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Preface

Chaos has been one of the most important recent discoveries of applied
mathematics.

• Philosophically, the discovery of chaos meant the end of naive deter-
mininsm as originally envisaged by Newton and Laplace.

• Practically, chaos theory has applications ranging from weather forecasts
to technology to physical and life sciences.

The discovery of chaos is also linked to the rise of computational mathe-
matics, hence better ability to make predictions.

The aim of this module is to introduce chaos theory. We want:

• to determine qualitative but crucial aspects of the solutions of differen-
tial equations (for example whether these solutions are steady or oscillatory,
decay to zero or grow to infinity), without actually solving the equations.
We shall use geometrical tools instead.

• to develop numerical methods to solve these equations in a quantita-
tive way. Most equations which have practical applications are nonlinear,
thus very difficult or impossible to solve using pencil and paper. The abil-
ity to make predictions using computers has become an essential skill for
applied mathematicians. It is therefore essential to learn some computer
programming, in order to apply these numerical methods. The program-
ming language chosen for this course is Fortran 90 - the superior language
for scientific programming.

v



vi PREFACE

The following diagram outlines the structure of the module, and shows how
analytical and numerical methods are integrated:

Dynamical systems

Phase space

1−dim: sink, sourcesFortran 90

arrays
saddles, nodes, spirals, centres

limit cycles

Differential
equations

Chaos

Poincare−Bendixon theorem

2−dim, linear equations

2−dim, nonlinear equations
subroutines

do loop, if

Euler method

3−dim, nonlinear equations

A
nalytical m

ethodsN
um

er
ic

al
 m

et
ho

ds

Figure 1:

The first part of this booklet covers the theoretical methods, and presents
results of some applications in a qualitative way to broaden the student’s
horizons. The aim of the second part is to learn Fortran 90 programming
and some computational mathematics following a simple hands-on approach.
The second part of the booklet is thus meant to be read one-line, in front of
a computer.

Students who want to know more about the topics discussed in this course



vii

should consult the books of Drazin[2] or Strogatz[4], which describe in more
detail the mathematics of dynamical systems and chaos. The remarkable
characters and the events which led to the discovery of chaos are described
in the easy-to-read book of Gleich[3]. The book of Brainard[1] is a good
reference to programming with Fortran 90.

Finally, I would like to thank Anthony J. Mee for his help in developing
the computational part of this course.
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Part I

Analytical methods
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Chapter 1

Phase space

1.1 Dynamical systems

Definition: We call a dynamical system of dimension N a system of N
first–order differential equations for N variables x1(t), x2(t), · · · , xN(t) which
evolve with time t according to

ẋ1 = f1(x1, x2, ..., xN , t), (1.1)

ẋ2 = f2(x1, x2, ..., xN , t), (1.2)

· · · , (1.3)

ẋN = fN(x1, x2, ..., xN , t), (1.4)

where f1, f2, · · · are assigned functions and a dot is a derivative with respect
to time, eg ẋ1 = dx1/dt. In vector notation we have

ẋ = f , (1.5)

where x = (x1, x2, ...xN) and f = (f1, f2, ...fN).

1.2 Critical points

Definition: A critical point (or fixed point, or equilibrium point) of
the dynamical system ẋ = f is a point x∗ which satisfies

f(x∗) = 0. (1.6)

A critical point is thus a place where x does not change with time.

3
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1.3 Autonomous systems

Definition: Consider ẋ = f . If f depends only on x, then the system is
called autonomous. If f depends on both x and t, then the system is called
non-autonomous.

Theorem: Any N-dimensional non-autonomous dynamical system can be
transformed into an (N+1)-dimensional autonomous dynamical system.

The important property of autonomous systems is that trajectories do not
intersect, hence solutions are unique. On the contrary, trajectories of non-
autonomous systems can intersect, and solutions are not unique. Since any
non-autonomous system of order N can be reduced to an autonomous system
of order N + 1, then trajectories do not intersect in the N + 1 dimensional
space, but may intersect in the N dimensional space.

Hereafter we shall be concerned with autonomous dynamical systems.
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1.4 One–dimensional phase space

Consider the logistic equation

dx

dt
= f(x) = x − x2, (1.7)

where x = x(t) ≥ 0 is the population of a species; the equation describes a
1–dim dynamical system. Phase space consists of the semi–infinite plane
x ≥ 0. The fixed points are x∗ = 0 and x∗ = 1.

To each point of phase space we assign an arrow ẋ. The arrows form a 1-dim
vector field V = ẋ, as shown in Fig. 1.1. To visualise the dynamical system,
we imagine that a fluid flows in phase space with phase velocity given by
V = ẋ. We think that a fluid particle, or phase point, is carried along by
this flow.

0 1

dx/dt

x

Figure 1.1: Vector field ẋ (only few arrows are marked for clarity).

A phase point placed at initial location x0 < 1 moves to the right (because
ẋ > 0) until it stops at x∗ = 1 (where ẋ = 0). A phase point which starts in
the region x0 > 1 moves to the left (because ẋ < 0) and also stops at x∗ = 1.
The motion of the phase point in phase space is a called a trajectory.
Clearly the fixed point x∗ = 1 attracts trajectories starting from both the
right and the left. We say that x∗ = 1 is stable: if we perturb slightly a
phase point away from x∗ = 1, the phase point will go back to x∗ = 1. Vice
versa the fixed point x∗ = 0 is unstable: if we perturb slightly a phase point
in the vicinity of x∗ = 0, it will move away from x∗. We say that x∗ = 1 is a
sink and x∗ = 0 is a source.
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1.5 Two–dimensional phase space

Newton’s equation mẍ = −kx for a particle of mass m, position x = x(t)
and velocity v = v(t) which is connected to the origin by a spring of stiffness
k corresponds to the 2–dim dynamical system

ẋ = v, (1.8)

v̇ = −ω2x, (1.9)

where ω2 = k/m. The (x, v) plane is the 2–dim phase space (not to be
confused with the 1–dim physical space x). The phase velocity is the 2-dim
vector field V = (ẋ, v̇) shown in Fig. 1.2 (not to be confused with the 1–dim
physical velocity v). Fig. 1.3, which shows typical trajectories, is called the
phase portrait of the dynamical system.

Figure 1.2: Vector field(only few ar-
rows are marked for clarity).

x

v

Figure 1.3: Phase portrait(only few
trajectories are marked for clarity).

A phase point placed at any initial location goes around the origin with
phase speed which increases with the distance from the origin; trajectories
form closed orbits.

Fig.1.2. was made using the following Maple program:

ode1:=diff(x(t),t)=v(t):

ode2:=diff(v(t),t)=-x(t):

with(DEtools):

DEplot({ode1,ode2},[x(t),v(t)],t=0..1,x=-2..2,v=-2..2,

arrows=MEDIUM, dirgrid=[30,30],colour=blue);
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1.6 Conservative systems

Consider a particle of mass m moving along x in the presence of a given force
F . Newton’s law mẍ = F is equivalent to the 2–dim dynamical system

ẋ = v, (1.10)

v̇ =
F

m
, (1.11)

Theorem: Assume that F = F (x) is independent of t and ẋ (eg there is no
damping, or friction, or time-dependent driving force), and that

F (x) = −dφ

dx
, (1.12)

Then the quantity

E = E(x, v) =
m

2
v2 + φ(x), (1.13)

called the total energy, is constant as a function of time along the trajectory
of a phase point:

dE

dt
= 0. (1.14)
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Chapter 2

Linear systems

2.1 Aim

Linear equations are the simplest to solve. The aim of this chapter is to
introduce eigenvalues and eigenvectors of a linear system and classify the
nature of fixed points.

2.2 Definition of linear dynamical system

Definition: An autonomous dynamical system ẋ = f of dimension N is
called linear if the function f is linear in x, that is if f(x) = Ax, where A is
an N × N constant matrix:

ẋ = Ax. (2.1)

Clearly the origin x∗ = (0, 0, ..., 0) = 0 is a fixed point.

2.3 The superposition theorem

Theorem: If both x and y are solutions of ẋ = Ax, then any linear combi-
nation z = c1x + c2y with arbitrary coefficients c1 and c2 is also a solution.

9
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2.4 Eigenvalues

Consider the general 2–dim linear system ẋ = Ax:

ẋ = ax + by, (2.2)

ẏ = cx + dy, (2.3)

where a, b, c and d are constant, x = (x, y), ẋ = (ẋ, ẏ) and

A =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

, (2.4)

Assuming x(t) = Xeλt where X = (X1, X2) is a constant vector and λ is a
parameter, we obtain the eigenvalue equation for the matrix A:

AX = λX, (2.5)

The trivial solution is X = (0, 0) = 0. We rewrite the equation as

(A − λI)X = 0, (2.6)

where I is the 2 × 2 identity matrix. The system
∣

∣

∣

∣

a − λ b
c d − λ

∣

∣

∣

∣

∣

∣

∣

∣

X1

X2

∣

∣

∣

∣

=

∣

∣

∣

∣

0
0

∣

∣

∣

∣

(2.7)

has non-trivial solution X if

det(A − λI) = 0, (2.8)

which is the characteristic equation

λ2 − τλ + δ = 0, (2.9)

where

τ = a + d = tr(A), δ = ad − bc = det(A), (2.10)

are respectively the trace and the determinant of the matrix A. The two
roots

λ1 =
1

2
[τ +

√
τ 2 − 4δ ], λ2 =

1

2
[τ −

√
τ 2 − 4δ ], (2.11)

of the characteristic equation are called the eigenvalues of the matrix A.
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2.5 Eigenvectors

Suppose that τ 2 − 4δ 6= 0, so that λ1 6= λ2. Since det(A − λI) = 0, there
exist non-zero vectors U and V such that

(A − λ1I)U = 0, (2.12)

(A − λ2I)V = 0, (2.13)

which is

AU = λ1U, (2.14)

AV = λ2V, (2.15)

The eigenvalue equation AX = λX has thus two solutions: X = U and
X = V. The vectors U and V are called the eigenvectors of the matrix A
corresponding to the eigenvalues λ1 and λ2 respectively.

Scale factor:

The eigenvectors U and V are only determined up to a scale factor, because
Eq. (2.5) is linear: if U is an eigenvector of A, that is, if AU = λ1U, then,
for any number α 6= 0, the vector αU is also an eigenvector of A, that is
A(αU) = λ1(αU).

Real and complex eigenvectors:

If τ 2 − 4δ > 0 then the eigenvalues λ1 and λ2 are both real, and so are the
eigenvectors U and V.

If τ 2 − 4δ < 0 then the eigenvalues λ1 and λ2 are complex conjugates of each
other (λ1 = λ2, where the over-bar denotes the operation of complex conju-
gation); similarly U and V are complex conjugates of each other. However
the combination

x(t) = c1Ueλ1t + c2Veλ2t, (2.16)

must be real, because x(t) is real by definition. This implies that c1 = c2.
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2.6 General solution

Suppose that τ 2 − 4δ 6= 0, so that λ1 6= λ2. Then x = Ueλ1t and x = Veλ2t

are two linearly independent solutions. Application of the Superposition
Theorem yields the general solution:

x(t) = c1Ueλ1t + c2Veλ2t, (2.17)

where the constants c1 and c2 are determined by the initial condition

x(0) = c1U + c2V, (2.18)

The two components of this equation give two equations for the two un-
knowns c1 and c2.
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2.7 Classification of solutions

The nature of the fixed point x = 0 of ẋ = Ax depends on the eigenvalues λ1

and λ2; the geometry of the trajectories depends on the eigenvectors. Fig. 2.1
shows the possible solutions in the τ , δ plane.

The most common natures are saddles, stable and unstable nodes, stable
and unstable spirals (clockwise and anticlocwise), and centres (clockwise
and anticlockwise).

Less frequent natures are lines of fixed points, stable and unstable stars,
and stable and unstable degenerate nodes.

τ

δ
saddles

unstable spirals

stable spirals

unstable nodes

stable nodes

centres

degenerate points

Figure 2.1: Nature of fixed points of ẋ = Ax in the τ , δ plane.
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Consider the characteristic equatioon λ = (1/2)[τ ±
√

τ 2 − 4δ]. If δ < 0
the argument of the square root is positive, the eigenvalues are real and have
opposite signs, and the origin is a saddle. If δ > 0 then either τ 2−4δ > 0, in
which case the eigenvalues are real with the same sign (nodes), or τ 2−4δ < 0,
in which case the eigenvalues are complex conjugate pairs (spirals). The
parabola τ 2 − 4δ = 0 is the boundary between nodes and spirals: degen-
erate nodes and spirals live on the parabola. The stability of nodes and
spirals depends on τ : if τ < 0 both eigenvalues have negative real parts
so the fixed points are stable; if τ > 0 both eigenvalues have positive real
parts and they are unstable. Neutrally stable centre exist on the line τ = 0,
where the eigenvalues are purely imaginary. If δ = 0 then at least one of the
eigenvalues is zero. Then the origin is not an isolated fixed point: there is
either a whole line of fixed points or a plane of fixed points (if τ = 0 too).

Saddles, nodes and spirals are the major types of fixed points, because they
exist in large regions of the τ , δ plane. Centres, stars and degenerate nodes
and non-isolated fixed points are borderline cases. Physically, the centres are
the most important borderline cases, as they exist in systems in which the
energy is conserved (eg mechanical systems without friction).



2.8. SADDLE 15

2.8 Saddle

If δ < 0, then λ1 and λ2 are real and have opposite signs, say λ1 < 0 and
λ2 > 0 and write λ1 = −|λ1| and λ2 = |λ2|. The general solution is

x(t) = c1Ue−|λ1|t + c2Ve|λ2|t, (2.19)

For t → ∞, x becomes very large and parallel (or anti-parallel) to V (de-
pending on the sign of c2):

x(t) → c2Ve|λ2|t → ∞ for t → ∞, (2.20)

For t → −∞, x becomes very large and parallel (or anti-parallel) to U
(depending on the sign of c1):

x(t) → c1Ue−|λ1|t → ∞ for t → −∞, (2.21)

Trajectories start aligned along U for t → −∞, and finish aligned along V
for t → ∞. Each direction along U and V defines a separatrix (a boundary
between two distinct types of behaviour). Trajectories which start exactly
on a separatrix remain on it, because they correspond to either c1 = 0 or
c2 = 0, so the phase point moves along an eigenvector. The fixed point at
the origin is called a saddle.

x

y

U
V

Figure 2.2: Saddle.
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2.9 Node

Let δ > 0 and τ 2 − 4δ > 0, Then λ1 and λ2 are both real and have the same
sign, positive if τ > 0 or negative if τ < 0 (because |τ | > |

√
τ 2 − 4δ|). The

general solution is

x(t) = c1Ueλ1t + c2Veλ2t, (2.22)

Suppose that 0 > λ1 > λ2. Then

x(t) ≈ c1Ueλ1t → 0 for t → ∞, (2.23)

and

x(t) ≈ c2Veλ2t → ∞ for t → −∞, (2.24)

Trajectories come from infinity along V, then move toward the origin becom-
ing aligned along U. The fixed point at the origin is called a stable node.

Suppose that λ1 > λ2 > 0. Then the behaviour is reversed and we have an
unstable node.

Definition: We call slow eigendirection the direction spanned by the
eigenvector with the smallest |λ|, and fast eigendirection the direction
spanned by the eigenvector with the biggest |λ|. Typically trajectories ap-
proach the origin for t → ∞ tangent to the slow eigendirection, whereas for
t → −∞ the trajectories are parallel to the fast eigendirection.

x

V

U

y

Figure 2.3: Unstable node.
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2.10 Spiral

Let δ > 0, τ 2 − 4δ < 0 with τ 6= 0. Then the eigenvalues λ1 and λ2 are
complex and distinct:

λ =
1

2
[τ ±

√
4δ − τ 2] = α ± iθ, (2.25)

where

α =
τ

2
, θ =

1

2

√
4δ − τ 2. (2.26)

Theorem: Eigenvalues form a complex conjugate pair: λ1 = λ2.

Theorem: Let U = R + iS be the eigenvector of λ1 where R and S are
real vectors. Then the eigenvector of λ2 is V = R − iS, that is to say, the
eigenvectors of A are complex conjugate of each other: U = V.

Theorem: The general solution x = c1e
λ1tU + c2e

λ2tV can be written as

x(t) = 2feτt/2[R cos (η + θt) − S sin (η + θt)]. (2.27)

where f and η are arbitrary constants.

Trajectories are stable spirals which go toward the origin for τ < 0 and
unstable spirals which move away from the origin for τ > 0.

x

y

Figure 2.4: Unstable spiral.
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2.11 Centre

Let δ > 0, τ = 0: in this case λ becomes

λ =
1

2
(τ − i

√
4δ − τ 2) = ±i

√
δ, (2.28)

Everything remains as in the previous section except that now α = τ/2 = 0,
so the general solution is

x(t) = f [R cos (η + θt) − S sin (η + θt)], (2.29)

where U = R+ iS and V = R− iS are the two complex conjugate eigenvec-
tors, θ =

√
δ and f and η are arbitrary constants.

The solution is periodic and the trajectories are circles around the origin, as
in Fig. 2.5. The fixed point at the origin is called a centre. Since trajectories
neither approach the centre nor move away from it, the centre is neutrally
stable.

x

y

Figure 2.5: Centre.
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2.12 Line of fixed points

The remaining natures correspond to degenerate points. If δ = 0 and
τ 2 − 4δ = τ 2 > 0, which means that λ1 6= 0 but λ2 = 0, then

λ =
1

2
(τ ±

√
τ 2) =

1

2
(τ ± τ), (2.30)

thus λ1 = τ and λ2 = 0. The general solution is

x(t) = c1Ueτt + c2V, (2.31)

where the eigenvector V belongs to the eigenvalue λ2 = 0. Any point on the
V separatrix is an equilibrium point. See Fig. 2.6

x

y

U

V

Figure 2.6: Line of fixed points.
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2.13 Star and degenerate node

In this case δ > 0, τ 2 − 4δ = 0 and the two roots are

λ1 = λ2 =
1

2
τ, (2.32)

There are two possibilities:

1. The first possibility is that the matrix A is diagonal:

A =

∣

∣

∣

∣

λ 0
0 λ

∣

∣

∣

∣

; (2.33)

Then any vector C = (C1, C2) is an eigenvector, and the solution is

x(t) = Ceλt, (2.34)

All trajectories are straight lines which pass through the origin. The
fixed point at the origin is called a star; it is stable if λ < 0 and
unstable if λ > 0.

x

y

Figure 2.7: Unstable star.
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2. The second possibility is that the matrix has the form

A =

∣

∣

∣

∣

a b
0 a

∣

∣

∣

∣

; (2.35)

The matrix has only one eigenvector, U = (1, 0). The phase portrait
is a node again, but there is only one distinguished direction, so it
is called a degenerate node – see Fig. 2.8. The node is stable for
λ = τ < 0 and unstable for λ = τ > 0. It can be verified directly that
the general solution is

x(t) =

∣

∣

∣

∣

1
0

∣

∣

∣

∣

(c1 + c2t)e
λt +

∣

∣

∣

∣

0
c2/b

∣

∣

∣

∣

eλt. (2.36)

x

y

U

Figure 2.8: Degenerate node.
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Chapter 3

Non-linear systems

3.1 Local behaviour

Consider the 2–dim autonomous system ẋ = f where now f is a nonlinear
function of x. Suppose that x∗ is a fixed point: f(x∗) = 0.

By expanding f(x) in Taylor series near x = x∗ and neglecting terms which
are quadratic or of higher powers in (x − x∗), we have

f(x) = f(x∗) + Df(x∗)(x − x∗) + · · · = Df(x∗)(x − x∗) + · · · (3.1)

where Df(x∗) is the Jacobian matrix evaluated at x = x∗:

Df(x∗) =

∣

∣

∣

∣

∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

∣

∣

∣

∣

(3.2)

The linear system

ẋ = Df(x∗)(x − x∗), (3.3)

is called the linearised system of ẋ = f near the fixed point x∗.

Let

X = x − x∗, A = Df(x∗), (3.4)

Since Ẋ = ẋ we have

Ẋ = AX. (3.5)

23
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3.2 Hartman-Grobman theorem

Near a fixed point x∗ the nonlinear system ẋ = f can be approximated by
the linearised system Ẋ = AX, where X = (X, Y ) = (x − x∗, y − y∗) and A
is the Jacobian matrix evaluated ar x∗:

∣

∣

∣

∣

Ẋ

Ẏ

∣

∣

∣

∣

=

∣

∣

∣

∣

∂f1/∂x ∂f1/∂y
∂f2/∂x ∂f2/∂y

∣

∣

∣

∣

∣

∣

∣

∣

X
Y

∣

∣

∣

∣

=

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

∣

∣

∣

X
Y

∣

∣

∣

∣

(3.6)

The eigenvalues of the Jacobian matrix determine the nature of the linearised
system around (X, Y ) = (0, 0). The natural question to ask is whether
these eigenvalues also determine the dynamics of the nonlinear system around
(x∗, y∗). For that to happen, it is necessary that the quadratic and higher
order terms in the Taylor expansion can be safely neglected. This is the
case if the fixed point is a saddle, node or spiral. The other cases (centres,
degenerate nodes and stars) are more delicate: their nature can be altered
by the nonlinearity.

Definition: A fixed point x∗ is called hyperbolic if all the eigenvalues of
Df(x∗) have a nonzero real part (thus a centre is not a hyperbolic fixed point).

Hartman-Grobman Theorem: The behaviour of the phase portrait of
the nonlinear system ẋ = f near its hyperbolic fixed point x∗ is qualitatively
the same as for the linearised system ẋ = Df(x∗)(x − x∗).
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x

y

1

2

1 2 3
Figure 3.1: Application of the Hartman-Grobman Theorem to find the phase
portrait of ẋ = x(3 − x − y), ẏ = y(2 − x − y) in x ≥ 0, y ≥ 0, where x
represents a population of rabbits and y a population of sheep. There are
four fixed points: two stable nodes, one unstable nodes and one saddle.

The Hartman-Grobman Theorem can be used to put together the phase
portrait of a nonlinear dynamical system ẋ = f :

• Firstly, we find all the fixed points x∗ and the Jacobian Df(x).

• Then, at each x∗, we find eigenvalues and eigenvectors of Ẋ = AX
where X = x − x∗ and A = Df(x∗), determine the nature of that x∗

and draw trajectories near it

• Finally, we join trajectories near all x∗ together, making sure that they
do not intesect.
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3.3 Basin of attraction

x

y

1

2

1 2 3
Figure 3.2: Basin of attraction of the fixed point (3, 0).

Fig. 3.1 shows that trajectories which start near the origin go to the stable
node on the x axis; other trajectories go to the stable node on the y axis.
There is also a trajectory which is undecided between the two nodes and goes
toward the saddle point. This trajectory is part of the stable manifold of
the saddle; the other branch of the stable manifold is the trajectory which
arrives at the saddle point from infinity.

Trajectories starting below the stable manifold end with the extinction of
sheep (y = 0); trajectories starting above it end with the extinction of rab-
bits (x = 0).

Definition: Given an attracting fixed point x∗, its basin of attraction is
the set of initial conditions x(0) such that x(t) → x∗ for t → ∞.

Fig. 3.2 shows the basin of attraction of the fixed point (3, 0).

The stable manifold separates the basins of attractions of the two nodes, so
it is called a basin boundary. The trajectory along the stable manifold is
a separatrix.
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3.4 Conservative systems

An important property of conservative systems is the following

Theorem: A conservative system cannot have any attractive fixed point.

Definition: Trajectories that start and end at the same fixed point are called
homoclinic orbits.

Homoclinic orbits are common in conservative systems. They are not peri-
odic solutions - it takes an infinite time for a phase point to move along a
homoclinic orbit and reach a fixed point.

x

v

Figure 3.3: Phase portrait of ẋ = v, v̇ = x − x3.

Fig. 3.3 shows the phase portrait of the conservative system

ẍ = −dφ

dx
= x − x3, (3.7)

which we write as

ẋ = v, (3.8)

v̇ = x − x3. (3.9)

There are two centres (±1, 0) and a saddle (0, 0). Each centre is surrounded
by closed orbits, and larger close orbits encircle all three fixed points. All
solutions are periodic but the homoclinic orbits (the trajectories which start
and end at the origin for t → ±∞).
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E

x

x
.

Figure 3.4: The energy of the dynamical system ẋ = v, v̇ = x − x3.

The quantity shown in Fig. 3.4 is the energy

E(x, v) =
1

2
mẋ2 + φ(x) =

1

2
v2 − 1

2
x2 +

1

4
x4. (3.10)

Trajectories are horizontal contours parallel to the (x, ẋ) plane along which
E(x, v) is constant. It is apparent that E has local minima corresponding to
the two centres. Contours which are just above the local minima correspond
to small orbits surrounding the centres. The saddle point and the homoclinic
orbits are higher, and the large orbits which encircle all fixed points are even
higher.
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3.5 Reversible systems

Sometimes the dynamics of a system looks the same whether time runs for-
ward or backward. If you watch a movie of a pendulum which swings back
and forth, you cannot tell if the movie is projected from the beginning to the
end or from the end to the beginning. But if you watch the movie of a glass
window shattered by a brick which is thrown at it, you can tell if the movie
is projected backward.

Definition: A second-order system that is invariant under t → −t and
v → −v is called a reversible system..

Theorem: Any mechanical system which obeys Newton’s law mẍ = F (x)
is symmetric under time reversal.

Geometrically, this means that every trajectory has a twin trajectory, which
differs by the time-reversal and the reversal of the velocity (a reflection across
the x axis in the x, v plane) as in Fig. 3.5.

x

v

Figure 3.5: A trajectory and the corresponding trajectory with v replaced
by −v and t by −t.
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Reversible systems are different from conservative systems, but they have
similar properties, as shown by the two following theorems:

Theorem: Suppose that we have a conservative system ẋ = f , that is,, there
exists a conserved quantity E(x). Suppose that x∗ is an isolated fixed point
(isolated means that there are no other fixed points in the neighbourhood of
x∗). One can prove that, if x∗ is a local minimum of E(x), then all trajecto-
ries sufficiently close to x∗ are closed.

Theorem: Suppose that x∗ = 0 is a linear centre for the 2-dim system
ẋ = f(x, y), ẏ = g(x, y). Suppose that the system is reversible. Then, suffi-
ciently close to the origin, all trajectories are closed curves.



Chapter 4

Limit cycles

4.1 Limit cycles

A very important feature of non-linear systems (which is absent in linear
systems) is the possibility of limit cycles.

Definition: A cycle, or periodic orbit, of ẋ = f(x), is any closed trajec-
tory which is not a fixed point.

Definition: An isolated periodic orbit is called a limit cycle. Isolated
means that that neighbouring trajectories are not closed: they either spiral
toward the limit cycle or away from it - see Fig. 4.1.

Definition: If all neighbouring trajectories approach the limit cycle, then
the limit cycle is said stable, or attracting. Otherwise it called unstable,
or repelling.

31
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x

y

Figure 4.1: Limit cycle.

4.2 Systems without limit cycles

There are ways to exclude the possibility of closed orbits.

Definition: If the system ẋ = f can be written as

ẋ = (ẋ, ẏ) = −∇φ = −(
∂φ

∂x
,
∂φ

∂y
), (4.1)

then the system is called a gradient system and the function φ(x) is called
a potential function.

Theorem: Closed orbits are not possible in gradient systems.

The problem with this result is that most 2-dim systems are not gradient
systems. But all 1-dim systems (vector fields on the line) are gradient sys-
tem, so we have proved that

Theorem: There are no oscillations in a 1–dim dynamical system.
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4.3 Poincare-Bendixson Theorem

Poincare-Bendixson Theorem: Consider the dynamical system ẋ = f(x)
in an open set containing a closed, bounded subset R of the plane. Assume
that R does not contain any fixed points, and that there exists a trajectory
C which is confined within R, that is to say it starts in R and stays within
R at all future times. Then either C is a closed orbit or it spirals towards a
closed orbit as t → ∞. In either case we conclude that R contains a closed
orbit - see Fig. 4.2. Note that R is a ring-shaped because the close orbit
must enclose a fixed point P but P is not allowed in R.

C

R

P

Figure 4.2: Poincare–Bendixson Theorem.

The difficulty with applying the theorem is that it is difficult to show that
there exists a confined trajectory C. The trick consists in constructing a
trapping region, a closed connected set R such that all along the bound-
aries of R the vector field points into R. Then all trajectories in R must
be confined, and, if we can prove that there are no fixed points in R, the
theorem applies and R must contain a closed orbit.
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Chapter 5

Chaos

5.1 Motion in 3-dim phase space

In 2–dim phase space the Poincare-Bendixson Theorem constrains the
motion: if a trajectory is confined to a closed, bounded region that contains
no fixed points, it must eventually approach a closed orbit. Nothing more
complicated is possible.

In 3-dim (and higher) dimensions the theorem does not apply, and some-
thing radically new can happen: trajectories may wander around forever in
a bounded region without settling down to a fixed point or a closed orbit.

In some cases, 3–dim trajectories are attracted to complex geometrical object
called strange attractors: fractal sets on which the motion is aperiodic and
very sensitive to the exact value of the initial conditions.

This sensitivity on the initial conditions, which makes long-term pre-
dictions impossible, defines chaos. Two phase points which starts very close
together can diverge rapidly from each other and have very different futures.
Thus trajectories which are initially close can end up far from each other,
anywhere on the attractor.

35
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5.2 Liapunov exponent

δ(0)

δ(t)

Figure 5.1: Exponential divergence of trajectories.

Let x(t) be a point on the attractor at time t, and x(t) + d(t) be another
point such that initially δ(0) = |d(0)| ≪ 1.

Numerical experiments show that, as time proceeds, the separation δ(t) be-
tween the two trajectories increases as

δ(t) ∼ δ(0)eλt, (5.1)

where λ > 0 is called the Liapunov exponent. A time-horizon exists be-
yond which it is impossible to make long-term predictions because any initial
uncertainty in the initial condition is amplified exponentially.
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5.3 Time horizon

Suppose that the initial condition is measured with some initial error δ(0)
(no measurement can be perfect). After time t, the discrepancy between the
prediction and the actual evolution of the initial state is δ(0)eλt. Let ǫ be
the measure of our tolerance, that is, if our prediction differs from the true
solution by less than ǫ then our prediction is considered acceptable. Then
our prediction is unacceptable if

δ(0)eλt > ǫ, (5.2)

which occurs if

t > thorizon =
1

λ
ln (

ǫ

δ(0)
), (5.3)

.
Because the logarithmic dependence on δ(0), no matter how well we measure
the initial condition and reduce δ(0), we cannot predict the future more than
few times 1/λ. We conclude that if the system is nonlinear and has a positive
Liapunov exponent, there is an intrinsic limitation in our ability to predict
the future.

5.4 Definition of chaos

At this point we are ready for the following:

Definition: Chaos is the aperiodic long–term behaviour in a deterministic
system that exhibits sensitive dependence on the initial condition.

Aperiodic long-term behaviour means that trajectories do not settle down
to fixed points, periodic orbits or quasi-periodic orbits as t → ∞. Deter-
ministic means that the irregular behaviour of the system arises from its
being nonlinear, not from added external noise.
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5.5 The Lorenz equations

The Lorenz equations played a key role in the discovery of chaos.

Figure 5.2: Edward Lorenz

In the early 1960’s, Edward Lorenz (see Fig. 5.2), an American meteorolo-
gist at MIT, was working on weather prediction. The observed weather is
often different from the predicted one. People blamed the unpredictability
to extra effects which were not included in the model, and attempted to add
stochastic terms (random forces) to the equations, with no success. At that
time computers were a novelty. Lorenz pioneered their use in predicting the
weather. His mathematical model of the weather consisted of differential
equations to represent temperature, pressure, wind velocity, etc. The major
ingredient of Lorenz’s model was convection.
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Air is essentially transparent to the solar radiation, so it is heated from the
ground below. But a layer of fluid which is heated from below and cooled
from above can be unstable. If the temperature gradient ∆T between the top
and the bottom of the layer is large enough, the breaking effect of viscosity
can be overcome: hot air rises and cool air sinks in the form of convection
rolls – see Fig. 5.3.

Figure 5.3: Convection cell

To cope with the limitation of the computers of the 1960’s, Lorenz stripped
down the equations governing convection and reduced them to the following
Lorenz equations ẋ = (ẋ, ẏ, ż) = f = (f1, f2, f3) given by:

ẋ = f1 = σ(y − x), (5.4)

ẏ = f2 = −xz + rx − y, (5.5)

ż = f3 = xy − bz, (5.6)

where r > 0 corresponds to ∆T , σ > 0 is the ratio between energy losses due
to viscosity and thermal conduction, b > 0 is related to the relative height of
the fluid layer to the horizontal extent of the convective rolls within it, and the
variables x(t), y(t) and z(t) model respectively the convective overturning,
the horizontal temperature variation and the vertical temperature variation.
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Theorem: The Lorenz system ẋ = f (Eq. 5.6) is dissipative, that is volume
in phase space contracts under the flow:

dV

dt
=

∫

V

∇ · fdV < 0. (5.7)

Theorem: The Lorenz system has no quasi-periodic solutions.

Theorem: The Lorenz system has no repelling fixed points or repelling
closed orbits (by repelling we mean that all trajectories starting near a fixed
point or a closed orbit are driven away from it).

Theorem: The origin is a fixed point of the Lorenz system: (x∗, y∗, z∗) =
(0, 0, 0). If r > 1 there are other two fixed points: x∗ = y∗ = ±

√

b(r − 1),
z∗ = r − 1, called C+ and C−.

Theorem: Near the origin, the solution of the Lorenz system is such that
z(t) → 0 for t → ∞. If r < 1, the motion along x and y points toward
the origin too; it can be shown that all trajectories approach the origin for
t → ∞, thus the origin is globally stable. If r > 1, motion along x and y
is a saddle; motion around C+ and C− is stable for

1 < r < rc =
σ(σ + b + 3)

σ − b − 1
, (5.8)

assuming also that σ − b − 1 > 0.
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5.6 Chaos in the Lorenz system

What happens for r > rc ? We solve the Lorenz equations numerically and
find that trajectories keep being repelled by C+ and C− like in a pinball
machine. At the same time, trajectories are confined in a set whose volume
shrinks to zero for t → ∞.

Fig. 5.4 shows that the trajectory is an irregular oscillation which never re-
peats exactly. The motion is aperiodic.
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Figure 5.4: The solution x = x(t) of the Lorenz equation for σ = 10, r = 28,
b = 8/3 and initial condition x(0 = y(0) = z(0) = 0.1.
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Fig. 5.5 plots the trajectory in the x, z plane. We see a strange attractor.
The trajectory starts near the origin, then swings to C+, then swings to the
left spiralling around C− many times, then shoots suddenly to C+ again, and
so on. The number of circuits around C+ and C− varies unpredictably from
one cycle to the next. Physically, these swings correspond to reversing the
rotation of the convection rolls.
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Figure 5.5: The solution of the Lorenz equation plotted in the x, z plane.
The parameters are the same as in Fig. 5.4.
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If we look at the trajectory in 3-dim phase space, the attractor looks like a
pair of thin wings – see Fig. 5.6.
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Figure 5.6: Solution (x, y, z) of the Lorenz equation plotted in three dimen-
sions. The parameters are the same as in Fig. 5.4.
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5.7 The butterfly effect

One day in the winter of 1961 Lorenz wanted to re-examine a sequence of
numbers produced by his computer. Instead of restarting the entire calcula-
tion, he decided to save it and restart the run in the middle. He copied some
numbers from a printout and entered them as initial conditions of a new
calculation. He expected the data from the new run to match the data of the
first run. Instead what he found was surprising. The data from the second
run matched the data of the first run only at the beginning, then diverged
dramatically - the results from the second run did not look like those of the
first run at all.

After checking that his computer was not malfunctioning, Lorenz found the
explanation. His printout only showed three digits, whereas the computer’s
memory used more digits when doing the calculation. Lorenz had entered
the round-off data from the printout implicitly assuming that the small dif-
ference was negligible. By conventional wisdom (since Newton and Laplace),
the second solution should have been very similar to the first solution. Surely
the fourth decimal digit could not have a huge effect: in most experiments
it is not even possible to measure a quantity that well (due to electronic,
mechanical or thermal noise, or to inaccuracy of the equipment). Lorenz had
found that a small change in the initial condition can have a huge effect.
This extreme sensitivity to initial conditions is now recognised as the
hallmark of chaos. It is not surprising that the weather is difficult to predict.

Extreme sensitivity to initial conditions is also called the butterfly effect,
a term coined by Lorenz. What is meant is that the flapping of a butterfly’s
wing today in Brazil may trigger a tornado in Texas next month. Fig. 5.7
shows two trajectories which start with slightly different initial conditions,
x(0) = 0.1 and 0.100001 respectively, and y(0) = z(0) = 0 for both. After a
short time, the x coordinates of the two trajectories are very different from
each other. The x component of the separation of the two trajectories in
shown in Fig. 5.8. Note the logarithm vertical scale, hence the exponential
divergence of δ (up to the size of the attractor).
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Figure 5.7: Solution of the Lorenz equations for for σ = 10, b = 8/3 and
r = 28 corresponding to two slightly different initial conditions: x(0) = 0.1,
y(0) = 0.1, z(0) = 0.1 (red line) and x(0) = 0.10001, y(0) = 0.1, z(0) = 0.1
(green line).
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Figure 5.8: Plot of the separation ∆x of the x component of two trajectories
which start from slightly different initial conditions (x, y, z) = (0.1, 0.1, 0.1)
and (0.100001, 0.1, 0.1). Parameters as in Fig. 5.7

.
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5.8 Computer code

The Fortran 90 program listed below solves the Lorenz equations. The fol-
lowing Gnuplot programs are used to plot the solution.

!----------------------------------------------------------

program lorenz1

! Aim: To find the solution of the Lorenz system

! dx/dt=f1(x,y,z)=-sigma*(x-y)

! dy/dt=f2(x,y,z)=r*x-y-x*z

! dz/dt=f3(x,y,z)=-b*z+x*y

! at given initial conditions x(0),y(0),z(0),

! time step, and given b,sigma,r

! Method: Euler’s explicit method

implicit none

integer :: n,nn,skip

real :: t,h

real :: x,y,z,xold,yold,zold,f1old,f2old,f3old

real :: sigma,r,b

open(unit=7,file=’out.dat’) ! file for output data

! Initial condition

x=0.1

y=0.1

z=0.1

! Inputs

sigma=10.0

r=28.0

b=8.0/3.0

h=0.001

nn=50000

skip=0
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t=0.0

do n=1,nn ! time loop

xold=x ! upgrade old value of x

yold=y ! upgrade old value of y

zold=z ! upgrade old value of z

call get_f(sigma,b,r,xold,yold,zold,f1old,f2old,f3old)

t=h*n ! get new value of t

x=xold+h*f1old ! get new value of x

y=yold+h*f2old ! get new value of y

z=zold+h*f3old ! get new value of z

if(n.ge.skip) then ! print to file as desired

write(unit=7,fmt="(4e12.4)")t,x,y,z ! print time series

endif

enddo

close(unit=7) ! close output file

end program lorenz1

!----------------------------------------------------------

subroutine get_f(sigma,b,r,x,y,z,f1,f2,f3)

! Aim: function f1,f2,f3,f4

implicit none

real :: b,sigma,r,x,y,z,f1,f2,f3

f1=-sigma*(x-y)

f2=r*x-y-x*z

f3=-b*z+x*y

end subroutine

!----------------------------------------------------------



5.8. COMPUTER CODE 49

#----------------------------------------------------------

#program gnu1

set terminal postscript color

set output "lorenz1a.ps"

set size square

set size 0.7,0.7

set nokey

set size square

set size 0.5,0.5

set title "Lorenz system"

set xlabel "t"

set ylabel "x"

plot’out.dat’ u 1:2 w l

#----------------------------------------------------------

#program gnu2

set terminal postscript color

set output "lorenz1b.ps"

set size square

set size 0.7,0.7

set nokey

set title "Lorenz system"

set xlabel "x"

set ylabel "y"

set zlabel "z"

set ticslevel 0

splot’out.dat’ u 2:3:4 w l

#----------------------------------------------------------

#program gnu3

set terminal postscript color

set output "lorenz1c.ps"

set size square

set size 0.7,0.7

set nokey

set title "Lorenz system"

set xlabel "x"

set ylabel "z"

plot’out.dat’ u 2:4 w l

#----------------------------------------------------------
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Chapter 6

The geometry of strange
attractors

6.1 Fractals

The attractor shown in Fig. 5.6 is called a strange attractor because it
is an attractor which exhibits sensitive dependence on the initial conditions.
Strange attractors are called ”strange” because they are fractal sets.

Fractals are complex geometrical shapes with fine structure at arbitrarily
small scales. They are often self–similar, in the sense that if we zoom a part
of a fractal we see the same features which appear at larger scales. i

Historically, it was Lewis Richardson (1881–1953) who first realized that
the length of a coastline or of any other boundary depends on the scale
of measurement, see Fig. 6.1. Starting from this observation, the French
mathematician Benoit Mandelbrot created the theory of fractal geometry,
coined the word fractal and introduced the concept of fractal dimension.

Figure 6.1: The British coastline is 2400, 2800 or 3400 Km long if it measured
with unit of 200, 100 or 50 Km respectively.
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Mandelbrot showed that many natural objects are fractals: coastlines,
clouds, mountains, blood vessel networks, broccoli, trees, etc, as in Fig. 6.2, 6.3
and 6.4.

Figure 6.2: Fractals in Nature: ferns, broccoli,..

Figure 6.3: ...trees, clouds,..

Figure 6.4: ...and mountains.
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6.2 The Koch curve

The Koch curve, shown in Fig. 6.5, is an example of mathematical fractal.
To build the Koch curve we start with a segment K0; we replace the middle
third of K0 with two sides of an equilateral triangle and get K1; we repeat
the process and get K2, then K3, Kn, etc. The limit n → ∞ is the Koch
curve K.

One is tempted to say that the Koch curve, as any curve, has dimension
1. But note that K has infinite length. Let L be the the length of K0.
The length of K1 is (4/3)L; the length of K2 is (4/3)2L, the length of Kn is
(4/3)nL, etc. We conclude that, for n → ∞, the length of K is infinite.

This result also means that the distance between any two points of the
Koch curve is infinite, which suggests that K is more than 1–dimensional,
but it would be wrong to call it 2–dimensional, as it does not have any ”area”.
What is the dimension of the Koch curve, then ?

K

K

K

K

0

1

2

3

Figure 6.5: The first iterations of the Koch curve
.
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6.3 Fractal dimension

Consider an ordinary geometrical object, such as a line, a square, or a cube,
with linear size 1 in ordinary Euclidean space of dimension D. If we reduce
the size of the object by the factor 1/ℓ in each spatial direction, we need
N = ℓD similar small objects to cover the original object. The dimension D
is thus

D =
ln N

ln ℓ
. (6.1)

For example (see Fig. 6.6), take a segment of initial length ℓ = 1 and
reduce its size by the factor 1/ℓ = 1/2 with ℓ = 2. To cover the original
segment with the smaller segments we need N = 2 small segments, each
of size 1/2, hence D = lnN/ ln ℓ = ln 2/ ln 2 = 1, as expected (the initial
segment has dimension 1).

Another example: take a cube of size ℓ = 1 and reduce its size by the
factor 1/ℓ = 1/3 with ℓ = 3. To cover the original cube we need N = 27
small cubes, so D = ln N/ ln ℓ = ln 27/ ln 3 = 3 ln 3/ ln 3 = 3, as expected
(the initial cube has dimension 2).

D=1 D=2 D=3

N=1

N=1 N=1

N=4 N=8

N=9 N=27

N=2

N=3

l=1

l=2

l=3

Figure 6.6: Computing the dimension of a line, a square and a cube
.
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We generalize the above definition of dimension, and call

D = lim
ǫ→0

ln (N(ǫ)

ln (1/ǫ)
, (6.2)

the fractal dimension, where N(ǫ) is the number of smaller self–similar ob-
jects of linear size ǫ needed to cover the whole object.

In the case of the Koch curve the fractal dimension is

D =
ln 4

ln 3
= 1.26, (6.3)

Going back to the Lorenz attractor, it can be shown that it is 2.05.
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Chapter 7

Applications

7.1 Weather Forecast

Predicting the weather requires solving the governing hydrodynamical equa-
tions. The atmosphere does not always posses a low–dimensional chaotic
attractor, but its dynamics is often subject to sensitivity to initial conditions.

Weather services perform ensemble forecasts, calculating the future of a num-
ber of slightly different initial conditions to assess the predictability of the
weather.
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Fig. 7.1 shows the actual outcome (top left) and 15 different 132-hour fore-
casts of mean sea level pressure over Europe obtained starting from slightly
different initial conditions (from ”Chaos and Weather Prediction” by Roberto
Buizza, European Centre for Medium–Range Weather Forecasts, Jan 2001).

Figure 7.1: Chaos in weather forecast
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7.2 Chaotic Advection

Small particles (molecules, dust, pollutants) in a fluid at rest spread by dif-
fusion. Diffusion is a very slow process. Typical diffusion coefficients in
water or air are K ∼ 10−9m2/sec and 10−5m2/sec.

Suppose that you are at the restaurant and are waiting for the pizza which
you have ordered. If you had to wait for diffusion to bring the smell of the
pizza from the kitchen to you, it would take a time of the order of δ2/K. If
δ ∼ 10m is the distance from your table to the kitchen, you would have to
wait about 102/10−5 ∼ 107sec = 115days ! The reason for which it takes a
much shorter time to notice that the pizza is ready is that there are always
turbulent currents in the air which advect the molecules.

Figure 7.2: Chaotic advection (from Biferale et al. Le Scienze, 443, 2005)

Advection is usually chaotic. Materials spread along filamentary fractal pat-
terns and do not keep the same compact spatial distribution which they might
have had at the initial time. In many cases the advected particles are not
passive but undergo chemical (eg fire) or biological reactions (eg plankton)
within the flow. Chaotic advection is thus important in the environment.
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7.3 Advection in a shear flow

To model a 2-dim flow which extends over a region of space away from bound-
aries, we use a periodic square box of size L in both x and y directions. We
assume that the flow has the form of a shear, with opposite velocities in
opposite halves of each square. We also assume that it is periodic in time
with period τ , such that it changes direction in each half–period. A simple
realization of such flow is v = (u, v) where the components u and v are given
by (see Fig. 7.3)

u(x, y, t) = A sin (2πy/L) if 0 ≤ t < τ/2

0 if τ/2 ≤ t < τ

v(x, y, t) = 0 if 0 ≤ t < τ/2

A sin (2πx/L) if τ/2 ≤ t < T

L

0 x

y y

xL0

       (a) (b)

Figure 7.3: Flow for 0 ≤ t < τ/2 (a) and for τ/2 ≤ t < τ (b).

A tracer particle of position r(t) obeys

d

dt
r(t) = v(r, t),

where the right hand side is the velocity of the flow at the position of the
tracer. To model a blob of fluid, we follow the evolution of a large number
(N = 10, 000) of tracers, which initially are placed in a small region near
the origin. Periodic boundary conditions are applied to the tracers (that it,
when a tracer leaves the square on one side, it is advected back to the other
side).
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Figure 7.4: t = 0
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Figure 7.5: t = 4

The initial condition is shown in Fig. 7.4. Fig. 7.5, 7.6, and 7.7 show the
evolution in time. Note that the blob is stretched and folded. This simple
flow can create a great amount of mixing. Note also that there are islands
where the tracers do not go.
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Figure 7.6: t = 6
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Figure 7.7: t = 20
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7.4 Vortices

Leonardo da Vinci was the first to realize that turbulent flows consist of vor-
tices.

Figure 7.8: Leonardo da Vinci
Figure 7.9: Leonardo’s drawing of tur-
bulence

Figure 7.10: Turbulence on the Sun
(image taken by SOHO telescope, Eu-
ropean Space Agency)

Figure 7.11: Mount St Helens (image
taken by USGS)
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Figure 7.12: Waterspout at Singapore.

The simplest vortex is a vortex point, which models a thin–cored vortex,
such as a tornado or a waterspout (see Fig. 7.12). We assume that the vortex
is aligned aling z; the speed v of the flow v around the point (x0, y0) in the
x, y plane decreases with the distance r from that point:

v = |v| =
Γ

2πr
, (7.1)

where the parameter Γ, called circulation, describes the strength of the vor-
tex. The Cartesian components of v are thus

u = −Γ
(y − y0)

2πr2
, (7.2)

v = Γ
(x − x0)

2πr2
, (7.3)

where r2 = (x− x0)
2 + (y − y0)

2. A single vortex point creates a long–range
velocity field around it but remains stationary. A theorem of fluid dynamics
states that a vortex moves with the local velocity field. This velocity field can
arise from any other vortex in the flow. So, if there are two vortices, each
vortex moves under the influence of the other vortex. The actual motion
depends on the relative sign of the circulation.
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If the two vortices have the same circulation then they rotate around each
other at angular frequency which is inversally proportional to the mutual
separation. This is shown in Fig 7.13:

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

y

x

Vortex-vortex

’vor1.dat’ u 2:3
’vor2.dat’ u 2:3

Figure 7.13: Trajectories for 0 ≤ t ≤ 0.3 of two vortices with the same
circulation Γ = 1 initially located at the points (0, 0, 1) and (0,−0.1).
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If the two vortices have opposite circulation, the resulting motion is very
different. in this case the vortex–antivortex pair has translational velocity.
The speed is inversally proportional to the vortex separation, as shown in
Fig. 7.14.
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Figure 7.14: Trajectories for 0 ≤ t ≤ 0.6 of two vortices with opposite
circulation; The vortex at the point (0, 0, 1) has circulation Γ = −1 and the
vortex at (0,−0.1) has circulation Γ = 1.
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If the flow contains N vortices j = 1., ·N , then the velocity (ui, vi) =
(ẋi, ẏi) of the vortex i is given by

ẋi = −
N

∑

j 6=i

Γj
(yJ − yi)

2πr2
ij

, (7.4)

ẏi =
N

∑

j 6=i

Γj
(xj − xi)

2πr2
ij

, (7.5)

where r2
ij = (xi − xJ)2 + (yi − yj)

2. Phase space has 2N − 5 dimensions,
because there are five conserved quantities (one is the energy for example).
The motion of three vortices has dimension 2N − 5 = 1 and is periodic. In
the case of the four–vortex problem (N = 4), the dimension of phase space is
2N − 5 = 8− 5 = 3, thus four or more vortices move chaotically under
the influence of each other.
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Motion of four vortices:
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Figure 7.15: x coordinate of the first vortex plotted vs time.
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Motion of four vortices:
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Figure 7.16: Trajectory of the first vortex in the xy plane.
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7.5 Planets

According to Newton’s theory of gravity, the equation of motion of a planet
of mass mi and position ri in the presence of other planets of mass mj and
position rj is

mi
d2ri

dt2
= Gmj

∑

j 6=i

(rj − ri)

|rj − ri|3
, (7.6)

where G is the universal constant of gravitation.

For a two–body system there is a simple solution: the trajectory is a conic
section (circle, ellipse, parabola or hyperbola).

For a three–body system (eg the Earth, the Moon and the Sun) there is no
analytic solution, despite centuries of attempts.
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Figure 7.17: Mars Figure 7.18: Asteroid Gaspra

Recent work has shown that the Solar System, previously the paradigm of de-
terminism, contains chaotic phenomena, often associated with gravitational
resonances (which occurs when the orbital periods of two planets are in the
ratio of two small integers, e.g., 1:2, 3:5, etc).

• The asteroid belt is chaotic. Asteroid which cross a planet’s orbit may
collide with it, as it happened to the Earth many times.

• Saturn’s satellite Hyperion has a positive inverse Liapunov exponent
1/λ ∼ 10 days.

• The inner planets, Mercury, Venus, Earth and Mars, have 1/λ ∼ 5
million years.

• The outer planets are more regular, but Pluto has 1/λ ∼ 20 million
years.

These number may seem long on human scales, but they are still short on
the lifetime of the Solar System, which is several billion years.
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7.6 A bit of philosophy

The great successes of Newtonian mechanics in predicting the behaviour of
physical objects, from small bodies (eg falling apples) to large bodies (eg
planets), led to the belief that, if we know both the equations of motion of a
system and its initial conditions, we can find its state at any later time.

Figure 7.19: Isaac Newton Figure 7.20: Pierre-Simon
de Laplace

Philosophers called this view determinism. They extrapolated that, since
God must know both the equations of motion of the Universe and its current
state with perfect accuracy, He must know the future too. Determinism was
best expressed by the great French mathematician Laplace:

Une intelligence qui pour un instant donné connâıtrait toutes les forces dont
la nature est animée et la situation respective des êtres qui la composent, si
d’ailleurs elle était assez vaste pour soumettre ces données à l’analyse, em-
brasserait dans la même formule les mouvements des plus grands corps de
l’Univers et ceux du plus léger atome : rien ne serait incertain pour elle, et
l’avenir comme le passé seraient présents à ses yeux.

Translation: An intelligence that at any given instant knew all of the
forces that animate nature and the mutual positions of the beings
that compose it, if this intellect were vast enough to submit the
data to analysis, could condense into a single formula the move-
ment of the greatest bodies of the Universe and that of the lightest
atom; for such an intelligence nothing could be uncertain and the
future just like the past would be present before its eyes.
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In practice we can physically measure the initial state of any system only
with relative accuracy. If the governing equations of motion are linear the
difference between prediction and actual outcome must be of the order of
magnitude of the difference between the actual initial condition (which we
cannot measure) and the approximate initial condition (which we measure).
This means that, even if we cannot predict the future exactly, we expect to
be able to reduce prediction errors by measuring the initial condition better.

Familiarity with linear equations led people to believe that this is true in
general, hence the determinism as conceived by Newton and Laplace.

The discovery of chaos defined determinism. Now we know that if the gov-
erning equations of motion are nonlinear and phase space is big enough, it is
possible that there are regions of parameter space where solutions are chaotic.
If a system is chaotic, long-term predictions are impossible because we can-
not measure the initial conditions with infinite precision. This restriction
also affects numerical calculations, because computers have a finite memory
and cannot keep the infinite digits required to represent a real number.



Chapter 8

Examples

1. Example: The following dynamical system describes the interaction
of two populations x and y:

ẋ = 14x − 2x2 − xy,

ẏ = 16y − 2y2 − xy,

(a) Find the fixed points of the system.

(b) Interpret the fixed points in terms of extinction or co-existence of
the populations.

2. Example: According to Newton’s law, a body of mass m and position
x(t) which is under the action of the force F (x, t) obeys the equation

mẍ = F,

Show that Newton’s equation is a 2–dimensional dynamical system.

3. Example: Consider the following model of the interaction between a
population of rabbits, R(t), and a population of foxes, F (t), in a given
area. In the absence of foxes the rabbit population grows without limit;
in the absence of rabbits the foxes starve to death. Rabbits are eaten
by foxes. No rabbits or foxes enter or exit the area. The resulting
equations are:

dR

dt
= αR − βRF,

dF

dt
= −γF + δFR,

where α, β, γ and δ are positive coefficients.
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(a) Interpret the equations.

(b) Find the fixed points of the system.

(c) Write the equations as a dynamical system ẋ = f , hence define x,
f and the dimension N .

4. Example: Write the equation

mẍ + bẋ + kx = F cos ωt,

(a) as a 2-dimensional non–autonomous dynamical system.

(b) as a 3-dimensional autonomous dynamical system.

5. Example: Write the equation

ẍ + xẋ + tẋ2 = 0,

(a) as a 2-dimensional non–autonomous dynamical system.

(b) as a 3-dimensional autonomous dynamical system.

6. Example: Consider the equation

ẍ + 2ẋ2 + 3x3 = sin t;

(a) Show that it is a 2-dim non-autonomous dynamical system of the
form ẋ = f(x, t). Identify x and f .

(b) Show that it can be transformed into a 3-dim autonomous dynam-
ical system of the form ẋ = f(x). Identify x and f .

7. Example: A simple model of a population x(t) is

ẋ = rx,

where x ≥ 0 and r, the difference between the birth rate and the death
rate, is called the growth rate. The growth rate can be either positive
or negative.

(a) Find x(t) in terms of the initial condition x(0).

(b) Find the fixed points, sketch the 1–dimensional phase flow, and
predict the long term behaviour of the solution x(t) for t → ∞.

(c) Discuss some evident limitations of the model.
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8. Example: Consider the 1–dimensional dynamical system for x ≥ 0:

ẋ = sin x,

(a) Find the fixed points.

(b) Sketch the phase flow.

(c) What is the long term behaviour x(t) for t → ∞ if the initial
condition is x(0) = 5π/2 ?

9. Example: Consider the same equation as in the previous example,

ẋ = sin x,

(a) Separate the variables and find the general solution of the equa-
tion.

(b) Find the solution which corresponds to the initial condition x =
π/2 at t = 0. What is the long-term behaviour of this solution for
t → ∞ ?

10. Example: Consider the 1–dimensional dynamical system

ẋ = x2 − x4,

in −∞ < x < ∞.

(a) Find the fixed points.

(b) Sketch the phase flow.

(c) What is the long-term behaviour of the solution for t → ∞ if the
initial condition is = 0.3 at t = 0 ?

11. Example: A population x(t) of deers in a forest obeys the logistic
equation with carrying capacity K and growth rate r > 0. A constant
number of deers is hunted every year. We have

ẋ = rx(1 − x

K
) − h,

where x ≥ 0, K > 0 and h > 0 is the hunting rate.

Let F = rx(1 − x/K) and H = h. Plot the functions F and H and
determine the fixed points. Sketch the 1–dimensional phase flow and
predict the qualitative long term behaviour of the population depending
on whether F > H or F < H .
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12. Example: To model diseases such as flu, measles, smallpox or AIDS we
divide the population into three classes: susceptibles, S(t), infectives,
I(t), and recovered, R(t). Individuals are born in the S class which
consists of people who have never been in contact with the disease.
Members of the S class who catch the diseases move to the I class of
infected people. Infective people can spread the disease to susceptible
people. After a certain time typical of the disease, infective people
move to the class R of people who have recovered and have become
immune. If the disease evolves quickly we can neglect birth and death
events, and the governing equations are

Ṡ = −βIS,

İ = βIS − gI,

Ṙ = gI,

The parameter β is the contact rate (susceptibles become infected at
the rate βI). Infected individuals recover at the rate g, so 1/g measures
the mean infectious period. The total population is constant, and for
simplicity it is normalised to unity: S + I + R = 1.

We have assumed that the disease evolves quickly, so we have neglected
the natural birth and rates (if the disease remains in the population
for a long time, we need to include these effects, as newborn individ-
uals replenish the class S and members of all classes have a certain
probability of dying).

(a) Verify that
d

dt
(S + I + R) = 0.

(b) Find the fixed points of the system.

(c) Make a graph of the fixed points in the (S, I, R) space. Divide the
first equation by the third and show that

S(t) = S(0) exp (−β(R(t) − R(0))/g).

13. Example: Now consider a disease which evolves slowly. Unlike the
previous example, we must take into account births and deaths. For
simplicity assume that birth rate and death rate are the same, m. As
before, the total population is normalised to unity. The governing
equations are
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Ṡ = m − βIS − mS,

İ = βIS − mI − gI,

Ṙ = gI − mR,

Show that the above equations have two fixed points (S∗, I∗, R∗), one
which corresponds to eradication of the disease (I∗ = R∗ = 0 and
S∗ = 1) and one which corresponds to epidemic equilibrium.

14. Example: The equation of motion of a body of mass m which is linked
to the origin by a spring of stiffness k and which moves along the x
axes is mẍ = −kx. Assume k = m = 1 hereafter.

(a) Let v = ẋ and write the equation as a 2–dimensional dynamical
system.

(b) Identify the position vector in phase space and the velocity vector
in phase space.

(c) Find the velocity vector in phase space at the four points A =
(0, 1), B = (1, 0), C = (0,−1) and D = (−1, 0). Sketch these
velocity vectors in phase space.

(d) Find the magnitude of the velocity vector in phase space and show
that it increases with the distance from the origin.

(e) Solve the equation ẍ = −x and determine x(t) and v(t) such that
x(0) = 0 and v(0) = 1.

(f) Sketch x vs t and v vs t, identifying A, B, C and D.

(g) Sketch v vs x (motion in phase space), identifying A, B, C and D.

15. Example: Consider the 1–dimensional dynamical system

ẋ = x − 2 sinx,

for x ≥ 0.

(a) Find the fixed points (hint: think of a graphical method).

(b) Determine whether the fixed points are stable (sinks) or unstable
(sources), and sketch the phase portrait.

(c) Determine the long–term behaviour x(t) for t → ∞ in terms of
the initial condition x(0).
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16. Example: Suppose that x1(t) and x2(t) are two solutions of the equa-
tion

ẋ = x + x2.

Is x3 = x1 + x2 a third solution of the same equation ?

17. Example: The general solution x(t) of a linear 2-dimensional dynam-
ical system ẋ = Ax is

x(t) = c1Ueλ1t + c2Veλ2t,

where λ1 = 2, λ2 = 1, U = (1, 1), V = (1,−1) are respectively the
eigenvalues and the eigenvectors of the matrix A; c1 and c2 are arbitrary
constants. Write down the components x(t) and y(t) of the solution
x(t) which corresponds to the initial condition x(0) = 3, y(0) = 0:

18. Example: Consider the dynamical system

ẋ = ax,

ẏ = −y,

(a) Determine the nature of the fixed point at the origin and sketch
trajectories in the four cases: a < −1, a = −1, −1 < a < 0, a > 0.

(b) Assume the initial condition x(0) = 1, y(0) = 1 at t = 0. Predict
the long term behaviour of the solution x(t), y(t) for t → ∞ in the
two cases: a = −3 and a = 3.

19. Example: Consider the equations

ẋ = 3x − 6y,

ẏ = x − 4y,

(a) Put the equations in the form dx/dt = Ax and identify the matrix
A and the vector x.

(b) Find the determinant and the trace of A.

(c) Determine the eigenvalues λ1 and λ2.

(d) Which kind of fixed point is the origin ?

(e) Find the eigenvectors U and V.
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(f) Find the general solution x(t).

(g) Draw the phase portrait. Highlight any separatrix.

(h) What is the behaviour of x(t) for t → ±∞ ?

(i) What happens to trajectories which start on y = x and y = x/6 ?

(j) Determine the slope of the trajectories.

20. Example: Consider the equations

ẋ = 4x − 2y,

ẏ = x + y,

(a) Put the equations in the form dx/dt = Ax and identify the matrix
A and the vector x.

(b) Find the determinant and the trace of A.

(c) Determine the eigenvalues λ1 and λ2.

(d) Which kind of fixed point is the origin ?

(e) Find the eigenvectors U and V.

(f) Find the general solution x(t).

(g) Draw the phase portrait. Highlight any separatrix and consider
the slope of trajectories.

(h) What is the behaviour of x(t) for t → ±∞ ?

21. Example: Consider the dynamical system

ẋ = −3x,

ẏ = −2y,

Sketch the phase portrait, paying attention to the slope of the trajec-
tories for t → ±∞ (hint: solve directly the decoupled equations).

22. Example: Consider the equations

ẋ = 2x + y,

ẏ = −x + 2y,
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(a) Put the equations in the form dx/dt = Ax and identify the matrix
A and the vector x.

(b) Find the determinant and the trace of A.

(c) Determine the eigenvalues λ1 and λ2 and show that the origin
is an unstable spiral. Check that the eigenvalues are complex
conjugates of each other.

(d) Determine the eigenvectors and show that they are complex con-
jugate of each other.

(e) Find the general solution x(t).

(f) Draw the phase portrait. Is the sense of rotation clockwise or
anticlockwise ?

(g) Determine how the radius of the spiral changes with time.

23. Example: Consider the equations

ẋ = y,

ẏ = −x,

(a) Put the equations in the form dx/dt = Ax and identify the matrix
A and the vector x.

(b) Find the determinant and the trace of A.

(c) Determine the eigenvalues λ1 and λ2 and show that the origin is
a centre.

(d) Find the general solution x(t).

(e) Find the radius of the orbit and how it changes with time.

(f) Draw the phase portrait. Is the sense of rotation clockwise or
anticlockwise ?

24. Example: Consider the equations

ẋ = −y,

ẏ = 4x,

(a) Put the equations in the form dx/dt = Ax and identify the matrix
A and the vector x.
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(b) Find the determinant and the trace of A.

(c) Determine the eigenvalues λ1 and λ2 and show that the origin is
a centre.

(d) Draw the phase portrait. Is the rotation clockwise or anticlockwise
?

(e) Find the general solution.

(f) Find the solution which satisfies the condition x(0) = 1 and
y(0) = 0. Sketch the trajectory, determine the period and find
the minimum and maximum values of x(t) and y(t).

25. Example: Consider the equations

ẋ = 2x,

ẏ = 2x,

(a) Put the equations in the form dx/dt = Ax and identify the matrix
A and the vector x.

(b) Find the determinant and the trace of A.

(c) Determine the eigenvalues λ1 and λ2.

(d) Find the eigenvectors.

(e) Find the general solution x(t).

(f) Show that the y axis is a line of fixed points and sketch the phase
portrait.

(g) Solve directly the two equations ẋ = 2x and ẏ = 2x, and verify
that the solution (written in terms of the initial condition x(0)
and y(0)) is the same.

26. Example: Consider the dynamical system

ẋ = y,

ẏ = y,

Show that the phase portrait is a line of fixed points.

27. Example: Consider the equations

ẋ = −5x,

ẏ = −5y,
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(a) Put the equations in the form dx/dt = Ax and identify the matrix
A and the vector x.

(b) Find the determinant and the trace of A.

(c) Show that there is only one eigenvalue.

(d) Find the corresponding eigenvector.

(e) Find the general solution x(t).

(f) Draw the phase portrait, show that the origin in a stable star
node, and show that trajectories have constant slope.

(g) Show that the origin is a stable star node.

28. Example: Consider the equations

ẋ = 4x − y,

ẏ = 2x + y.

(a) Put the equations in the form dx/dt = Ax and identify the matrix
A and the vector x.

(b) Find the determinant and the trace of A.

(c) Determine the eigenvalues λ and λ2.

(d) Which kind of fixed point is the origin ?

(e) Find the eigenvectors U and V.

(f) Find the general solution x(t).

(g) What is the behaviour of x(t) for t → ±∞ ?

(h) Find the slope of the trajectories and sketch the phase portrait.

29. Example: Consider the dynamical system

ẋ = x + 13y,

ẏ = −2x − y.

(a) Put the equations in the form dx/dt = Ax and identify the matrix
A and the vector x.

(b) Find the determinant and the trace of A.

(c) Find the eigenvalues λ1 and λ2. Check that the eigenvalues are
complex conjugate of each other.
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(d) Which kind of fixed point is the origin ?

(e) Find the eigenvectors U and V. Check that the eigenvectors are
complex conjugate of each other.

(f) Consider the general solution

x(t) = c1Ueλ1t + c2Veλ2t,

where c1 and c2 are arbitrary constants. Show that, for x(t) to be
real, the complex conjugate of c1 must be c2.

(g) Let U = R+ iS, c1 = feiη and show that the general solution can
be written as

x(t) = 2f cos (η + 5t),

y(t) = − 2

13
f cos (η + 5t) − 10

13
f sin (η + 5t),

where f and η are arbitrary real numbers.

30. Example: Consider the dynamical system

ẋ = −x + y,

ẏ = −y.

(a) Put the equations in the form dx/dt = Ax and identify the vector
x and the matrix A.

(b) Find the trace τ and the determinant of A.

(c) Show that λ1 = λ2.

(d) Find the general solution x(t). (hint: note that the equation for
y does not contain x and can be solved directly. Once you know
y(t), integrate the equation for x to find x(t).)

(e) Find the slope of the trajectories and state the nature of the fixed
point at the origin; sketch the phase portrait.

31. Example: Consider the dynamical system

ẋ = −2x + 2y,

ẏ = 2x − 5y,
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(a) Show that the system can be written as ẋ = Ax. Identify the
vector x and the matrix A.

(b) Find the trace τ and the determinant δ of A.

(c) Find the eigenvalues λ1 and λ2.

(d) Determine the nature of the critical point at the origin.

(e) Determine the eigenvectors U and V.

(f) Write the general solution.

(g) Sketch the phase portrait paying attention to the behaviour for
t → ±∞.

32. Example: Consider the equations

ẋ = −3x + y,

ẏ = x − 3y,

(a) Determine the nature of the critical point at the origin.

(b) Find the eigenvectors.

(c) Sketch the phase portrait, paying attention to any vertical or hor-
izontal slope of the trajectories.

(d) Find the solution which corresponds to the initial condition x = 2,
y = 0 at t = 0. Sketch the resulting trajectories in the phase plane.

33. Example: Consider the equations

ẋ = y,

ẏ = −4x,

(a) Show that the critical point at the origin is a centre.

(b) Are trajectories clockwise or anticlockwise around the origin ?

(c) Write the general solution.

(d) Do trajectories keep a constant distance from the origin ?

(e) Make a sketch of the orbits.

(f) what is the period ? Does it depend on the initial condition ?
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34. Example: Two countries, X and Y, are locked in an arms race. Call
x(t) and y(t) the military expenditures of country X and country Y at
time t. By definition x ≥ 0, y ≥ 0. Each country’s increase/decrease
of military budget is proportional to the other’s country’s budget, so
we model the situation by writing

ẋ = αy,

ẏ = βx.

where the parameters α and β are positive. Show that the arms race
will result in out-of-control military expenses, x → ∞ and y → ∞ for
t → ∞ (the model is clearly going to break down when x or y become
too large, for example there will be a war, or an economic collapse).

35. Example: Steven Strogatz developed a mathematical model of the
story of Romeo and Juliet1. Let R(t) be Romeo’s love/hate for Juliet
at time t, and J(t) be Juliet’s love/hate for Romeo at time t. Positive
values of R or J mean love, negative values mean hate, and zero means
indifference. The model is

Ṙ = bJ,

J̇ = cR.

The parameters b and c are the responsiveness. For example, b > 0
means that Romeo is excited by Juliet’s love (J > 0): if both b and
J are positive, the term bJ at the RHS is positive, which makes R to
increase.

(a) Let us assume that b < 0, that is to say Romeo is a fickle lover: the
more Juliet loves him (i.e. the greater J is), the more he dislikes
her (the term bJ , large and negative, makes R to decrease); when
Juliet loses interests in Romeo, his feelings for her warm up. We
also assume that c > 0, which means that the love of Juliet for
Romeo grows when he loves her, but she hates him when he hates
her.

Show that the outcome of Romeo and Juliet’s love affair is a never
ending cycle of love and hate. Also show that at least Romeo and
Juliet achieve simultaneous love 25 percent of the time.

1S.H. Strogatz, Mathematical Magazine 61, 53 (1988).
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(b) What is the outcome of the love story if b > 0, c > 0 ?

36. Example: We improve the previous model of Romeo and Juliet and
write

Ṙ = aR + bJ,

J̇ = cR + dJ,

where the parameters c, d are Romeo’s and Juliet’s cautiousness. We
have seen that b > 0 means that Romeo gets excited by Juliet’s love;
a > 0 means that he is further excited by his own feelings; a < 0
means that the more he likes her (i.e. the larger R > 0 is), the more
he wants to run away from her (aR < 0 makes R to decrease: perhaps
he is afraid of a marriage decision). Strogatz suggested the following
interpretations for positive and negative values of responsiveness and
cautiousness: a > 0, b > 0: eager beaver; a < 0, b < 0: cautious and
unresponsive (not a good chance for a romance); a > 0, b < 0: daring
but unresponsive (more the narcisist type); a < 0, b > 0 cautious lover.

(a) What happens if Romeo and Juliet are equally cautious lovers
(a < 0, b > 0 with c = b and d = a) ?

(b) What happens if a = b = 0 (Romeo is a robot, nothing can change
his feelings for Juliet) ?

37. Example: Consider the equations

ẋ = x − y2 = f1,

ẏ = xy − y = f2,

(a) Find the fixed points x∗.

(b) Find the Jacobian matrix Df(x).

(c) At each fixed point evaluate the Jacobian matrix; then write down
the linearised system Ẋ = AX near that fixed point, and identify
the vector X and the matrix A.

38. Example: Consider the equations

ẋ = x(3 − x − 2y),

ẏ = y(2 − x − y).
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(a) Find the fixed points x∗.

(b) Find the Jacobian matrix Df(x).

(c) At each fixed point evaluate the Jacobian matrix; write down the
linearised system Ẋ = AX near that fixed point, and identify the
vector X and the matrix A. Determine eigenvalues, eigenvectors,
and the nature of the fixed point.

(d) Using the previous results, apply the Hartman-Grobman Theorem
and sketch trajectories in phase space.

39. Example: Consider the following system:

ẋ = v,

v̇ = x − x3.

(a) Show that the dynamical system is conservative and determine
the potential φ.

(b) Plot φ(x).

40. Example: Consider the following 1–dimensional dynamical system:

θ̇ = 1 − cos θ,

for 0 ≤ θ ≤ 2π. Show that θ = 0 is a fixed point which is attracting
but not Liapunov stable.

41. Example: Consider the following system:

ẋ = x − y − x(x2 + y2),

ẏ = x + y − y(x2 + y2).

(a) Introduce polar coordinates r, θ by letting x = r cos θ and y =
r sin θ. Show that the system becomes

θ̇ = 1,

ṙ = r(1 − r2).

(b) Show that r = 1 is a limit cycle.
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42. Example: Consider the following system:

ẋ = y + x2y,

ẏ = −x + 2xy.

Is this system a gradient system ?

43. Example: Consider the following system:

ẋ = y − yx2,

ẏ = 1 − y2.

Show that the system is reversible.

44. Example: Consider the following system:

ẋ = sin y,

ẏ = x cos y.

Show that the system is a gradient system, thus it has no closed orbits.
Determine the potential φ.

45. Example: Consider the following system:

ẋ = −2xex2+y2

,

ẏ = −2yex2+y2

.

Show that the system is a gradient system. Determine the potential φ
and make a graph of the equipotential lines.

46. Example: Show that if a two-dimensional dynamical system ẋ = f(x)
is a gradient system then the trajectories cross equipotential lines at
right angles.

47. Example: The motion of a body of mass m attached to a nonlinear
spring is described by Newton’s equation equation mẍ = F where
F = −kx + βx3 and k and β are constant.



89

(a) Show that the force is the gradient of a potential φ:

F = −dφ/dx,

hence determine φ.

(b) Show that the energy

E =
mv2

2
+

kx2

2
− βx4

4
,

is conserved along trajectories.

(c) Let m = 2, k = 2 and β = −4 and ẋ = v. Show that Newton’s
equation can be transformed into the dynamical system

ẋ = v,

v̇ = −x − 2x3,

Show that the only fixed point x∗ = (0, 0) is a centre of the lin-
earised equations. Sketch the trajectories in the phase space (x, v)
corresponding to E = 1, 4, 16 and 36.

48. Example: Consider the dynamical system

ẋ = x − xy,

ẏ = 2y − 2xy.

(a) Show that there are two fixed points, x∗ = (0, 0) and (1, 1).

(b) Find the Jacobian matrix Df(x).

(c) Evaluate the Jacobian at x∗ = (0, 0), determine the nature of this
fixed point, and write the linearised equations around x∗.

(d) Evaluate the Jacobian at x∗ = (1, 1), determine the nature of this
fixed point, and write the linearised equations around x∗.

(e) Sketch the phase portrait.

49. Example: Consider the dynamical system

ẋ = µ − x2,

ẏ = −y.

where the parameter µ > 0. Proceeding in the usual way, sketch tra-
jectories in the phase plane, paying attention what happens at different
values of µ.
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50. Example: Today is 20 September 2020. The planet’s climate has
warmed and the Met Office is trying to predict the development of
the first hurricane which threatens the British Isles. The tolerance
required for the prediction is ǫ ∼ 10−1; today’s weather’s is known to
within relative accuracy δ ∼ 10−3. Assume that the Liapunov exponent
is λ = 0.1 hours−1.

(a) After how many days the prediction becomes unreliable ?

(b) If we could measure today’s weather 10 times more accurately,
how many extra days of prediction would we gain ?

51. Example: You are the commander of a spaceship which is travelling to
Pluto. Flying near Saturn, your ship suddenly develops engine prob-
lems and you need to make an emergency landing on Hyperion, the
nearest satellite of Saturn. With the engines off, your ship computer
tells you that it takes 12 hours to reach Hyperion at the current speed.

Checking your flight manuals, you read that Hyperion has the shape
of an irregular potato, its three main axes being 205, 130 and 110 km
respectively. The only flat area which is suitable for landing is the bot-
tom of a crater which is 10 km wide. You switch on your radar and
determine the current coordinates of the crater with the accuracy of
1 km. Your ship computer can, at least in principle, solve the differ-
ential equation ns which govern the orbit of Hyperion and determine
the future coordinates of yo ur landing site. Without engine power,
you must aim your ship exactly at the location where the centre of this
crater will be in 12 hours, before applying the braking rockets.

In your flight manuals you also read that, because of the tug of Sat-
urn on Hyperion’s odd shape, Hyperion’s orbit is chaotic: it tumbles
irregularly around Saturn with Liapun ov exponent λ ≈ 10 days−1.

Can you safely land your ship on Hyperion ? Explain your reasoning.
(Hint: not all data presented are required for the solution).

52. Example: Write the finite–difference recursion formula to solve the
differential equation

dx

dt
= f(x) = x2 − x + 1,

using Euler’s method with discretization tn = n∆t, xn = x(tn) (n =
0, 1, 2, · · · ) and time step ∆t.
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Given the initial condition x(0) = 1 at t = 0 and time step ∆t = 0.01,
implement your formula and find the approximate numerical solution
x(t) at t = 0.01, t = 0.02 and t = 0.03.

53. Example: Consider the following dynamical system for x > 0 and
y > 0:

ẋ = x − xy

2
= f1,

ẏ = −3y

4
+

xy

4
= f2,

(a) Find the fixed points.

(b) Find the Jacobian.

(c) Evaluate the Jacobian at each fixed point, then determine the
nature of each fixed point and the linearised solution near each
fixed point. Sketch these approximate solutions.

(d) Use Maple to plot the phase diagram with arrows.

(e) Write a Fortran 90 program to solve the dynamical system using
Euler’s method from t = 0 to t = 8, using time step ∆t = 8×10−4,
Try three different initial conditions: x(0) = 4, y(0) = 3.9, x(0) =
4, y(0) = 4.0, and x(0) = 4, y(0) = 4.1. For each run, save the
values of t, x and y to a file at all time steps; use Gnuplot to plot
x vs y for the three initial conditions.

54. Example: Consider the dynamical system

ẋ = x + y − x(x2 + y2),

ẏ = −x + y − y(x2 + y2).

(a) Show that x∗ = (0, 0) is a fixed point.

(b) Find the Jacobian matrix Df(x).

(c) Find the eigenvalues of A = f(0, 0) and show that the fixed point
(0, 0) of the linearised system is an unstable spiral. Sketch the
trajectories around the fixed point of the linearised system.
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(d) Let x = r cos θ and y = r sin θ where r ≥ 0. Multiply the equation
for ẋ by x and the equation for ẏ by y and then add the equations
to show that

ṙ = r(1 − r2).

Show that the acceptable fixed points of this equation are r∗ = 0
and r∗ = 1. Plot dr/dt versus r and show that, although the
linearised equation predicts a spiral, the spiral does not extend to
infinity, because trajectories for r > 1 move towards the origin,
not away from it.

(e) Multiply the equation for ẋ by y and the equation for ẏ by x and
then subtract the equations to show that

θ̇ = −1,

then solve this equation.

(f) Put results together and draw a graph of the trajectories of the
above system of equations.

(g) Write a Fortran 90 program called euler9.f90 which solves the
above system of equations using the Euler method. Run the pro-
gram for 0 ≤ t ≤ 10 using 10000 time steps and initial condi-
tion x(0) = 0.5, y(0) = 0. The program should output the solu-
tion onto a file. Run the program many times to produce data
files corresponding to various initial conditions, say: x(0) = 0.5,
y(0) = 0; u(0) = −0.5, y(0) = 0; x(0) = 0, y(0) = 0.5; x(0) = 0,
y(0) = −0.5; x(0) = 2, y(0) = 0; x(0) = −2, y(0) = 0; x(0) = 0,
y(0) = 2; x(0) = 0, y(0) = −2. Use Gnuplot to plot all these files
to make a graph with many trajectories.

55. Example: Two species x ≥ 0 and y ≥ 0 interact according to the
equations

ẋ = x(1 − x − y),

ẏ = 2y(x− 4),

Find the fixed points, and, proceeding in the usual way, sketch trajec-
tories in the phase plane x ≥ 0, y ≥ 0. What is the outcome of the
competition between the two species ?
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56. Example: Start with a segment, divide it in three parts and remove
the middle part. Apply the same procedure to the remaining parts, ad
infinitum. The result is a fractal object called the Cantor set. What is
its fractal dimension ?
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Part II

Numerical methods
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Chapter 9

Introduction to Programming

9.1 Introduction

These notes are a brief, step by step, introduction to Fortran 90, designed for
self-study. They are not meant to be comprehensive. The aim is to quickly
learn enough Fortran 90 to solve differential equations on a computer and
start doing computational mathematics. Read these notes carefully in front
of your computer, writing, compiling and running all the programs which are
described. Do all exercises. The best way to learn is to try yourself - the
”hands-on” approach is the most efficient. If you have any difficulty with the
exercises, check the solutions in the last chapter.

9.2 What is programming ?

A program is a sequence of steps which are executed by the computer to
carry out a task. There are hundreds of programming languages:

• Machine codes use strings of 0s and 1s to express instructions and
they dependent on the underlying hardware.

• Assembly languages are also dependent on hardware and utilise a
symbolic form to express instructions.

• High level languages were developed to ease the programming effort
and to provide hardware independence. Different languages have dif-
ferent strengths. Fortran is popular with the scientific and engineering
communities, Cobol is used for business applications and C for systems
programming.

97
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In general one desires a language with a notation that fits the problem
and is simple to write and learn. Fortran is superior to other languages for
mathematical and scientific computation, because it was created to match
the mathematical notation. Moreover, many diverse and reliable libraries
of routines are available and an official standard exists which helps towards
portability. For these reasons, in this course you will learn a little Fortran
90.

9.3 Fortran

Fortran (mathematical FORmula TRANslation system) was originally devel-
oped in 1954 by IBM. Fortran was one the first high level languages, which
saved the programmer from having to work with the details of the underlying
computer architecture.

Since then Fortran has changed dramatically on several occasions; in 1958
the second version added subroutines, functions and common blocks. Version
4 in 1962 was an attempt to standardise the language after several flavours
had appeared on different machines. 1966 and 1978 saw the first – Fortran
66 and second – Fortran 77 ANSI (American National Standards Institute)
versions. The present version, Fortran 90, is the third ANSI standard from
1991 with some minor additions made in 1996 (Fortran 95).

Because of its long standing history Fortran is often dismissed by comput-
ing professionals as being old and dated. In fact, the continued development
of Fortran 90/95 makes it one of the more modern languages; Fortran contin-
ues to be used for programming scientific and mathematical applications in a
huge range of contexts, from finance to physics to parallel computer research
and to the military.

9.4 The minimum program

Consider the following program, called nothing.f90:

program nothing

! does nothing

end program nothing

This is probably the simplest Fortran 90 program. It does nothing. The first
statement simply tells the compiler that a program named nothing is to fol-
low. The second statement is a comment (because of the exclamation mark)
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and it is ignored by the compiler. The third and last statement informs the
compiler that the program terminates at that point. Notice that statements
between program and end are executed in the order that they are written
(not strictly true but ok for the moment).

Fortran is case-insensitive: small case or a mixture of upper and lower
case is acceptable. So PROGRAM, Program, PROgrAM are all acceptable
and mean the same.

Comments are a very useful part of any programming language. Every
program, no matter how simple, should contain plenty of comments that
explain precisely what the program is doing in plain and simple English.
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Chapter 10

Hands on Fortran 90

10.1 Development Tools

To proceed you must be in front of a computer. Go to any of the Windows
clusters on campus, for example the cluster in the Herschel Building. Login
to a PC entering your username and password (always remember to logout
when you finish your session). You clearly need to have a Windows account
for this. If you do not have an account, get one from the receptionist at the
University’s Information Systems and Services (ground floor of the Claremont
Tower).

When you are ready, create a folder called mas2106 to contain all the files
related to this module. To create a new folder, you can use My documents,
either clicking on the icon or accessing it from the Start menu. Select File
from the menu bar on top, then New, then Folder. This will create a new
folder which you can name mas2106 by selecting File and folder task and
Rename this folder. Make sure to put mas2106 in your My documents folder,
which is simply another name for the H: drive which holds your University
Windows account. Choose sensible names for folders and files, and avoid
gaps between words (which Windows allows you to do, but tends to cause
problems to some applications); for example, do not call a file or a folder
october homework, but rather october-homework.

The programs described in these notes are available on my website

http://www.mas.ncl.ac.uk/ ncfb/

To download a file, right click on it selecting Save target as. Make sure
that you save the file in the correct folder, and that the file has the correct
suffix, .f90, which characterises a Fortran 90 program; include this extension
manually in the filename - do not save it as a Text document type, otherwise
you will get a .txt suffix.

101
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10.1.1 Editing, compiling and running programs

Since a Fortran 90 program is first of all a text file, you need an editor
to write this file. You can use any editor which you may know already,
e.g. Notepad. However, the implementation of Fortran 90 available on
the University’s clusters, called Plato IDE (for Interactive Development
Environment), has a built-in editor already. The Plato environment allows
you to write a program, compile it and run it, all within the same application,
which is very convenient. The way to proceed is as follows.

From Start, select All programs, then Programming languages, then For-
tran 90, then Plato IDE, following the arrows to the right. A window ap-
pears. From the menu bar on the top choose File and New. At this point
you can type the text of the file directly onto the screen. For example type
the following lines:

program hello

! Greet the world gracefully

write(*,*) ’Hello’

end program hello

Select it File and Save as to save this file with the name hello.f90. The
file hello.f90 is called a source file. The extension .f90 means that the
file is recognised as a Fortran 90 program. All Fortran 90 programs must
have the .f90 suffix.

Before running the program you need to compile and link it; these oper-
ations produce the executable binary file which you will actually run. Choose
File and select File options; a window appears to select the target compiler
configuration. Choose FTN90 and OK. On the top menu bar click Project
and then Compile file. If there are no errors in the program hello.f90, then
the compilation is successful and an object file called hello.obj is created.
If there are errors, the compiler will list them, and you will have to edit the
file hello.f90 again to make changes and remove these errors. Many errors
are simply typographical mistakes. Never write a program when tired: it
takes a very short time to introduce errors (bugs) into a program, and a
very long time to fix these bugs.

When the compilation is successful you can link the file by selecting
Project and Build file from the menu bar. This creates the executable file
called hello.exe. Now you are ready to actually run the program. Choose
Project, Execute and DOS application. A new window is created on the
computer’s screen in which the output of the program appears. In this case
the output is simply the word Hello.
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If you have difficulties writing this or other programs, you can download
the file hello.f90 or other files from my website, as explained above, then
open it using Plato and proceed with the compilation and execution as
explained above.

10.1.2 How to list a program on paper

Sometimes it is easier to fix a program by looking at it on paper or perhaps
showing it to a colleague. To print the source file hello.f90 on one of the
cluster’s printer, select File, Print from Plato’s menu bar. Another way is
to use any generic text editor such as Notepad, located under Start, All
Programs, Accessories and utilities. Notepad can also be used to write the
source file in the first place before compiling with Plato.

10.2 A simple Fortran 90 program

The general structure of a Fortran program is a list of statements in between
the program statement and the end program statement, as in

program name

...

end program name

where the dots represent all the statements of the program.
When writing a new program, it is often easier to modify an existing

program and save it under another name than to write the new program
from scratch.

Exercise 1: Using Plato, modify the existing program hello.f90 and write
a program called hello2.f90 which prints on the screen the words Good
Morning Anna (replacing Anna with your own name).

(The solution to this and other exercises is in the last chapter).

10.3 The print and write statements

The statement

write(*,*) ’Hello’

is shorthand for the statement:
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write (unit=*,fmt=*) ’hello’

Each device or file has an associated unit number, a numeric tag by which
the computer refers to it, and the unit argument allows you to specify which
one to write to. The asterix in unit=* says to write to the default output
unit, which is the screen. The fmt statement (short for format) arises
because you have the freedom to specify the style in which you write the
output, for example how many decimals places to use for numbers. Again,
the asterix in fmt=* means that you use the default format, in which the
computer guess at what might look appropriate.

Because output to the screen is used so often (it can even be used to help
debug your program), there is a special shorthand:

print*,’hello’

The write statement is more flexible than the print statement and can be
used to output data to a wider range of devices: screen, files, disc drives, etc.
The asterix in the print statement means that the default format is used.

What has been said for the write statement is also valid for the read

statement. The default input unit however is the keyboard.

10.4 Text and arithmetic expressions

Write, compile and run the following program called sum1.f90:

program sum1

! Print some examples of text

! and arithmetic expressions

write(*,*) ’15+6’

write(*,*) 15+6

write(*,*) ’15+6=’,15+6

end program sum1

Firstly, notice the lines which beginning with exclamation marks. What
follows an exclamation mark is a comment, something which is added to
make the program more legible to the user, but which does not affect the
operation of the program at all. It is good practice to put a comment line
at the beginning of a program, subroutine, function or other code block to
explain what the program is supposed to do in that block. Comments within
the program are very useful to explain the purpose of the various statements
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to the programmer and serve as a useful double check that you are asking
the computer to do what you intended.

Now examine the three write statements. The first gives the output
′15 + 6′ because 15 + 6 is written within quotes in the program, and is thus
considered as text. The second gives the output 21 because 15 + 6 without
quotes is an arithmetic expression. The third combines text and arith-
metic expressions.

10.5 Data types

In Fortran 90 data can be of various types, including character, integer,
real and complex. We have already seen that ’hello’ or ’15+6’ are text, that
is character type. The integer type is used to represent whole numbers
(positive or negative); e.g. −9 and 16 + 6 are integer expressions. The
real data type (sometimes called floating point type) is used to represent
rational and real numbers (although with a finite precision); e.g. 15.0 and
3.141592/2.0 are real expressions. Real numbers are often represented as
powers of 10. For example, 2300 can be written as 2.3e3 which means 2.3 ×
103. Similarly 0.0075 can be written as 7.5e − 3, and −0.01 can be written
as −0.1e − 1. Complex numbers are represented as ordered pairs of real
numbers, e.g. i is (0.0, 1.0) and 4 − 5i is (4.0,−5.0).

The operators +, −, ∗ and / have the usual meaning of plus, minus,
times and divide. Two asterisks indicate exponentiation, e.g. 3 ∗ ∗2 = 9.
It is important to note that real division corresponds to the usual mathe-
matical division, but integer division produces the integer result obtained by
chopping off any fractional part of the mathematical result. For example, the
mathematical result of 23/2 is 11.5. In Fortran 90, the arithmetic expression
23.0/2.0 yields 11.5 because it is the ratio of two real numbers, but 23/2,
which is the ratio of two integers, yields the integer 11.

Since the integers are a subset of the real numbers and the real numbers
are a subset of the complex numbers, conversions are made in evaluating
expressions of mixed type. If one number is of type integer and the other
is of type real, when combining the two numbers the integer is converted to
real; if one number is real and the other is complex, when combining the two
numbers the real number is converted to complex. So 23.0/2 is 11.5 because
the integer 2 is first converted into the real 2.0 and then a division of two
real numbers is performed.

When you write a Fortran 90 program you must always declare the type
of the variable (e.g. integer, real, complex) which you use. Strictly speaking
this is not necessary: by default, Fortran 90 automatically assumes that
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variables which begin with letters from i to n are integers and other letters
are real.

It is good practice to declare all variables explicitly and switch off the
automatic initial-letter data type convention with the statement

implicit none

at the top of the program. This helps prevent bugs and leaves you more
freedom to names you want for your variables.

For example, the following lines declare that x and hours are real and kk
and steps are integers:

real :: x,hours

integer :: kk,steps

10.6 Input from the user

Write, compile and run the following program called sum3.f90. It prompts
the user to input two real numbers from the keyboard, computes their sum
and prints the result on the screen:

program sum3

! Compute the sum of two real numbers

implicit none

real :: x,y,sum

! Ask the user for the first number

print *,’Enter first number’

read *,x

! Ask the user for the second number

print *,’Enter second number’

read *,y

! Compute the sum

sum=x+y

print *,’The sum is ’,sum

end program sum3
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10.7 Intrinsic functions

Fortran 90 has many built-in functions, for example:

sqrt(x) square root

sin(x) sine

cos(x) cosine

tan(x) tangent

exp(x) exponential

log(x) natural logarithm

log10(x) logarithm base 10

asin(x) inverse sine

acos(x) inverse cosine

atan(x) inverse tangent

abs(x) absolute value

int(x) replace a real number with the corresponding integer

real(x) replace an integer number with the corresponding real

Another useful intrinsic function is mod(j,k) where j and k are integers, which
is the reminder when j is divided by k. For example mod(9, 5) = 4.

Exercise 2: Modify the program sum3.f90 and write, compile and run a
new program called trigo.f90; the new program should ask for the input
x, compute sin(x) + cos(x) and print the result on the screen.

10.8 Explicit formats

If you go beyond the default format fmt=*, you can describe precisely how
you would like your numbers displayed. Consider integers first. The for-
mat fmt=’(i6)’ means that the output is an integer and uses six columns.
This format can thus write integers up to 999999 (but be careful that one
column may be needed for the minus sign). Consider now real numbers.
The format fmt=’(f10.4)’ (where f is the abbreviation of floating point
number, i.e. real number) means that a total of ten columns is allowed,
of which four columns are for decimal places. The output is automati-
cally rounded. For example, if the expression 22.0/7 is written with format
fmt=’(f10.4)’, it appears as 3.1429 with four decimal places. Real num-
bers can also be represented using the exponential notation. For example,
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the format fmt=’(e10.3)’ allows for a total of ten columns and three dec-
imal places. Note that four of the other 10 columns will be used for the
exponent, for example 3.429234 × 1021 would be printed as 3.429E + 21.

The following program called show.f90 calculates π (using the fact that
tan (1.0) = π/4), then outputs the value of π in different formats. Write,
compile and run this program and notice the how the format is controlled:

program show

!

! Calculate an approximation to pi and

! display it in various ways

!

implicit none

real :: pi

! Use trig to get a value for pi

pi=4.0*atan(1.0)

! Play with some different format statements

write (unit=6,fmt="(f12.2)") pi

write (unit=6,fmt="(f12.3)") pi

write (unit=6,fmt="(f12.4)") pi

write (unit=6,fmt="(f12.5)") pi

write (unit=6,fmt="(f12.6)") pi

write (unit=6,fmt="(e12.2)") pi

write (unit=6,fmt="(e12.3)") pi

write (unit=6,fmt="(e12.4)") pi

write (unit=6,fmt="(e12.5)") pi

write (unit=6,fmt="(e12.6)") pi

end program show

In some cases you want to have both numbers and text in the same for-
matted expression. For example, to write 1,234.56 pounds, do the following:

write(unit=6,fmt=’(f7.2,a)’) x,’ pounds’

where the symbol a in the statement means alphanumeric, that is to say
text.
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10.9 The do...loop

There are various ways to control the flow of the program; the most important
are the do...loop and the if construct. Consider the do...loop first. Its
structure is

do i=i1,i2,i3

...

end do

where i1, i2 and i3 are integers (positive or negative). The loop initially
sets i to the value i1, then it increments it in steps of i3 until the value i2 is
reached. If i3 is missing in the do...loop statement, then i3 is set equal to
one. For example, consider the following do...loop:

do i=-4,6,2

...

end do

The statements inside the do...loop are executed six times, with the variable
i taking the values −4,−2, 0, 2, 4 and 6 respectively. If the integer i3 of the
do...loop is negative then counting is backward, that is to say i decreases
(provided i2 and i3 make sense).

The following program called loop.f90 uses a do...loop to sum the first
ten integers. Write, compile and run this program:

program loop

! Calculate the sum of the first 10 integers

!

implicit none

integer::i,total

! Reset total

total=0

! Add on each digit in turn

do i=1,10

total=total+i

end do

! Print the result

print *,total

end program loop
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The program works in the following way. Initially the variable total is set
equal to zero. At each iteration total is increased by the index i; after the
tenth and final loop, the final value of total is printed on the screen.

It is important to appreciate that the statement total = total + i, which
should be read as ‘let total equal total plus one ’, is not a mathematical
equality but rather and assignment. It means that total is overwritten by
the value total + i. In general, the Fortran 90 statement a = b means that
what is in the ’box’ (or memory location) labelled by a receives the number
which is in the ’box’ labelled by b. Many old languages explicitly used the
word let to begin such statements but this was dropped as it was unnecessary.

10.10 The if statement

The if statement allows the selection of one of a number of statements during
the execution. The simplest if statement has the form if (logical expression)
[statement]. Logical expressions use symbols such as == (equal), / = (not
equal), < (less than), <= (less than or equal), > (greater than), >= (greater
than or equal), which can be used together with logical operators (.and.
and .or.). An example is:

if (x>0.and.y<0) z=0

The following program called if1.f90 (which you should write, compile
and run) asks for the input x and computes the function y which is defined
as y = 3x if x < 0, y = 0 for x = 0, and y = 4x for x > 0:

program if1

! Example of an ’if’ conditional statement

implicit none

real :: x,y

! Go get an x value

print *, ’Enter x’

read *,x

! Set y based on some conditions on x

if (x<0.0) y=3*x

if (x==0.0) y=0.0

if (x>0.0) y=4*x

! Display the outcome

print *,y

end program if1
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The if construct has an alternative block syntax to allow the inclusion
of more than one statement for a given condition:

if (logical expression) then

...

end if

One can also specify what to do if a condition fails:

if (logical expression) then

...

else

...

end if

Exercise 3: Write a program called irs.f90 which asks for your income
and computes the tax which you must pay; the tax is 15 percent for income
up to 17850 pounds, and 28 percent above 17850 pounds.

Exercise 4: Write a program called divide.f90 which asks for two integers
and determines if one number can be divided by the other. (Hint: use the
intrinsic function mod).

10.11 Arrays

It is possible that data consist of ordered sets of scalars (integer, real or
complex) which can be referred to collectively by a single name. This new
object is called an array. For example, vectors and matrices can be repre-
sented as arrays. Arrays must be declared at the beginning of the program
(though the specification of their exact size can be postponed till later in
the program if needed!). For example, suppose that the integer array x con-
sists of three components x(1), x(2) and x(3); then, at the beginning of the
program (after the implicit none statement), you must put the statement

integer, dimension(3) :: x

The actual numerical values of x(1), x(2) and x(3) can be assigned one by
one in the actual program, as in

x(1)= 9

x(2)=-1

x(3)= 3
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or by a single statement, as in

x=(/9,-1,3/)

If the array x is real, it is declared by

real, dimension(3) :: x

The index i which denotes the components of the array x need not nec-
essarily start from i = 1. For example, consider the following declarations:

real, dimension(0:2) :: x

real, dimension(-4:3) :: y

for the arrays with elements x(0), x(1), x(2), and y(−4), y(−3), y(−2),
y(−1), y(0), y(1), y(2), y(3).

In the following example, x could represent a matrix of 6 rows and 3
columns and y could represent a tensor of dimension 3 × 4 × 8:

real, dimension(6,3) :: x

real, dimension(3,4,8) :: y

Write, compile and run the following program array1.f90 which defines
two arrays of dimension 3 and sums them, component by component, using
a do...loop:

program array1

! Sum two given arrays

implicit none

integer :: i

real, dimension (3):: x,y,z

! Initialize the array elements

x(1)= 1.1

x(2)=-0.1

x(3)= 4.5

y(1)=-0.1

y(2)=-0.9

y(3)= 3.5

! Calculate the sum, element by element

do i=1,3

z(i)=x(i)+y(i)

enddo

print *,z

end program array1
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Using explicit do...loops is the most flexible way of operating with arrays
but is not always the simplest. It is often possible to handle arrays via a
single statement. For example, in the above program array1.f90, in place
of

do i=1,3

z(i)=x(i)+y(i)

enddo

you can write simply

z=x+y

10.12 Output to file

Suppose that you want to write the output of the calculation performed by
you program into a file rather than to the screen. Pick a number as output
unit number, associate this number with a file using the open statement,
and write the program’s output to this unit. The unit numbers should be
in the range from 1 to 99, and should not be 5 (reserved for keyboard input)
or 6 (reserved for screen output).

Write, compile and run the following program out1.f90 which writes the
text ”Goal !” in a file called out.dat.

program out1

! Write some text to a file

implicit none

! Open a file (by default for ’formatted’ output)

open(unit=7,file=’out.dat’)

write(unit=7,fmt=*) ’Goal !’

close(unit=7)

end program out1

After running the program, look at the file out.dat using Notepad to check
that it indeed contains the word ’Goal !’.

Exercise 5: Write a program called out2.f90 which outputs greek pi in
exponential notation (with two decimals) to a file called out.dat.
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10.13 Input from file

In the same way in which you use the write statement to write to a file,
you can use the read statement to read data from a given file, rather than
entering data from the keyboard.

10.14 Subroutines

We have already met intrinsic functions, like sin(x). The idea of a subroutine
generalises that of intrinsic function. A subroutine is a block of statements
which is totally independent of the main program and is linked to it only
via some declared input and output parameters. A subroutine is therefore a
kind of ’black box’. Usually a complete program consists of a main program
and some subroutines, as in

program name1

...

end program

subroutine name2

...

end subroutine

subroutine name3

...

end subroutine

The subroutines are called by the main program, to which they return
their output as a function of the input which they have received. A subroutine
can call another subroutine. The use of subroutines helps keeping the main
program as slim and simple as possible.

To understand how subroutines work in practice, write, compile and run
the following program called bessel.f90. The program computes the values
of the spherical Bessel function of order 1, defined as y(x) = sin(x)/x2 −
cos(x)/x, on a set of equally spaced points 0.0, 0.1, 0.2, · · · , 10.0. The values
are printed on the screen and saved to a file called out.dat.
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!**********************************************

program bessel

! Compute the Bessel function j1(x) at the points

! x=0, 0.1, 0.2 ... 1.0

implicit none

integer :: i

real :: x,y,dx

! Open the output file and attache it to unit number 7

open(unit=7,file="out.dat")

dx=0.1 ! x increment

! For each of the 101 points

! NB: 0 to 100 inclusive = 101 points

do i=0,100

! Calculate the x-value of the ith point

x=i*dx

! Calculate y from x using the j1 routine

call j1(x,y)

! Display the x,y values for information

print *,x,y

! Write the x and y values in exponential format,

! together on one line

write(unit=7,fmt="(2e12.4)") x,y

end do

! Finished writing to the output file

close(unit=7)

end program bessel

!**********************************************

subroutine j1(x,y)

! Calculate Spherical Bessel function of order 1

! for parameter x and return the result in the

! second parameter y

implicit none

real :: x,y

if (x==0.0) then

y=0.0

else

y=sin(x)/x**2 -cos(x)/x

end if

end subroutine j1

!**********************************************
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In the above program the subroutine has one input, (x), and one output, (y).
Note that what matters is the order of the inputs and outputs, not the
actual names of the variables used. Thus in the main program we call the
subroutine j1 with two real arguments x and y:

call j1(x,y)

but in the subroutine at the end of the file we need not use x and y for
the names of the two arguments; we can use a and b, provided the they are
real numbers. What matters is the order: when we call the subroutine we
establish a correspondence between x and a and between y and b:

subroutine j1(a,b)

! Calculate Spherical Bessel function of order 1

! for parameter a and return the result in the

! second parameter b

implicit none

real :: a,b

if (a==0.0) then

b=0.0

else

b=sin(a)/a**2 -cos(a)/a

end if

end subroutine j1

!**********************************************

10.15 Gnuplot

To plot the results of your numerical calculations you need a computer graph-
ics package. You can use either Maple if you are already familiar with it, or
Gnuplot. You will find Maple and Gnuplot on the University Windows
system. The advantage of Gnuplot is that it is free, so you can install it on
your home computer at no extra cost.

To use Gnuplot to plot the data saved in the file out.dat by the previous
program, do the following. From Start, select Programs, Graphics software
and Gnuplot for Windows. A window appears. Click ChDir on the menu bar
on the top and enter mas2106 to go into the directory mas2106 where our
data file out.dat is. At Gnuplot’s prompt, type:

plot ’out.dat’
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The plot will appear on the screen. If you type

plot ’out.dat’ w l

where w l is the abbreviation of with lines, then the data points are hidden
and joined by a continuous line; similarly,

plot ’out.dat’ w p

means to plot with points and

plot ’out.dat’ w lp

means to plot with lines and points. You can also control the region which
is plotted; for example, by writing

plot [0:12][-0.5:0.5} ’out.dat’ w l

your data are plotted in the region 0 ≤ x ≤ 12, −0.5 ≤ y ≤ 0.5. Finally, to
exit Gnuplot type

quit
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Chapter 11

Numerical methods

Nonlinear equations are usually very difficult to solve analytically, and we
have to use numerical methods. The aim of this chapter is to introduce the
simplest method: Euler’s method.

11.1 Discretization of the equation

Consider the differential equation for the function x(t):

dx

dt
= f(t, x), (11.1)

where t is time and the right-hand-side function f is assigned. We want to
find the solution x(T ) at the time t = T , given the initial condition x(0) = x0

at time t = 0.

Our numerical approach is based on discretizing the time interval 0 ≤
t ≤ T into a large but finite number of sub-intervals defined by the points
t0 = 0, t1 = h, t2 = 2h, t3 = 3h, · · · , tN−1 = (N − 1)h, tN = Nh = T , where
h = T/N ≪ 1 is the time step. We call xn = x(tn) and fn = f(tn, xn).

The idea is to derive a recursion formula so that, starting from the
given initial condition x0, we can calculate x1 from x0, then x2 from x1, then
x3 from x2, and so on, until we have the final value xN which is the numeri-
cal approximate solution to the equation at the final time t = T . Clearly,
the smaller the time step h is, the more accurate our numerical solution will
be.

119
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11.2 Euler’s recursion formula

A simple recursion formula to move from xn to xn+1 can be constructed in
the following way. Integrate dx/dt = f between time tn and time tn+1:

∫ tn+1

tn

dx

dt
dt =

∫ tn+1

tn

f(t, x)dt, (11.2)

The definite integral at the left-hand-side can be evaluated exactly and we
have

xn+1 − xn =

∫ tn+1

tn

f(t, x)dt, (11.3)

The right-hand-side is the area under the curve f(t, x(t)) between tn and
tn+1. Since tn+1 − tn = h ≪ 1, this area is approximately equal to the area
of the rectangle of base h and height fn = f(tn, xn) (see Fig. 11.1), hence

xn+1 − xn ≈ hfn. (11.4)

x
n+1

xn

nt n+1
t

x

t

Figure 11.1: The pink area is the approximation to the true area, which is
indicated by the diagonal lines.

The resulting recursion formula is called Euler’s method:

xn+1 = xn + hfn. (11.5)
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Example 1:
Write a program to solve

dx

dt
= x − tx2,

with initial condition x(0) = 1 using Euler’s method and time step h = 0.01.
Plot the solution for 0 < t < 10 using Gnuplot.

Solution: To achieve the aim, we do the following:

1. The first task consists in finding the necessary recursion formula. In
this case application of Eq. 11.5 yields

xn+1 = xn + h(xn − tnx2

n).

Starting from the initial condition t0 = 0, x0 = 1, the successive values
of tn are: t0 = 0, t1 = h, t2 = 2h etc; the corresponding values of
xn are: x0 = 1.0, x1 = u0 + h(x0 − t0x

2
0), x2 = u1 + h(x1 − t1x

2
1),

x3 = u2 + h(x2 − t2x
2
2), etc.

2. The second task consists in writing, compiling and testing the following
Fortran program euler2.f90:

!**********************************************************

program euler2

! Aim: to solve dx/dt=x-t*x*x

implicit none

integer :: step,steps

real :: t,x,told,xold,fold,h,tfinal

! Output file

open(unit=7,file=’out.dat’)

! Get parameters from the screen

print*,’Enter initial time t’

read*,t

print*,’Enter initial value x’

read*,x

print*,’Enter final time t’

read*,tfinal

print*,’Enter number of time steps’
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read*,steps

h=tfinal/steps ! Time step

! Time loop

do step=1,steps

! Update old values

told=t

xold=x

! Evaluate RHS of equation at the old time

call get_f(told,xold,fold)

! Evolve t and x by one timestep

t=h*step

x=xold+h*fold

! Print values on the screen and on the output file

print*,t,x

write(unit=7,fmt="(2e12.4)") t,x

enddo ! Close time loop

! Finis

close(unit=7)

end program euler2

!**************************************************

subroutine get_f(t,x,f)

! Aim: to get RHS of equation

implicit none

real :: x,t,f

f=x-t*x*x

end subroutine get_f

!**************************************************

Note the following features:

(a) Only two values of x(t) are actually needed for time stepping: the
”new” value xn+1 and the ”old” value xn. Thus the program has
only two variables, x and xold. Think of x and xold as ”boxes”
which contain numbers. At the beginning the number x0 = 1
is put into the box x. Then the time loop starts. At the first
iteration (step = 1) what is in the box x (the number x0), is put
into the box xold; then x1 is calculated and put into the box x,
overwriting the previous content. At the second iteration (step =
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2) the number contained in the box x, which is now x1, is put
into the box xold (again, overwriting the previous content of the
box); then x2 is calculated and put into the box x (overwriting
the previous content). At each iteration the values of t and x are
written in the file out.dat. Each time step produces one row with
two numbers, t and x.

(b) The right-hand-side function f in defined in a subroutine rather
than in the main program. This simplifies the program and makes
it easier to change it to solve another differential equation.

(c) The initial values of t and x, the final time and the number of
time steps are input from the screen for convenience. The time
step h is defined as the final time divided by the number of time
steps.

3. The third task consists in actually running the program. We choose
initial condition t = 0, x = 1, input the final time t = 10, and
the total number of steps, 1000; this means that the time step is
h = 10/1000 = 0.01; the file out.dat will contain 1000 rows. When
the program has run, to make sure that the output is OK, we use an
editor (eg Notepad) to check that the file out.dat contains t and x, ar-
ranged in 2 columns and 1000 rows.

4. The fourth task consists in plotting the data contained in the file out.dat
using the plotting program Gnuplot. At Gnuplot’s prompt we can
simply type

plot ’out.dat’

The graph will appear on the screen. If we prefer to draw a line rather
than to mark the points, we type

plot ’out.dat’ w l

where w l means with line. A better way to proceed is to use Notepad
to create a small file called gnu to be loaded into Gnuplot; an example
is given below:
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#----------------------------------------------------------

# program gnu

# to run this program type

# gnuplot

# then at the prompt of gnuplot type

# load "gnu-euler2"

# Use the symbol # to blank out lines

# To avoid having a legenda which tells which files are plotted

#set nokey

# to make postscript file

set terminal postscript

set output "euler2.ps"

#to make a title

#set title "x vs t"

# to label the axes

set xlabel "t"

set ylabel "x"

plot "out.dat" with l

#----------------------------------------------------------

(note that the symbol hash denotes a comment for Gnuplot, in the
same way as we used exclamation marks in Fortran 90). This way to
proceed is useful is we want to use many plotting commands. In the
Gnuplot program above, the picture is saved in a postscript file to be
printed later (see Fig. 11.2), rather than put on the screen.

11.3 System of equations

It is very easy to generalise Euler’s method and solve two or more coupled
equations. Consider the system of equations for x(t) and y(t):

dx

dt
= f(x, y),

dy

dt
= g(x, y),
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Figure 11.2: Plot of x vs t produced by the Gnuplot program gnu.

where the functions f and g are prescribed and the initial conditions are
x(0) = x0 and y(0) = y0. Let tn = nh (n = 0, 1, 2, · · · ) where h is the time
step. Call xn, yn, fn and gn the values of xm y, f and g at each time step
tn. At the nth step we compute together

xn+1 = xn + hfn, yn+1 = yn + hgn,

Example 2:
Compute the solution of the following system of equations

dx
dt

= x − y − x(x2 + y2), (11.6)
dy
dt

= x + y − y(x2 + y2), (11.7)

with initial condition x(0) = y(0) = 0.1 at t = 0, using time step h = 0.01,
in the time interval 0 < t < 10. Make two graphs of the solution: the first
graph to show x and y versus t, the second graph to show y versus x, State
the nature of the solution.

Solution: We modify the existing program euler2.f90 and write the following
new program euler3.f90. Note that the right hand sides of the equations are
given in a single subroutine for simplicity.
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!**********************************************************

program euler3

! Aim: To solve

! dx/dt=f=x-y-x*(x*x-y*y)

! dy/dt=g=x+y-y*(x*x+y*y)

implicit none

integer :: n,nn

real :: t,told,x,xold,y,yold,fold,gold,h,tt

! Open a file in which to save the results

open(unit=7,file=’out.dat’)

! Initial condition

t=0.0

x=0.1

y=0.1

! Input parameters

h=0.01 ! Time step

nn=10000 ! Number of time steps

! Time Loop

do n=1,nn

! Update old values

told=t

xold=x

yold=y

! Evaluate the RHS of both equations

call get_rhs(told,xold,yold,fold,gold)

! Evolve t,x and y by one timestep

t=h*n

x=xold+h*fold

y=yold+h*gold

! Output to file

write(unit=7,fmt="(3e12.4)") t,x,y

enddo ! Close time loop
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! Tidy up

close(unit=7)

end program euler3

!*********************************************

subroutine get_rhs(t,x,y,f,g)

! Calculate the RHS of both equations

implicit none

real :: t,x,y,f,g

f=x-y-x*(x*x+y*y)

g=x+y-y*(x*x+y*y)

end subroutine get_rhs

!*********************************************

The output file out.dat contains the solution in the form of three columns
t, x, y. The data can be plotted using Gnuplot. Since there are three vari-
ables, x, y, z, we can plot them in various ways:

To plot x (the second column) versus t (the first column) we use the command
using 1:2, or the abbreviation u 1:2, which means using the first and second
column:

plot ’out.dat’ u 1:2 w l

where w l means with line (to draw a line between the data rather than mark-
ing the points).

To plot y (the third column) versus t (the first column) we use the command
u 1:3.

To plot y (the third column) versus x (the second column) we use the com-
mand u 2:3.

Finally, we can also make a 3-dim graph: type

splot ’out.dat’ w l

We can grab the picture with the prompt and rotate it to look at it from any
direction.
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Figure 11.3: Graph of the solution x vs t and y vs t of Eq. 11.7 computed
by the Fortran program euler3.f90 and plotted using the Gnuplot program
gnu-euler3a.

As said before, it is often convenient to collect the Gnuplot commands in a
small file. The following files gnu-euler3a and gnu-euler3b have been used
to make Fig. 11.3 and Fig. 11.4 respectively. The last figure shows that the
nature of the solution is a limit cycle. Look carefully at gnu-euler3a to see
how to plot two curves in the same graph.

#----------------------------------------------------------

# program gnu-euler3a

# to run this program type

# gnuplot

# then at the prompt of gnuplot type

# load "gnu-euler3a"

# Use the symbol # to blank out lines

# To avoid having a legenda which tells which files are plotted

#set nokey

# to make postscript file
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Figure 11.4: Graph of the solution x vs y of Eq. 11.7 computed by the Fortran
program euler3.f90 and plotted using the Gnuplot program gnu-euler3b.

set terminal postscript color

set output "euler3a.ps"

set size square

set size 0.5,0.5

#to make a title

#set title "x and y vs t"

# to label the axes

set xlabel "t"

set ylabel "x and y"

plot "out.dat" u 1:2 with l,\

"out.dat" u 1:3 w l

#----------------------------------------------------------

#----------------------------------------------------------

# program gnu-euler3b

# to run this program type
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# gnuplot

# then at the prompt of gnuplot type

# load "gnu-euler3b"

# Use the symbol # to blank out lines

# To avoid having a legenda which tells which files are plotted

set nokey

# to make postscript file

set terminal postscript color

set output "euler3b.ps"

set size square

set size 0.5,0.5

#to make a title

#set title "y vs x"

# to label the axes

set xlabel "x"

set ylabel "y"

plot "out.dat" u 2:3 with l

#----------------------------------------------------------

11.4 Accuracy

Consider the equation x′ = f(x). From Taylor’s Theorem, the value of the
function x at the point tn+1 = tn + h is:

x(tn + h) = x(tn) + x′(tn)h +
1

2!
x′′(ξ)h2,

where tn ≤ ξ ≤ tn +h. Since x satisfies the differential equation x′ = f where
x′ = dx/dt, then

x(tn + h) = x(tn) + f(xn, tn)h +
1

2!
x′′(ξ)h2,

which is

xn+1 = xn + fnh +
1

2!
x′′(ξ)h2 = xn + fnh + O(h2),
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Compare the above result against the Euler method:

xn+1 = xn + fnh,

It is apparent that the Euler method has a local error (the measure of the
accuracy of a single step) which is proportional to h2.

In general, a recursion formula to solve a differential equation is said to
be of order k if the local error is O(hk+1). We conclude that the order of the
Euler method is one.
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Chapter 12

Solutions

1. Solution

program hello2

! Greet the codemaster

print*,’Good morning Anna’

end program

2. Solution

program trigo

!

! Input x and compute sin(x)+cos(x)

!

implicit none

real::x,y

! Request an x value

print *,’Enter x’

read *,x

! Calculate the function and display the result

y=sin(x)+cos(x)

print *,y

end program trigo

3. Solution

133
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program irs

!

! Calculate income tax payable for a given income

! with the tax brackets:

! 0 to 17850 at 15%

! 17850 to 43150 at 28%

!

implicit none

real :: income,tax

! Ask the user their income

print*,’Enter income: ’

read*,income

! Calculate tax or suggest further action

if (income<0.0) then

print*,’income cannot be negative ’

else if (income==0.0) then

tax=0.0

print *,’ no income, no tax’

else if (income>0.0.and.income<=17850) then

tax=0.15*income

print *,’low tax bracket: tax =’,tax

else if (income>17850.and.income<=43150) then

tax=0.15*income+0.28*(income-17850)

print *,’high tax bracket: tax =’,tax

else if (income>43150) then

print *,’ hire an accountant’

end if

end program irs

4. Solution

program divide

!

! Test if a is number is divisible by another number

!

implicit none
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integer :: n,m,k

print*,’ Enter first number’

read*,n

print*,’ Enter second number’

read*,m

! Calculate the remainder on division (n modulo m)

k=mod(n,m)

! Test for divisibility

if (k==0) then

print*,n,’ can be divided by ’,m

end if

end program divide

5. Solution

program out2

! Calculate something and write the number to a file

implicit none

real :: x

open(unit=7,file=’out2.dat’)

! Calculate and output it to unit 7

x=4.0*atan(1.0)

write(unit=7,fmt="(e10.2)") x

close(unit=7)

end program out2

~

6. Solution

The program euler4.f9 is listed below. It was run with u(0) = 0.1,
tt = 10, nn = 1000, for two values of α: α = 1 and α = 2. The
solutions corresponding to these two values of α are plotted below.
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program euler4

!

! To find the solution of du/dt=alpha*u-u*u

! at given final time final, given initial

! condition u(0) and given number of time

! steps nn

!

implicit none

integer :: n,nn

real :: t,u,told,uold,fold,h,tt,alpha

! Open a file to which we can write our results

open(unit=7,file=’out.dat’)

! Get run parameters from the user

print*,’Enter initial value u(0)’

read*,u

print*,’Enter final time t’

read*,tt

print*,’Enter number of time steps nn’

read*,nn

print*,’Enter alpha’

read*,alpha
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h=tt/nn

t=0.0

! Time loop

do n=1,nn

! Update ’old’ values from ’last’ step

told=t

uold=u

! Evaluate RHS of differential equation at told

call get_f(alpha,uold,fold)

! Evolve t and u by one timestep

t=h*n

u=uold+h*fold

! Print some debug information and write the

! result to the file for plotting

print*,t,u

write(unit=7,fmt="(2e12.4)") t,u

enddo

! Finished with the output file

close(unit=7)

end program

!************************************************

subroutine get_f(alphau,f)

!

! Calculate right handside (f) of differential

! equation at a given time t and u

!

implicit none

real :: u,alpha,f

f=alpha*u-u*u

end subroutine

!************************************************
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