form is known as black-body ra-
diation. The term black-body is derived from the
concept that a black object is a perfect absorber of
radiation of all frequencies, and hence thermody-
namically must also be a perfect emitter.

Figure 1.13. Spectrum of black body radiation
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x =
hν

kT

Notice a key point. In the case of the elastic col-
lisions between identical particles, energy was ex-
changed among all the particles and, in the equilib-
rium state, a unique energy distribution was found,
the Maxwell distribution. In the same way, there
are elementary physical processes which enable the
frequency, or energy, of any given set of waves to
be changed and so energy can be exchanged be-
tween different frequencies. If we were to wait long
enough, these processes result in the black-body
equilibrium spectrum. The form of the blackbody
curve is shown in Figure 1.13 and will be derived
in the quantum physics part of the course.

1.6 Summary

We have considered only two of many possible ex-
amples of physical phenomena involving very large
numbers of particles and waves. These are:

• The velocity, or energy, distribution of the
particles in a gas at some fixed temperature
T , the Maxwell distribution.

• The intensity distribution of radiation in ther-
mal equilibrium at some fixed temperature T ,
the spectrum of black-body radiation.

The next step is to understand how to describe such
distributions so that we can uncover the physics ly-
ing behind the properties of perfect gases and ra-
diation fields.


