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To quantify the effects of interactions between various microstructure attributes on fatigue
life in the high cycle fatigue (HCF) regime, we have proposed a new microstructure-sensi-
tive extreme value statistical framework. This framework couples the extreme value distri-
butions of certain fatigue indicator parameters (FIPs) or response functions to the
correlated microstructure attributes that exist at the extreme value locations of these FIPs.
We demonstrate the application of this statistical framework to investigate the microstruc-
ture-sensitive fatigue response of the PM Ni-base superalloy IN100 at 650 �C. To accom-
plish this task, we construct statistical volume elements (SVEs) used to compute the
local response for 200 instantiations of IN100. These SVEs are constructed and simulated
via the finite element method with crystal plasticity constitutive relations. The results of
the simulations are used to explore extreme value statistics of the FIPs for these micro-
structures. The extreme value distributions of the Fatemi–Socie FIP are fit with high confi-
dence by the Gumbel distribution and are defined in a representative nature with as few as
25 simulated microstructure instantiations (i.e., SVEs). The extreme value marked correla-
tion functions of the apparent Schmid factor based on the geometry of the slip systems rel-
ative to the loading direction indicate that cube slip may be important to fatigue crack
formation in this material system. This supports previous experimental observations of
fatigue crack formation and microstructurally small fatigue crack growth along cube planes
in IN100 in grains that are unfavorably oriented for octahedral slip at elevated
temperatures.

Published by Elsevier Ltd.
1. Introduction

Scatter in the high cycle fatigue (HCF) life of specimens or components depends on the extreme value probabilities of hav-
ing existing hot spots or regions with increased local driving forces for fatigue damage formation (i.e., fatigue crack forma-
tion and microstructurally small crack propagation). Specifically, the probability of fatigue damage formation in a particular
volume of material is established by the extreme value (i.e., rare event) probability of a particular existing combination of
microstructure attributes that couple with the applied stress state such that fatigue cracks form and propagate. Coupling
of microstructure attributes with loading conditions and the resulting fatigue response is the main source of both scatter
and size effects in fatigue in the absence of other random environmental factors (e.g., temperature, atmosphere). As such,
we commonly observe scatter in the fatigue response between multiple material volumes (or components) even when they
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are fabricated from the same batch of processed material and tested in nearly identical environments. Although environmen-
tal effects can also contribute to the probability of surface to subsurface transition of crack formation, they are not consid-
ered in this particular work. The main emphasis of this work is on developing a consistent methodology to characterize
correlations of microstructure attributes that exist with high probability relative to the nominal microstructure in regions
where the fatigue driving forces are maximum (i.e., extreme value).

The dependence of fatigue damage formation on various microstructure attributes has been investigated extensively; sev-
eral reviews have been published on the subject (Suresh, 1998; McDowell, 1996). For example, second phase inclusions or
pores, large grains that are favorably oriented for slip, or grains adjacent to grains that are unfavorably oriented for slip have
each been linked to fatigue damage formation in several metallic polycrystalline material systems. Identifying the underly-
ing microstructure attributes that drive fatigue damage formation in material systems with multiple phases, complex pro-
cessing histories, etc., however, is often complicated by the fact that multiple interacting microstructure features couple with
the imposed cyclic plastic deformation and stress state to increase the local driving forces for fatigue damage formation. In
most cases, this dependence cannot merely be deduced from direct quantitative image analysis of various microstructure
attributes. Assessment of the coupling of microstructure attributes with the driving forces for fatigue damage formation re-
quires a combination of experiments and computational simulation, along with a connective framework based on extreme
value statistics.

In general, fatigue damage formation in polycrystalline metallic materials is primarily driven by irreversible slip on the
scale of the microstructure. In addition, interacting microstructure attributes (e.g., grains, phases, inclusions, and voids) can
increase local slip and associated driving forces for fatigue damage at the microstructure scale. In HCF, where stress ampli-
tudes remain below the macroscopic flow stress and cyclic plasticity is quite heterogeneous, fatigue lives are dominated by
fatigue damage formation rather than by physically small or large crack propagation (cf. McDowell, 1997, 1999; Miller, 1991,
1993). Accordingly, the emphasis is placed on cyclic plasticity-based fatigue indicator parameters (FIPs) that reflect proba-
bility of microstructure scale crack formation and microstructurally small crack growth.

For most applications, large numbers of experiments are necessary to meaningfully quantify any variability in fatigue life
and to identify any change in the mechanism of fatigue damage formation as a function of applied loading conditions for a
given specimen size. Typically, insufficient experimental data are available to support this quantification. Moreover, the
mathematical form of the tails of the probability distributions for the driving forces for fatigue damage formation, such as
the local distributions of stress/strain, are not well characterized; moreover, the dependence of the character of those tails
on single and/or interacting microstructure attributes are not well understood.

In this work, we are primarily concerned with how the crystallographic attributes of a polycrystalline microstructure (e.g.,
grain orientation, disorientation, size, and shape distributions) affect local driving forces for fatigue crack formation and
early growth in HCF. In general, plastic strain inhomogeneity at the grain level in polycrystals subjected to cyclic loading
is directly linked to crystallographic texture. Winter et al. (1981) observed that plasticity occurs preferentially in grains hav-
ing slip systems with high Schmid factors, with slip localized within slip bands. Using crystal plasticity simulations to cal-
culate distributions of cyclic slip in polycrystals, Bennett and McDowell (2003) demonstrated that distributions of slip could
be quite heterogeneous in HCF. This heterogeneity is directly related to complex interactions between grains of differing ori-
entations. Sauzay and Jourdan (2006) explored these types of interactions between grains by computationally characterizing
the distributions of elastic stress fields around grain clusters at the free surface using elastic FE simulations. They predicted
that grain interactions could affect the local resolved shear stress by as much as 18% in copper and austenitic stainless steels
depending on the local orientations of the neighboring grains. Inhomogeneity of elastic stress fields corresponds to localiza-
tion of plastic strain in regions of stress concentration associated with the jump of the elastic stiffness across grain bound-
aries and compatibility requirements of the polycrystal. Specifically, we will consider the effects of local crystallography (e.g.,
phase, grain orientation, grain disorientation, grain topology, etc.) on slip in a powder metallurgy (PM) Ni-base superalloy,
IN100.

Ni-base superalloys are predominantly used in aircraft gas turbine engines due to their high strength and creep resistance
at high temperatures that is conferred by coherent c0 Ni3Al precipitates of L12 face-centered cubic (fcc) structure. These pre-
cipitates are dispersed in the c austenitic Ni solid solution matrix of fcc crystal structure and provide excellent resistance to
slip. Commonly, fatigue damage formation in polycrystalline superalloys has been linked to the existence of large pores or
non-metallic inclusions introduced during processing. Often, inclusions debond from the matrix or crack during primary
forming processes. During loading, the stress concentrations at inclusions/pores often lead to the formation of fatigue cracks
(Hyzak and Bernstein, 1982; Goto and Knowles, 1998; Pang and Reed, 2003). However, as processing techniques improve,
cleaner Ni-base superalloys are being developed that have lower number density of inclusions/pores; consequently, fatigue
cracks are increasingly observed to form along crystallographic planes. For example, Jha et al. (2005) noted that subsurface
fatigue crack formation occurs in individual grains absent of any voids/inclusions in René 88DT, particularly at lower stress
amplitudes (i.e., in the HCF regime). In this case, the nucleation region associated with the size of the crystallographic facets
at the sites of fatigue crack formation was observed to be much larger than the average grain size. This suggests that cracks
tend to form in larger grains. In the same alloy, Shyam et al. (2004) noted that cracks form predominantly in larger grains or
at inclusions near large grains. Additionally in René 88DT, Miao et al. (2007) also observed that most critical (i.e., life-lim-
iting) fatigue cracks in the HCF/VHCF regime initiate crystallographically away from the surface. The grains in which these
cracks form were observed to be large in size relative to the average grain size. Here these grains were associated with higher
Schmid factors, indicating they are oriented favorably for slip. Others have shown that slip bands associated with shearing of



374 C.P. Przybyla, D.L. McDowell / International Journal of Plasticity 26 (2010) 372–394
the second phase c0 precipitates and subsequent fatigue damage formation have been observed to be more common in coar-
ser grained superalloys, while deformation in the smaller grains has been observed to be more homogeneous (Antolovich
and Jayaraman, 1983; Lerch et al., 1984).

The analysis of the slip character in Ni-base superalloys has provided some insight into fatigue damage formation in these
materials systems. As mentioned previously, the c austenitic phase in these Ni-base superalloys has an fcc crystalline lattice.
As typical in fcc materials, slip is expected on the 12 octahedral {1 1 1}h1 1 0i slip systems. However, contributions of an
additional six cube {1 0 0}h1 1 0i slip systems have been observed in the c phase in many Ni-base superalloys at certain ele-
vated temperatures in the form of macroscopic slip traces (Bettge and Österle, 1999). Although limited cube slip is possible
in the Ll2 ordered c0 phase, it is not commonly considered as likely to occur in the austenitic c phase. Through detailed inves-
tigation using transmission electron microscopy (TEM), Bettge and Österle (Bettge and Österle, 1999), have postulated that
this cube slip along {1 0 0} planes is actually due to the ‘‘zig-zag” cross slip of screw dislocations on {1 1 1} planes when
blocked at the c/c0 interfaces, as depicted in Fig. 1. As these dislocation migrate within the channels between c0 precipitates,
they create macroscopic {1 0 0} slip traces.

Cube slip has been observed in several single crystal Ni-base superalloys over a wide range of temperatures. For example,
Miner et al. (1986) investigated slip traces in single crystal of René N4 at room temperature, 650 �C, 760 �C, 870 �C, and
980 �C. They observed slip traces along {1 0 0} planes for all the temperatures considered when the crystals were oriented
with the {1 1 1} slip planes perpendicular to the loading direction. Additionally, at increasingly higher temperatures, {1 0 0}
slip traces were observed with increasing frequency in the crystals oriented in directions other than h1 1 1i relative to the
loading direction. Effectively, cube slip accommodates deformation for grains in ‘‘hard” crystallographic orientations. At
870 �C {1 1 1} slip traces were only observed for crystals oriented near [0 0 1] and [0 1 1] and all others were of {1 0 0} char-
acter. Bettge and Österle (1999) observed ‘‘zig-zag” cube slip in single crystals of SC16 oriented with the {1 1 1} slip planes
perpendicular to the loading direction. Westbrooke et al. (2005) observed slip bands traces along {1 0 0} planes in single
crystals of a Pratt and Whitney alloy for a crystal with unfavorable orientation relative to slip on {1 1 1} planes and octahe-
dral slip for a crystal oriented for loading in the ½1 �10� direction. They also observed slip traces for the crystal tested in the
[1 0 0] direction that were neither of {1 1 1} or {1 0 0} character. The morphology and distribution of c0 appears to dictate the
character of slip in these types of superalloys. For example, Nitz et al. (1998) examined slip in single crystals of NIMONIC 105
at temperatures from 10 �C to 877 �C via TEM analysis and only observed octahedral slip. We note that in this particular
material the c0 precipitates are small relative to the other materials discussed here (�17 nm) and are spherical in their mor-
phology whereas in most single crystals the c0 precipitates are an order of magnitude larger and tend to have a cuboidal mor-
phology. The slip character of these single crystals is summarized in Table 1.

Various slip modes have also been observed in fatigue tests of various polycrystalline Ni-base superalloys. The slip behav-
ior of various polycrystalline alloys is summarized in Table 2. Generally in these alloys fatigue cracking propagates along
{1 1 1} planes at lower homologous temperatures and along {1 0 0} planes at moderate temperatures (i.e., between 500 �C
and 800 �C). We point out that this is what was observed in fatigue tests of IN100 (Li et al., 2004). In contrast, when the
c0 precipitates are more spherical and smaller in size and have lower volume fraction, slip and cracking along {1 0 0} planes
has not been observed, such as in René 88DT (Miao et al., 2008).

Statistical treatments of fatigue have primarily been based on large numbers of experiments. Typically, one observes a
wide range of scatter for a given component in the number of cycles to failure, particularly in HCF. For example, in Fig. 2
we can see significant variability in the overall fatigue lives in IN100 across a range of applied stress magnitudes (Jha
et al., 2008). The variability of fatigue life is assessed by extensive experimentation to obtain a statistically significant sam-
ple. Designers then use these data to predict component life with an acceptable level of risk. Such data collection requires
significant time and resources and does not necessarily provide understanding of the mechanism(s) involved in dictating
variability. In addition, the resulting predictions often change with sample size. The problem is further complicated when
multiple mechanisms of damage formation are observed (Jha et al., 2005, 2007, 2008). In these cases, multiple competing
mechanisms of fatigue damage formation and fatigue crack growth make it difficult to accurately predict fatigue life because
different mechanisms operate at different stress magnitudes and often microstructure attributes vary spatially in the mate-
rial. For example, multiple modes of failure are evident in the cumulative probability plot in Fig. 2(b) at the stress magnitude
Fig. 1. Schematic of zig-zag {1 1 1} slip in the {1 0 0} channels. Thick arrows indicate the directions of the dislocation segments. The [0 0 1] direction is the
intersection line of the {1 1 1} planes and is parallel to the Burgers vector of the dislocation loop ~b ¼ 1=2½001�. Figure from Bettge and Österle (1999).
Reprinted with permission.



Table 1
The slip character of several different single crystal Ni-base superalloys.

Material Volume
fraction c0

Average size
of c0 (nm)

c0 shape Temp. (�C) Strain
rate (s�1)

Slip character Ref.

René N4 0.65 250 Cuboidal RT, 650, 760,
870, 980

1–
2.5 � 10�5

[1 1 1] oriented crystals exhibited
{1 0 0} slip traces at all temperatures
and range of orientations exhibiting
{1 0 0} slip traces (instead of {1 1 1})
increased with temperature

Miner et al. (1986)

NIMONIC 105 0.47 17.2 Spherical 10–877 7 � 10�5,
1.4 � 10�4

No observed {1 0 0} slip traces,
only {1 1 1} type

Nitz et al. (1998)

SC16 0.35, 0.05 450, 80 Cuboidal 650, 750, 850 10�5 Observed slip traces on {1 0 0}
planes at 650 �C and 750 �C
for h1 1 1i oriented crystals

Bettge and Österle
(1999)

Heat treated
PW alloy

0.51 500 Cuboidal RT 10�5 [1 1 0] oriented crystals exhibited
{1 1 1} slip traces, [1 1 1] oriented
crystal exhibited {1 0 0} slip traces
and [1 0 0] oriented crystals
exhibited neither

Westbrooke
et al. (2005)
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of 1150 MPa. In this case, the authors assert that the bi-modal nature of the failure probability relates to the fact that there
exist two different competing failure mechanisms (Jha et al., 2008).

Processes of HCF crack formation and early growth depend on a few key attributes (or sets of attributes) such as the larg-
est inclusion or void within an entire population of such features. There is significant scatter in experimentally measured
HCF life because attributes that govern failure lie within the tails of joint distributions of attributes and responses, necessi-
tating consideration of extreme value statistics. For example, if the key feature of the fatigue life in a particular material is
determined by the largest inclusion of a certain type, an understanding of the distribution of inclusion sizes in the critically
stressed regions would be essential to modeling the HCF life for that particular material.

The problem of the largest inclusion size in clean steels has been considered by several different workers and is summa-
rized in a review by Atkinson and Shi (2003). In this case, different models exist that predict the fatigue resistance of these
steels based on the largest inclusion size. Specifically, these models predict the maximum inclusion size using an assumed
log–normal distribution, statistics based on the extreme value distribution function of Gumbel (1958), or a statistical method
based on the Generalized Pareto Distribution (GPD). All of these methods, however, assume failure based on a single attri-
bute (e.g., inclusion size) and do not consider how interacting attributes affect the damage processes of interest. For example,
in many cases the driving forces for damage formation around an inclusion might depend as much on the orientation of the
grains that affect the local slip processes in the matrix around an inclusion as on the size of the inclusion itself. We also argue
that a framework that only considers purely geometric attributes such as inclusion size, grain size, or grain orientation is in
general insufficient to quantify the scatter in HCF life. The additional attribute(s) of material response (e.g., stress, strain,
plastic strain and other driving force parameters) coupled with geometric attributes of microstructure facilitate pursuit of
joint statistics of extreme value type that are relevant to minimum fatigue life design.
Table 2
The slip character of several different polycrystalline Ni-base superalloys. Because in many cases the volume fraction of the c0 precipitates was not reported, we
list the combined weight % of Al + Ti which are the limiting components for the formation of the c0 precipitates.

Material Grain size
(lm)

Wt% Al + Ti Volume
fraction c0

Average size
of c0 (nm)

c0 shape Temp. (�C) Slip character Ref.

MARM 004 nr 10.55* 0.5 �1000 Cuboidal RT, 600 Facets on {1 1 1} at RT and facets
on {1 0 0} at 600 �C

Vincent
et al. (1981)

NIMONIC AP1 40–50 7.4 nr 500 Cuboidal RT Most cracking on {1 1 1},
but cracking on {1 0 0} observed
when slip is limited to single
grains

King (1981)

Udmit 700 nr 7.5 nr 200 Cuboidal RT, 850 Crack growth observed only on
{1 0 0} planes at both
RT and 850 �C

Sadananda and
Shahinian (1981)

IN100 30 10.2 0.6** �1000 Cuboidal RT, 538 At RT cracks form on {1 1 1}
and at 538 �C cracks form
on {1 0 0}

Li et al. (2004)

René 88DT 26 5.8 nr 100–200 Spherical 593 Cracks form and propagate
along {1 1 1} planes

Miao et al. (2008)

* For this material we report the combined wt% of Al + Nb + Ta which are in this case the limiting components for the formation of the c0 precipitates.
** Although this value was not reported in the paper it was given by the authors who wrote this paper. Values not reported in the respective references are
listed as ‘‘nr” for not reported.



Fig. 2. The fatigue variability of IN100 from physical fatigue testing at various stress magnitudes: (a) mean versus life-limiting behavior and (b) cumulative
distribution functions for tests at different stress magnitudes. Figure from Jha et al. (2008). Reprinted with permission.
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In the present work, we propose a new statistical framework that links extreme value probabilities of various response
parameters to the correlated microstructure attributes associated with the extreme value response. Here we exercise this
statistical framework using computational simulations that estimate the cyclic deformation response in a Ni-base superalloy
IN100 at 650 �C using a crystal plasticity formulation implemented using the finite element (FEM) method. Finally, we com-
pare our results to a limited number of fatigue experiments available in the literature for this particular material system.

2. Methodology

2.1. Extreme value marked radial microstructure correlation functions

The objective is to develop a statistical framework that is able to quantify the coupling of the extreme values of certain
FIPs to the key microstructure attributes that are associated with these extreme value response parameters. To achieve this
objective we postulate that our proposed statistical framework must meet three primary requirements:

1. It must contain information regarding both the distributions of microstructure attributes and potential interactions or
correlations between multiple microstructure attributes.

2. It must link the distributions of microstructure attributes and correlations between various microstructure attributes to
distributions of local response parameters (e.g., FIPs).

3. It must be able to address the extreme value nature of fatigue crack formation and early growth scenarios.

We propose a two component statistical framework to satisfy these requirements. Given a spatial window X, we define
the probability distribution of the extreme value response parameter a as Fex(a|X), which is associated with the probability
that the response parameter of value a is the extreme value for a sampled statistical volume element of microstructure X.
The extreme value response parameter could be defined by a number of different responses such highest associated stress,
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strain, or plastic strain magnitude averaged over grain sized volumes, for example. This form of the extreme value distribu-
tion follows the ideas of extreme value (or importance) sampling from the classical extreme value statistics of Gumbel
(Gumbel, 1958; Castillo, 1988). The basic procedure to construct such a distribution is to sample the extreme/minimum va-
lue parameter of interest across a number of samples in time and/or space. The classical example of Gumbel (1958) is to gen-
erate a distribution of maximum river depths by determining the maximum river depth over a defined stretch of river each
year for a number of years. Similarly, in this work we consider the distribution of the maximum response parameters by
sampling the maximum response in a number of equal volumes sampled from the bulk material (i.e., entire microstructure
ensemble).

To also characterize the statistical influence that certain interacting microstructure attributes (e.g., grain size, grain ori-
entation, grain misorientation, phase) have on the extreme value distributions of response, we define a new extreme value
marked correlation function. For example, we define the extreme value marked radial correlation function Rmax(a)

(b, b
0
|r, X)dr as being associated with the probability of finding of a sphere centered at the microstructure attribute b coin-

cident to the location of the maximum response parameter a in the microstructure window X, with microstructure attribute
b0 at a distance within r to r + dr from b in any direction. Similar extreme value marked correlation functions could be con-
structed for n-point correlation functions, nearest neighbor distribution functions, lineal path correlation functions, etc.
Although this newly introduced extreme value marked correlation function is based on the notion of the marked correlation
functions introduced by Pyrz (1994), this new construct is fundamentally unique in its framing of extreme value statistics. In
this work, we use the form of the extreme value marked radial correlation function as it was just introduced. We note that
radial correlation functions do not contain information regarding anisotropy in the morphology of the specific microstruc-
ture attributes considered. These radial correlation functions, however, do describe the correlation lengths between the spe-
cific microstructure attributes being considered without regard to directionality, which is of primary interest in this work.

These coupled statistical parameters capture both the extreme value response of the microstructure as represented by the
response parameter a and the biased correlations of microstructure attributes between b and b0 in the neighborhood of the
observed extreme values of a in a microstructure window X. In this way, spatial correlations are identified between micro-
structure attributes that have a high probability of existing in the neighborhood of an extreme value response parameter.
This sampling is performed over the microstructure window defined by X and is expected to depend on the size of X. Multi-
ple instantiations of X are required to effectively characterize both Fex(a|X) and Rmax(a)(b, b0|r, X) to build up the tail of the
probability distribution corresponding to extreme value response neighborhoods. The present framework facilitates compar-
ison among multiple microstructures for a given material or comparison of significant microstructure attributed being con-
sidered in the sampling different materials which can support materials design.

Constructing the extreme value distribution with the corresponding extreme value marked correlation function requires
a significant number of simulations/experiments if they are to be considered statistically meaningful. This can require exten-
sive processing time for both simulations and data analysis depending on the complexity of the models being analyzed. The
number of samples required depends on the response parameter considered and material being analyzed. Analogous exper-
imental data are not typically available and are very expensive to obtain. Typical fatigue experiments will not provide en-
ough information to construct these coupled distribution functions because such experiments consist of only a few data
points at each stress/strain amplitude considered. In addition, experimentally, fatigue hot spots are identified after failure
and characterization of the sites of fatigue damage formation and their neighborhoods is very cumbersome and typically re-
quires destructive sectioning. Thus, although this proposed framework is general in its application to experiments and/or
simulations, we envision that it will be much more practically applied to simulations that are substantiated with limited
experimentation.

2.2. Simulation strategy

To exercise the foregoing extreme value statistical framework for polycrystalline Ni-base superalloys, we choose a strat-
egy that estimates the proposed statistical parameters via the simulation of multiple microstructure instantiations. Specif-
ically, we examine the influence of polycrystalline microstructure on probability of crystallographic fatigue crack formation
in the Ni-base superalloy IN100. We recognize that fatigue damage formation in this particular material system primarily
relates to the presence of non-metallic inclusions and/or pores. However, we have noted that Ni-base superalloys have been
developed with much smaller populations of these types of inclusions/voids that do fail predominantly crystallographically
(e.g., Miao et al., 2008). Thus, in this work we are exploring how this variant of IN100 would fail crystallographically in the
absence of non-metallic inclusions or voids. In addition, the improved understanding of extreme value behavior of the ori-
entation dependent slip processes in IN100 developed here can later be coupled with the existence of inclusions/voids to
better current predictive models of fatigue crack formation in this material system. To accomplish this objective, digital rep-
resentations of microstructures are simulated via the FE package ABAQUS (2007) coupled with a microstructure-sensitive
crystal plasticity model for IN100 (Shenoy et al., 2007, 2008).

We briefly describe the crystal plasticity model for IN100. Generally superalloys are more complex to model because of
their tension–compression asymmetry and the non-Schmid characteristics of the Ni3Al phase due to dislocation core spread-
ing effects. The grain size of the primary c phase along with the size and spacing of the coherent c0 precipitates can greatly
affect the material response of these material systems. For example, dislocation mechanisms change from precipitate shear-
ing to bypassing by Orowan looping depending on the spacing, size and volume fraction of the c0 precipitates, as well as the
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amplitude of applied strain. In this model (Shenoy et al., 2007, 2008), the precipitates are not explicitly modeled, but the
influence of primary, secondary and tertiary c0 precipitates are included through certain internal state variables. Also incor-
porated in the model are the average effect of the grain size on the constitutive response and the dependence of the flow
stress on crystallographic orientation. Shenoy et al. (2007, 2008) consider both the standard 12 octahedral h1 1 0i{1 1 1} slip
systems and six cube slip systems {1 0 0}h1 1 0i. As previously mentioned, the cube slip systems describe ‘‘zig-zag” octahe-
dral slip that has been observed at the c–c0 interface in the c matrix and cube slip that occurs in c0 precipitates at higher
homologous temperatures for crystals in ‘‘hard” orientations for octahedral slip. This particular model has been calibrated
for IN100 at 650 �C. Appendix A lists the constitutive model equations and parameters relevant to response at 650 �C; more
details regarding definition of various terms can be found in Shenoy et al. (2007, 2008).

2.3. Digital microstructure models

Using a crystal plasticity formulation allows these digital microstructure volumes to be statistical volume elements
(SVEs) for local plasticity response (a key driving force for fatigue damage formation). Each statistical volume element for
a desired response (i.e., grain scale plasticity) is designed to be large enough such that the response parameter of interest
at a particular location is unaffected by statistical variations in the microstructure at distances on the order of the size of
the volume (i.e., correlation length is less than size of SVE); however, the volume is not so large that it contains a statistically
representative set of responses for that particular response parameter. This is in contrast to a representative volume element
(RVE) that is defined such that the distribution of local response or effective response of the volume will not change based on
where the RVE is sampled from the microstructure ensemble (i.e., bulk material), or if it is further increased in size. In some
cases, information obtained from multiple SVEs can constitute a RVE level characterization. We note, however, that it is
sometimes the case that for a particular response a RVE of reasonable size is unattainable. This is particularly true when try-
ing to capture extreme value distributions of microstructure response that affect rare event damage formation and growth.
This implies that complete characterization of the tail of the probability distribution function (PDF) for fatigue response re-
quires a very large RVE.

In the present case, we seek to simulate multiple SVEs of sufficient size such that the lower order moments of the cyclic
plasticity response on the scale of the grains are unaffected by further increasing the volume of the SVE. Of course, the higher
order moments affect the tail of the PDF and the RVE size for invariance of these moments would be quite large, in general.
We also desire that the SVE be suitably large to serve as a RVE in terms of the overall effective (i.e., macroscopic) elastic/plas-
tic response. In other words, we want the stress–strain response taken from any microstructure instantiation to be represen-
tative of any other. The RVE for this effective response is insensitive to the higher order moments of the slip distribution, and
is not the same as a RVE for the extreme value distribution of FIPs. This construct follows the same ideas behind SERVEs as
defined by Swaminathan and Ghosh (Swaminathan et al., 2006; Swaminathan and Ghosh, 2006). Being able to simulate vari-
ations in the local response via these types of SVEs enables us to computationally explore how microstructure heterogeneity
affects fatigue variability.

A Voronoi tessellation is a mathematical construct that describes a space partitioned around predefined centers such that
all points closer to a given center than any other is associated with that center. In this manner, the space is divided up into a
set of space filling convex polyhedral. Voronoi tessellations have been used in many different applications and the geomet-
rical concept behind this construction is well defined in the literature (Aurenhammer, 1991). Fast Voronoi generation algo-
rithms are readily available (Barber and Huhdanpaa, 2003). Gross and Li (2002) evaluated Voronoi tessellations based on
structure, topology and statistics relative to typical polycrystalline materials and observed that both topology and various
statistical properties do not agree well with those measured experimentally. They suggest that more realistic Voronoi tes-
sellated models for polycrystalline materials can be generated using optimization methods to randomly perturb the cen-
troids of the Voronoi tessellated cells to match certain statistical distributions measured from actual material systems
like grain size, grain volume, grain boundary length, etc. It was also suggested that optimization methods could be used
to match various texture measurements such as orientation or misorientation/disorientation (cf. Randle, 2003). Modifying
random Voronoi tessellations to match more realistic distributions of grain size has also been performed earlier by others
(Barbe et al., 2001a,b) to create RVEs for FE simulations. Recently, Zhang et al. (2006, 2007) used modified Voronoi tessel-
lations that were optimized with a simulated annealing algorithm to fit experimentally characterized statistics of orienta-
tion, disorientation, and phase volume fraction in multiphase Ti–6Al–4V to construct FE models for crystal plasticity
simulations. Additionally, Shenoy et al. (2007) constructed digital microstructure instantiations for IN100 using the same
methods. Similar algorithms are used here to fit distributions of grain size, orientation and disorientation to construct SVEs
for IN100. A SVE generated for IN100 along with an imposed voxellated mesh can be seen in Fig. 3. The target and optimized
distributions for the grain volume normalized by the target average grain volume are given in Fig. 4.

The microstructures simulated in this work are constructed via a C++ computer program that generates these statistical
volume elements of realistic polycrystalline microstructures. The actual Voronoi tessellation is computed using QHULL (Bar-
ber and Huhdanpaa, 2003) (see http://www.qhull.org). The simulated polycrystalline microstructures are generated using
this modified Voronoi tessellation algorithm such that all points closer a grain center than any other grain center, belong
to that grain. An additional parameter is also input by the user that defines the ratio of the minimum distance between
any two grain centers to average distance between the grain centers. This prevents grain centers lying too close, thus also
preventing the generation of very small Voronoi cells (i.e., grains). Fitting the simulated distributions of grain size, grain

http://www.qhull.org


Fig. 3. SVEs generated via the Voronoi tessellation based microstructure generator for IN100 with associated FE mesh. Note that the meshes are voxellated
and do not exactly correspond to the boundaries as defined by the Voronoi tessellation.
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orientation, and grain disorientation is performed in the same manner as demonstrated previously by others (Shenoy et al.,
2007; Zhang et al., 2006, 2007). In our case, we chose a random orientation distribution function (as commonly observed in
IN100) and a random Mackenzie disorientation distribution function (Mackenzie, 1958; Mackenzie and Thompson, 1957).

Once a microstructure volume or instantiation is constructed and optimized to fit the target distributions of grains size,
grain orientation, and grain disorientation, the program writes the ABAQUS input files that contain all the necessary infor-
mation to simulate the microstructures. Information in these input files includes the details of the geometry, mesh and
Fig. 4. The target and optimized grain size distribution of a SVE generated for IN100 where V is the actual grain volume and hVi is the target average volume
or 8.0 � 10�6 mm3 or a cube root grain size of �0.02 mm.
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boundary and loading conditions. The initial simulation cell geometry is defined by the user defined values of edge length
and mesh density (the number of elements along each edge of the simulated block of microstructure). The user also defines
the target distributions for the grain size, grain orientation and grain disorientation. Once the global simulation cell geom-
etry is generated (with grain centers defined), the elements and nodes are created based on the mesh density input by the
user. Using the known edge length and mesh density, the element edge length and total size is calculated. The elements are
constructed as an array of cuboidal elements (type C3D8R in ABAQUS) each with identical dimensions. These particular ele-
ments employ reduced integration to speed up computation time. Cuboidal elements are also convenient because the overall
simulation cell was assumed to be cubic in this model. In addition, a voxellated mesh greatly simplifies the application of
periodic boundary conditions in all directions.

2.4. Microstructure attributes and fatigue indicator parameters

The strain-life approach in fatigue has been applied mainly in the low cycle and transition fatigue regimes; however,
microplasticity (i.e., heterogeneous plasticity at the scale of microstructure) is relevant to understanding fatigue crack for-
mation and early crack propagation in HCF (McDowell, 1996, 1999). Coffin (1954) and Manson (1954) independently pro-
posed a power law correlation of plastic strain amplitude, Dep/2, with the number of cycles, Nf, to fatigue crack initiation
(formation plus small crack growth to some predefined size) for laboratory specimens, i.e.,
Dep

2
¼ e0f ð2Nf Þc ð1Þ
where e0f is the fatigue ductility coefficient and c is the fatigue ductility exponent (ASTM Standard E606-00, 2000).
Two-parameter approaches have been developed as a multiaxial generalization of plastic strain amplitude in an extension

of Eq. (1). Critical plane plastic strain range-based approaches have been introduced that consider cyclic plastic shear strain
as the primary driving force for fatigue crack formation and early growth, with a modifying influence of normal stress or
strain acting on the plane of maximum reversed plastic shear strain. In the present work we regard such quantities as fatigue
indicator parameters (FIPs) in view of their relation to probability of crack formation and early growth. Fatemi and Socie
(1988) and Fatemi and Kurath (1988) proposed a parameter for shear-dominated crack initiation that accounts for the obser-
vation that fatigue cracks initiate on planes of maximum shear for multiaxial loading conditions, i.e.,
PFS ¼
Dcp

max

2
1þ k

rn
max

ry

� �
ð2Þ
where Dcp
max is the maximum range of plastic shear strain and rn

max is the maximum normal stress acting on this plane. The
stress, rn

max, accounts for the effect of normal stress to the plane of small crack formation and growth, and is weighted by the
material constant k. This term is normalized by the yield strength. Larger magnitudes of PFS indicate a higher driving force for
fatigue damage. The Fatemi–Socie (FS) parameter has been used to correlate fatigue damage formation over a large number
of grains for a range of multiaxial loading conditions for materials with extended Stage I dominant regions such as 1045 steel
and IN718 (McDowell and Berard, 1992; Socie, 1993).

Although the Fatemi–Socie FIP was originally only applied at the scale of laboratory specimens, several workers have ap-
plied this and similar FIPs at the microscale using crystal plasticity simulations. For example, Bennett and McDowell (1999)
correlated microslip and mixed-mode behavior of microstructurally small crack growth to the Fatemi–Socie FIP and consid-
ered its distribution over the grains; moreover, the Fatemi–Socie FIP distributes heterogeneously over the grains. Moreover,
they also observed that the Fatemi–Socie FIP correlates well with distributions of small fatigue cracks within the grains. Ben-
nett and McDowell (2003) also used the Fatemi–Socie FIP to explore local grain orientation distribution effects on microslip
in HCF. Other workers (Döring et al., 2006; Hoffmeyer et al., 2006) observed good agreement between the locally applied
Fatemi–Socie FIP (determined using crystal plasticity calculations) and microstructurally small crack growth within the first
few grains based on experiments in structural steel S460N. Dunne et al. (2006, 2007) used detailed simulations coupled with
experiments to show that crystal plasticity can correlate precisely to localized plastic slip (and subsequent fatigue crack for-
mation) in realistic Ni-base superalloy and Ti alloy microstructures. Findley and Saxena (2006) used the Fatemi–Socie FIP to
examine the effect microstructure attributes such as grain size have on the local driving forces for fatigue damage formation.
Zhang et al. (2009) and Prasannavenkatesan et al. (2009) also used the Fatemi–Socie FIPs to look at the local processes of
fatigue crack formation at primary inclusions in carburized and shot-peened martensitic steel. We also point out that crystal
plasticity models developed by Zhang and Jiang (2008) for pure polycrystalline Cu and by Bridier et al. (2009) for duplex Ti–
6Al–4V have been successful at capturing localized plastic slip in these material systems. Such work demonstrates the ability
of locally applied FIPs determined via crystal plasticity simulations to correlate microstructure scale slip with fatigue crack
formation and early stages of microstructurally small crack growth for a range of ductile metallic polycrystalline material
systems. In essence, there is similitude in scaling the relations between PFS and the number of cycles to form and growth
a fatigue crack to different length scales within the range of several microns to several hundred microns.

As discussed by McDowell (1996), these types of critical plane approaches for shear-dominated microcracking are related
to Stage I shear-dominated propagation of MSCs with an influence of the normal stress to the slip/crack plane. Early work by
Hoshide and Socie (1987) considered the affect of microplastic strain on fatigue damage formation and MSC crack growth
under mixed-mode (I–II) loading. They correlated DJ from EPFM via a Paris type law with fatigue crack growth behavior
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of small cracks. Moreover, Hoshide and Socie (1987) related DJ to the ranges of crack opening displacement (COD) and/or
crack sliding displacement (CSD) for mode I and mode II, respectively. Later, McDowell and Berard (1992) employed DJ
and argued for similarity of DCTD with the Fatemi–Socie parameter.

3. Results

3.1. Mesh quality study

As seen in Fig. 3, we impose a voxellated mesh to model the generated microstructures. A detailed study was performed
to investigate the sensitivity of the convergence of the Fatemi–Socie FIP to these types of voxellated meshes. The parameters
for the microstructures that were generated using the Voronoi based microstructure generator are given in Table 3. Four dif-
ferent microstructures were generated using the Voronoi based microstructure generator for this mesh study and are here-
after referred to as microstructures A, B, C and D. Two of the meshes with different numbers of elements for Microstructure C
are shown in Fig. 5 with contours of accumulated plastic strain after three cycles. In each case, the elements belonging to the
grain with the extreme value grain averaged Fatemi–Socie parameter of highest magnitude among all of the grains in the
volume is highlighted in red. In the case of Microstructure C as seen in Fig. 5, the grain highlighted in red is contained entirely
in the interior of the volume (i.e., the grain does not intersect the boundary) except for one element on the x–y surface. A
description of the different meshes considered is given in Table 4. For the simulations, periodicity was imposed in all direc-
tions. The simulations were cycled in strain control with a maximum strain of 0.5% under completely reversed loading (i.e.,
R = �1). The distribution of the grain volume normalized by the target average grain volume of 1.0 � 10�6 mm3 was fit to a
log–normal distribution with the mean and standard deviation of the natural logarithm of the normalized grain volume gi-
ven by �14.0 and 0.7, respectively. A strain rate of 0.002 s�1 was employed in these simulations. All calculations were per-
formed over the entire volume.

The convergence of the extreme value Fatemi–Socie FIP as calculated over a single element and over all the elements of
each grain is given in Fig. 6. In Fig. 6(a), we can see that the magnitude of the extreme value Fatemi–Socie FIP changes by
as much at 20% across the meshes with 20–28 elements along an edge and convergence is not achieved. However, with
grain size averaging volumes, variation in the extreme value FIP reduces to less than 5% in most cases across meshes with
14–28 elements along an edge. The grain with the observed extreme value FIP did not change when there were 12 or more
elements along an edge or when the ratio of the element volume to average grain volume was greater than or equal to
0.064.

3.2. Statistical volume elements and size for IN100

As mentioned previously, we define our SVEs such that the local plastic response on the scale of the grains is unaffected
by further increasing the volume of the SVE. Additionally, we require that the overall effective (i.e., macroscopic) elastic/plas-
tic response is nearly the same for each SVE. To quantify the influence of SVE size on the FIPs we simulated several SVEs of
different size. Specifically, we constructed several instantiations of cuboidal arrays of randomly oriented grains. These cuboi-
dal grain arrays consist of blocks with 3, 5, 7, and 9 grains, respectively, along each edge with random periodic boundary
conditions applied in all directions. In this manner the center grain has 1, 2, 3, and 4 neighbors, respectively, in each direction
between itself and the applied periodic boundary conditions. In these simulations, these SVEs were cycled one time under
completely reversed loading (i.e., R = �1) with a maximum strain magnitude of 1.0%. The quasistatic strain rate of 0.004 s�1

was used in these simulations. The grains were dimensioned 9 lm along each edge and consist of a total of 27 quadrilateral
elements with reduced integration (type C3D8R in ABAQUS) or 3 elements along each edge. The orientation of the individual
grains was random except for the center grain which was oriented in the h0 0 1i, h2 1 25i, and h1 1 1i directions, respectively.
We can see in Fig. 8 that crystals oriented near the h2 1 25i and h1 1 1i directions exhibit the maximum apparent Schmid
factors for octahedral and cube slip, respectively. The Fatemi–Socie FIP averaged over the differently oriented center grains
for the differently sized SVEs are given in Fig. 7. In all cases, there is a significant change in the grain averaged FIP of the
center grain when the SVE is increased from 3 to 5 grains along each edge. However, as the number of grains along each edge
are increased further from 5 to 7 or 7 to 9 further changes grain averaged FIP of the center grain are much less. Thus, for the
purposes of this work, we assume that the primary zone of influence includes the two nearest neighbors of any one grain and
that grains further out than that have much less influence. The SVEs for our microstructures for the subsequent study are
scaled accordingly.
Table 3
Model parameters used for all simulated microstructure in the mesh quality study.

Edge length of microstructure volume 40 lm
Average cube root grain size 10 lm
Number of grains 77
Ratio of minimum spacing of grain centers to average distance between grain centers 0.3



Fig. 5. The mesh and contours of accumulated plastic strain after three cycles at 0.5% strain with R = �1 for the 77 grain model for Microstructure C with (a)
14 and (b) 28 elements along each edge. The elements belonging to the grain with the extreme value FIP are highlighted in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Description of the different meshes considered in the mesh study for Microstructure A.

Number of elements along edge Total elements Element volume (mm3) Ratio of element volume to average grain volume

8 512 1.25 � 10�7 0.1250
10 1000 6.40 � 10�8 0.0640
12 1728 3.70 � 10�8 0.0370
14 2744 2.33 � 10�8 0.0233
16 4096 1.56 � 10�8 0.0156
18 5832 1.10 � 10�8 0.0110
20 8000 8.00 � 10�9 0.0080
22 10,648 6.01 � 10�9 0.0060
24 13,824 4.63 � 10�9 0.0046
26 17,576 3.64 � 10�9 0.0036
28 21,952 2.92 � 10�9 0.0029
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3.3. Extreme value fatigue response and microstructure in IN100

To investigate the influence of grain orientation, disorientation and grain size on IN100, multiple SVEs have been con-
structed using the Voronoi tessellation based microstructure generator and simulated via FEM, as previously described. Mul-
tiple SVEs for the local plastic response were generated and strained uniaxially at 0.3%, 0.5%, and 0.7% strain at a quasistatic
strain rate of �0.002 s�1. The macroscopic yield is observed for this particular IN100 at approximately near 1.0% strain. The
Fig. 6. Convergence of the extreme value Fatemi–Socie FIP for (a) the FIP calculated over a single element and (b) the FIP calculated over all the elements in
a single grain. Although convergence was not achieved over the element sized averaging volume, variation was minimal over most of the meshes simulated
for grain sized averaging volumes.



Fig. 7. Comparison of the grain averaged Fatemi–Socie FIP of the center grain oriented with its {0 0 1}, {1 1 1} and {2 1 25} planes perpendicular to the
loading directions, respectively, versus the number grains along the edge of the SVE. These SVEs consisted of arrays of cuboidal grains each grain
dimensioned 9 lm along an edge.

Fig. 8. Apparent Schmid factors based on crystallographic orientation for the (a) octahedral and (b) cube slip systems.
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cyclic strains were completely reversed (i.e., R = �1). Each simulation was cycled three times to allow for an initial shake-
down period before the results were analyzed. Periodic boundary conditions were applied in all directions. As in the previ-
ously described mesh study and SVE size study, the voxellated meshes of these generated microstructures consist of
quadrilateral elements with reduced integration (type C3D8R in ABAQUS). The number of grains in the simulations was al-
lowed to vary to best fit the imposed grain size distribution and ranged between 325 and 375 grains. Each SVE was dimen-
sioned to 0.150 mm along each edge. The distribution of grain volumes normalized by the target average grain volume of
8.0 � 10�6 mm3 was fit to a log–normal distribution with a mean of �12 and standard deviation of 0.4. This corresponds
to a target average cube root grain size of �0.020 mm. There are 24 elements along each edge of the SVE or 13824 elements
in all. The ratio of the element volume to the average target grain volume is 0.030. We simulated a total of 50 SVEs cycled at
0.3% strain, 100 SVEs cycled at 0.5%, and 50 SVEs cycled 0.7% strain.

It is of interest to now consider the exact character of the extreme value distributions of the Fatemi–Socie FIP as estimated
from the simulated SVEs. To do this, we first give some brief background concerning extreme value statistical theory. Assum-
ing that X is a random variable that is associated with a known cumulative distribution function FX(x), the maximum extreme
value of a sample from X of size n can be defined as
Yn ¼maxðX1;X2; . . . ;XnÞ: ð3Þ
If we require that Yn is less than some value y, than all the random variables in the same sample associated with Yn must also
be less than y. The distribution function of Yn is defined as the probability that for a sample of size n, Yn is less than or equal to
y, i.e.,
FYn ðyÞ � PðYn � yÞ ¼ PðX1 � y;X2 � y; . . . ;Xn � yÞ: ð4Þ
If we assume that X1, X2, . . . , Xn are statistically independent and identically distributed, i.e.,
FX1 ðxÞ ¼ FX2 ðxÞ ¼ � � � ¼ FXn ðxÞ ¼ FXðxÞ; ð5Þ
the distribution function FYn is related to FX according to
FYn ðyÞ ¼ ½FXðyÞ�n: ð6Þ
Extreme value distributions for the minima can similarly be constructed. As the sample size n becomes large, the distribution
described by Eq. (6) above has been observed in some cases to converge to certain limiting distributions or asymptotic dis-
tributions. For distributions of a single variable, it has been proven that there are only three types of non-degenerated dis-
tributions to which the extreme value distributions can converge for large n (Castillo, 1988; Galambos, 1978). The three
possible non-degenerated asymptotic distributions for the maximum extreme value distributions can be expressed as (i) Fre-
chet type, (ii) Weibull type, or (iii) Gumbel type. There are similar forms of these asymptotic distributions to which the min-
imum extreme value distributions can converge. The goal is to be able to characterize a dataset as belonging to one of these
three types of distributions so that we can use the mathematical properties of these distributions to better understand the
data.

Here we will show that the extreme value Fatemi–Socie parameters sampled from the simulated SVEs are well charac-
terized by the asymptotic form of the extreme value Gumbel distribution, i.e.,
FYn ðynÞ ¼ exp½�e�anðyn�unÞ� ð7Þ
where un is the characteristic largest value of the initial variable X, and an is an inverse measure of dispersion of the largest
value of X. As noted previously, n refers to the size of the samples of the initial variable X in the set of distributions of X from
which Yn is sampled which for the asymptotic form is assumed to be very large. To visualize these extreme value distribu-
tions, we plot the extreme value FIPs for each SVE on a probability plot that has been linearized for the extreme value Gum-
bel distribution. This is demonstrated in Fig. 9, where we plot the extreme value Fatemi–Socie FIPs for sample sizes of 25, 50,
75, and 100 SVEs that have all been cycled at 0.5% strain. Here the extreme value Fatemi–Socie FIPs are estimated over grain
sized volumes. In this plot, we note the probability p is linearized for the extreme value Gumbel distribution by ln (1/ln (1/p))
as seen on the vertical axes. The range of observed extreme values is then given by the abscissa. By scaling the axes in this
manner, a true extreme value Gumbel distribution appears as a straight line. This linearization procedure and the method
used to fit the experimental data to the extreme value Gumbel distribution is outlined in Appendix B. The fits for these sam-
pled distributions to the Gumbel distribution appear in each case in Fig. 9 as lines. As can be seen in Table 5, these data are fit
by the Gumbel distribution with high confidence (i.e., R2 > 0.97), even for a sample size of just 25 simulated SVEs; moreover,
the fitting parameters do not change significantly with increased sample sizes.

Fig. 10 shows the distributions of the extreme value Fatemi–Socie FIPs for the different strain magnitudes tested, 0.3%,
0.5%, and 0.7%. Again this plot is linearized for the Gumbel distribution as outlined in Appendix B. Additionally, in the ex-
treme values of the FIPs are plotted in Fig. 10 on a log scale in order compare the distributions for the different strain mag-
nitudes on the same plot. The parameters for fit of the Gumbel distributions to these observations are given in Table 6. We
note that as the strain magnitude increases, the extreme value distributions of the Fatemi–Socie FIP tend to move to the
right. This correlates with the fact that as the strain magnitude increases the driving forces for fatigue damage formation
are higher. Thus, fatigue cracks form more rapidly and the portion of fatigue life attributed to fatigue crack formation is
shorter.



Fig. 9. Extreme value distribution of the Fatemi–Socie FIP as estimated over grain sized averaging volumes for (a) 25, (b) 50, (c) 75, and (d) 100 SVEs for the
simulations cycled at 0.5% strain. The extreme value Fatemi–Socie FIP was selected to be the FIP with the highest magnitude out of all the FIP calculated
over each grain.

Table 5
The parameters for the least squares fit of the Gumbel distribution (i.e., FYn ðynÞ ¼ exp½�e�an ðyn�un Þ �) for the extreme value distributions of the Fatemi–Socie FIPs
sampled over 25, 50, 75, and 100 SVEs, respectively, for 0.5% maximum strain. These extreme value distributions are plotted in Fig. 9. The goodness of fit is also
given in terms of the R2 value that ranges between 0 and 1 with 1 indicating a perfect fit.

#SVEs an un R2

25 8186.6 4.375E�04 0.973
50 8345.4 4.453E�04 0.988
75 8581.8 4.402E�04 0.987
100 8727.9 4.307E�04 0.991
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Examination of the parameters for the Gumbel distribution fits of the estimated extreme value FIP distributions are infor-
mative in terms of the relative dispersion of the distributions for the different strain magnitudes. For the Gumbel distribu-
tion, an is an inverse measure of the dispersion of the largest values of the initial population (i.e., the parent distribution of
the extreme value distribution) while un can be considered as the characteristic largest value of the initial population. Thus,
the quantity (an)�1/un is an indication of the dispersion of the extreme value distribution relative to the characteristic largest
values of the initial population. In other words, larger values of (an)�1/un indicate greater variation around the characteristic
largest values than smaller values. In our case, as the strain magnitude increases the variation of the extreme value distri-
butions of the distributions (i.e., (an)�1/un from Table 6) tends to decrease. These data corroborate the S–N curve for IN100, as
seen in Fig. 2(a) and (b) with the noted exception at 1150 MPa where there are arguably two competing modes of failure. As
the stress/strain magnitude increases the overall variation in the fatigue lives decrease. Our results similarly show that var-
iation of fatigue life associated with crack formation decreases as the magnitude of applied cyclic straining increases.

To understand how local attributes of microstructure influence the extreme value fatigue response as estimated via the
FIPs, we consider the microstructure attributes in the neighborhoods where the extreme value FIPs were recorded. Here we



Fig. 10. The extreme value distribution of the Fatemi–Socie FIP as estimated over a single element and over the entire grain for the simulations cycled at
0.3%, 0.5%, and 0.7% strain. The extreme value Fatemi–Socie FIP was selected to be the FIP with the highest magnitude out of all the FIP calculated over each
element or over each grain in each SVE.
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consider two forms of the Schmid factor. The apparent Schmid factor for orientation g, mg
a , is based purely on geometry, i.e.,

mg
a ¼maxfcosð/iÞ cosðkiÞ; i ¼ 1 . . . ng, where /i is the angle between the ith slip plane normal and loading direction and ki is

the angle between the ith slip direction and the direction of uniaxial applied stress on the SVE. The total number of slip sys-
tems is n. The local Schmid factor calculated over a volume x, mx

l , is computed as the ratio between the maximum resolved
shear stress (as estimated from the FE simulations) divided by the global SVE uniaxial applied stress, i.e., mx

l ¼maxðsi
rssÞ=r

for i = 1, . . ., n. In contrast to the apparent Schmid factor, the local Schmid factor considers the local stress state as affected by
intergranular interactions and microplasticity. Thus, although the apparent Schmid factor is typically bounded between 0.27
and 0.5 for h1 1 0i{1 1 1} octahedral slip, this is not the case for the local Schmid factor. In reality the local Schmid factor will
be observed to be more broadly distributed between 0 and 1 due to load shedding or load shielding from neighboring grains,
which affects the local stress fields in individual grains relative to the macroscopic applied loading conditions. For the cal-
culations given below, the volumes over which we calculate the local Schmid factor correspond to the same volumes over
which we calculate the FIPs. In contrast, the apparent Schmid factor is based on the orientation and relative loading direction
at a single location (i.e., for a particular element) or for a grain.

First, we focus directly on the zones where the extreme value FIPs has been identified. In Fig. 11, we plot the extreme
value Fatemi–Socie FIP as estimated over the volume of a single element versus the corresponding local Schmid factor for
both the octahedral and cube slip systems for the applied maximum strain magnitudes of 0.3%, 0.5%, and 0.7%, respectively.
Thus, in Fig. 11 each extreme value Fatemi–Socie FIP is associated with two Schmid factors, one for octahedral slip and one
for cube slip. It is noted that as the maximum cyclic strain amplitude increases, the local Schmid factors associated with the
extreme value FIPs tend to decrease slightly. This is logical because even though the far field stress may be increasing the
flow stress will not change significantly. Therefore, the local Schmid factor will decrease in magnitude as the far field load
increases. Secondly, we point out that in all cases the Schmid factors for cube slip are of greater magnitude than the local
Schmid factors for octahedral slip as seen in Fig. 11. In other words, the grains in which the extreme value FIPs are identified
all appear to be unfavorably oriented for octahedral slip.

We also consider certain correlated microstructure attributes at the locations of the FIPs as the second part of the micro-
structure-sensitive extreme value statistical framework. As discussed previously, the primary microstructure attribute con-
sidered in this study is crystallographic orientation. We construct the extreme value marked radial correlation function for
the apparent Schmid Factor (i.e., RmaxðaÞðmg

a;m
g0
a jr;XÞ). By using the apparent Schmid factor, we really are indirectly quanti-

fying the probabilities of specific grain orientations and misorientations existing coincident with the observed extreme value
FIPs. As will be seen later, constructing the extreme value correlation function with the apparent Schmid factor instead of the
more direct microstructure attribute of crystalline orientation simplifies the interpretation of the results. We choose not to
Table 6
The parameters for the least squares fit of the Gumbel distribution (i.e., FYn ðynÞ ¼ exp½�e�an ðyn�un Þ �Þ for the extreme value distributions of the Fatemi–Socie FIP
for the different maximum strain levels simulated. The goodness of fit is also given in terms of the R2 value that ranges between 0 and 1, with 1 indicating a
perfect fit.

% strain an un (an)�1/un R2

0.30 6.0 � 1010 4.619 � 10�11 0.361 0.952
0.50 8727.9 4.307 � 10�4 0.266 0.991
0.70 3478.5 3.305 � 10�3 0.087 0.981



Fig. 11. Scatter plot of the extreme value Fatemi–Socie FIP (abscissa) versus the local Schmid factor (ordinate) for simulations over (a) 50 SVEs at 0.3%
strain, (b) 100 SVEs at 0.5% strain, and (c) 50 SVEs at 0.7% strain.
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use the local Schmid factor computed using the pointwise stress tensor acting on slip systems at each point in the mesh be-
cause the local Schmid factor is more of a response parameter than a direct description of the local microstructure attribute
of interest (i.e., grain orientation).

In Fig. 12, we plot the complete radial distribution estimated over the entire ensemble of simulated SVEs and the extreme
value marked distribution functions sampled only at the location of the extreme value FIPs for the 100 SVEs cycled at 0.5%
strain. The particular correlations plotted here for the local Schmid factors for mg

a ¼ 0:45—0:5 (for cube slip) and
mg0

a ¼ 0:45—0:5 (for cube slip) in Fig. 12(a) and complete radial and extreme value marked radial distribution of Schmid factors
mg

a ¼ 0:45—0:5 (for cube slip) and mg0
a ¼ 0:45—0:5 (for octahedral slip) in Fig. 12(b) were selected because they occurred with

the highest probability at the extreme value location of the FIPs. In Fig. 12(a), we look at the auto-correlations between Schmid
Factors mg

a ¼ 0:45—0:5 (for cube slip). We see that below one average grain size, the probability of finding mg
a ¼ 0:45—0:5 (for

cube slip) at the location of the extreme value response is as high as 33%; in contrast, the probability of finding this particular
orientation in the complete microstructure ensemble is only 20%. Similarly, the probability of finding mg

a ¼ 0:45—0:5 (for cube
slip) near mg0

a ¼ 0:45—0:5 (for octahedral slip) (as can be seen in Fig. 12(b)) is as high as 0.47 at a distance of one average grain
size; whereas, the probability of these correlated orientation existing in the complete microstructure ensemble is less than 0.2.
In essence, we observe a high probability of finding a high FIPs in a region with clusters of grains oriented for cube slip or clusters
of grains oriented for cube slip surrounded by soft grains oriented for easy octahedral slip.

With an understanding of how the slip planes are oriented relative to the loading direction as described by the apparent
Schmid factor, it is also interesting to explore the distributions of the local Schmid factors in the regions identified to be crit-
ical by the extreme value FIPs. In Fig. 13, we plot the probability density of the local Schmid factors ml for all the grains and
for the grains with the apparent Schmid factors ma = 0.45 to ma = 0.5 for both the octahedral and cube slip systems, respec-
tively. When we consider the distribution of the local Schmid factor over all of the grains we notice that the maximum local
Schmid factors for octahedral slip are less than the maximum local Schmid factors for cube slip. This suggests that the
resolved shear stresses on the cube slip systems can be much larger than they are on the octahedral slip systems. As



Fig. 12. For IN100 the (a) complete radial and extreme value marked radial distribution for apparent Schmid factors mg0
a ¼ 0:45—0:5 (cube slip) and

mg0
a ¼ 0:45—0:5 (cube slip) and (b) complete radial and extreme value marked radial distribution of apparent Schmid factors mg0

a ¼ 0:45—0:5 (cube slip) and
mg0

a ¼ 0:45—0:5 (octahedral slip) are plotted for the 100 SVEs subjected to 0.5% strain. The distance r that separates the two orientations is normalized
against the average cube root grain size d (i.e., 20 lm).
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expected, when the apparent Schmid factor is larger (i.e., between 0.45 and 0.5) for cube slip, the corresponding local Schmid
factors are much more likely to be larger than the local Schmid factors for cube slip. It is interesting to note, however, that for
larger Schmid factors for octahedral slip (i.e., 0.45–0.5) we observe that the local Schmid factor for cube slip can be larger
than the local Schmid factor for octahedral slip. Thus, in some cases even when the Schmid factors for octahedral slip are
high, the actual resolved stresses can be larger on some of the cube slip planes than on the octahedral slip planes.
4. Discussion

The extreme value distributions of the Fatemi–Socie FIP are well fit by the extreme value Gumbel distribution (i.e.,
R2 > 0.97) in the Ni-base superalloy, IN100, in HCF. This observation is evident with as few as 25 simulation points as seen
in Fig. 9. We hypothesize that the distributions of the extreme value Fatemi–Socie parameter is directly related to distribu-
tions of crystallographic fatigue damage formation in this and similar material systems. Thus, assuming an averaging volume
for the relevant FIP that corresponds to crack incubation at this scale, one may postulate a relation such as PFS ¼ ~c0f ð2NincÞc ,
where ~c0f is a fatigue ductility coefficient appropriate to crack formation at the scale considered. This is obviously related to
the form of the Coffin–Manson law as defined in Eq. (1), with rescaling of parameter ~c0f to correspond to a crack size on the
order of microstructure. Using this type of relation, optimization problems can be envisioned regarding polycrystalline ori-
entation distributions to achieve target HCF lives or variability thereof.

This work has considered only crystallographic fatigue damage formation and did not account for the effect of voids or
non-metallic inclusions relative to their influence on the local driving forces for fatigue damage formation. Indeed, in
IN100 the role of non-metallic inclusions is very important in forming life-limiting fatigue cracks. Each of these attributes
can have an effect on overall variability of fatigue damage formation in this material system and must be considered for



Fig. 13. Probability density of the local Schmid factors ml for the octahedral and cube slip systems for all grains and for the grains with the apparent Schmid
factors ma = 0.45 to ma = 0.5 for both the octahedral and cube slip systems, respectively.
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any new material development. The understanding of extreme value slip behavior in this material system, however, is very
important to the understanding of fatigue crack formation around inclusions/voids. For example, one can imagine a sample
of IN100 with two inclusions of very similar character (i.e., phase, size, shape) where a fatigue crack forms at one of the inclu-
sions and not the other when the material is subjected to some specified cyclic loading condition. Likely, an understanding of
the local grain character (i.e., size, shape, orientation, misorientation) near the inclusion where the fatigue crack formed rel-
ative to the inclusion void of fatigue damage will be sufficient to explain the different responses in the neighborhood around
the two inclusions.

Consideration of the extreme value marked radial distributions of the apparent Schmid factor allows us to readily observe
the character of slip that is predicted to exist at the location of the extreme value response (i.e., FIPs). Here we observed that
grains oriented unfavorably for octahedral slip or favorably for cube slip are predicted to exist with high probability at the
locations of extreme value fatigue response in IN100. Moreover, clusters of grains oriented for cube slip or clusters of grains
oriented for cube slip surrounded by grains oriented favorable for octahedral slip are predicted to exist with high probability
at the location of the extreme value fatigue response. These simulations support the observations made in IN100 by Li et al.
(2004) who observed fatigue damage formation along {1 0 0} planes in grains oriented unfavorable for octahedral slip. Thus,
following our previous logic, we expect that clusters of grains oriented unfavorably for octahedral slip near inclusions or
voids are more susceptible to fatigue crack formation than inclusions or voids that are not located in such clusters.

As improved next generation microstructure-sensitive constitutive models become available, they can serve the needs of
the microstructure-sensitive statistical framework developed here. In fact, an interesting question is the extent of accuracy
required of these models to deliver useful information for minimum life (low probability of failure) design of the microstruc-
ture against fatigue. It is an open issue.
5. Conclusions

The proposed statistical framework that captures the extreme value distributions of the FIP responses coupled with the
extreme value marked correlation functions has allowed us to assess the distribution of driving force(s) for fatigue damage
formation (i.e., crack nucleation and microstructurally small crack growth) in polycrystalline IN100. In these simulations, we
account for the material microstructure, applied strain amplitude and strain state, and critically stressed volume of interest
in HCF scenarios. Specifically, we found that:

	 The extreme value distributions of the Fatemi–Socie fatigue indicator parameters (FIPs) that estimate the driving forces
for fatigue damage formation appear are fit with high confidence (i.e., R2 > 0.97) by the Gumbel distribution.

	 The shape of the extreme value distributions of the Fatemi–Socie FIPs appears to be well defined with as few as 25 SVEs
(i.e., microstructure instantiations) as demonstrated by the similarity in the parameters of the fits of the observations to
the Gumbel distributions for sample sizes of 25, 50, 75, and 100 SVEs.

	 These simulations predict that cube slip may play an important role in fatigue damage formation particularly when there
are multiple grains oriented for cube slip clustered in the same region or clusters of grains oriented for cube slip sur-
rounded by other grains oriented favorable for octahedral slip. These observations support the results of previous exper-
iments of fatigue in this material system (Li et al., 2004). Thus, as fatigue crack formation is dominated by the presence of
non-metallic inclusions or voids for this particular material system, we expect that given two inclusions of similar char-
acter that fatigue cracks will form preferentially near the inclusion that is surrounded by grains or grain clusters unfavor-
ably oriented for octahedral slip.
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Appendix A. Equations and parameters of the microstructure-sensitive crystal plasticity model for IN100 at 650 �C

The equations for the of the microstructure-sensitive crystal plasticity model for IN100 at 650 �C are given in Table A1 and
are explained in detail by Shenoy et al. (2007, 2008). For the subsolvus microstructure considered here, the sizes and volume
fractions of c0 precipitates are given by fp1 = 0.053, d2 = 320 � 10�6 mm, fp2 = 0.439, d3 = 17 � 10�6 mm, fp3 = 0.078, and the
mean grain size is dgr = 6.6 � 10�3 mm. Initial values of all slip system back stresses are set to zero. Parameters of the micro-
structure-sensitive crystal plasticity model for this IN100 microstructure at 650 �C are listed in Table A2.
Table A1
Equations of the microstructure-sensitive crystal plasticity model for IN100 at 650 �C.

Flow rule with back stress, threshold stress and drag stress

_ca ¼ _c1
jsa � vaj � ja

k

Da

� �n1

þ _c2
jsa � vaj

Da

� �n2
� �

sgnðsa � vaÞ ðA:1Þ

where Da is the drag stress (constant). The threshold stress is given by

ja
k ¼ ja

0;k þ at ~l~b
ffiffiffiffiffiffi
qa

k

p
for k ¼ oct; cub ðA:2Þ

where ~l ¼ ðfp1 þ fp2 þ fp3Þlc0 þ fmlm and ~b ¼ ðfp1 þ fp2 þ fp3Þbc0 þ fmbc .
Also,

ja
0;oct ðsa

0;octÞ
nk þ woctðfp1; d2; fp2; d3; fp3Þnk

h i1=nk
þ ðfp1 þ fp2Þsa

ns

ja
0;cub ðsa

0;octÞ
nk þ woctðfp1; d2; fp2;d3; fp3Þnk

h i1=nk
ðA:3Þ

where sa
ns ¼ hpesa

pe þ hcbjsa
cbj þ hsesa

se (non-Schmid term),

woct ¼ wcub ¼ cp1

ffiffiffiffiffiffiffiffiffi
f

f 0p1

d1

s
þ cp2

ffiffiffiffiffiffiffiffiffi
f

f 0p2

d2

s
þ cp3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ff 0p3d3

q
þ cgrffiffiffiffiffiffi

dgr

p
2
4

3
5; f ¼ CAPB

CAPB ref
;

f 0p1 ¼
fp1

fp1 þ fm
; f 0p2 ¼

fp2

fp2 þ fm
; and f 0p3 ¼

fp3

fp3 þ fm
:

Internal state variables
(a) Dislocation density

_qa
k ¼ h0fZ0 þ k1

ffiffiffiffiffiffi
qa

k

p
� k2qa

kgj _caj ðself-hardeningÞ ðA:4Þ

where Z0 ¼ kd
~bddeff

and ddeff 
 2
d2d

	 
�1
.

(b) Back stress

_va
k ¼ Cvfg~l~b

ffiffiffiffiffiffi
qa

k

p
sgnðsa � va

k Þ � va
kgj _ca ðself-hardeningÞ ðA:5Þ

where g ¼ g0 Z0

Z0þk1
ffiffiffiffi
qa

k

p .



Table A2
Parameters of the microstructure-sensitive crystal plasticity model for IN100 at 650 �C.
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Also; _c1 ¼ _c0 exp
�Q 1

RT

� �
; _c2 ¼ _c0 exp

�Q 2

RT

� �
; _c0 ¼ 6:1� 1016 s�1;
where T = 923 K (650 �C), R = 8.314 J/(mol-K) and Q1 = 280,000 J/mol, Q2 = 480,452 J/mol.

Appendix B. Linearization and fit of the Gumbel distribution

The cumulative distribution function (CDF) of the Gumbel (Gumbel, 1958; Castillo, 1988) (extreme value) distribution for
the largest values Yn can be expressed as
FYn ðynÞ ¼ exp �e�anðyn�unÞ
� �

ðB:1Þ
where un is the characteristic largest value of the initial variable X, and an is an inverse measure of dispersion of the largest
value of X. Here n refers to the size of the samples of the initial variable X in the set of distributions of X from which Yn is
sampled. The expression in Eq. (B.1) is the asymptotic form of the Type I extreme value distribution of the largest values
and therefore is valid as the sample size n approaches infinity (Castillo, 1988).

To linearize the Gumbel distribution, we solve Eq. (B.1) for the estimated parameter yn given a probability p, i.e.,
ln ln
1
p

� �� ��1

¼ anyn � anun ðB:2Þ
Thus, we now have an expression in the form of y = mx + b where y = ln [ln (1/p)]�1, m = an, x = yn, and b = �anun.
Ranking the data from a sample of the extreme value distribution Yn in the order of smallest to largest (i.e., y1

n; y
2
n; . . . ; yn

n),
one can determine estimators FYn ðy1

nÞ, FYn ðy2
nÞ, FYn ðy1

nÞ, etc. using the median rank statistic defined as
~y ¼ j� 0:3
nþ 0:4

ðB:3Þ
for the jth ranked observation in a sample of size n (Kapur and Lamberson, 1977). Here the superscripts on yn refer to their
rank for a particular sample of Yn. The procedure then to plot a given dataset on a linearized scale for the Gumbel distribution
is:

1. Using Eq. (B.3), we estimate the probability p for each observation yn in the dataset.
2. Determine ln [ln (1/p)]�1 for each observation and plot it against the original observation.
3. Using a least squares fit, a line of the form y = mx + b is fit to the data.
4. The estimated parameters for the distribution is determined according to m = an, x = yn, and b = �anun.

This general procedure is outlined and explained in detail by Kapur and Lamberson (1977) for similar distributions.
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