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Preface

The study of events involving an element of time has a long and important history
in statistical research and practice. Examples chronicling the mortality experience
of human populations date from the 1700s [see Hald (1990)]. Recent advances in
methods and statistical software have placed a seemingly bewildering array of tech-
niques at the fingertips of the data analyst. It is difficult to find either a subject mat-
ter or a statistical journal that does not have at least one paper devoted to use or de-
velopment of these methods.

In spite of the importance and widespread use of these methods there is a
paucity of material providing an introduction to tne analysis of time to event data.
A course dealing with this subject tends to be more advanced and often is the third
or fourth methods course taken by a student. As such, the student typically has a
strong background in linear regression methods and usually some experience with
logistic regression. Yet most texts fail to capitalize on this statistical and experien-
tial background. The approach is either highly mathematical or does not empha-
size regression model building. The goal of this book is to provide a focused text
on regression modeling for the time to event data typically encountered in health
related studies. For this text we assume the reader has had a course in linear re-
gression at the level of Kleinbaum, Kupper, Muller and Nizam (1998) and one in
logistic regression at the level of Hosmer and Lemeshow (1989). Emphasis is
placed on the modeling of data and the interpretation of the results. Crucial to this
is an understanding of the nature of the “incomplete” or “censored” data encoun-
tered. Understanding the censoring mechanism is important as it may influence
model selection and interpretation. Yet, once understood and accounted for, cen-
soring is often just another technical detail handled by the computer software al-
lowing emphasis to return to model building, assessment of model fit and as-
sumptions and interpretation of the results.

The increase in the use of statistical methods for time to event data is directly re-

xi
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lated to their incorporation into major and minor (specialized) statistical software
packages. To a large extent there are no major differences in the capabilities of the
various software packages. When a particular approach is available in a limited
number of packages it will be noted in this text. In general, analyses have been per-
formed in STATA [Stata Corp. (1997)]. This easy to use package combines reason-
ably good graphics and excellent analysis routines, is fast, is compatible across
Macintosh, Windows and UNIX platforms and interacts well with Microsoft Word
6.0. Other major statistical packages employed at various points during the prepara-
tion of this text include BMDP [BMDP Statistical Software (1992)], SAS [SAS
Institute Inc. (1989)] and S-PLUS [S-Plus Statistical Sciences (1993)].

This text was prepared in camera ready format using Microsoft Word 6.0.1 on a
Power Macintosh platform. Mathematical equations and symbols were built using
Math Type 3.5 [Math Type: Mathematical Equation Editor (1997)]. When necessary,
graphics were enhanced and modified using MacDraw.

Early on in the preparation of the text we made a decision that data sets used
in the text would be made available to readers via the World Wide Web rather than
on a diskette distributed with the text. The ftp site at John Wiley & Sons, Inc. for
the data in this text is ftp://fip.wiley.com/public/sci_tech_med/survival. In addi-
tion, the data may also be found, by permission of John Wiley & Sons Inc., in the
archive of statistical data sets maintained at the University of Massachusetts at
Internet address http://www-unix.oit.umass.edu/~statdata in the survival analysis
section. Another advantage to having a text web site is that it provides a conve-
nient medium for conveying to readers text changes after publication. In particu-
lar, as errata become known to us they will be added to an errata section of the
text’s web site at John Wiley & Sons, Inc. Another use that we envision for the
web is the addition, over time, of new data sets to the statistical data set archive at
the University of Massachusetts.

As in any project with the scope and magnitude of this text, there are many who
have contributed directly or indirectly to its content and style and we feel quite for-
tunate to be able to acknowledge the contributions of others. One of us (DWH)
would like to express special thanks to a friend and colleague, Petter Laake, Head of
the Section of Medical Statistics at the University of Oslo, for arranging for a
Senior Scientist Visiting Fellowship from the Research Council of Norway that sup-
ported a sabbatical leave visit to the Section in Oslo during the winter of 1997. We
would like to thank Odd Aalen for reading and commenting on several sections of
the text. His advice was most helpful in preparing the material on frailty and addi-
tive models in Chapter 9. While in Oslo, and afterwards, @rulf Borgan was espe-
cially helpful in clarifying some of the details of the counting process approach and
graciously shared some, at that time, unpublished research of his and his student, J.
K. Grennesby. Thoughtful and careful commentary by outside reviewers, in particu-
lar Daniel Commenges, of the UFR de Santé Publique at the University of Bor-
deaux II, improved the content and quality of the text.

We are grateful to colleagues in our Department who have contributed to the de-
velopment of this book. These include Drs. Jane McCusker, Anne Stoddard and
Carol Bigelow for the use and insights into the data from the Project IMPACT Study
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and Janelle Klar and Elizabeth K. Donohoe for their extraordinarily careful reading
of the manuscript and editorial suggestions.

DAVID W, HOSMER, JR.
STANLEY LEMESHOW
Ambherst, Massachusetts
August, 1998



CHAPTER 1

Introduction to
Regression Modeling of
Survival Data

1.1 INTRODUCTION

Regression modeling of the relationship between an outcome variable
and independent predictor variable(s) is commonly employed in virtu-
ally all fields. The popularity of this approach is due to the fact that
biologically plausible models may be easily fit, evaluated and inter-
preted. Statistically, the specification of a model requires choosing both
systematic and error components. The choice of the systematic compo-
nent involves an assessment of the relationship between an “average”
of the outcome variable and the independent variable(s). This may be
guided by an exploratory analysis of the current data and/or past expe-
rience. The choice of an error component involves specifying the sta-
tistical distribution of what remains to be explained after the model is fit
(i.e., the residuals).

In an applied setting, the task of model selection is, to a large extent,
based on the goals of the analysis and on the measurement scale of the
outcome variable. For example, a clinician may wish to model the rela-
tionship between a measure of nutritional status (e.g., caloric intake) and
various demographic and physical characteristics of the child such as
gender, socio-economic status, height and weight, among children be-
tween the ages of two and six seen in the clinics of a large health main-
tenance organization (HMQ). A good place to start would be to use a
model with a linear systematic component and normally distributed er-
rors, the usual linear regression model. Suppose instead that the clini-
cian decides to convert the nutrition data into a dichotomous variable
that indicated whether the child’s diet met specified intake criteria (1 =

1



2 INTRODUCTION TO REGRESSION MODELING OF SURVIVAL DATA

yes and 0 = no). If we assume the goal of this analysis is to estimate the
“effect” of the various factors via an odds-ratio, then the logistic re-
gression model would be a good choice. The logistic regression model
has a systematic component that is linear in the log-odds and has bino-
mial/Bernoulli distributed errors. There are many issues involved in the
fitting, refinement, evaluation and interpretation of each of these mod-
els. However, the clinician would follow the same basic modeling para-
digm in each scenario.

This basic modeling paradigm is commonly used in texts taking a
data-based approach to either linear or logistic regression [e.g., Klein-
baum, Kupper, Muller and Nizam (1998) and Hosmer and Lemeshow
(1989)]. We use it in this text to motivate our discussion of the similari-
ties and differences between the linear (and the logistic) regression
model and regression models appropriate for survival data. In this spirit
we begin with an example.

Example

A large HMO wishes to evaluate the survival time of its HIV+ members
using a follow-up study. Subjects were enrolled in the study from Janu-
ary 1, 1989 to December 31, 1991. The study ended on December 31,
1995. After a confirmed diagnosis of HIV, members were followed un-
til death due to AIDS or AIDS-related complications, until the end of
the study or until the subject was lost to follow-up. We assume that
there were no deaths due to other causes (e.g., auto accident). The pri-
mary outcome variable of interest is survival time after a confirmed di-
agnosis of HIV. Since subjects entered the study at different times over
a 3-year period, the maximum possible follow-up time is different for
each study participant. Possible predictors of survival time were col-
lected at enrollment into the study. Data listed in Table 1.1 for 100
subjects are: TIME: the follow-up time is the number of months be-
tween the entry date (ENT DATE) and the end date (END DATE),
AGE: the age of the subject at the start of follow-up (in years), DRUG:
history of prior IV drug use (1 = Yes, 0 = No), and CENSOR: vital
status at the end of the study (1 = Death due to AIDS, O = Lost to fol-
low-up or alive).! Of many possible covariates, age and prior drug use

I Although it may seem odd that if the subject’s time to failure is not censored the

subject receives a “1”’ for this variable, this is the convention followed in the litera-
ture and will be followed throughout this text as well.



INTRODUCTION 3

were chosen for their potential clinical relevance as well as for statistical
purposes to illustrate techniques for continuous and nominal scale pre-
dictor variables.

One of the most important differences between the outcome vari-
ables modeled via linear and logistic regression analyses and the time
variable in the current example is the fact that we may only observe the
survival time partially. The variable TIME listed in Table 1.1 actually
records two different things. For those subjects who died, it is the out-
come variable of interest, the actual survival time. However, for subjects
who were alive at the end of the study, or for subjects who were lost,
TIME indicates the length of follow-up (which is a partial or incomplete
observation of survival time). These incomplete observations are re-
ferred to as being censored. For example, subject 1 died from AIDS 5
months after being seen in the HMO clinic (CENSOR = 1) while subject
2 was not known to have died from AIDS at the conclusion of the study
and had been followed for 6 months (CENSOR = 0). It is possible for a
subject to have entered the study 6 months before the end or he/she
could have entered the study much earlier, eventually becoming lost to
follow-up as a result of moving, failing to return to the clinic or some
other reason. For the time being we do not differentiate between these
possibilities and consider only the two states: dead (as a result of AIDS)
and not known to be dead.

The main goal for a statistical analysis of these data is to fit a model
that will yield biologically plausible and interpretable estimates of the
effect of age and drug use on survival time, for HIV+ patients. Before
beginning any statistical modeling, we should perform a thorough uni-
variate analysis of the data to obtain a clear sense of the distributional
characteristics of our outcome variable as well as all possible predictor
variables. The fact that some of our observations of the outcome vari-
able, survival time, are incomplete is a problem for conventional uni-
variate statistics such as the mean, standard deviation, median, etc. If we
ignore the censoring and treat the censored observations as if they were
measurements of survival time, then the resulting sample statistics are
not estimators of the respective parameters of the survival time distribu-
tion. They are estimators of parameters of a combination of the survival
time distribution and a second distribution that depends on survival time
as well as statistical assumptions about the censoring mechanism. For
example, the average of TIME for subjects 1 and 2 in Table 1.1 is 5.5
months. The number 5.5 months is not an estimate of the mean length
of survival. We can say the mean survival is estimated to be at least 5.5
months. But how can we appropriately use the fact that the survival time



4 INTRODUCTION TO REGRESSION MODELING OF SURVIVAL DATA

Table 1.1 Study Entry and Ending Dates, Survival Time (Time),
Age, History of IV Drug Use (Drug) and Vital Status (Censor) at
Conclusion of Study

D Ent Datc End Datc T1ime Age Drug Gensor | 1D Ent Date EndDate 1imeAg  Drug Censor
i.igmm 140ct90 3 §3 0 { 31 11Nov89 10Febol 13 % 0 1

42 28Apr91 28Juldl
43 9Jul91 7Apr92
44 31Dcc89 1Apr90
45 20Dcc89 18Nov92
46 22Jun91 20Fecb92
47 11Apr90 11Mar91
48 22May90 19Jan95
49 11Nov91 10Jan92
50 18Jan91 19Apr91

92 11Dec90 9Sep95 57
93 15Dec90 14Jan91
94 13Jan89 13Jan90
95 22Aug91 21Mar92
96 2Aug91 1Sep9l
97 22May91 210ct91
98 2Apr90 1Apr95
99 1May91 30Jun9l
100 11May89 10Jun89

A W
SBERAKER

a

2 19Scp8920Mar%0 6 35 1 0 52 10ct90 310ct90 1 31 0 1

3 21Apr9120Dec91 8 30 1 1 53 20Mar90 18Jan91 10 33 0 1

4 3Jan91 4Ap91 3 30 1 1 S4  30Jul90 29Aug0 1 S0 1 1

5 18Sep89 19JulS1 22 36 O 1 55 17Jul89 14Reb%0 7 36 1 1

6 18Mar91 17Apr91 1 32 1 0 56 10Nov9Q O9Feb91 3 30 1 1

7 11Nov89 11Jun90 7 36 1 1 57 SMar89 4Jun89 3 42 1 1

8 25Nov8925Augd0 9 31 1 1 S8 2Mar91 1May91 2 32 1 1

9 11Reb9113May91 3 48 0 1 59 11Sep89 11May92 32 34 0 1

10 11Aug89 11AugS0 12 47 0 1 60 12Scp89 12Dec89 3 38 1 1
11 11Apr90 10Jun90 2 28 1 0 61 BApr90 6Feb91 10 33 0 O
12 11May9110May92 12 34 0 1 62 20Apr89 20Mar9%0 11 39 1 1
13 17Jan89 16Rcb89 1 44 1 1 63 31Jan91 2May9t 3 39 1 1
14 16Fcb9117May92 15 32 1 1 64 15Sep89 15Apr90 7 33 1 1
1S 9Apr91 6Fcb94 34 36 0 1 65 7Dec91 7May92 S 34 1 1
16 9Mar9l 8Ap91 1 36 0 1 66 4Mar90 10ct92 31 34 0 1
17 3Augd0 2DecS0 4 5S4 0 1 67 20Apr89 19Sep89 5 46 1 1
18 1QJun%0 8Jan92 19 35 0 O | 68 16Jun89 15Apr94 58 22 0O 1
19 12JunS1 11Sep91 3 44 1 0 | 69 10c90 310ct90 1 44 1 1
20  7Jan91 8Mar91 2 38 0 1 70 1Reb91 3May9l 3 37 0 O
21 29Aug89 280ct89 2 40 0 0 | 71 13May89 10Dec92 43 25 0 1
22 29May8927Nov89 6 34 1 1 72 9AugS0 8Sep90 1 38 0 1
23 16Nov9014Nov95 60 25 0 O | 73 18Dec91 17un%2 6 32 0 1
24 9May90 8Apr91 11 32 0 1 74 23Aug90 21Jan95 53 34 0 1
25 10Sep91 9Nov9l 2 42 1 0 | 75 19Jan91 19Mar92 14 29 0 1
26 26Dec9126May92 S5 47 0O 1 76 26Augdl 25DecS1 4 36 1 1
27 29May91 27Sep91 4 30 0 O | 77 16May91 13Nov95 5S4 21 O 1
28 1May9031MayS0 1 47 1 1 78 20Mar89 19Apr89 1 26 1 1
29 24Mar91 22Apr92 13 41 0 1 79  S5O0ct91 4Novd1 1 32 1 1
30  18Jul89 170ct89 3 40 | 1 80 2I1May9! 19Jan92 8 42 0 1
31 16Sep%015Nov90 2 43 0 1 81 10Jun91 SNov9l S 40 1 1
32 22Jun89 22Jul89 1 41 0 1 82 31Aug89 30Sep89 1 37 1 1
33 27Apr90 250ct92 30 30 0 1 83 28Dec9l 27Jan92 1 47 O 1
34 16May9014Dec90 7 37 O 1 84 29Sep90 28Nov90 2 32 1 1
35 19Feb89 20Jun89 4 42 1 1 85 20Nov9l 19Jun92 7 41 1 0O
36 17Fcb90 180ct90 8 31 1 1 8  2Julg89 1Aug89 1 46 1 O
37 6Augdl SJan92 5 39 1 1 87 110ct91 10Augd2 10 26 1 1
38 10Aug89 10Jun%0 10 32 0 1 88 1I10ct90 100ct92 24 30 0 O
39 27Dec90 25Fcb91 2 51 0 1 89 SDec90 Shul9l 7 32 1 1
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INTRODUCTION 5

for subject 1 is exactly 5 months while that of subject 2 is at least 6
months? We return to the univariate descriptive statistics problem
shortly. :

Suppose for the moment that we have performed the univariate
analysis and wish to explore possibilities for an appropriate regression
model. In linear regression modeling the first step is usually to examine
a scatterplot of the outcome variable versus all continuous variables to
see if the “cloud” of data points supports the use of a straight-line
model. We also assess if there appears to be anything unusual in the
scatter about a potential model. For example, is the linear model plau-
sible except for one or two points? The fact that we have censored data
presents a problem for the interpretation of a scatterplot with survival
time data. If we were to ignore the censoring in survival time, then we
would have an extension of the problem we noted with use of the arith-
metic mean as an estimator of the “true” mean. The values obtained
from any “line” fit to the cloud of points would not estimate the
“mean” at that point. We would only know that the “mean” is at least
as large as the point on the “line.”

Regardless of this “at least” problem, a scatterplot is still a useful
and informative descriptive tool with censored survival time data. How-
ever, to interpret the plot correctly we must keep track of the different
types of observations by using different plotting symbols for the values
assigned to the censoring variable. Figure 1.1 presents the scatterplot of
TIME versus AGE for the data in Table 1.1, where different plotting
symbols are used for the two levels of CENSOR. We formalize the sta-
tistical assumptions about the censoring later in Chapter 1, but for the
moment we assume that it is independent of the values of survival time
and all covariate variables.

Under the independence assumption the censored and non-censored
points should be mixed in the plot with the mix dictated by the study
design. Any trend in the plot is controlled by the nature and strength of
the association between the covariate and survival time. For example, if
age has a strong negative association with survival time, then observed
survival times should be shorter for older subjects than for younger
ones. If all subjects were followed for the same fixed length of time,
then we would expect to find proportionally more censored observa-
tions among younger subjects than older ones. However, if subjects
enter the study uniformly over the study period and independently of
their age, then we would expect an equal proportion of censored obser-
vations at all ages. The example data are assumed to be from a study of
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this type. We see in Figure 1.1 that the censored and non-censored ob-
servations are mixed at about a 4 to 1 ratio at all ages.

In the linear regression model the basic shape of the scatterplot is
controlled by the nature and strength of the relationship between the
outcome and covariate variables and the fact that the errors follow a
normal distribution (a relatively short-tailed symmetric distribution).
For example, if the relationship is systematically linear and strongly
positive, then the cloud of points should be a tight ellipse oriented from
lower left to upper right. If the relationship is weakly linear and posi-
tive, then the cloud will be more circular in shape with a left to right ori-
entation. If the relationship is quadratic with a strong association, then
the cloud may look like a banana. With survival data the shape of the
plot is also controlled by the nature of the systematic relationship be-
tween “time” and the covariate, but the distribution of the errors is
typically skewed to the right. The shape of the plot in Figure 1.1 is
controlled by the strong association in these data between age and sur-
vival time, the fact that survival time is skewed to the right and the con-
straint that subjects can be followed for at most 84 months. The cloud
of points in Figure 1.1 is densest for short survival times and slowly

60 - o o)
o X X
X bY;
S0 -
£ 7 X
§ 40 -
g ”
2 " *
E 30 - X
s 0
2 x
£ 20 - o
w
X Y
10 ] »
q x xg ; 8§X “x oX “x
x xi x Exguxs, ¥xgxo  x xX X
0 T T Y
15 20 25 30 35 40 45 50 55
Age

o CENSOR=0 X CENSOR=1

Figure 1.1 Scatterplot of survival time versus age for 100 subjects in the
HMO-HIV+ study. The plotting symbols represent values of CENSOR.
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trickles out to longer times with the plot truncated at the maximum
length of follow-up.

In order to illustrate the shape of the plot when the covariate is
strongly positively related to survival time, we reverse the order of age
by creating a new variable IAGE = 1000/AGE. The scatterplot of TIME
versus the created variable is shown Figure 1.2. In this case we see that
the plot has the same shape but in the other direction.

We are still faced with the task of how to use the scatterplot to pos-
tulate a model for the systematic component and the issue of identifying
an appropriate distribution for the errors. In linear regression when a
choice for the parametric model is neither clearly indicated by the scat-
terplot nor provided by past experience or by some underlying biologic
or clinical theory, we can use a technique called “scatterplot smooth-
ing” to yield a non-parametric estimate of the systematic component.
Cleveland (1993) discusses scatterplot smoothing and several of the
methods are available in the STATA and S-Plus software packages as
well as others. A scatterplot smoothing of a plot such as the one in Fig-
ure 1.1 could be difficult to interpret since censored and non-censored
times have been treated equally. That is, the presence of the censored
observations in the smoothing process could, in some examples, make it
difficult to visualize the systematic component of the survival times.

]
60 o] (o]
. X x °
X b3
50
z ] x
g 40 -
& . x x X
& |
E 30~
(=
g x
g 20 o
a 4
X OX
10 - X x » x
Xo mu 5[2" :
| x
0'_4%% —Er——

15 20 25 30 35 40 45 S0 SS
1000/Age

O CENSOR =0 X CENSOR =1

Figure 1.2 Scatterplot of survival time versus 1000/age for 100 subjects in the
HMO-HIV+ study. The plotting symbols represent values of CENSOR.
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The scatterplot in Figure 1.1 can be used to illustrate other funda-
mental differences between an analysis of censored survival time and a
normal errors linear regression. The dependent variable, TIME, must
take on positive values. Thus any model we choose for the systematic
component of the model must yield fitted values which are strictly posi-
tive. This discourages use of a strictly linear model, as fitted values
could be negative, especially for subjects with short survival times. If we
look at Figure 1.1 and try to draw a smooth curve (systematic compo-
nent) which, by eye, best fits the points, it would begin in the top left
corner and drop sharply, curving to the lower right. Curves of this basic
shape can often be described by a function with the basic form r=¢7*.

We noted that the distribution of survival times in Figure 1.1 appears
to be skewed to the right. The simplest statistical distribution with this
characteristic is the exponential distribution. The combination of an
exponential systematic component and exponentially distributed errors
suggests, as a beginning point, a regression model which is called the
exponential regression model. If we assume that we have a single inde-
pendent variable, x, then this model may be expressed as follows:

T =ebo+Bix X €, (1.1)

where T denotes survival time and € follows the exponential distribution
with parameter equal to one and is denoted E(1) in this text.2 The
model in (1.1) has the desired properties of yielding positive values
from a “curved” systematic component with a skewed error distribu-
tion. Note that this model is not linear in its parameters. However, it

may be “linearized” by taking the natural log. (In this text
log =log, =In.) This yields the following model:

Y=B0+B|x+9, (1.2)

where Y =In(T) and 6 =In(€). The model in (1.2) looks like the equa-
tion for the usual normal errors linear regression model except that the
distribution of the errors, 8, is not normal. Instead, the errors follow an
“extreme minimum value” distribution. This distribution is not en-
countered often outside of applications in survival analysis but plays a
central role in models of life-length and is often referred to as the
Gumbel distribution. The mean of this distribution is 0 and its shape

2 The E(1) density function is f(£) = e-¢ and the survivorship function is
S(e)=e".
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parameter is 1 (denoted G(0,1) in this text3). The details of this distri-
bution are presented in Lawless (1982). [Other texts such as Evans,
Hastings and Peacock (1993) present the distribution of —0 =—In(¢),
the “extreme maximum value” distribution.] The extreme minimum
value distribution is derived by considering the statistical distribution of
the minimum value from a simple random sample of observations. As
the size of the sample increases, the distribution of the minimum value
may be shown, after appropriate scaling, to be G(0,1). The notion of a
survival time being the minimum of many other times is an appealing,
but somewhat simplistic, way to conceptualize survival time. For exam-
ple, if the survival time of a complex object, such as a computer, de-
pends on the continued survival of each of a large number of compo-
nents whose failures are independent, then survival of the computer ter-
minates when the first component fails (i.e., the minimum value of
many independent, identically distributed, observations of time). The
same analogy could be used to characterize the death of a human being.

The use of the distribution G(0,1) in (1.2) is somewhat like using
the standard normal distribution in linear regression. The standard
normal distribution is denoted N(0,1) in this text. From practical expe-
rience we know that, in linear regression, the errors rarely if ever have
variance equal to one. The usual assumption is that the variance is nei-
ther a function of the outcome variable nor of the independent vari-
ables. It is assumed to be constant and equal to the parameter 6. This
distribution is denoted N(0,0%). An additional parameter may be in-
troduced into (1.2) by multiplying 6 by o to yield the model

y=PBo+Bix+0Xx6. (1.3)

The distribution of o x 8 is denoted as G(0,0).

The problem we face now is not only how to fit models like those in
(1.1)-(1.3) but how to fit them when some of the observations of the
outcome variable are censored. In linear regression with normal errors,
least squares is the method discussed in regression texts such as Klein-
baum, Kupper, Muller and Nizam (1998) and used by most (probably
all) computer software packages. This approach yields estimators with a
number of desirable statistical properties. They are normally distributed
with variances and covariances whose estimates are available in the out-
put from the regression programs in all software packages. This allows

3 The density function of the G(0,1) is f(8) = elé-¢xp(6)] and the survivorship
function is S(8) = e-=wlél,
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put from the regression programs in all software packages. This allows
for the ¢-distribution, with appropriately chosen degrees-of-freedom, to
be used to form confidence intervals and to test hypotheses about indi-
vidual parameters. The F-distribution, with appropriate degrees-of-
freedom, may be used to assess overall model significance. Least
squares is an estimation method with its own statistical properties, but it
may also be viewed, with normally distributed errors, as a special case of
an estimation method called Maximum Likelihood Estimation (MLE).
We use MLE with an adaptation for censored data to fit the models in
(1.1)—(1.3). 'This allows us to appeal to the well-developed theory for
maximum likelihood estimators to test hypotheses and form confidence
intervals for individual parameters and to assess overall model signifi-
cance with the same ease and simplicity of computation as in linear re-
gression.

The simplest way to conceptualize our data is to assume that contin-
ued observation of a subject is controlled by two completely independ-
ent time processes. The first is the actual survival time associated with
the disease of interest. For example, in the HMO-HIV+ study it would
be the length of survival after diagnosis as HIV4+. The second is the
length of time until a subject is lost to follow-up. Again in the HMO-
HIV+ study this would be the length of time until the subject moved,
died from another cause such as an auto accident, etc. We assume both
of these are under observation and that the recorded time represents
time to the event that occurred first. Two variables are used to charac-
terize a subject’s time, the actual observed time, T, and a censoring indi-
cator variable, C. In this text we use c¢=1 to denote that the observed
value of T measures the actual survival time of the subject (i.e., death
from the “disease” of interest was the reason follow-up ended on the
subject). We use ¢=0 to denote that follow-up ended on the subject
for reasons other than death from the disease of interest. Actual ob-
served values of these variables and a covariate for a subject are denoted
by lower case letters in the triplet (¢,c,x) where x denotes the value of a
covariate of interest. For example, the triplet for subject 1 in Table 1.1
with AGE as the covariate is (5, 1, 46), where x = age at the time of en-
rollment into the study. This triplet states that subject 1 was observed
for t=5 months when the subject died from AIDS or AIDS-related
causes (c=1) and was x =46 years old at the time of enrollment into
the study. The triplet for subject 2 is (6, 0, 35). This triplet states that
subject 2 was observed for 6 months before being lost for some reason
unrelated to being HIV+ (¢ =0) and was 35 years old at the time of en-
rollment into the study.
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The first step in maximum likelihood estimation is to create the spe-
cific likelihood function to be maximized. In simplest terms, the likeli-
hood function is an expression that yields a quantity similar to the
probability of the observed data under the model. First, we create a
fairly general likelihood function, then we apply the method to the
models in (1.1)-(1.3). Suppose that the distribution of survival time for
a subject with covariate x and the disease of interest can be described by
the cumulative distribution function F(¢,B,x). For example, the value

of the function F(5,8,46) gives the proportion of 46-year-old subjects
expected to die from AIDS or AIDS-related causes in less than 5
months. The quantity B denotes the parameters of the distribution,
which we need to estimate. For example, when we use the models in
(1.1)—(1.3) the unknown parameters are B=(f,,B,). The survivorship

function is obtained from the cumulative distribution and is defined as
S(t,B,x)=1-F(t,f,x). The value of the function S(5,8,46) gives the
proportion of 46 year olds expected to live at least 5 months. To create
the likelihood function, we also need a function that we think of, for the
moment, as giving the “probability” that the survival time is exactly .
This function is derived mathematically from the distribution function
and is called the density function. We denote the density function cor-
responding to F(t,B,x) as f(1,B,x). For example, the value of the
function f(5,P,46) gives the “probability” that a subject 46 years old
survives exactly 5 months.4

We construct the actual likelihood function by considering the con-
tribution of the triplets (#,1,x) and (¢,0,x) separately. In the case of the
triplet (s,1,x) we know that the survival time was exactly . Thus the
contribution to the likelihood for this triplet is the “probability” that a
subject with covariate value x dies from the disease of interest at time ¢
units. This is given by the value of density function f(s,B,x). For the
triplet (£,0,x) we know that the survival time was at least r. Thus the
contribution to the likelihood function of this triplet is the probability
that a subject with covariate value x survives at least ¢ time urits. This
probability is given by the survivorship function S(z,8,x). Under the
assumption of independent observations, the full likelihood function is
obtained by multiplying the respective contributions of the observed
triplets, a value of f(s,B,x) for a noncensored observation and a value

4 Readers having had some mathematical statistics know that the density function
does not yield a probability but a probability per-unit of time over a small interval

of time, f(t.B,x) = lin:{F(t + At,B,x)- F(t,B, x)/ At}
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of S(z,B,x) for censored observations. In general, a concise way to de-
note the contribution of each triplet to the likelihood is the expression

[£(e.B, %)) x[S(2,B, %], (1.4)

where c=0or 1.

We denote the observed data for a sample of n independent obser-
vations as (;,c;,x;) for i=1,2,...,n. Since the observations are assumed
to be independent, the likelihood function is the product of the expres-
sion in (1.4) over the entire sample and is

- ¢ 1-¢;
z(ﬁ)zn{[ £(eBx)]" x[S(2:.8,%,)] } (1.5)
=l
To obtain the maximized likelihood with respect to the parameters of
interest, B, we maximize the log-likelihood function,

n

LB) =Y {c:in[£(t,,B.x)]+ (1=c.)in[S(.B.x)]}.  (1.6)

i=1

Since the log function is monotone, the maximum of (1.5) and (1.6)
occur at the same value of B; however, maximizing (1.6) is computa-
tionally simpler than maximizing (1.5). The procedure to obtain the
values of the MLE involves taking derivatives of L(f) with respect to B,
the unknown parameters, setting these equations equal to zero, and
solving for B.

Before becoming completely involved in maximum likelihood esti-
mation, let us consider the implications and assumptions of our model.
There are several key points to be made. We have assumed that we are
in “constant contact” with our subjects and thus are able to record the
exact time of survival or follow-up. In essence we have treated time as a
continuous variable. Scenarios where time is observed less precisely are
considered in Chapter 7. We have accounted for the partial information
on survival time contained in the censored observations. That is, we
have explicitly used the fact that we know survival is at least as large as
the recorded follow-up time via the inclusion in the likelthood of the
term S(1,B,x) for all censored observations. Another key point is that
the reasons for observing a censored observation are assumed to be
completely unrelated to the disease process of interest. In the example,
we assume that being lost to follow-up is unrelated to the progression of
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disease in an HIV+ subject. We exclude the possibility that subjects
have moved to another location which they perceive to offer better care
for an HIV+ individual.

After a careful examination of the scatterplot in Figure 1.1, we ar-
rived at the conclusion that the exponential regression model in (1.1)
might be a good starting point to model these data. We also noted that
the model in (1.1) could be linearized to the model shown in (1.2) and
further generalized by the inclusion of a shape parameter in (1.3). We
now apply MLE to each of these models in turn to show that (1.1) and
(1.2) are equivalent, with (1.1) yielding fitted values for time and (1.2)
for log-time. Comparison of (1.1) and (1.2) to (1.3) requires discus-
sion of the role of the extra shape parameter in the analysis.

Suppose we wish to use a software package to fit the exponential
regression model in (1.1) to the data displayed in Figure 1.1. We would
find that many packages (e.g., BMDP, EGRET, SAS and STATA) fit, as
a default, the model in (1.2). Once this model has been fit, we can con-
vert it by exponentiation to estimate the model in (1.1). The equations
to be solved to obtain the MLE of B are identical for the models in
(1.1) and (1.2). Thus we show in detail the application of MLE to the
log-linearized model in (1.2).

The model in (1.2) states that the values of log(survival time) come
from a distribution of the form fB,+ fB,x+G(0,1). This is the extreme
minimum value distribution with mean equal to B, + ,x and is denoted
G(B, + Bix,1). Another way to describe the model is to subtract the part
involving the unknown parameters (the systematic component) from
both sides of the equation in (1.2) and note that since this difference,
y—(B, + B,x), is equal to 6, it is distributed G(0,1). Thus we may ob-
tain the contributions to the likelihood function by substituting the ex-
pression y—(fB, + B,x) into the equations defining the survivorship and
density function for G(0,1) as follows:

S(y, B, x) = (o +Bix)] (1.7
and
£(3,Byx) = el Porpinr-extly=tfo+£r0))} (1.8)

Substituting the expressions in (1.7) and (1.8) into (1.6) yields the fol-
lowing log-likelihood:
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L= 3 tn{ 5ot ) g ool
i=1

= ici [)’1 ~(Bo + By x,)] - el tArhel, (1.9)
i=1

In order to obtain the MLE of B, we must take the derivatives of the
log-likelihood in (1.9) with respect to f, and f,, set the two resulting
expressions equal to zero and solve them for 8, and ;. The two equa-
tions to be solved are

>

(C‘ - e[):-(ﬁo +B\x, )]) =0 (1.10)
i=1
and

n

x.(c, -e["‘("°"""‘"])= 0. (1.11)

i
i=1

The equations in (1.10) and (1.11) are nonlinear in 8, and f, and must
be solved using an iterative method. It is not important to understand
the details of how these equations are solved at this point since any soft-
ware package we choose to use will have such a method. We used the
exponential regression command in STATA, “ereg,” to fit this model
to the data in Table 1.1 using x = AGE.

Table 1.2 presents the parameter estimates in the column labeled
“Coeff.” and estimates of the standard error of the estimated parame-
ters in the column labeled “Std. Err.” The standard error estimates are
obtained from theoretical results of maximum likelihood estimation.
The column labeled “z” is the ratio of the estimated coefficient to its
estimated standard error and is the Wald statistic for the respective pa-
rameter. Under the usual assumptions for maximum likelihood es-

Table 1.2 Estimated Parameters, Standard Errors, z-Scores,
Two-Tailed p-Values and 95 Percent Confidence Intervals
for the Log-Time Exponential Regression Model Fit to the
Data in Table 1.1
Variable  Coeff.  Std. Err. 4 P>zl 95% Conf. Int.
Age -0.094 0.0158 -5.96 0.00 -0.124, -0.063
Constant  5.859 0.5853 10.01 0.00 4.711, 7.006
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timation, the Wald statistic follows the standard normal distribution un-
der the hypothesis that the true parameter value is zero. The last two
columns provide a two-tailed p-value and the endpoints of a 95 percent
confidence interval computed under these assumptions.

The output in Table 1.2 shows that the maximum likelihood esti-
mates of the two parameters are

B, =5.859 and 3, =-0.094.

In this text the “*” is used to indicate that a particular quantity is the
maximum likelihood estimate. We can use the estimates in Table 1.2 in
the same manner as is used in linear regression to obtain an equation
which provides predicted (i.e., fitted) values of the outcome variable,
log-time. The resulting equation is §=15.859—-0.094AGE. This equa-
tion may be converted to one providing fitted values for time by expo-
nentiation, namely

f = £5.859-0.094AGE

This conversion is similar to that used to convert parameter estimates in
logistic regression to estimates of odds ratios. In order to see the results
of fitting this model, we add it to the scatterplot that was shown in Figure
1.1. The new scatterplot with the fitted values is presented in Figure 1.3.

Recall that the objective of the analysis was to postulate and then fit
a model which would yield positive fitted values and display the curva-
ture observed in Figure 1.1 for the systematic component. Examining
the plot in Figure 1.3, we can see that the fitted model has both of these
properties. The curve does not go through the middle of the data in the
sense that 26 data points lie above the curve and 74 below it. Intuitively,
since censored observations represent lower bounds on unobserved sur-
vival times, one would expect the curve to be shifted upward. The actual

location of the fitted curve on the graph depends on the value of [30,

whose value depends on the percentage of censored observations. It
suffices for the moment to note that if 80 percent of the data had been
censored, the curve could have fallen above all of the points on the
graph. On the whole we find, at least visually, that the model seems to
provide an adequate descriptor of the trend in the data.

One possible approach to improving the fitted model would be to
see whether the addition of the shape parameter, o, in (1.3) contributes
significantly to the model. The model in (1.3) is a log-Weibull distri-
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0 CENSOR=0 % CENSOR=1

Figure 1.3 Scatterplot of survival time versus age for 100 subjects in the
HMO-HIV+ study. The values of censor are the plotting symbol. The smooth

curve is the fitted values, f = exp(5.859 — 0.094AGE), from the exponential re-
gression model in Table 1.2.

bution (see Chapter 8). We note, without showing the actual output, that
the shape parameter is not significant. (For those interested, this was
done by fitting the model using STATA’s Weibull Regression com-
mand, “weibull.”) Thus we conclude that, of the two models consid-
ered, model (1.2) describes the data as well as the more  complicated
model (1.3).

If we were to continue to use the linear regression modeling para-
digm to motivate our approach to the analysis of these data, the next
step would be to check the scale of age in the systematic component,
making sure that the data support a linear model. If not, a suitable
transformation must be identified. Once we felt we had done the best
possible job of building the systematic component, we would use ap-
propriately formulated regression diagnostics to search for overly influ-
ential and/or poorly fit points. This would be followed by an examina-
tion of the distribution of the estimated residuals to see if our assump-
tions about the error component hold. Once convinced that our
model was the best fitting model possible, we would provide a clinical
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interpretation of the estimated model parameters. This important series
of tasks is not addressed at this point, but it provides the approach for
much of what follows in this text.

In summary, the HMO-HIV+ example has served to highlight the
similarities and, more importantly, the differences we must address when
trying to apply the linear regression modeling paradigm to the analysis
of survival time data. The fact that we observed “time” places restric-
tions on the types of models that can be used. Any model must yield
positive fitted values and its error component will be more likely to have
a skewed distribution (e.g., exponential-like) than a symmetric one such
as the normal. In addition, the presence of incompletely observed or
censored values of “time” necessitates modifications to the standard
maximum likelihood approach to estimation. It is this latter point that
tends to make the analysis of survival data more complicated than a
typical linear or logistic regression analysis. Thus we present a more
detailed discussion of typically encountered censoring mechanisms.

1.2 TYPICAL CENSORING MECHANISMS

It may seem somewhat obvious, but we cannot discuss a censored obser-
vation until we have carefully defined an uncensored observation. This
point may seem trivial, but in applied settings confusion about censor-
ing may not be due to the incomplete nature of the observations but
rather may be the result of an unclear definition of survival time. The
observation of survival time, life-length, or whatever other term may be
used has two components which must be unambiguously defined: a be-
ginning point where ¢t=0 and a reason or cause for the observation of
time to end. For example, in a randomized clinical trial, observation of
survival time may begin on the day a subject is randomized to receive
one of the treatment protocols. In an occupational exposure study, it
may be the day a subject began work at a particular plant. In the HMO-
HIV+ study discussed above, it was when a subject met the clinical crite-
ria for being diagnosed as HIV+ and entered the study. In some appli-
cations it may not be obvious what the best ¢t =0 point should be. For
example, in the HIV+ study, the best ¢t =0 point might be infection date;
another choice might be the date of diagnosis; and a third, the criteria
used in the example, might be diagnosis and enrollment in the study.
Observation may end at the time when a subject literally “dies” from
the disease of interest, or it may end upon the occurrence of some other
non-fatal, well-defined, condition such as meeting clinical criteria for
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remission of a cancer. The survival time is the distance on the time scale
between these two points.

In practice, a value of time may be obtained by calculating the
number of days (or months, or years, etc.) between two calendar dates.
Table 1.1 presents the entry date and end date for the subjects in the
HMO-HIV+ study. Most statistical software packages have functions
which allow the user to manipulate calendar dates in a manner similar to
other numeric variables. They do this by creating a numeric value for
each calendar date, which is defined as the number of days from some
predetermined reference date. For example, the reference date used by
BMDP, SAS and STATA is January 1, 1960. Subject 1 entered the
study on May 15, 1990 which is 11,092 days after the reference date,
and died October 14, 1990 which is 11,244 days after the reference
date. The interval between these two dates is 11,244 -11,092 =152 days.
The number of days is converted into the number of months by divid-
ing by 30.4375(=365.25/12). Thus the survival time in months for
subject 1 is 4.994 (=152/30.4375). It is common, when reporting re-
sults in tabular form, to round to the nearest whole number as shown in
Table 1.1 (i.e., 5 months). The level of precision used for survival time
will depend on the particular application. Clock time may be combined
with calendar date to obtain survival time in units of fractions of days.

Two mechanisms that can lead to incomplete observation of time are
censoring and truncation. A censored observation is one whose value is
incomplete due to random factors for each subject. A truncated obser-
vation is one which is incomplete due to a selection process inherent in
the study design. The most commonly encountered form of a censored
observation is one in which observation begins at the defined time r=0
and terminates before the outcome of interest is observed. Since the
incomplete nature of the observation occurs in the right tail of the time
axis, such observations are said to be right censored. For example, in
the HMO-HIV+ study, a subject could move out of town, could die in an
auto accident or the study could end before death from the disease of
interest could be observed. In a study where right censoring is the only
type of censoring possible, observation on subjects may begin at the
same time or at varying times. For example, in a test of computer life
length we may begin with all computers started at exactly the same time.
In a randomized clinical trial or observational study, such as the HMO-
HIV+ study, patients may enter the study over a several year enrollment
period. As we see from the data reported in Table 1.1, subject 2 entered
the study on September 19, 1989 while subject 4 entered on January 3,
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1991. In this type of study, each subject’s calendar beginning point is
assumed to define the +=0 point.

For obvious practical reasons all studies have a point at which obser-
vation ends on all subjects; therefore subjects entering at different times
will have variable lengths of maximum follow-up time. In the HMO-
HIV+ study, subjects were enrolled between January 1, 1989 and De-
cember 31, 1991, with follow-up ending December 31, 1995. Thus, the
longest any subject could have been followed was 7 years. For example,
subject 5 entered the study on September 18, 1989. Thus the longest
this subject could have been followed was 6 years and 3.5 months.
However, this subject was not followed for the maximum length of time
as the subject died of AIDS or AIDS-related causes on July 19, 1991,
yielding a survival time of 22 months. Incomplete observation of sur-
vival time due to the end of the study is also a right-censored observa-
tion.

A typical pattern of entry into a follow-up study is shown in Figure
1.4. This is a hypothetical 2-year-long study in which patients are en-
rolled during the first year. We see that subject 1 entered the study on
January 1, 1990 and died on March 1, 1991. Subject 2 entered the
study on February 1, 1990 and was lost to follow-up on February 1,
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Figure 1.4 Line plot in calendar time for four subjects in a hypothetical follow-
up study.
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Figure 1.5 Line plot in the time scale for four subjects in a hypothetical fol-
low-up study.

1991. Subject 3 entered the study on June 1, 1990 and was still alive on
December 31, 1991, the end of the study. Subject 4 entered the study
on September 1, 1990 and died on April 1, 1991. Subjects 2 and 3
have right-censored observations of survival time. These data are plot-
ted on the actual time scale in months in Figure 1.5. Note that each
subject’s time has been plotted as if he or she were enrolled at exactly
the same calendar time and were followed until his or her respective end
point.

In some studies, there may be a clear definition of the beginning
time point; but subjects may not come under actual observation until
after this point has passed. For example, in modeling age at menarche,
suppose we define the zero value of time as 8 years. Suppose a subject
enters the study at age 10, still not having experienced menarche. We
know that this subject was “at risk” for experiencing menarche since
age 8 but, due to the study design, was not enrolled in the study until
age 10. This subject would not enter the analysis until time 10. This
type of incomplete observation of time is called left truncation or de-
layed entry.

Another censoring mechanism that can occur in practice is left cen-
soring. An observation is left censored if the event of interest has al-
ready occurred when observation begins. For example, in the study of
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age at menarche, if a subject enrolls in the study at age 10, and has al-
ready experienced menarche, this subect’s time is left censored.

A less common form of incomplete observation occurs when the
entire study population has experienced the event of interest before the
study begins. An example would be a study of risk factors for time to
diagnosis of colorectal cancer among subjects in a cancer registry with
this diagnosis. In this study, being in the cancer registry represents a
selection process assuring that time to the event is known for each sub-
ject. This selection process must be taken into account in the analysis.
This type of incomplete observation of time is called right truncation.

In some practical settings one may not be able to observe time con-
tinuously. For example, in a study of educational interventions to pre-
vent IV drug use, the protocol may specify that subjects, after comple-
tion of their “treatment,” will be contacted every 3 months for a period
of 2 years. In this study, the outcome might be time to first relapse to
IV drug use. Since subjects are contacted every 3 months, time is only
accurately measured to multiples of 3 months. Given the discrete nature
of the observed time variable, it would be inappropriate to use a statisti-
cal model which assumed that the observed values of time were continu-
ous. Thus, if a subject reports at the 12-month follow-up that she has
returned to drug use, we know only that her time is between 9 and 12
months. Data of this type are said to be interval censored.

We consider mechanisms and analysis of right-censored data
throughout this text since this is the most commonly occurring form of
censoring. Modifications of the methods of analysis appropriate for
right-censored data to other censoring mechanisms is discussed in
Chapter 7.

Prior to the development of a regression model for the relationship
between age and survival time among the subjects in the HMO-HIV+
study, we mentioned that the first step in any analysis of survival time, or
for that matter any set of data, should be a thorough univariate analysis.
In the absence of censoring, this would use the techniques covered in an
introductory course on statistical methods. The exact combination of
statistics used would depend on the application. It might include
graphical descriptors such histograms, box and whisker plots, cumula-
tive percent distribution polygons or other methods. It would also in-
clude a table of descriptive statistics containing point estimates and con-
fidence intervals for the mean, median, standard deviation and various
percentiles of the distribution of each continuous variable. The pres-
ence of censored data in the sample complicates the calculations but not
the fundamental goal of univariate analysis. In the next chapter we pre-
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sent the methods for univariate analysis in the presence of right-
censored data.

1.3 EXAMPLE DATA SETS

In addition to the data from the hypothetical HMO-HIV+ study intro-
duced in this chapter, data from two additional studies will be used
throughout the text to illustrate methods and provide data for the end of
chapter exercises. The data from all three studies may be obtained from
the John Wiley & Sons (ftp://ftp.wiley.com/public/sci_tech_med/survival)
web site. They may also be obtained from the web site of statistical data
sets at the University of Massachusetts/Ambherst in the section on survival
data (http://www-unix.oit.umass.edu/~statdata).

Our colleagues, Drs. Jane McCusker, Carol Bigelow, and Anne
Stoddard, have provided us with a subset of data from the University of
Massachusetts Aids Research Unit (UMARU) IMPACT Study (UIS).
This was a 5-year (1989-1994) collaborative research project
(Benjamin F. Lewis, P.1., National Institute on Drug Abuse Grant #R18-
DA06151) comprised of two concurrent randomized trials of residential
treatment for drug abuse. The purpose of the study was to compare
treatment programs of different planned durations designed to reduce
drug abuse and to prevent high-risk HIV behavior. The UIS sought to
determine whether alternative residential treatment approaches are vari-
able in effectiveness and whether efficacy depends on planned program
duration.

We refer to the two treatment program sites as A and B in this text.
The trial at site A randomized 444 participants and was a comparison of
3- and 6-month modified therapeutic communities which incorporated
elements of health education and relapse prevention. Clients in the re-
lapse prevention/health education program (site A) were taught to rec-
ognize “high-risk™ situations that are triggers to relapse and were
taught the skills to enable them to cope with these situations without us-
ing drugs. In the trial at site B, 184 clients were randomized to receive
either a 6- or 12-month therapeutic community program involving a
highly structured life-style in a communal living setting. Our col-
leagues have published a number of papers reporting the results of this
study, see McCusker et. al. (1995, 1997a, 1997b).

As is shown in the coming chapters, the data from the UIS provide a
rich setting for illustrating methods for survival time analysis. The small
subset of variables from the main study we use in this text is described
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Table 1.3 Description of Variables in the UMARU IMPACT Study
(UIS), 628 Subjects

Varnable Description Codes/Values
ID Identification Code 1-628
AGE Age at Enrollment Years
BECKTOTA Beck Depression Score at Admission 0.000-54.000
HERCOC Heroin/Cocaine Use During 3 Months 1 = Heroin & Cocaine
Prior to Admission 2 = Heroin Only
3 = Cocaine Only
4 = Neither Heroin
nor Cocaine
IVHX IV Drug Use History at Admission 1 = Never
2 = Previous
3 = Recent
NDRUGTX Number of Prior Drug Treatments 040
RACE Subject’s Race 0 = White
1 = Other
TREAT Treatment Randomization Assignment O = Short
1 =Long
SITE Treatment Site 0=A
1=B
LOT Length of Treatment Days
(Exit Date — Admission Date)
TIME Time to Return to Drug Use Days
(Measured from Admission)
CENSOR Returned to Drug Use ! = Returned to Drug

Use
0 = Otherwise

in Table 1.3. Since the analyses we report in this text are based on this
small subset of variables, the results reported here should not be thought
of as being in any way comparable to results of the main study. In ad-
dition we have taken the liberty in this text of simplifying the study de-
sign by representing the planned duration as short versus long. Thus,
short versus long represents 3 months versus 6 months planned duration
at site A, and 6 months versus 12 months planned duration at site B.
The time variable considered in this text is defined as the number of
days from admission to one of the two sites to self-reported return to
drug use. The censoring variable is coded 1 for return to drug or lost to
follow-up and O otherwise. The study team felt that a subject who was
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lost to follow-up was likely to have returned to drug use. The original
data have been modified in such a way as to preserve subject confidenti-
ality.

Another data set has been provided by our colleague Dr. Robert
Goldberg of the Department of Cardiology at the University of Massa-
chusetts Medical School. The data come from The Worcester Heart At-
tack Study (WHAS). The main goal of this study is to describe trends
over time in the incidence and survival rates following hospital admis-
sion for acute myocardial infarction (AMI). Data have been collected

Table 1.4 Description of the Variables Obtained from the
Worcester Heart Attack Study (WHAS), 481 Subjects

Variable Description Codes / Values
ID Identification Code 1-481
AGE Age at Hospital Admission Years
SEX Gender 0 = Male, 1 = Female
CPK Peak Cardiac Enzymes International Units (TU/100)
SHO Cardiogenic Shock 0=No, 1 =Yes
Complications
CHF Left Heart Failure 0=No, 1 = Yes
Complications
MIORD MI Order 0 = First, 1 = Recurrent
MITYPE MI Type 1 = Q-wave, 2 = Not Q-wave
3 =Indeterminate
YEAR Cohort Year 1 =1975, 2 = 1978,
3 =1981, 4 = 1984,
5 = 1986, 6 = 1988
YRGRP Grouped Cohort Year 1 =1975 & 1978
2 =1981 & 1984
3 =1986 & 1988
LENSTAY Length of Hospital Stay Days between Hospital
Discharge and Hospital
Admission
DSTAT Discharge Status from 0 = Alive
Hospital 1 =Dead
LENFOL Total Length of Follow-up Days between Date of Last
Follow-up and Hospital
Admission Date
FSTAT Status as of Last 0 = Alive
Follow-up 1 =Dead




EXERCISES 25

during ten 1-year periods beginning in 1975 on all AMI patients ad-
mitted to hospitals in the Worcester, Massachusetts, metropolitan area.
The main data set has information on more than 8,000 admissions. The
data in this text were obtained by taking a 10 percent random sample
within 6 of the cohort years. In addition only a small subset of variables
is included in our data set, and subjects with any missing data were
dropped from the sampled data set. Dr. Goldberg and his colleagues
have published more than 30 papers reporting the results of various
analyses from the WHAS. The reader interested in learning more about
the WHAS and its findings should see Goldberg et. al. (1986, 1988,
1989, 1991, 1993) and Chiriboga et al. (1994). A complete list of
WHAS papers may be obtained by contacting the authors of this text.

Table 1.4 describes the subset of variables used along with their
codes and values. One should not infer that results reported and/or ob-
tained in exercises in this text are comparable in any way to analyses of
the complete data from the WHAS.

Various survival time variables can be created from the hospltal ad-
mission date, the hospital discharge date and the date of the last follow-
up. Two times have been calculated from these dates and are included
in the data set, length of hospital stay (hospital admission to discharge)
and total length of follow-up (hospital admission to last follow-up).
Each has its own censoring variable denoting whether the subject had
died or was alive at hospital discharge or last follow-up, respectively. As
noted, the data set we use in this text contains a few key patient demo-
graphic characteristics and variables describing the nature of the AMI.
One should be aware of the fact that the values of the variable peak car-
diac enzymes are unadjusted to the respective hospital norm. The prin-
ciple rationale for inclusion of this covariate is to provide a continuous
covariate that may be predictive of survival and require some sort of
non-linear transformation when included in the regression models dis-
cussed in this text.

EXERCISES

1. Using the data from the Worcester Heart Attack Study:

(a) Graph length of follow-up versus age using the censoring vari-
able at follow-up as the plotting symbol for each of the pooled cohorts
defined by YRGRP. Are the plots basically the same or do they differ
in shape in an important way? Is it possible to tell from the shape of the
plot if age is a predictor of survival time?
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(b) What key characteristics of the data plotted in problem 1(a)
should be kept in mind when choosing a possible regression model?

(c) By eye, draw on each of the three scatterplots from problem 1(a)
what you feel is the best regression function for a survival time regres-
sion model.

(d) Obtain a cross tabulation of YRGRP and the censoring variable
FSTAT and compute the percent dead and the percent censored in each
of the three groups. What effect do you think the difference in the per-
cent censored should have on the location of the lines drawn in problem
1(e)?

(e) Fit the exponential regression model to the data in each of the
three scatterplots and add the fitted values to the plot (e.g., see Figure
1.3). How do the regression fitted values compare to the ones drawn in
problem 1(c)? Is the response to problem 1(d) correct?

2. What key characteristics about the observations of total length of’
follow-up must be kept in mind when considering the computation of
simple univariate descriptive statistics?

3. Repeat problems 1 and 2 using time to return to drug use and age in
the UIS and grouping by study site.



CHAPTER 2

Descriptive Methods for
Survival Data

2.1 INTRODUCTION

In any applied setting, a statistical analysis should begin with a thought-
ful and thorough univariate description of the data. The fundamental
building block of this analysis is an estimate of the cumulative distribu-
tion function. Typically, not much attention is paid to this fact in an
introductory course on statistical methods, where directly computed es-
timators of measures of central tendency and variability are more easily
explained and understood. However, routine application of standard
formulas for estimators of the sample mean, variance, median, etc., will
not yield estimates of the desired parameters when the data include cen-
sored observations. In this situation, we must obtain an estimate of the
cumulative distribution function in order to obtain values of statistics
which do estimate the parameters of interest.

In the HMO-HIV+ study described in Chapter 1, we assume that the
recorded data are continuous and are subject to right censoring only.
Remember that time itself is always continuous, but our inability to
measure it precisely is an issue that we must deal with. We introduced
the cumulative distribution function in Chapter 1 along with its com-
plement, the survivorship function. Simply stated, the cumulative distri-
bution function is the probability that a subject selected at random will
have a survival time less than some stated value, . This is denoted as
F(t)=Pr(T <t). The survivorship function is the probability of ob-
serving a survival time greater than or equal to some stated value ¢, de-
noted S(1)=Pr(T 2¢). In most applied settings we are more interested
in describing how long the study subjects live, than how quickly they
die. Thus estimation (and inference) focuses on the survivorship func-
tion.

27
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2.2 ESTIMATION OF THE SURVIVORSHIP FUNCTION

The Kaplan-Meier estimator of the survivorship function [Kaplan and
Meier (1958)], also called the product limit estimator, is the estimator
used by most software packages. This estimator incorporates informa-
tion from all of the observations available, both uncensored and cen-
sored, by considering survival to any point in time as a series of steps
defined by the observed survival and censored times. It is analogous to
considering a toddler who must take five steps to walk from a chair to a
table. This journey of five steps must begin with one successful step.
The second step can only be taken if the first was successful. The third
step can be taken only if the second (and also the first) was successful.
Finally the fifth step is possible only if the previous four were com-
pleted successfully. In an analysis of survival time, we estimate the con-
ditional probabilities of “"successful steps" and then multiply them to-
gether to obtain an estimate of the overall survivorship function.

To illustrate these ideas in the context of survival analysis, we de-
scribe estimation of the survivorship function in detail using data for the
first five subjects in the HMO-HIV+ study in Table 1.1, as shown in Ta-
ble 2.1.

The “steps” are intervals defined by a rank ordering of the survival
times. Each interval begins at an observed time and ends just before the
next ordered time and is indexed by the rank order of the time point
defining its beginning. Subject 4’s survival time of 3 months is the
shortest and is used to define the interval I, ={t:0<¢<3}=[0,3). The
expression in curly brackets, { },defines a collection or set of values that
includes all times beginning with and including O and up to, but not in-
cluding, 3. This is more concisely denoted using the mathematical no-
tation of a square bracket to mean the value is included, a parenthesis to
mean the value is not included, and the comma to mean all values in
between. We use both notations in this text. The second rank-ordered

Table 2.1 Survival Times and Vital Status (Censor)
for Five Subjects from the HMO-HIV+ Study

Subject Time Censor
1 5 1
2 6 0
3 8 1
4 3 1
5 22 1
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time is subject 1's survival time of 5 months. This survival time, in
conjunction with the ordered survival time of subject 4, defines interval
Iy ={t:3<t<5}=[3,5). The next ordered time is subject 2’s censored
time of 6 months and, in conjunction with subject 1’s value of 5
months, defines interval I, ={¢t:5<t<6}=[5,6). The next interval uses
subject 3’s value of 8 months and the previous value of 6 months and
defines Iy ={t:6<t<8}=[6,8). Subject 5’s value of 22 months and
subject 3’s value of 8 months are used to define the next to last interval
I, ={t:8<t<22}=[8,22). The last interval is defined as I ={t:r 222}
=[22,00).

All subjects were alive at time ¢ =0 and remained so until subject 4
died at 3 months. Thus, the estimate of the probability of surviving
through interval I; is 1.0; thus, the estimate of the survivorship function
is

S()=1.0

at each ¢ in I;. Just before time 3 months, five subjects were alive, and
at 3 months one subject died. In order to describe the value of the esti-
mator at 3 months, consider a small interval beginning just before 3
months and ending at 3 months. We designate such an interval as
(3-0,3]. The estimated conditional probability of dying in this small
interval is 1/5 and the probability of survivingthrough it is 1-1/5=4/5.
At any specified time point, the number of subjects alive is called the
number at risk of dying or simply the number at risk. At time 3 months
this number is denoted as ny, the 1 referring to the fact that 3 months is
the first observed time. The number of deaths observed at 3 months was
1 but, with a larger sample, more than one could have been observed.
To allow for this, we denote the number of deaths observed as d;. In
this more general notation, the estimated probability of dying in the
small interval around 3 is d;/n; and the estimated probability of sur-
viving is (n;—d,)/n;. The probability that a subject survives to 3
months is estimated as the probability of surviving through interval /,
times the conditional probability of surviving through the small interval
around 3. Throughout the discussion of the Kaplan-Meier estimator,
the word “conditional” refers to the fact that the probability applies to
those who survived to the point or interval under consideration. Since
we observed the death at exactly 3 months, this estimated probability
would be the same no matter how small a value of 6 we use to define
the interval around 3 months. Thus, we consider the estimate of the sur-
vival probability to be at exactly 3 months. The value of this estimate is
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5(3)=1.0%(4/5)=0.8.

We now consider estimation of the survivorship function at each time
point in the remainder of interval /;. No other failure times (deaths)
were observed, hence the estimated conditional probability of survival
through small intervals about every time point in the interval is 1.0.
Cumulative multiplication of these times the estimated survivorship
function leaves it unchanged from its value at 3 months.

The next observed failure time is S months. The number at risk is
n, =4 and the number of deaths is d, =1. The estimated conditional
probability of surviving through a similarly defined small interval at 5
months, (5-86,5],is (4—1)/4=0.75. By the same argument used at 3
months, the estimate of the survivorship function at S months is the
product of the respective estimated conditional probabilities,

5(5)=1.0x(4/5)x(3/4) = 0.6.

No other failure times were observed in /,, thus the estimate remains at

0.6 through the interval.
The number at risk at the next observed time, 6 months, is n; =3

and the number of deaths is zero since subject 2 was lost to follow-up at
6 months. The estimated conditional probability of survival through a
small interval at 6 months is (3—0)/3=1.0. Again, the estimated survi-
vorship function is obtained by successive multiplication of the esti-
mated conditional probabilities and is

5(6)=1.0x(4/5)x(3/4)x(3/3)=0.6.

No failure times were observed in /; and the estimate remains the same
until the next observed failure time.

The number at risk 8 months after the beginning of the study is
ny =2 and the number of deaths is d, =1. The estimated conditional

probability of survival through a small interval at 8 months is
(2-1)/2=0.5. Hence, by the same argument used at 3, 5 and 6 months,

the estimated survivorship function at 8 months after the beginning of
the study is

S(8) =1.0x(4/5)x (3/4) % (3/3) x(1/2) = 0.3.
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No other failure times were observed in /4, thus the estimated survivor-
ship function remains constant and equal to 0.3 throughout the interval.

The last observed failure time was 22 months. There was a single
subject at risk and this subject died, hence ng=1 and dg=1. The esti-
mated conditional probability of surviving through a small interval at 22
months is (1-1)/1=0.0. The estimated survivorship function at 22
months is

§(22) =1.0 x(4/5) x (3/4) x (3/3) x(1/2) x (0/1) = 0.0.

No subjects were alive after 22 months; thus the estimated survivorship
function is equal to zero after that point.

Through this example, we have demonstrated the essential features
of the Kaplan-Meier estimator of the survivorship function. The esti-
mator at any point in time is obtained by multiplying a sequence of
conditional survival probability estimators. Each conditional probabil-
ity estimator is obtained from the observed number at risk of dying and
the observed number of deaths and is equal to “ (n—d)/n.” This esti-
mator allows each subject to contribute information to the calculations
as long as they are known to be alive. Subjects who die contribute to
the number at risk up until their time of death, at which point they also
contribute to the number of deaths. Subjects who are censored contrib-
ute to the number at risk until they are lost to follow-up.

The estimate obtained from the data in Table 2.1 is presented in
tabular form in Table 2.2. Computer software packages often present
an abbreviated version of this table containing only the observed failure
times and estimates of the survivorship function at these times with the
implicit understanding that it is constant between failure times.

A graph is an effective way to display an estimate of a survivorship
function. The graph shown in Figure 2.1 is obtained from the survivor-
ship function in Table 2.2. The graph shows the decreasing step func-
tion defined by the estimated survivorship function. It drops at the val-
ues of the observed failure times and is constant between observed fail-
ure times. An embellishment provided by some software packages, but
rarely presented in published articles, is an indicator on the graph where
censored observations occurred. The censored time of 6 months ap-
pears as a small X in the figure.
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Table 2.2 Estimated Survivorship Function
Computed from the Survival Times for the
Five Subjects from the HMO-HIV+ Study
Shown in Table 2.1

Interval S
0<t<3 1.0
3<51<5 0.8
5<1<6 0.6
6<1<8 0.6
8<1<22 0.3

1222 0.0

In our example, no two subjects shared an observation time, and the
longest observed time was a failure. Simple modifications to the
method described above are required when either of these conditions is
not met. Consider a case where a failure and a censored observation
have the same recorded value. We assume that, since the censored ob-
servation was known to be alive when last seen, its survival time is longer
than the recorded time. Thus a censored subject contributes to the
number at risk at the recorded time but is not among those at risk im-
mediately after that time. Along the same lines, suppose we have multi-

1.0
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0.0
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Figure 2.1 Graph of the estimated survivorship function from Table 2.2.
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ple failures, d>1, at some time ¢. It is unlikely that each subject died at
the exact same time f; however, we were unable to record the data with
any more accuracy. One way to break these ties artificially would be to
order the d tied failure times randomly by subtracting a tiny random
value from each. For example, if we had observed three values at 8
months we could subtract from each failure time the value of a uni-
formly distributed random variable on the interval (0, 0.01). This
would artificially order the times, yet not change their respective posi-
tions relative to the rest of the observed failure times. We would esti-
mate the survivorship function with d=1 at each of the randomly or-
dered times. The resulting estimate of the survivorship function at the
last of the d times turns out to be identical to that obtained using
(n—d)/n as the estimate of the conditional probability of survival for all
d considered simultaneously. Thus, it is unnecessary to make adjust-
ments for ties when estimating the survivorship function. However, if
there are extensive numbers of tied failure times, then a discrete time
model may be a more appropriate model choice (see Chapter 7).

If the last observed time corresponds to a censored observation, then
the estimate of the survivorship function does not go to zero. Its small-
est value is that estimated at the last observed survival time. In this case
the estimate is considered to be undefined beyond the last observed
time. If both censored and non-censored values occur at the longest
observed time, then the protocol of assuming that censoring takes place
after failures dictates that (n—d)/n is used to estimate the conditional
survival probability at this time. The estimated survivorship function
does not go to zero and is undefined after this point. When these types
of ties occur, software packages, which provide a tabular listing of the
observed survival times and estimated survivorship function, list the cen-
sored observations after the survival time, with the value of the estimated
survivorship function at the survival time. Simple examples demon-
strating each of these situations are obtained by adding additional sub-
jects to the five shown in Table 2.1.

In order to use the Kaplan—Meier estimator in other contexts, we
need a more general formulation. Assume we have a sample of n inde-
pendent observations denoted (,,¢;), i =1,2,...,n of the underlying sur-
vival time variable T and the censoring indicator variable C.! Assume
that among the n observations there are m < n recorded times of failure.

1 Unless stated otherwise we assume recorded values of time are continuous and
subject only to right censoring.
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We denote the rank-ordered survival times as #y <#3) <-** <. In this

text, when quantities are placed in rank order we use the same variable

notation but place subscripts in parentheses. Let the number at risk of
dying at #;, be denoted n; and the observed number of deaths be de-

noted d;. The Kaplan-Meier estimator of the survivorship function at
time ¢ is obtained from the equation

S = J[2=4% (2.1)

n.
st

with the convention that

This formulation differs slightly from that described using the data in
Table 2.1 in that intervals defined by censored observations are not con-
sidered. We saw in the example that conditional survival probabilities
are equal to one at censored observations and that the estimate of the
survivorship function is unchanged from the value at the previous sur-
vival time. Thus the general formula in (2.1) uses only the points at
which the value of the estimator changes.

Figure 2.2 presents the graph of the Kaplan-Meier estimate of the
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Figure 2.2 Kaplan-Meier estimate of the survivorship function for the HMO-
HIV+ study.
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survivorship function in (2.1), using all subjects in the HMO-HIV+
study. The construction of the estimate in this case demonstrates con-
ventions for handling tied survival times as well as tied survival and cen-
sored times. The data, along with calculations for the beginning and
end of the survivorship function, are presented in Table 2.3. The col-
umns in Table 2.3 present the time interval, the number at risk of dying
(n), the number of deaths (d), the number of subjects lost to follow-up
(c), the estimate of the conditional survival probability [(n—d)/n] and
the estimate of the survivorship function [S(f)]. All quantities are
evaluated at the time point defined by the end of the previous interval
and the beginning of the current interval.

The first observed survival time is 1 month; thus the value of the
estimated survivorship function at each point in the interval [0,1) is 1.0.
At 1 month there were 100 subjects at risk. Of these, 15 died and 2
were lost to follow-up (censored), yielding an estimate of the condi-
tional survival probability of 0.85=(100-15)/100. The estimate of the
survivorship function at 1 month is 0.85=1.0x0.85. The estimate re-
mains at this value at each point in the interval [1,2). At the next ob-
served survival time, 2 months, there were only 83 subjects at risk since
15 died and 2 were lost to follow-up one month before. At 2 months, 5
subjects died and S more were lost to follow-up; thus the estimate of the
conditional survival probability is (83—5)/83=0.9398. The estimate of
the survivorship function is obtained as the product of the value of the
survivorship function just prior to 2 months and the conditional survival
probability at 2 months and is 0.85 x0.9398 = 0.7988. The estimate
remains at this value throughout the interval [2,4). At the next observed
survival time, 4 months, there were 73 subjects at risk, since 5 died and 5
were censored at 2 months. At 4 months, 10 subjects died and 2 were
censored. The estimate of the conditional survival probability is

Table 2.3 Partial Calculations of the Kaplan-
Meier Estimate Shown in Figure 1.2

Interval n d c (n—d)/n §
(0,1) 100 0 0 1.0 1.0
(1,2) 100 15 2 0.85 0.85
[2,4) 83 5 5 0.9398 0.7988
[4,5) 73 10 2 0.8630 0.6894

[58.60) 3 1 0 0.6667 0.0389

[60,60] 2 0 2 1.0 0.0389
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(73-10)/73=0.8630 and the estimate of the survivorship function is
0.7988 % 0.8630 =0.6894. The estimate remains at this value until the
next observed survival time, 5 months, at which time 61 subjects are at
risk. This process continues, sequentially, considering each observed
survival time, until the last observed survival time, which was 58 months.
At that time 3 subjects were at risk, 1 died and none were censored. The
estimate of the conditional survival probability is (3—1)/3=0.6667. The
estimate of the survivorship function is 0.0584 x0.6667 = 0.0389, where
0.0584 is the value just prior to 58 months. The largest observed time is
60 months, when 2 subjects remained at risk and both were censored.
Thus, the estimate of the conditional survival probability is
(2-0)/2=1.0 and the estimate of the survivorship function remains at
the value 0.0389. The function is undefined beyond 60 months, which
is denoted in Table 2.3 by recording the last interval as [60,60].

When we have a large study whose mortality experience is presented
in calendar time units (such as quarterly, semi-annually, etc.), the life-
table estimator of the survivorship function may be used as an alterna-
tive to the Kaplan-Meier estimator. The life-table estimator has been
used for more than 100 years to describe human mortality experience
and is among the earliest examples of the application of statistical meth-
ods. It will not play a large role in the analysis of survival data in this
text, but we present it because of its historical importance and the fact
that it is a grouped-data analog of the Kaplan-Meier estimator. More
detail on the various types of life-table estimators may be found in Lee
(1992).

In some applied settings the data may be quite extensive with sample
sizes in the many hundreds of subjects. In these situations it can be
quite cumbersome to tabulate or graph the Kaplan—Meier estimator of
the survivorship function. In a sense, the problem faced is similar tc
one addressed in a first course on statistical methods: how best to reduce
the volume of data but not the statistical information that can be gleaned
from it. To this end the histogram is usually introduced as an estimator
of the density function and the resulting cumulative percent distribution
polygon as an estimator of the cumulative distribution function. This
process could be reversed. That is, we might first derive the estimator of
the cumulative distribution and, afterwards, compute the histogram as a
function of the cumulative distribution. When the data contain censored
observations, using the second approach and deriving an estimator of
the survivorship function (instead of the cumulative distribution func-
tion) is the more feasible tactic. The first step is to define the intervals
that will be used to group the data. The goal in the choice of intervals is
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the same as for the construction of a histogram—the intervals should be
biologically meaningful, yield an adequate description of the data and,
if convenient, be of equal width. There are no mechanized rules for
construction of the histogram, to guide in the choice of number of in-
tervals. However, the meaningful unit will likely be some multiple of a
year.

Once a set of intervals has been chosen, the construction of the esti-
mator follows the basic idea used for the Kaplan—-Meier estimator. Sup-
pose we decide to use 6-month intervals. A typical interval will be of
the form [z,2+6). As before, let n denote the number of subjects at risk
of dying at time ¢. These subjects are often described as the number
who enter the interval alive. As we follow these subjects across the inter-
val, d subjects have survival times and ¢ subjects have censored times in
this interval. Thus, not all subjects were at risk of dying for the entire
interval. A modification typically employed is to reduce the size of the
risk set by one-half of those censored in the interval. The rationale be-
hind this adjustment is that if we assume the censored observations were
uniformly distributed over the interval, then the average size of the risk
set in the interval is n—(c/2). This average risk set size is used to cal-
culate the estimate of the conditional probability of survival through the
interval as (n—(c/2)-d)/(n-(c/2)). These estimates of the condi-

tional probabilities are multiplied to obtain the life-table estimator of the
survivorship function.

The life-table estimator of the survivorship function for the HMO-
HIV+ data using 6-month intervals is shown in Table 2.4. The esti-
mated value of the survivorship function in the first interval is

0.5684 =(100-(10/2)-41)/(100-(10/ 2)).
The value in the second interval is computed as

0.3171=0.5684 x(49—-(3/2)-21)/(49-(3/2)).

The remaining values are calculated in a similar fashion.

When we graph the estimate, we have to decide how to represent the
actual values. Consider the first interval [0, 6), where the value of the
estimated survivorship function is reported in Table 2.4 as 0.5684. If,
as in Figure 2.3, we were to represent the graph as a step function, then
this interval would be represented by a horizontal straight line of height
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Table 2.4 Life-Table Estimator of the Survivorship
Function for the HMO-HIV+ Study

~

Interval Enter Die Censored S

[0, 6) 100 41 10 0.5684
[6,12) 49 21 3 0.3171
(12, 18) 25 6 2 0.2378
[18,24) 17 1 1 0.2234
24, 30) 15 0 1 0.2234
30, 36) 14 5 0 0.1436
(36, 42) 9 1 0 0.1277
(42, 48) 8 1 0 0.1117
[48 , 54) 7 1 0 0.0958
[54 , 60) 6 3 1 0.0435
[60 , 66) 2 0 2 0.0435

1 until 6 months when it would drop to 0.5684. Other intervals would
be represented in a similar manner. An alternative representation, used
by some software packages, is a polygon connecting the value of the
estimator drawn at the end of the interval. The first interval would be

1.0

0.5

Proportion Surviving

T

0 20 40 60 80
Survival Time (Months)

0.0

-
-
-

Figure 2.3 Step function representation of life-table estimate of the survivor-
ship function for the HMO-HIV+ study in Table 2.4.
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Figure 2.4 Polygon representation of life-table estimate of the survivorship
function for the HMO-HIV+ study in Table 2.4.

represented by a point of height 0.5684 plotted at 6 months, the second
by a point of height 0.3171 at 12 months, the third by a point of height
0.2378 at 18 months, and so on. These points are then connected by
straight lines. The rationale for using the polygon is to better represent
the assumed underlying continuous distribution of survivaltime. Some,
but not all, programs will plot a point equal to 1.0 at time zero since, by
definition, that is the value of the survivorship function at zero. This
point is then connected to the point representing the first interval. The
polygonal representation of the life-table estimator from Table 2.4 is
shown in Figure 2.4.

Because the graph in Figure 2.4 has been drawn as a polygon, it
looks smoother than the step function of the Kaplan—Meier estimator.
The life-table estimate in Figure 2.3 in this example does a reasonable
job of estimating the survivorship function. Since it is a grouped-data
statistic, it is not as precise an estimate as the Kaplan—Meier estimator,
which uses the individual values. Later in this chapter we discuss esti-
mation of percentiles of the survival time distribution and these use the
Kaplan-Meier estimator.



40 DESCRIPTIVE METHODS FOR SURVIVAL DATA

2.3 USING THE ESTIMATED SURVIVORSHIP
FUNCTION

In Section 2.2 we described in detail how to calculate the Kaplan—Meier
and life-table estimators of the survivorship function with little if any
discussion of how to interpret the resulting estimate or how it may be
used to derive point estimates of quantiles of the distribution. One of
the biggest challenges in survival analysis is becoming accustomed to
using the survivorship function as a descriptive statistic. This function
describes the complement of what we typically describe in a set of data.
The change from thinking about the percentage of observations less
than a value to thinking about the percentage greater than that value,
like many things, becomes easier with practice.

The survivorship function estimate shown in Figure 2.2 descends
sharply at first and then tails off gradually, reaching its minimum value
of 0.04 at 60 months. The initial steep descent shows that there were
many subjects who died shortly after enrollment in the study. The rela-
tively long right tail is a result of the few subjects who had long survival
times. The minimum value of the survivorship function is not zero
since the largest observed time was a censored observation. The shape
of the curve depends on the observed survival times and the proportion
of observations that are censored. If many subjects in the HMO-HIV+
study had long survival times with the same pattern of censored obser-
vations, then the curve would descend slowly at first and then more
rapidly until the minimum is reached. If the survival times were more
evenly distributed over the 60 months, then the curve would descend
gradually to its minimum value. The pattern of enrollment in a follow:
up study can influence the shape of the curve. A study with a 2-year
enrollment period and 5 years overall length with rany late entries is
likely to have more censored observations and thus a different looking
estimated survivorship function than the same study with many early
entries. Many factors influence the shape of the survivorship func-
tion, and thus it is difficult to make accurate statements about what a
“typical” survivorship function will look like.

In most, if not all, applied settings we will need a confidence interval
estimate for the survivorship function as well as point and confidence
interval estimates of various quantiles of the survival time distribution.
We begin by discussing confidence interval estimation of the survivor-
ship function.

Several different approaches may be taken when deriving an esti-
mator for the variance of the Kaplan—-Meier estimator. We derive it
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from a technique which is referred to as the delta method and is based
on a first-order Taylor series expansion. This method is presented in
general terms in Appendix 1. The Kaplan-Meier estimator at any time ¢
may be viewed as a product of proportions. Rather than derive a vari-
ance estimator of this product, we derive one for its log since the vari-
ance of a sum is simpler to calculate than variance of a product. The
log of the Kaplan-Meier estimator is

InS0))= 3 1n("" ‘d")

where

If we consider the observations in the risk set at time £;, to be inde-
pendent Bernoulli observations with constant probability, then p; is an
estimator of this probability and an estimator of its variance is
(;(1-p))/n;. As shown in Appendix 1, the variance of the log of
variable X is approximately:

Var[In(X)] = -—12-03(, (2.2)
Hx

where the mean and variance of X are denoted u, and 0’,2(, respectively.
An estimator for the variance is obtained by replacing uy and 0',2( in
(2.2) with estimators of their respective values. Applying this result to
In(p;) yields the estimator

X 51—
Var[ln(p,)]= L b= p)

==
i n;

=4
T on(n—d)

If we assume that observations at each time are independent, then the
estimator of the variance of the log of the survivorship function is



42 DESCRIPTIVE METHODS FOR SURVIVAL DATA

ar[ln S(t)] Z\Gr[ln (5,)]

St

=y —— (2.3)

Yy s:nl (nl

An estimator of the variance of the survivorship function is obtained by
another application of the delta method shown in Appendix 1. This
time an approximation is applied to find the variance of an exponenti-
ated variable and is

Var(eX) = (“x)zai. (2.4)

ta($(1))

Using the fact that S(f)=e , we let X stand for ln(S‘(t)), ol stand

for the variance estimator in (2.3) and approximate u, by ln(S‘(t)) in

expression (2.4). Then we obtain Greenwood's formula [Greenwood
(1926)] for the variance of the survivorship function:

var (80) = (8 Z(n—d‘wd_—) 2.5)
st

The method shown to derive the estimator in (2.5) is, in some sense,
the “traditional” approach in that it may be found in most texts on sur-
vival analysis published prior to 1990. In contrast, the texts by Fleming
and Harrington (1991) and Andersen, Borgan, Gill and Keiding (1993)
consolidate a large number of results derived from applications of the-
ory based on counting processes and martingales. This theory is well
beyond the scope of this text, but we mention it here as it has allowed
development of many useful tools and techniques for the study of sur-
vival time. The current thrust in the development of software is based
on the counting process paradigm as its methods and tools may be used
to analyze, in a relatively uncomplicated manner, some rather complex
problems. The estimator in (2.5) may also be obtained from the
counting process approach.

The counting process approach to the analysis of survival time plays
a central role in many of the methods discussed in this text. A brief
presentation of the central ideas behind the counting process formula-
tion of survival analysis is given in Appendix 2. We will use results
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from this theory to provide justification for estimators, confidence inter-
val estimators and hypothesis testing methods.

After obtaining the estimated survivorship function, we may wish to
obtain pointwise confidence interval estimates. The counting process
theory has been used to prove that the Kaplan-Meier estimator and
functions of it are asymptotically normally distributed [Andersen, Bor-
gan, Gill and Keiding (1993, Chapter IV) or Fleming and Harrington
(1991, Chapter 6)]. Thus, we may obtain pointwise confidence interval
estimates for functions of the survivorship function by adding and sub-
tracting the product of the estimated standard error times a quantile of
the standard normal distribution. We could apply this theory directly to
the Kaplan-Meier estimator using the variance estimator in (2.5). How-
ever, this approach could easily lead to confidence interval endpoints
that are less than zero or greater than one. In addition, the assumption
of normality implicit in the use of the procedure may not hold for the
small to moderate sample sizes often seen in typical problems. To ad-
dress these problems, Kalbfleisch and Prentice (1980, page 15) suggest
that confidence interval estimation should be based on the function

ln[—ln(S‘(t))],

called the log-log survivorship function. One advantage of this function
over the survivorship function is that its possible range is from minus to
plus infinity. The expression for the variance of the log-log survivor-
ship function is obtained from a second application of the delta method
for a log transformed variable shown in (2.2). The estimator of the
variance of the log-log survivorship function is

Va r{ln[—ln(§(t))]} - [ln(sf(t))]z ,é,n.-(:i— n (2.6)

The endpoints of a 100(1 - ) percent confidence interval for the log-
log survivorship function are given by the expression

ln[-ln(s“(t))]iz,_a,zs‘la{ln[-ln(ﬁ(t))]}, @27

where z;,_,/, is the upper /2 percentile of the standard normal distri-
bution and SE() represents the estimated standard error of the argu-
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ment, which in this case is the positive square root of (2.6). If we denote
the lower and upper endpoints of this confidence interval as ¢, and ¢,, it
follows that the lower and upper endpoints of the confidence interval
for the survivorship function are

exp[—exp(é,)] and exp[—exp(é,)], (2.8)

respectively. That is, the lower endpoint from (2.7) yields the upper
endpoint in (2.8). These are the endpoints reported by most, if not all,
software packages for each observed value of survival time. The confi-
dence interval is valid only for values of time over which the Kaplan-
Meier estimator is defined, which is basically the observed range of sur-
vival times. Borgan and Leistgl (1990) studied this confidence interval
and found that it performed well for sample sizes as small as 25 with up
to 50 percent right-censored observations.

. Figure 2.5 presents the Kaplan-Meier estimator of the survivorship
function for the HMO-HIV+ study and the upper and lower pointwise
95 percent confidence bands computed using (2.8). The endpoints of
the pointwise confidence intervals are connected to form a “confidence
band.” (Recall that any time one has a collection of individual 95 per-
cent confidence interval estimates, the probability that they all contain
their respective parameters is much less than 95 percent.) An alternative
presentation used by some software packages connects the endpoints of
the confidence intervals with vertical lines. This is useful for small data
sets, but for large data sets the resulting graph becomes cluttered with
too many lines, and we lose the visual conciseness seen in Figure 2.5.
This figure demonstrates some of the properties of the log-log-based
confidence interval estimator. The intervals are skewed for large and,
though harder to see in Figure 2.5, small values of the estimated survi-
vorship function and are fairly symmetric around 0.5. The direction of
skewness is opposite for the two tails, toward zero for values of the esti-
mated survivorship function near one and toward one for values near
zero. In all cases, the endpoints lie between zero and one. In Figure
2.5, the confidence intervals further support the observation of a survi-
vorship function describing many early deaths with a few deaths near
the maximum of 5 years of follow-up.

Simultaneous confidence bands for the entire survivorship function
are not as readily available as the pointwise estimates, since they require
percentiles for statistical distributions not typically computed by soft-
ware packages. The band proposed by Hall and Wellner (1980) is dis-
cussed in some detail in Andersen, Borgan, Gill and Keiding (1993) and
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Fleming and Harrington (1991). It is also discussed in Marubini and
Valsecchi (1995). A table of percentiles obtained from Hall and Well-
ner (1980) is provided in Appendix 3. Given the tabled percentiles,
confidence bands based on the estimated survivorship function itself, or
its log-log transformation, are not difficult to calculate. Borgan and
Leistgl (1990) show that the performance of the Hall and Wellner con-
fidence bands is comparable for both functions and is adequate for
samples as small as 25 with up to 50 percent censoring. To maintain
consistency with the pointwise intervals calculated in (2.8), which are
based on the log-log transformation, we present the Hall and Wellner
bands for the transformed function. Hall and Wellner, as well as Borgan
and Leistgl, recommend that these confidence bands be restricted to
values of time smaller than or equal to the largest observed survival time,
e.g., the largest non-censored value of time denoted ¢,,,. The endpoints
of the 100(1- ) percent confidence bands in the interval [0,¢,,,] for

the log-log transformation are

. 1+n6%(t)
ln[- ln(s(z))] tH,, E/—;m (2.9)
where p
PO Ly

fy St

the estimator of the variance of the log of the Kaplan-Meier estimator
from (2.3), and H;, is a percentile from Appendix 3, where

a=né? (t(m))/[l +né6? (t(m))].

If we denote the lower and upper endpoints of this confidence band as
5, and b:,, then the lower and upper endpoints of the confidence band
for the survivorship function are

exp[— exp(Eu )] and exp[— exp(E, )] . (2.10)

To obtain the bands for the survivorship function from the HMO-
HIV+ study, we note that the largest observed survival time is 58 months
and G62(58)=0.423. Most software packages will provide either the val-
ues of the estimated variance of the log of the Kaplan-Meier estimator
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Figure 2.5 Kaplan—Meier estimate, pointwise 95% confidence intervals, and
Hall and Wellner 95% confidence bands for the survivorship function for the
HMO-HIV+ study.

or those of the Greenwood estimator of the variance of the survivorship
function. The values of G2(¢) are easily obtained by dividing the
Greenwood estimator by the square of the Kaplan-Meier estimator. To
obtain the percentile from Appendix 3 we compute

& = (100 % 0.423)/(1+100 x 0.423) = 0.98

and note that, since both H,,44s and H, 45 equal 1.358, linear inter-

polation of tabled values is not necessary and we use 1.358. In cases
when a < 0.9, linear interpolation between two tabled values may be re-
quired to obtain the most accurate value. To obtain the confidence
bands, we compute the endpoints in (2.9) and (2.10) for each observed
value of time. We can ignore the censoring since the estimated survivor-
ship function and its variance are constant between observed failure
times. These endpoints may be plotted, along with the estimated survi-
vorship function, restricting the plot to the interval {0,58]. This plot is
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also shown in Figure 2.5. The increased width of the confidence bands
relative to the pointwise confidence intervals is seen in this figure. The
increased width is needed to assure that the probability is 95 percent that
each of the individual 95 percent confidence interval estimates simulta-
neously covers its respective parameter. In particular, we note the lack
of precision in the band for times near the maximum of 58 months.
The bands do support the observation of many early deaths and a few at
or near the maximum follow-up time of 60 months.

The estimated survivorship function and its confidence intervals
and/or bands provide a useful descriptive measure of the overall pattern
of survival times. However, it is often useful to supplement the presen-
tation with point and interval estimates of key quantiles. The estimated
survivorship function may be used to estimate quantiles of the survival
time distribution in the same way that the estimated cumulative distribu-
tion of, say, height or weight may be used to estimate quantiles of its
distribution. This may be done graphically and the graphical procedure
can be codified into a formula for analytic calculations based on the
tabular form of the estimate.

The quantiles most frequently reported by software packages are the
three quartile boundaries of the survival time distribution. To obtain
graphical estimates, begin on the percent survival (y) axis at the quartile
of interest and draw a horizontal line until it first touches the estimated
survivorship function. A vertical line is drawn down to the time axis to
obtain the estimated quartile. In order for the estimate to be finite, the
horizontal line must hit the survivorship function. Thus, the minimum
possible estimated quantile which has a finite value is the observed
minimum of the survivorship function, and only quantiles within the
observed range of the estimated survivorship function may be estimated.
For example, if the range was from 1.0 to 0.38 then we could estimate
the 75th and 50th percentiles but not the 25th percentile. Graphlcally
determined estimates of the three quartile boundaries, denoted f,, f,
and 1,5, based on the Kaplan-Meier estimate of the survivorship func-
tion for the data in Table 2.1 are shown in Figure 2.6.

The graphical method is easy to use, but it is not especially precise.
The method may be described in a formula, from which a more accu-
rate numerical value may be determined from a tabular presentation of
the estimated survivorship function. We illustrate the method by esti-
mating the median or second quartile, 5, and we then generalize it into
a formula that may be used for any quantile. By referring to Table 2.2,
and Figure 2.6 we see that the horizontal line hits the survivorship funct-
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Figure 2.6 Kaplan—Meier estimate of the survivorship function for the data in
Table 2.1 and graphically determined estimates of the quartiles.

ion at the riser connecting steps ending, respectively (looking right to
left), at 8 and 5 months. The vertical line hits at exactly 8 months.
Thus the estimated median survival time in this example is £, =8. A
formula to describe this estimator is

£, = min{t : $(r) < 0.50}.

The formula says to proceed as if you are walking up a set of stairs
from the right to the riser where the horizontal line hits. The estimate is
the time value defining the left-most point of the step you’re standing
on. If we assume that the riser is attached at the top and bottom, then
the description also works when the horizontal line hits one of the steps.
The estimate is, again, the value of time defining the left-most point of
the step. In general, the estimate of the pth percentile is

£, = min{t: S(r) < (p/100)}.

The estimates of the other quartiles from Table 2.2 are f,,=5 and
ths =22.
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For the full data set for the HMO-HIV+ study, the estimates of the
three quartiles are s =3, f5, =7 and f#,, =15. The interpretation of
these values is that we estimate that 75 percent will live at least three
months, half are estimated to live at least 7 months, and only 25 percent
are estimated to live at least 15 months.

A confidence interval estimate for the quantiles can add further un-
derstanding about possible values for the parameter being estimated.
Approximate confidence intervals may be obtained by appealing to the
theory that, for large samples, the quantile estimator is normally distrib-
uted with mean equal to the quantile being estimated. An estimator of
the variance of this distribution may be obtained from an application of
the delta method, as outlined in Collet (1994) and discussed in greater
detail from the counting process approach in Andersen, Borgan, Gill
and Keiding (1993). The suggested estimator for the variance of the
estimator of the pth percentile is

V\ A A
Va (fp)=-—[¥§i‘;—)). 2.11)

The numerator of (2.11) is Greenwood’s estimator and the denominator
is an estimator of the density function of the distribution of survival
time. The estimator of the density function used by many software
packages is

_Sa@,)-58d,)

l,-a,

(2.12)

f@,)

~ -~

The values ﬁp and [, are chosen such that ﬁp <t, <l; and most often
are obtained from the equations shown below:

2, = max{t: $(t) (p/100) +0.05} and [, = min{r: S(r) < (p/100)- 0.05}.
(2.13)
While values other than 0.05 could have been used in (2.13), 0.05 seems

to work well in practice and is used by a number of statistical packages.
The endpoints of a 100(1 - &) percent confidence interval are
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£, £2_,nSE(,), (2.14)

where S’!\E(fp)= \/z;r(fp).

Evaluation of (2.11) through (2.14) is most easily illustrated with an
example. In the HMO-HIV+ study, the estimated median survival time
is fso =7 months. The value of i, is the largest value of time, ¢, such
that S(¢)20.55. After sorting on survival time and listing the values of
the Kaplan-Meier estimator, we find that S(5) 0.56 and S(6) 0.54,
hence iy, =5. The value of 150 is the smallest value of ¢, time, such that
S(t)SO.45. From the same listing we find that S(7)—O.47 and
$(8) = 0.42, hence l;o =8. Thus the estimate of the density function in
(2.12) is

S(5)-S(8) _ 0.56—0.42

= =0.0467.
8-5 8-5

f (fso) =
The value of Greenwood's estimator at ¢ =7 months is
Var($(7)) = 0.002672
and evaluation of (2.11) yields

Var (i) = 20207 _1.224.
)~ oo

The end points of the 95 percent confidence interval for median sur-
vival time are

7+1.96x+/1.224 = (4.8, 9.2).

Table 2.5 Estimated Quartiles, Estimated Standard Errors
and 95% Confidence Intervals for Survival Time in the
HMO-HIV+ Study

Quantile Estimate Std. Ermr. 95% CIE
75 3 0.59 1.8, 4.2
50 7 1.11 48, 9.2

25 15 7.45 1.4, 29.6
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Table 2.5 presents the estimated survival times for the quartiles, their
estimated standard errors, and 95 percent confidence intervals. The re-
sults in Table 2.5 further quantify our previous observation of many
early deaths with a few at nearly the maximum of follow-up. We note
that the confidence interval is quite wide for the 25th percentile. After
15 months only 17 subjects remained at risk. The lack of precision in
the confidence interval estimate for this percentile is due to the smaller
number of subjects at risk. In general, the right tail of the survivorship
function is estimated with considerably less precision than the left tail.

The confidence interval estimator in (2.14) requires that we com-
pute an estimator of the density function at the estimator of the quantile,
and the endpoints depend on the assumption that the distribution of the
estimated quantile is normal. The sensitivity of the confidence interval
to the choice of estimator of the density and the assumption of normal-
ity has not been studied. Brookmeyer and Crowley (1982) proposed an
alternative method which does not require estimation of the density
function [this is discussed in general terms in Andersen, Borgan, Gill
and Keiding (1993)]. In this method, the confidence interval for a
quantile consists of the values ¢ such that

|§(r) - p/l oo|
s'fs(§(t))

SZ_apn-

The expression on the left side is a test statistic for the hypothesis
H,:S(t) = p/100. The confidence interval is the set of values of ¢ for
which we would fail to reject the hypothesis. In other words, it is the set
of observed survival times for which the confidence interval estimates
for the survivorship function contain the quantile. This interval may be
determined graphically in a manner similar to Figure 2.6 by drawing a
horizontal line from p/100 to where it intersects the step functions de-
fining the upper and lower pointwise confidence intervals. The end-
points of the confidence interval are found by drawing vertical lines
down to the time axis. If the software package provides the capability to
list the endpoints of the confidence intervals for the estimated survivor-
ship function, then the upper and lower endpoints can be precisely de-
termined. Alternative test statistics based on transformations of the es-
timated survivorship function, such as the log-log transformation, could
be used equally well. Brookmeyer and Crowley recommend that this
interval be used when there are no tied survival times. The data from
the HMO-HIV+ study contain many tied survival times and thus it
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would be inappropriate to use the Brookmeyer—Crowley limits in a de-
finitive analysis. However, these data may be used to illustrate the cal-
culations for the median survival time.

Table 2.6 lists the values of the estimated survivorship function and
the endpoints of 95 percent confidence intervals determined by the log-
log transformation for survival times around the median value of 7
months.

In Table 2.6, we see that the confidence interval estimate at 4
months does not contain 0.5, while at 5 months it does contain 0.5.
Thus the lower endpoint of the Brookmeyer-Crowley interval is 5
months. We see that the confidence interval at 9 months does not con-
tain 0.5, while the interval at 8 months does contain it. Hence, the upper
limit is 8 months. Brookmeyer—Crowley limits could be determined in
a similar manner for other quantiles, though those for the median are
most often calculated and reported by software packages. The Brook-
meyer—Crowley confidence interval for the median of (5, 8) is compa-
rable to the interval (4.8, 9.2) from Table 2.5, which was based on the
large sample distribution of the estimator of the median.

In the analysis of survival time, the sample mean is not as important
a measure of central tendency as it is in other settings. (The exception
is in fully parametric modeling of survival times when the estimator of
the mean, or a function of it, provides an estimator of a parameter vital
to the analysis and interpretation of the data. We discuss parametric
modeling in Chapter 8.) This is due to the fact that censored survival
time data are most often skewed to the right and, in these situations, the
median usually provides a more intuitive measure of central tendency.
For the sake of completeness, we describe how the estimator of the mean

Table 2.6 Listing of Observed Survival Times, the
Estimated Survivorship Function and Individual 95%
Confidence Limits for Values of Time near the
Estimated Median Survival Time of 7 months for the
HMO-HIV+ Data

Time Estimate 95% CIE
4 0.64 0.54, 0.66
5 0.56 0.46, 0.66
6 0.54 0.43, 0.64
7 0.47 0.36, 0.57
8 0.42 0.32, 0.52
9 0.39 0.28, 0.49
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and the estimator of its variance are calculated and illustrate their use
with examples from the HMO-HIV+ study.

Computational questions arise if the largest observation is censored,
in which case one has two choices: (1) Use only the observed survival
times (in which case the estimator is biased downwards) or (2) use all
observations (in which case one “pretends” that the largest observation
was actually a survival time, but the estimator is interpreted conditionally
on the observed range). There is no uniform agreement on which is the
best approach. For example, SAS (PROC LIFETEST) uses the former
approach while BMDP (1L) uses the latter approach. In the absence of
censoring, both approaches yield the usual arithmetic mean.

The estimator used for the mean is obtained from a mathematical
result which states that, for a positive continuous random variable, the
mean is equal to the area under the survivorship function. From
mathematical methods of calculus this may be represented as the inte-
gral of the survivorship function over the range, that is,

U= J.og'(u) du.

If we restrict the variable to the interval [0,2°], then the mean of the vari-
able in this interval is

0@’y = j(:S(u)du.

The estimator is obtained by using the Kaplan-Meier estimator of the
survivorship function. The reason for restricting the range over which
the mean is calculated is that the Kaplan—-Meier estimator is undefined
beyond the largest value of time. The value of ¢* used depends on

which of the two previously described approaches is chosen. Recall that
the observed ordered survival times are denoted ¢, i=1,...,m. We de-

note the largest observed value of time in the sample as ¢,,. The two
approaches to calculating the estimator of the mean correspond to de-
fining 1* =1, that is, using the interval [0,f,,], or defining 1* =1,
i.e., using the interval [0,z,,]. In situations where the largest observed
value of time is an observed failure time, the two approaches yield iden-

tical estimators.
The value of the estimator is the area under the step function de-
fined by the Kaplan-Meier estimator and the particular interval chosen.
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To illustrate the calculation, consider the data in Table 2.1 for which the
estimated survivorship function is presented in Table 2.2 and is graphed
in Figure 2.1. In this example, the largest observed value of time is 22
months and it represents a survival time. Thus, the value of the esti-
mated mean is the area under the step function shown in Figure 2.1.
This area is the sum of the areas of four rectangles defined by the
heights of the four steps and the four observed survival times. The ac-
tual calculation is performed as follows (refer to Table 2.2):

f(22)=1.0%[3-0]+0.8X[5—-3]+0.6 X[8~5]+0.3%x[22 — 8]
=10.6.

This is the value which would be reported by both BMDP and SAS.

For sake of illustration, suppose that the value recorded at 22
months was a censored observation. If we use the interval [0),22]
(BMDP's method), we would report the estimated mean as [i(22)=10.6.
If we use the interval [0,8] (SAS's method), then we would report the
estimated mean as fi(8)=6.4. This is the area of the first three rectan-
gles in Figure 2.1. In this example, the two estimates of the mean are
quite different since the largest observation, 22 months, is much larger
than the largest observed survival time, 8 months.

The equation defining the estimator based on the observed range of
survival times only is

Atmy) = zg(t(i-l))(t(i) "‘t(i-l))- (2.15)

i=]

where S'(t(o))=1.0 and 1,,=0.0. The equaticn defining the estimator
for the entire o*erved rangc of data is

At ) = Altimy) + (1= €Yt imy )ty =y (2.16)

where ¢, denotes the censoring status, (0, 1), of this observation. Each

tenin in the summation in (2.15) denotes the calculation of the area of
one of the rectangles defined by the Kaplan-Meier estimator and two
observed times. Note that the estimators in (2.15) and (2.16) are identi-
cal when the largest observation and the largest observed survival time
are equal.

We recommend that the estimator based on the entire observed
range of the data (2.16) be used since the one based on the observed
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range of survival times (2.15) does not use the information on survival
available in times larger than the largest survival time. We note that if
those observations that are long and censored had actually been ob-
served survival times, then the estimated mean survival time would have
been increased substantially. However, there may be situations (e.g.,

when there is considerable uncertainty in measuring the longest cen-
sored time [t(n) in (2.16)], when the estimator based on survival times

only is preferred.

The estimator of the variance of the sample mean is neither particu-
larly intuitive nor easy to motivate, so we just provide it and demonstrate
the calculation. In the case of no censored data, it reduces to the usual
“sample variance divided by the sample size” estimator. Andersen,
Borgan, Gill and Keiding (1993) present a mathematical derivation of
the estimator of the mean and its variance, as well as results which show
that the standard normal distribution may be used to form a confidence
interval estimator. The equation defining the estimator of the variance
of the sample mean computed using (2.15) is as follows:

m-1 2
VAT (Alty) = i 3 — @.17)
i=

ng—14='n(n;, —d,) ’

where n, =Z:1di denotes the total number of subjects with an ob-
served survival time and

-1
A= S(t(j))(t(j+l) —t(i))'

i

3

~.
Il

The estimator of the variance using (2.16) is obtained by "pretending”
that the largest observed time is an observed survival time for purposes
of the summation in (2.17), but n, is not changed. An example will

help distinguish between the two cases. The data in Table 2.1 yielded
an estimated mean f[1(22)=10.6. Evaluation of the estimator in (2.17)
yields

Varlde = 1565 5 2 on T 3020

=19.61

4 [ 7.62 6.02 4.22 ]

where
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7.6=A,=0.8(5-3)+0.6(8—5)+0.3(22-8) ,
6.0=A, =0.6(8—-5)+0.3(22 -8)

and
4.2=A,=03(22-8).

Assume for the moment that the largest value, 22 months, is a censored
observation and that we use (2.16) to estimate the mean. Then the esti-
mate of the variance is

Var[i(22)]=

3 7.6% N 6.02 N 422
3-115(5-1) 4(4-1) 2(2-1)

=22.06.
If we restrict estimation of the mean to observed survival times and esti-

mate the mean using (2.15), then the estimate of the variance obtained
by evaluating (2.17) is

2 2
Var(ii8)] = 3 [ 3.4 1.8 ]

+
3—-1{5(5-1) 4(4-1)
=1.27,
where
34=A =0.8(5-3)+0.6(8—-5)
and

1.8=4, =0.6(8-5).

Approximate confidence intervals are obtained using percentiles from
the standard normal distribution. Using the data in Table 2.1, the end-
points of a 95 percent confidence interval are 10.6+1.96+/19.61. This is
shown only for purposes of illustration since the sample size is only five
with four survival times and any asymptotic theory will not hold. In
practice, the estimated mean and its estimated standard error would typi-
cally be included in the table containing the estimates of the key quan-
tiles and their estimated standard errors.

For the whole HMO-HIV+ study the estimate of the mean using all
of the observed times is [1(60)=14.67 and the estimated variance from
(2.17) is 3.93, yielding a 95 percent confidence interval of (10.78,
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18.56). We note that, in this example, the largest survival time was 58
months and [i(58)=14.59. Thus, the means from the two approaches
are not too different. The right skewness evident in the plot of the sur-
vivorship function shown in Figure 2.2 is further quantified by the dif-
ference between the estimate of the median (7 months) and the estimate
of the mean (approximately 15 months). In these data, as is the case
with most analyses of survival time, the median is the better measure of
central tendency.

2.4 COMPARISON OF SURVIVORSHIP FUNCTIONS

After providing a description of the overall survival experience in the
study, we usually turn our attention to a comparison of the survivorship
experience in key subgroups in the data. These groups might be de-
fined by treatment arms in a clinical trial or by other key factors
thought to be related to survival. The goals in this analysis are identical
to those of the two sample t-test, the nonparametric rank sum test and
the one-way analysis of variance. Namely, we wish to quantify differ-
ences between groups through point and interval estimates of key meas-
ures. Standard statistical procedures, such as those named above, may
be used without modification when there are no censored observations.

Since survival data are typically right skewed, we would likely use
rank-based non-parametric tests followed by estimates and confidence
intervals of medians (and possibly other quantiles) within groups.
Modifications of these procedures are required when censored observa-
tions are present in the data. These tests are described and illustrated
with the HMO-HIV+ study data beginning with methods for comparing
two groups.

When comparing groups of subjects, it is always a good idea to be-
gin with a graphical display of the data in each group. In studies of
survival time, we should graph the Kaplan-Meier estimator of the survi-
vorship function for each of the groups. In the HMO-HIV+ study, a
variable thought to be related to the survival experience of the subjects
was a history of IV drug use, coded 0 = No and 1 = Yes. Figure 2.7
presents the graphs of the estimated survivorship functions for these two
groups of subjects.

Both groups show a similar pattern of survival: a rapidly descending
survivorship function with a long right tail. This is the result of a num-
ber of early deaths and a few subjects with survival near the maximum
follow-up time. Since the estimated survivorship functions do not go to



58 DESCRIPTIVE METHODS FOR SURVIVAL DATA

zero, we know that the largest observation in each group was a censored
value. The figure also shows a separation of the functions for the two
groups. The estimated survivorship function for the non-IV drug users
lies completely above that for the IV drug users. In general, the pattern
of one survivorship function lying above another means the group de-
fined by the upper curve lived longer, or had a more favorable survival
experience, than the group defined by the lower curve. In other words,
at any point in time the proportion of subjects estimated to be alive is
greater for one group (represented by the upper curve) than the other
(represented by the lower curve). Estimates of the within-group statis-
tics such as the median are computed using the methods described in
Section 2.3. The statistical question is whether the observed difference
seen in Figure 2.7 is significant.

A number of statistical tests have been proposed to answer this
question, and most software packages provide results from at least two
of these tests. However, comparison of the results obtained by differ-
ent packages can become confusing due to small but annoying differ-
ences in terminology and methods used to calculate the tests. The
original developers [Mantel (1966), Peto and Peto (1972), Gehan
(1965), Breslow (1970), Prentice (1978)] of these tests sought ways to
extend tests used with non-censored data to the censored data setting.

8 - * Event Times (Drug - No)
= Event Times (Drug - Yes)

Survival Probability

0 L 1 1 { L ¥

0 10 20 30 40 50 60
Time

Figure 2.7 Estimated survivorship functions for subjects with and without a
history of IV drug use.
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The derivation and algebraic representation of the tests can, at times,
seem complex and confusing. Lawless (1982) presents a concise sum-
mary of the traditional approach to the development of these tests, based
on the theory of nonparametric tests, using exponentially ordered
scores. However, in recent years, these tests have been reexamined from
the counting process point of view and have been shown to be special
cases of a more general class of counting process based tests. These
results are summarized in Andersen, Borgan, Gill and Keiding (1993).
The calculation of each test is based on a contingency table of
group by status at each observed survival time, as shown in Table 2.7.

In this table, the number at risk at observed survival time to is denoted

by n, in Group O and by n, in group 1; the number of observed
deaths in each of the these two groups is denoted by d, and 4, re-
spectively; the total number at risk is denoted by #,; and the total num-
ber of deaths is denoted by d,. The contribution to the test statistic at

each time is obtained by calculating the expected number of deaths in
group 1 or 0, assuming that the survivorship function is the same in
each of the two groups. This yields the usual row total times column
total divided by grand total estimator. For example, using group 1, the
estimator is

~" d
6, =21 (2.18)
n;

Most software packages base their estimator of the variance of d;; on the
hypergeometric distribution, defined as follows:

s nyngdi(n, —d;) 219
vll nlz(n‘ _ 1) . ( . )

Table 2.7 Table Used for Test of Equality of the
Survivorship Function in Two Groups at Observed
Survival Time t(,)

Event/Group 1 0 Total
Die d; dy; d;

Not Die ny; —dy; ng; — dy; n, —d
At Risk n; o n,
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The contribution to the test statistic depends on which of the various
tests is used, but each may be expressed in the form of a ratio of
weighted sums over the observed survival times. These tests may be de-
fined in general as follows:

m 2
[Ew&dn-é”)]
i=1

Q= —. (2.20)

m
zwi Vi
=l

Under the null hypothesis that the two survivorship functions are the
same, and assuming that the censoring experience is independent of
group, and that the total number of observed events and the sum of the
expected number of events is large, then the significance level for Q
may be obtained using the chi-square distribution with one degree-of-
freedom [i.e., p=Pr(¥2(1)2 Q)]. Exact methods of inference for use
with small samples have been implemented in the software package
StatXact 3 (1995) but will not be discussed in this text.

The most frequently used test is based on weights equal to one,
w;, =1. In this case, the test mimics the well-known Mantel-Haenszel

test of the hypothesis that the stratum specific odds-ratio is equal to one
[see Mantel (1966) for further details]. However, this test is most often
called the log-rank test, due to Peto and Peto (1972). The test is related
to a test proposed by Savage (1956) for noncensored data, and BMDP
calls it the generalized Savage test.

Gehan (1965) and Breslow (1970) generalized the Wilcoxon rank-
sum test to allow for censored data. This test uses weights equal to the
number of subjects at risk at each survival time, w, =n,, and is called the
Wilcoxon or generalized Wilcoxon test by most software packages.

SAS’s lifetest procedure provides two ways of obtaining the same
test, but different variance estimators are used. In SAS, if we define the
grouping variable to be a stratification variable, the variance estimator
vy, is used. If we use SAS’s test option, then the variance estimator

5 = LT
1= 2
n;

is used, which assumes that d;, =1; there are no tied failure times. Thus,
in any one example, we may obtain test statistics of similar magnitude
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but with slightly different values. Because survival time is often re-
corded in discrete units that may lead to ties, we recommend that the
variance estimator v;; be used.

The choice of weight influences the type of differences in the survi-
vorship function the test is most apt to detect. The generalized Wil-
coxon test, since it uses weights equal to the number at risk, will put
relatively more weight on differences between the survivorship functions
at smaller values of time. The log-rank test, since it uses weights equal
to one, will place more emphasis than does the generalized Wilcoxon
test on differences between the functions at larger values of time. Other
tests have been proposed that use weight functions intermediate between
these, for example, Tarone and Ware (1977) suggested using w, =./n;.

Peto and Peto (1972) and Prentice (1978) suggested using a weight
function that depends more explicitly on the observed survival experi-
ence of the combined sample. The weight function is a modification of
the Kaplan-Meier estimator and is defined in such a way that its value is
known just prior to the observed failure. The value of any estimated
survivorship function at a particular observed failure time is known only
after the observation is made. The property of having the value known
in advance of the actual observed failure is referred to as predictable in
counting process terminology. This theory is needed to prove results
concerning the distribution of the test statistics. The modified estimator
of the survivorship function is

+1-d;
5= H("’ ) 2.21)
1St ny +1
and the weight used is
=8(t,;_1)) % 2.22
Wi ( (._l)) n+1 ( )

Note that when d; =1 the weight is equal to the modified estimator, that
is, w; =.§‘(t(,)), which is an assumption made in the implementation of
this test in BMDP. In the example demonstrating the calculations, we
will use both the correct version of the weight given in (2.22) as well as
BMDP’s implementation. In subsequent examples, only the BMDP ver-
sion of the Peto—Prentice test will be discussed, as it is the only software
package providing this test.
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Harrington and Fleming (1982) suggested a class of tests that incor-
porates features of both the log-rank and the Peto and Prentice tests.
They suggest using the Kaplan-Meier estimator raised to a power, as the
weight, namely

w, =[St

If the power is p=0 then w, =1 and the test is the log-rank test. How-
ever, if p=1 then the weight is the Kaplan-Meier estimator at the previ-
ous survival time, a weight similar to that of the Peto and Prentice test.
This test has been implemented in the S-PLUS software package.

The principle advantage of the Peto—Prentice and Harrington-
Fleming tests over the generalized Wilcoxon test is that they weight rela-
tive to the overall survival experience. The generalized Wilcoxon test
uses the size of the risk set and hence weights depend both on the cen-
soring as well as the survival experience. If the pattern of censoring is
markedly different in each of the groups, then this test may either reject
or fail to reject, not on the basis of similarity or differences in the survi-
vorship functions, but on the pattern of censoring. For this reason most
software packages will provide information as to the pattern of censor-
ing in each of the two groups. This information should be checked for
comparability—especially when the results of several of these tests are
provided and yield markedly different significance levels.

A problem can occur if the estimated survivorship functions cross
one another. This means that in some time intervals one group will have
a more favorable survival experience, while in other time intervals the
other group will have the more favorable experience. This situation is
analogous to having interaction present when applying Mantel-
Haenszel methods to a stratified contingency table. Unfortunately, tests
for the homogeneity across strata may not be used in most survival time
applications, because data in tables like Table 2.7 will be too thin to sat-
isfy the necessary large sample criteria. Fleming, Harrington and
O’Sullivan (1987) proposed a test that addresses the problem by using,
as a test statistic, the maximum observed difference between the two sur-
vivorship functions. This test has not been implemented in any software
package. We consider methods based on regression modeling to ad-
dress this issue in Chapter 7. For the time being, our only check is via a
visual examination of the plot of the Kaplan-Meier estimator for the
two groups being compared. If one or more of the various tests fails to
reject a difference, and if we see that the curves cross, then this
“interaction” may be present.
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It is not possible to provide a categorical rank ordering of the values
of the test statistics. The actual calculated values will depend on the ob-
served survival and censoring times.

In order to illustrate the computation of each of the tests, we have
chosen a small subset of subjects in each of the two drug use groups in
the HMO-HIV+ study. These data are listed in Table 2.8. Column 1 of
Table 2.9 lists the eight distinct survival times. Columns 2 through 5
present the quantities defined by the notation shown in Table 2.7, and
columns 6 and 7 present quantities defined in equations (2.18) and
(2.19). Columns 8 through 11 present values for the weight functions
for the four tests, where “LR” stands for log-rank test weights, “WL”
stands for generalized Wilcoxon test weights, “TW” stands for Tarone—
Ware weights and “PP” stands for Peto—Prentice weights. The calcu-
lated values of the test statistics and their respective p-values are shown
in Table 2.10. The difference between the values of the log-rank and
generalized Wilcoxon tests in Table 2.10 reflects the fact that the two
groups differed most at the later observed survival times. The signifi-
cance levels in Table 2.10 are provided only for the purpose of illus-
trating the calculations since, with only 4 events in each group and an
expected number of events in group 1 of 5.45, the assumption that the
sample sizes are large is a bit tenuous.

Recall the Kaplan—Meier estimates of the survivorship functions for
the two drug groups in the whole HMO-HIV+ study, shown in Figure
2.7. Note that the two curves do not cross at any point, indicating that
the previously described problem of “interaction” may not be present.
An inspection of the proportion of values that are censored and the
pattern of censoring (not shown) indicates that the censoring experience
of the two groups is similar. Thus it would appear that the assumptions
necessary for using the tests for equality of the survivorship functions
seem to hold. Table 2.11 presents the values of the test statistics.

In Table 2.11, all tests are highly significant and support the impres-
sion from Figure 2.7 that those with a prior history of drug use tended

Table 2.8 Listing of Data from the Two Drug Use Groups
in the HMO-HIV+ Study Used to Illustrate the Tests for
the Comparison of Two Survivorship Functions

Drug Use Group Ordered Observed Survival Times
No 3, 4%, 5, 22, 34
Yes 2, 3, 4, 7% 11

* Denotes a censored observation.
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Table 2.9 Listing of Quantities Needed to Calculate the Tests for
the Equality of Two Survivorship Functions

Weights
Time dii My g m €y v, LR WL T™W PP
2 0 5 1 10 0.500 0.250 1 10 3.16 0.909
3 1 5 2 9 1.110 0432 1 9 3.00 0.818
4 0 4 1 7 0.571 0.245 1 7 2.64 0.636
5 1 3 1 5 0.600 0.240 1 5 2.23 0.530
11 0 2 1 3 0.667 0.222 1 3 1.73 0.398
22 1 2 1 2 1.000 0 1 2 141 0.265
34 1 1 1 1 1.000 0 1 1 1.00 0.133

to die sooner than those who did not have a history of drug use. In
practice, one could provide additional support for this conclusion by
presenting the estimates of the within-group median survival times along
with confidence interval estimates.

Each of the tests used to compare the survivorship experience in two
groups may be extended to compare more than two groups. For exam-
ple, the survivorship experience of three or four racial groups could be
compared. In the HMO-HIV+ study, it was hypothesized that age might
be related to survival. Since age is a continuous variable, one approach
to assessing a potential relationship is to use regression modeling. This
is discussed in detail in Chapter 3. An approach used in practice, for
preliminary analyses that can yield easily understood summary meas-
ures, is to break a continuous variable into several groups of interest and
use methods for grouped data on the categorized variable. We use this
approach with groups based on the following intervals for age:
{[20—29], [30—-34], [35-139], [40—54]}. Table 2.12 presents the
number of subjects, the number of deaths, the median survival time and

Table 2.10 Listing of the Test Statistics and
p-Values for the Equality of Two Survivorship
Functions Computed from Table 2.9

Statistic Value p-Value
Log-rank 1.512 0.219
Generalized Wilcoxon 1.250 0.264
Tarone—Ware 1.363 0.243
Peto-Prentice (Correct wt.) 1.327 0.249

Peto-Prentice (BMDP) 1.423 0.233
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Table 2.11 Test Statistics and p-Values for the Equality

of the Survivorship Functions for the Two Drug Use
Groups in the HMO-HIV+ Study

Statistic Value p-Value
Log-rank 11.856 <0.001
Generalized Wilcoxon 10910 <0.001
Tarone—Ware 12.336 <0.001
Peto—Prentice (BMDP) 11.497 <0.001

associated 95 percent confidence interval for each age group.

The estimated median survival time is 43 months for the youngest
age group in Table 2.12, which is considerably larger than the estimated
median in each of the other three groups. This suggests that these
young subjects may have a more favorable survival experience than
older subjects. However, the estimated standard error of the estimated
median is 32.8 and the symmetric normal theory confidence interval
covers the entire observed range of time. This problem arises because
there are only 12 subjects in this age group, the minimum value of the
estimated survivorship function is 0.24 at 58 months and the largest ob-
servations are two censored values at 60 months. The medians and con-
fidence intervals for the other three groups suggest that survival experi-
ence worsens with age. The goal in the four-group comparison will be
to evaluate whether trends seen in the medians persist when the entire
survival experience of the groups is compared. Before presenting the
graphs of the Kaplan—Meier estimates of the survivorship functions for
the four age groups, we present the details of the extension of the two-
group tests to the multiple-group situation.

If we assume that there are K groups, then the calculations of the test
statistics are based on a two by K table for each observed survival time.
The general form of this table is presented in Table 2.13. In a manner

Table 2.12 Number of Subjects, Events and Estimated
Median Survival Time in Four Age Groups in the
HMO-HIV+ Study

Age Group Freq Deaths Median 95% CIE
20-29 12 8 43 *
30-34 34 29 9 6.3, 11.7
35-39 25 20 7 4.5, 9.5
40-54 29 23 4 2.5, 5.5

* Estimated standard error too large to compute a CIE.
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similar to the two-group case, we estimate the expected number of
events for each group under an assumption of equal survivorship func-
tions as

6, =% k=12, K (2.23)

n;

We compare the observed and expected numbers of events for K —1 of
the K groups. The reason for this will be explained shortly. The easiest
way to denote the K —1 comparisons is to use vector notation to repre-
sent both observed and estimated expected number of events as follows:

dl’ = (dy;dyyse-rdyyi),
and
€ = (8 8yr- -1 8x_11)-

The difference between these two vectors is
(d‘ - é‘)’ = (d” - éll’d2l - é2i" . "dK"‘“ - éK_“). (2.24)

For convenience, we have used the first K—1 of the K groups, but any
collection of K -1 groups could equally well be used.

To obtain a test statistic, we need an estimator of the covariance ma-
trix of d,. The elements of this matrix are obtained assuming that the
observed number of events follows a multivariate central hypergeomet-
ric distribution [see Johnson and Kotz (1997)]. The diagonal elements

of the (K —1)x (K —1) matrix, denoted V,, are

5 = ny(n,—ny)d,(n,—d,)
i n’(n,—1)

, k=12,...,K-1, (2.25)

and the off-diagonal elements are

b= - =) o L K-Lk#l (226)
n;(n,—1)

The various multiple-group versions of the two-group test statistics

are obtained by computing a weighted difference between the observed

and expected number of events. The weights used at each distinct sur-

vival time can be any of the weights used in the two-group test, denoted
in general at time ¢;, by w,. To obtain a formula for the test statistic, we
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Table 2.13 Table Used for the Test for the Equality of the
Survivorship Function in K Groups at Observed Survival Time ¢,

Event/Group 1 2 ‘e k m K Total
Die dy, dy; "o dy " dy; d;

Not Die mi=dy  Myi—dy . Ay—dy ., ng—dy; | n—d;
At Risk ny ny; e Ny "o N; n;

define a K -1 by K -1 diagonal matrix denoted W, =diag(w,). This
matrix has the value of the weight, w,, at time ¢, in all K -1 positions

along the diagonal of the matrix. The test statistic to compare the survi-
vorship experience of the K groups is

m

Q= [‘ﬁ} w,(d, - é,.)]’[z W,V,W,]_l [‘ﬁ:‘ W,(d, -¢, )] . (a27)

i=1

The reason we use only K —1 of the K possible observed to expected
comparisons is to prevent the matrix in the center of the right-hand side
of (2.27) from being singular. The value of the test statistic in (2.27) is
the same, regardless of which collection of K —1 groups are used.

The expression on the right-hand side of (2.27) may look intimi-
dating to those not familiar with matrix algebra calculations, but when
K =2 it simplifies to the more easily understood statistic defined in
(2.20). Most software packages providing statistics for several defini-
tions of the weight use (2.27). These packages typically provide only
the test statistic and a p-value. One exception is SAS’s lifetest proce-
dure, which provides the individual elements in (2.24)—(2.25) for the
log-rank and generalized Wilcoxon tests when the group variable is de-
fined as a stratum variable. Under the hypothesis of equal survival
functions, and if the summed estimated expected number of events is
large, then Q will be approximately distributed as chi-square with K -1
degrees-of-freedom, and the p-value is p=Pr(x*(K-1)2Q). The re-
marks made earlier about how the choice of weights in the two-group
case can affect the ability of the test to detect differences apply to the
multiple-group case as well.

The log-rank test, w; =1, has the following easily computed, conser-
vative, approximation:

3 0=y urtul oo
k=1 €+
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where
diy = ) dy,
i=1

and é,, is defined similarly. If we calculate Q. and reject the hypothe-
sis of equal survival experience, then we would reject using Q.

The estimated survivorship functions for the four age groups are
shown in Figure 2.8. The figure confirms our preliminary observations
based on estimates of median survival times. We see that the survivor-
ship function for the youngest group lies completely above those of the
other three groups. It has a long right tail and does not go to zero since
two observations are censored at 60 months. For the first 15 months,
the estimated survivorship functions for the youngest three age groups
follow the trend observed in the medians. In this interval, the three
functions are, for the most part, inversely ordered by age. The func-
tions for the middle two age groups cross four times between 15 and 45
months, suggesting that the survival experience for these two age groups
may be similar in this range. The estimated survivorship function for
the oldest age group lies completely below that of the other three
groups for 34 months. This suggests that we should begin our analysis
with a test for the overall equality of the survivorship experience. If we
find that the experience of at least one group is different from the oth-
ers, we should construct single degree-of-freedom contrasts to examine
between-group differences, as is typically done in analysis of variance
methods.

The values of the four test statistics using their respective weights in
(2.27) are given in Table 2.14. Since each statistic is significant at be-
yond the 1 percent level, we reject the hypothesis that the survivorship
functions for the four age groups are the same. We follow the test for
overall group differences in survival experience with contrasts to try and
describe more precisely the source(s) of the significance of the overall
test. The BMDP package, program 1L, offers this option by allowing
the user to specify a trend test and to input a set of coefficients to test
for trend when the groups are not equally spaced. The SAS package
lifetest procedure has a test option that provides a trend test for a nu-
meric covariate. The test does not yield the same numeric value as the
trend test in BMDP. We describe the test used in BMDP as it follows
directly from the multiple group test in (2.27). The null hypothesis is
that the survivorship functions are equal and the alternative is that they

are rank-ordered and follow the trend specified by the coefficients de-
noted by the vector ¢’=(c,c,,...,cx_). If the groups are equally
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Figure 2.8 Estimated survivorship functions for the four age groups in the
HMO-HIV+ study.

spaced, we may use ¢, =k. The age groups we used in the HMO-HIV+
study are not equally spaced so we will use a vector of coefficients
whose values are the midpoints of the four groups, i.e.,

¢’ =(25,32.5,37.5,417.5).

Any linear transformation of these coefficients would yield the same
value of the test statistic. The statistic to test for trend, with one degree-
of-freedom, is

c’gw,.(di —é,.)]2 |

Qirend = [ (2.28)

| Y wyw, ]c

The p-value is computed using the chi-square distribution with one de-
gree-of-freedom, i.e., p=Pr(x?(1)2Q,. ). Table 2.15 presents the

statistics and their p-values for the test of trend among the four age
groups in the HMO-HIV+ study. These values are each just slightly
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Table 2.14 Test Statistics, Degrees-of-Freedom and
p-Values for the Equality of the Survivorship Functions
for the Four Age Groups in the HMO-HIV+ Study

Statistic Value dof p-Value
Log-rank 19.906 3 <0.01
Generalized Wilcoxon 14.143 3 <0.01
Tarone-Ware 16.956 3 <0.01
Peto—-Prentice (BMDP) 15.665 3 <0.01

smaller than the values in Table 2.14, providing strong evidence for a
trend in survival experience that is inversely related to age. We explore
this relationship in more detail when we consider regression modeling in
the next chapter.

In the examples we have used from the HMO-HIV+ study to illus-
trate the comparison of the survivorship functions over groups, the
magnitude of the test statistics has not varied too dramatically with the
choice of weight, and the significance or non-significance of all test sta-
tistics has been consistent. However, this is not always the case and to
illustrate this we use some data provided to us by our colleagues Drs.
Carol Bigelow and Penny Pekow (at the University of Massachusetts)
and Dr. Kathy Meyer (at Baystate Medical Center in Springfield, Massa-
chusetts). These data were used as part of Ms. Shiaw-Shyuan Yuan’s
Masters degree project [Yuan (1993)]. The purpose of the study was to
determine factors which predict the length of time low birth weight in-
fants (<1500 grams) with bronchopulmonary dysplasia (BPD) were
treated with oxygen. The data were collected retrospectively for the pe-
riod December 1987 to March 1991. Beginning in August 1989, the
treatment of BPD changed to include the use of surfactant replacement
therapy. This was done with parental permission since, at the time, this
therapy was considered experimental. A total of 78 infants met the
study criteria, with 35 receiving surfactant replacement therapy and 43

Table 2.15 Trend Test Statistics, Degrees-of-Freedom and
p-Values for the Equality of the Survivorship Functions
among the Four Age Groups in the HMO-HIV+ Study

Statistic Value o p-Value
Log-rank 19.066 1 <0.01
Generalized Wilcoxon 14.080 1 <0.01
Tarone-Ware 16.673 1 <0.01

1

Peto-Prentice (BMDP) 15.536 <0.01
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not receiving this therapy. Five babies were still on oxygen at their last
follow-up visit and represent censored observations. We refer to this
study as the BPD study.

The outcome variable is the total number of days the baby required
supplemental oxygen therapy. Figure 2.9 presents the Kaplan-Meier
estimates of the survivorship functions for two groups defined by use of
surfactant replacement therapy. The estimated median number of days
of therapy for those babies who did not have surfactant replacement
therapy (group 0) is 107 {95 percent CIE: (55.3, 158.7)}, and the esti-
mated median number of days for those who had the therapy (group 1)
is 71 {95 percent CIE: (33.3, 108.7)}. The median number of days of
therapy for the babies not on surfactant is about 1.5 times longer than
those using the therapy, but there is considerable overlap in the confi-
dence intervals. The plots of the survivorship functions in Figure 2.9
indicate a progressively larger difference in the survivorship experience
between the two groups over time. Table 2.16 presents test statistics and
associated p-values for the equality of the survivorship functions. The
Wilcoxon test is not significant at the 5 percent level, but the log-rank
test is significant. The difference in the magnitude of the test statistics is
due to the difference in the weights used. The Wilcoxon test uses a
weight equal to the size of the risk set and thus is more likely to detect
early differences. The log-rank test uses a weight equal to one and is
more likely to detect later differences in the survivorship functions.

In any statistical analysis in which more than one test can be used,
we need to make a decision about which results we will report. The log-
rank test is the most frequently used and reported test for the compari-
son of survivorship functions. For most analyses, at least when each test
has roughly the same level of significance, reporting only the results of
the log-rank test is appropriate. When the tests give different results,
then more than one result should be reported. This will provide the
reader with a clearer picture as to where the survivorship functions are
different. The current example demonstrates the importance of com-
puting several of the tests. Most packages have both the log-rank and
generalized Wilcoxon tests, and we recommend that both be computed.
To our knowledge, only BMDP computes the Tarone-Ware and Peto-
Prentice tests. The pattern of censoring can influence the magnitude of
the tests, but the values of the Tarone-Ware and Peto-Prentice tests tend
to be intermediate between the log-rank and Wilcoxon tests.

We conclude our presentation of the tests for comparison of survi-
vorship functions with a brief discussion of the assumptions underlying
the tests and the types of alternative hypotheses the tests have the power
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Figure 2.9 Estimated survivorship functions defined by surfactant use in the
BPD study (0 = No surfactant, 1 = Surfactant).

to detect. Recall that the Kaplan-Meier estimator assumes that censor-
ing is independent of survival time. In addition, the tests assume that the
censoring is independent of the group. Problems in study design and
data collection can lead to differential effects due to censoring, and the
best protection is a carefully designed study. However, it is good prac-
tice to examine the censoring pattern in the data.

In general, we cannot over-emphasize the importance of a careful
study of the plot of the Kaplan-Meier estimates of the survivorship
functions. Any tests comparing these functions, and within-group point
estimates of quantiles, should support what is seen in the plot. The plot
is also the basic diagnostic tool to determine whether the tests described

Table 2.16 Test Statistics and p-Values for the Equality
of the Survivorship Functions for Two Groups Defined
by Surfactant Use in the BPD Study

Statistic Value df p-Value
Log-rank 5.618 1 0.018
Generalized Wilcoxon 2.490 1 0.115
Tarone—-Ware 3.698 1 0.055

1

Peto—Prentice (BMDP) 2.534 0.111
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previously should be used or, if used, have any chance of detecting a
difference. The alternative hypothesis that the tests are most likely to
detect is a monotonic ordering of the survivorship functions (e.g., they
lie one above another). The tests have little to no power to detect differ-
ences when the survivorship functions cross one another. An example
of a worst-case scenario is when the survivorship functions for two
groups have the same median and cross each other once at that value.
For the early times one group has the more favorable survival experi-
ence, but for later times the other group does. None of the tests de-
scribed in this section are able to detect this kind of difference. This is a
situation analogous to the presence of interaction in a Mantel-Haenszel
analysis of stratified contingency tables. Unfortunately, tests for inter-
action used with a Mantel-Haenszel analysis, such as the Breslow-Day
test [Breslow and Day (1980)], can’t be used, due to small cell frequen-
cies in tables such as Table 2.13. In this case, one approach that can be
used is to subdivide the sample on the basis of the stratification variable
and then test for group differences within the strata. This approach is
limited by the study size, as we can spread the data over only so many
strata. Eventually there are too few subjects per stratum to reliably esti-
mate the survivorship function. However, in practice, there may be one
or two clinically plausible variables to use for stratification purposes.
These types of differences, or interactions, between survivorship func-
tions are much more clearly addressed using the regression modeling
approach to be discussed in Chapter 3.

2.5 OTHER FUNCTIONS OF SURVIVAL TIME AND
THEIR ESTIMATORS

The Kaplan-Meier estimator of the survivorship function has been, and
continues to be, the most frequently used estimator, largely due to the
fact that it is routinely calculated by most software packages. To moti-
vate the discussion of another estimator, we begin by presenting a dif-
ferent representation of the survivorship function. If we assume that the
underlying time random variable is absolutely continuous, then we may
express the survivorship function as

S(t) = e 1O, (2.29)

where H(t)=—-In(S(t)). The expression in (2.29) suggests that estima-
tors of the survivorship function could be based on an estimator of S()
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(e.g., the Kaplan—Meier estimator) or via an estimator of H(t). Aalen
(1975, 1978), Nelson (1969, 1972) and Altshuler (1970) have proposed
an easily computed estimator of H(t), which we refer to as the Nelson-
Aalen estimator.

The work by Aalen is considered to be one of the landmark contri-
butions to the field, as virtually all recent statistical developments for the
analysis of survival time have been based on the counting process ap-
proach he used to derive his version of the estimator of H(t). The sta-
tistical theory and use of this estimator in various applied settings are
discussed in detail in Andersen, Borgan, Gill and Keiding (1993) and in
Fleming and Harrington (1984, 1991). We will use results derived from
the counting process theory to justify various techniques discussed in
this text. We will not present the counting process approach in any de-
tail since fully appreciating and understanding it requires having had
calculus-based courses in mathematical statistics and probability theory.

Without providing any details as to its derivation (a heuristic argu-
ment is given later in this section), the Nelson—Aalen estimator of H(t)
is

H@) = 2-‘5!- (2.30)

tySt'i

An estimator of the survivorship function, based on (2.30), is

S(t)= e HW, (2.31)

One theoretical problem is that the expression in (2.29) is valid for con-
tinuous time, but the estimator in (2.31) is discrete. However, the esti-
mator in (2.31) provides the basis for the estimator of the survivorship
function used with the proportional hazards regression model discussed
in Chapter 3. For this reason, we consider it in some detail.

Even though packages may not provide the Nelson—Aalen estimator
of the survivorship function, it is remarkably easy to compute. In the

absence of ties, one merely sorts the data into ascending order on the
time variable. The size of the risk set at £, is n—i+1 and the estimator,

H(t) in (2.30), is obtained as the cumulative sum of the zero-one cen-
soring indicator variable divided by the size of the risk set. The Nelson-
Aalen estimator of the survivorship function is obtained by evaluating
the expression in (2.31). When ties are present, one sorts the data into
ascending order on time and into descending order on the censoring
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variable within values of time. Sorting in this way places the censored
observations after the events when ties occur. One then calculates a
variable equal to n—i+1, and uses a procedure such as STATA’s col-
lapse command, or the means procedure in SAS, to provide summary
statistics at each value of time observed. One needs to obtain the maxi-
mum value of n—i+1 among the tied time values and the total number
of events and/or censored observations. This reduced data set is used to
calculate the Nelson-Aalen estimator using the cumulative sum de-
scribed for the case where there are no ties.

Peterson (1977) proposed another estimator, which is based on the
Kaplan-Meier estimator of the cumulative hazard function, as follows:

io=-wfio)=-{ 1[4 5[]
= Z—ln(l - j—) .

St

One may show, by using a Taylor series expansion (see Appendix 1),
that d,/n; <-In(1-d,/n;) for each survival time. Thus, the Nelson—
Aalen estimator of the survivorship function will always be greater than
or equal to the Kaplan-Meier estimator. If the size of the risk sets rela-
tive to the number of events is large, then d,/n,=-In(1-d;/n;) and
there will be little practical difference between the Nelson-Aalen and the
Kaplan-Meier estimators of the survivorship function.

The HMO-HIV+ study provides a good illustration of a situation in
which there is little practical difference between the two estimators. Ta-
ble 2.17 presents the results of collapsing the sample of 100 observa-
tions to obtain the necessary within-time summary statistics at each ob-
served .value of time: the frequency of occurrence (freq), the number of
events (d), the size of the risk set (n), the Nelson-Aalen estimator, H(t),
the Nelson—Aalen estimator of the survivorship function, S(¢) and, for

comparison, the Kaplan—Meier estimator, S(r). For example, at 3
months the values of the estimators are

HQ3)= L5—+—5-+£ =0.347,
100 83 73

S$3)=e% =0.707,
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§(3)=(1—£)x(1—i)x(1—ﬂ)=0.689.
100 83 73

Table 2.17 Summary Table Used to Calculate the Nelson-
Aalen Estimator of the Survivorship Function for the
HMO-HIV+ Study

Time freq d n 2(0)) S(r) S(r)

and

1 17 15 100 0.150 0.861 0.850
2 10 5 83 0.210 0.810 0.799
3 12 10 73 0.347 0.707 0.689
4 5 4 61 0.413 0.662 0.644
5 7 7 56 0.538 0.584 0.564
6 3 2 49 0.579 0.561 0.541
7 7 6 46 0.709 0.492 0.470

8 4 4 39 0.812 0.444 0.422
9 3 3 35 0.897 0.408 0.386
10 4 3 32 0.991 0.371 0.350
11 3 3 28 1.098 0.333 0.312
12 4 2 25 1.178 0.308 0.287
13 1 1 21 1.226 0.294 0.273
14 1 1 20 1.276 0.279 0.260
15 2 2 19 1.381 0.251 0.232
19 1 0 17 1.381 0.251 0.232
22 1 1 16 1.444 0.236 0.218
24 1 0 15 1.444 0.236 0.218
30 1 1 14 1.515 0.220 0.202
31 1 1 13 1.592 0.204 0.187
32 1 1 12 1.675 0.187 0.171
34 1 1 11 1.766 0.171 0.156
35 1 1 10 1.866 0.155 0.140
36 1 1 9 1.977 0.138 0.125
43 1 1 8 2.102 0.122 0.109
53 1 1 7 2.245 0.106 0.093
54 1 1 6 2.412 0.090 0.078
56 1 0 5 2412 0.090 0.078
57 1 1 4 2.662 0.070 0.058
58 1 1 3 2.995 0.050 0.039
60 2 0 2 2.995 0.050 0.039
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The values at other times are obtained in a similar manner. Figure 2.10
presents graphs of the the Nelson-Aalen and Kaplan—Meier estimators.
We see little practical difference between the two estimators, even though

S@t) > 3’(:) at every observed value of time.

The function H(t) is an important analytic tool for the analysis of
survival time data. In much of the survival analysis literature it is called
the cumulative hazard function, but in the counting process literature it
is related to a function called the cumulative or integrated intensity
process. The term “hazard” is used to describe the concept of the risk
of “failure” in an interval after time ¢, conditional on the subject having
survived to time ¢. The word “cumulative” is used to describe the fact
that its value is the “sum total” of the hazard up to time ¢. At this point
we focus on the hazard function itself, as it plays a central role in regres-
sion modeling of survival data.

Consider a subject in the HMO-HIV+ study who has a survival time
of 7 months. For this subject to have died at 7 months, he/she had to be
alive at 6 months. The hazard at 7 months is the failure rate “per
month,” conditional on the fact that the subject has lived 6 months.
This is not the same as the unconditional failure rate “per month” at 7
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Figure 2.10 Graphs of the Nelson-Aalen and Kaplan-Meier estimators of the
survivorship function from the HMO-HIV+ study. '
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months. The unconditional rate applies to subjects at time zero and, as
such, does not use the information available as the study progresses
about the survival experience in the sample. This accumulation of
knowledge, over time, is generally referred to as aging. For example, of
100 subjects who enroll in a study, what fraction is expected to die at 7
months? The conditional failure rate applies only to that subset of the
sample that has survived to a particular time, thus it accounts for the
aging that has taken place in the sample.

The data from the HMO-HIV+ study can be used to demonstrate the
difference between the conditional and the unconditional failure rate.
If we assume that there were no censored observations in the study, the
“freq” column in Table 2.17 gives the number of deaths. The first two
columns of Table 2.17 are a typical presentation of grouped data. A
histogram based on these data provides a graphical estimator of the un-
conditional failure rate.

To construct the histogram, we divide the follow-up time into 10
intervals, each of width 6 months. Each interval is represented graphi-
cally by a rectangle with height equaling the frequency drawn over the
interval. To construct a relative histogram we divide each frequency by
the total sample size. At this point we must decide what we wish to use
as the appropriate unit of time. If we do nothing, we implicitly let 6
months denote “one unit” of time. If we wish to have “one unit”
equal “one month” then we must further divide by 6. For other inter-
vals of time, we would divide by the correct multiple of interval width
and unit. If we divide by 6, the heights of the rectangles give us the
relative proportions of the total number of subjects beginning at time
“zero” who had a survival time in each interval, and the area of each
rectangle is the observed unconditional failure rate per month in that
interval.

For each time, ¢, the histogram estimator, f(t), is

f(t)=(

freq)/(width) (2.32)
n

where “freq” denotes the number of survival times in the interval,
“width” denotes the width of the interval relative to the definition of
“one unit” and n is the total sample size. The fact that the numerator
of the estimator is expressed relative to the total sample size makes it an
unconditional estimator. This is further reflected by the fact that the
total area of the histogram rectangles is one, meaning that each subject
has been counted once and only once in the presentation of the data.
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The interval grouped-data estimator of the hazard function is, for all
values of time, ¢, in an interval,

(freq)/(width)

h(t) = ()

(2.33)

where the quantity n(f) is used somewhat imprecisely to denote the
number of subjects still alive (at risk) at the beginning of the current

interval. The area of the rectangle formed by graphing h(t) versus t
estimates the conditional, on n(z), per-month failure rate in the interval.
The sum of the areas of the rectangles up to and including an interval is
an estimate of the cumulative hazard. Since subjects are at risk until
they actually die or are censored, they may be counted more than once
and the sum of the areas of the rectangles may be greater than one.

Figure 2.11 presents the graphs of the histogram and hazard func-
tion estimators of the unconditional and conditional failure rates, com-
puted from the data in Table 2.17, using 6-month intervals (e.g., (0,6],
(6,12],...,(54,60]). The shaded rectangles of the histogram, which esti-
mate the overall, unconditional per-month failure rate, are initially high
and then drop rapidly, staying consistently low to 60 months. This pat-
tern reflects the many early deaths; relatively few subjects had survival
times throughout the period of follow-up. This was described by the
Kaplan-Meier estimator in Figure 2.2. On the other hand, the open
rectangles of the hazard function estimate the failure rate in the current
interval, given that a subject is alive at the beginning of the interval.
This pattern is not as consistent as that seen in the shaded histogram due
to the fact that each rectangle is based on fewer subjects than the previ-
ous one. In other words, the variability is greater in the estimator of the
hazard than the histogram. The graph indicates a relatively high initial
failure rate which drops and then rises again.

The histogram estimator in (2.32) is useful for providing an esti-
mate of the unconditional rate only when there are no censored obser-
vations. It may be modified to handle censored observations by using
the difference between the values of the Kaplan—-Meier (or Nelson-
Aalen) estimator of the survivorship function at the two endpoints of the
interval. The hazard function estimator in (2.33) may be modified to
accommodate censored observations by having censored values of time
contribute to the count in the denominator but not in the numerator.
To provide a better approximation of the number at risk over the whole
interval in settings in which there are large numbers of subjects and/or
the inherently continuous time variable has been recorded at a few dis-
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Figure 2.11 Graphs of the histogram estimator (shaded) of the unconditional
failure rate and the hazard function estimator (open) of the conditional failure rate
from the HMO-HIV+ study.

crete time points, the estimator of the hazard may use a denominator in
which the number at risk at the beginning of the interval is reduced by
one-half the number of subjects who failed, were censored or were lost
for other reasons [see Lee (1992)].

Considering Figure 2.11, it is logical to postulate a function of time
that describes, in a concise fashion, the form of either the unconditional
or conditional failure rate, which may then be used to express the survi-
vorship function as a function of time. If we can answer this question,
then we have taken an important first step toward a more comprehensive
analysis that will enable us to study which factors affect survival, namely
parametrizing this function with a regression-like model.

As we think about the problem of trying to develop a function to
describe survival time in the presence of censored data, we focus atten-
tion on the hazard function since it incorporates any aging that might
take place. Figure 2.11 may be useful for general descriptive purposes
but it is, in a sense, too discrete to be of use in developing a more pre-
cise function of time to describe the hazard function. What we would
like is a more “continuous” time analysis. If we let the interval width
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shrink to the point where it is one measurement unit wide (i.e., one
month in the HMO-HIV+ study), then the right-hand side of the esti-
mator of the hazard function in (2.33) is d,/n; at observed survival

times and is zero elsewhere.
Figure 2.12 presents a scatterplot of the pairs (t(i),d,/n,),

i=1,2,...,31 and a lowess smooth? of the plot [see StataCorp (1997),
ksm command]. The smoothing done here is for illustrative purposes
[see Andersen, Borgan, Gill and Keiding (1993) for a more complete
discussion of smoothed estimators of the hazard function]. One diffi-
culty with the plot in Figure 2.12 is that the hazard function should be
estimated to be 0 at times when no deaths occurred. The smoothed
curve in Figure 2.12 does not incorporate these 0 values. However, the
goal in this section is to begin to make the transition from fully non-
parametric to regression models discussed in subsequent chapters. Fig-
ure 2.12, while not totally correct, does serve to guide the reader in the
direction of these regression models.

The smooth of the pointwise estimates of the hazard agrees with our
original impression drawn from Figure 2.11 that the conditional risk is
relatively high, drops and then rises. On the basis of this observation, we
might postulate that the hazard function is a quadratic function of time,

h(t) =6, + 6,t + 6,1*.

Suppose for the moment that we have a parametric form for the
hazard function. We need to link the hazard function in a more direct
way to the survivorship function. Since we assume the time variable is
absolutely continuous, the cumulative hazard is, by methods of calculus,

H(t) = L:h(u) du, (2.34)

and by (2.29)

S() = e—ﬁh(u) du

(2.35)
Those readers familiar with calculus will recognize the right-hand side
of (2.34) as the integral of the hazard function over the time interval
[0,¢]. For readers not familiar with calculus, the estimator in (2.30) can

2 For those unfamiliar with scatterplot smoothing methods, the purpose is to re-
move some of the “noise” in the plot by computing, for each y in the plot, a

weighted average of the other y’s near it.
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Figure 2.12 Scatterplot of the pointwise estimator of the hazard function, d,/n,
and its lowess smooth from the HMO-HIV + study.

serve as a convenient mental model of what is being computed in
(2.34). Another representation of the hazard function may be obtained
by taking the log of (2.35) and then differentiating with respect to ¢
yielding

h(t) = &, (2.36)
S(t)

where f(t) denotes the probability density function for the time ran-
dom variable. Those not familiar with methods of calculus may think
of the function f(¢) as what the histogram estimator in (2.32) becomes
if we use larger and larger sample sizes and the width of each interval
used in its construction becomes quite small. A similar intuitive argu-
ment may be applied to the hazard function estimator in (2.33) to moti-
vate the expression in (2.36).

As noted above, one way to envision the hazard function is to think
of it as a limiting, n — oo, version of the estimator in (2.33). In this ar-
gument, we let the width of each interval become quite small and, in the
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end, we have a function which describes the failure rate in the next in-
stant following ¢. The expressions in (2.35)—(2.36) show that if we can
specify the hazard function, then it is, in principle, relatively easy to ob-
tain an expression for any of the other functions of survival time. The
advantage of using the hazard function is that it characterizes the aging
process as a function of time.

To obtain a better understanding of the hazard function and how it
specifies the survivorship function, we consider various possible
parametric models. A discussion of parametric survival time models is
presented in Chapter 8. The goal here is see how this function describes
the aging process.

The simplest possible model is for the hazard function to be con-
stant, not depending on time [i.e., h(t)=0]. This hazard function states
that at any particular time the chance that a subject “dies” in the next
instant does not depend on how long the subject has survived. For ex-
ample, in Figure 2.12 the average value of the plotted pointwise esti-
mates of the hazard function is about 0.1. Thus, the constant hazard

model is A(r)=0.1. The interpretation of this hazard function is that
there is about a 10 percent chance that a subject will die in the next
month, regardless of how long he/she has already survived. This model
for the hazard may be clinically plausible in some studies of human
populations when the follow-up time is relatively short. For example,
the chance that a “healthy” 35-year-old person dies in the next year is
about the same as that of a healthy 36- or 37- or 38- or 39-year-old
subject.

The next simplest model is for the hazard to be a linear function of
time, h(t) =6, +6,t. For example, an approximate straight-line fit to the

plotted points in Figure 2.12 yields the model A(r)=0.07+0.001r. The
interpretation is that at the beginning of the study subjects had about a 7
percent chance of dying in the next month, and this increases at about
0.1 percent per month. Since the hazard function must be greater than
zero, the values of the parameters are constrained. For example, the
model! h(t) =0.12 - 0.004¢ describes the hazard in the first 30 months in
Figure 2.12, but yields negative values after 30 months. This leads to
the clinically implausible situation of positive probability of infinite
physical life. Therefore, we have to use special methods when fitting
hazard functions to observed data, since simple least squares regression
methods will not be appropriate. We discuss these methods in detail in
the next chapter.

On the basis of the lowess smooth in Figure 2.12, we postulated a
quadratic function for the hazard function for the HMO-HIV+ study.



84 DESCRIPTIVE METHODS FOR SURVIVAL DATA

This is a more complicated function than the linear or constant model,
but a life process of decreasing risk followed by increasing risk is clini-
cally plausible. If one conceptualizes the risk of death in the next
“instant” from birth to age 80, the function decreases for the first 5 or
so years, remains fairly constant for 40 or so years and then begins to
rise rapidly. This is more of a “bathtub” shape and requires a more
complex function to describe it than a simple quadratic [see Lawless
(1982)].

The major point is that the hazard function itself says a great deal
about the fundamental underlying life-length process being studied.
Specifying a fully parametric model leads to a specific life-length proc-
ess. In some settings we may need this level of specificity, but in others
it may not be necessary or flexible enough. This point will be dealt with
directly in the next chapter.

The univariate descriptive methods discussed in this chapter, com-
puted for the whole study or within a few subgroups, are an important
first step in any analysis of survival time; however, these methods cannot
be used to address the more sophisticated questions that can typically be
addressed through regression modeling techniques. In Chapter 1 we
discussed the general similarities and differences between regressions
using dependent variables such as weight or disease status and regres-
sions using survival time (with and without censoring) as the dependent
variable. At this point, we are in a position to consider the regression
methods for survival data in more detail.

Other texts presenting descriptive as well as other methods for sur-
vival data include: Collett (1994), Cox and Oakes (1984), Klein and
Moeschberger (1997), Kleimnbaum (1996), Le (1997), Lee (1992),
Miller (1981), Marubini and Valsecchi (1995) and Parmar and Machin
(1995).

EXERCISES

1. Listed below are values of survival time (length of follow-up) for 6
males and 6 females from the WHAS. Right-censored times are denoted
by a “+” as a superscript.

Males: 1, 3, 4*, 10, 12, 18
Females: 1, 3%, 6, 10, 11, 12°*
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Using these data, compute by hand (and verify hand calculations when
possible with a software package) the following:

(a) The Kaplan-Meier estimate of the survivorship function for each
gender.

(b) Pointwise 95 percent confidence intervals for the survivorship
functions estimated in problem 1(a).

(c) The Hall and Wellner 95 percent confidence bands for the survi-
vorship functions estimated in problem 1(b).

(d) Point and 95 percent confidence interval estimates of the 25th,
50th and 75th percentiles of survival time distribution for each gender.

(e) The mean survival time for each gender using all available times.

(f) A graph of the estimated survivorship functions for each gender
computed in problem 1(a) along with the pointwise and overall 95 per-
cent limit computed in problems 1(b) and 1(c).

2. Repeat problem 1 using data from grouped cohort 1 (1975 and
1978) from the Worcester Heart Attack Study. All calculations for this
problem should be done using a software package.

3. Repeat problem 1 using grouped cohort 1 (1975 and 1978) from the
WHAS with four groups defined by the age intervals: [24, 60], [61, 65],
[66, 75] and [76, 99]. In this subgroup of the data, 60, 65 and 75 are
approximately the three quartiles of the age distribution.

4. Compute by hand, and verify hand calculations with a software pack-
age, the log-rank, generalized Wilcoxon, and Peto—Prentice tests for the
equality of two survivorship functions estimated in problem 1(a).

5. Repeat problem 4 using data from grouped cohort 1 (1975 and
1978) of the WHAS. Do the results of the test support what is seen in
the graphs of the estimated survivorship functions?

6. Repeat problem 4 using data from grouped cohort 1 (1975 and
1978) of the WHAS with four groups defined by the age intervals: [24,
60], [61, 65], [66, 75] and [76, 93]. Using the midpoints of the four
age intervals, test for trend using the test statistic defined in (2.28). In
addition, test whether the survivorship experience for the middle two age
groups is the same or different from the youngest and oldest age
groups.
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7. For the purposes of this problem restrict analyses to WHAS data from
grouped cohort 1 (1975 and 1978). Prepare a table of descriptive sta-
tistics for survival time (length of follow-up) for each of the patient
characteristic variables in Table 1.4. For age use the four groups in
problem 6 above, and for CPK use two groups defined by the median.

8. Expand the analyses in problem 7 to include estimates from all 3 co-
hort groups combined. Note that in this problem the final age interval
should be [76, 99].



CHAPTER 3

Regression Models for
Survival Data

3.1 INTRODUCTION

In considering regression modeling of survival data, the first question
we have to answer is: What are we going to model? Specifically, what
will play the role of the systematic component in a regression model?
The inherent aging process that is present when subjects are followed
over time is what distinguishes survival time from other dependent vari-
ables. The presence of censoring in the data makes the study of survival
time more interesting from a statistical research perspective, but from a
practical point of view, it is an annoying technical detail that must be
dealt with when we fit models. Of the functions describing the distribu-
tion of survival time discussed in Chapter 2, the hazard function best
and most directly captures the essence of the aging process. Thus, a
natural place to begin is to explore how to incorporate the hazard func-
tion into the heuristic approach to regression modeling presented in
Chapter 1.

In Chapter 1 we used a scatterplot of data to motivate a regression
model in which the log of survival time had a linear systematic compo-
nent and an extreme minimum value error component. Assuming that
the value of the covariate, x, is fixed and does not change over time, the
model, as shown in (1.3), is

y=PB,+Bx+0XE", (3.1)

where y=1In(¢) and €* =In(g). Expressed on the time scale, the model
is multiplicative and of the form

87
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t=(ePo*hr)x g7, (3.2)

As expressed in (3.1) and (3.2), survival time is determined by a sys-
tematic component (the B, + B,x part) and by an error component (the
€ part). When we choose a particular parametric distribution for the
error component in (3.1) or (3.2), we have also chosen a specific
parametric structure for the hazard function. For example, if we assume
that the value of the shape parameter in (3.2) is o =1, then the distribu-
tion of the error component in (3.2) is exponential with parameter equal
to one, and the hazard function for a subject with covariate equal to x is

h(t,x,B) = e Pothix) (3.3)

Two points should be noted: (1) the hazard function does not depend
on time; its value is determined by the covariate x and the unknown pa-
rameters f, and S, and (2) the hazard function and systematic compo-
nent in the regression model are inversely related.

The fact that the hazard does not depend on time means that the risk
of “failure” 1is the same no matter how long the subject has been fol-
lowed. In Chapter 1, we considered the age of the subject in the HMO-
HIV+ study as the covariate. The hazard function in (3.3) states that the
risk of dying is determined solely by the age of the subject at the time
of HIV+ diagnosis, and not by the time that has elapsed since enroll-
ment in the study, #=0. This assumption of a constant hazard may be
unrealistic in many applied settings and should be examined carefully.
We discuss this and other methods for model checking in Chapter 6.

One simple way to provide for a nonconstant hazard function is to
assume that the shape parameter, o, in (3.2) is not equal to 1. In this
case, the error component has a Weibull distribution with parameters 1
and o. Survival time has a Weibull distribution with one parameter
equal to the systematic component in (3.1) and the second parameter
equal to o. The equation for the hazard function for (3.2) is

ltl-l

h(t,x,B,l)=(—ep0—+p'?)—[,

(3.4)

where we have set A =1/0 to obtain a more concise expression. Con-
sidered as a function of survival time, the hazard function in (3.4) in-
creases over time if A>1 and decreases if A<1. Because it can in-
crease or decrease, the hazard function in (3.4) is more flexible than the
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constant hazard in (3.3). However, the change in the hazard function
must be monotonic. For example, it would not be a good model if the
hazard function first decreases and then increases (as is the case for hu-
man life over a many year period). Therefore, it still may not be suit-
able in certain applied settings.

The inverse relationship between the parameterization of the hazard
and the systematic component is a result of the assumption that the dis-
tribution of the error component is exponential or Weibull. For exam-
ple, if the value of the hazard function is 0.10, then the mean survival
time is 10. Most software packages fit exponential regression models
using the parameterization in (3.1).

In essence, the models described by (3.1)—(3.4) indicate that we are
trying to accomplish two goals simultaneously. The model must de-
scribe the basic underlying distribution of survival time (error compo-
nent), but it must also characterize how that distribution changes as a
function of the covariates (systematic component). In some applied
settings it is important to use a model that accomplishes both goals, but
in other settings a model that addresses only the latter one is sufficient.

If we want a model to predict the life-length of a particular brand of
computer hard disk as a function of temperature and relative humidity,
we need it to address both goals. The desired end product of the statis-
tical modeling is an equation that may be used to predict survival time
of the hard disk for specific operating conditions. Fully parametric
models such as those in (3.1)—(3.4) may be required, and a comprehen-
sive study of such models is provided in the texts by Lawless (1982) and
Nelson (1982). We consider several of these in Chapter 8.

On the other hand, we are often in a setting where we may wish to
see if a combination of drug therapies improves survival of HIV+ pa-
tients when compared to a single drug therapy. In this case, a complete
description of survival time is of secondary importance to a description
of how the new therapy modifies the survival experience relative to the
old one. In this example, we need to estimate parameters that can be
used to compare the survival experience of the two treatment groups,
and this comparison may need to be adjusted for other patient charac-
teristics such as age or IV drug use. The regression models in (3.1)-
(3.4) could be used to accomplish this goal. However, the assumptions
required for their error components may be unnecessarily stringent,
given that the desired inferences will be based solely on the parameters
in the systematic portion of the model. Models used to describe survival
time in a comparative sense are often called semiparametric regression
models and are the major focus of this text.
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3.2 SEMIPARAMETRIC REGRESSION MODELS

We noted in the previous chapter that we can describe the distribution of
survival time in one of two equivalent ways. We can specify the density
function of a parametric distribution or we can specify the hazard func-
tion. The advantage of the latter approach is that we directly address the
aging process; but, as shown previously, it does not easily lend itself to
the use of scatterplots to motivate regression models. The latter ap-
proach may also be preferred in a setting where the end products of the
statistical analysis are estimated parameters that compare the survival
experience of selected subgroups. By specifying a model through the
hazard function, we may address specific questions such as how survival
is related to the treatments under study and other subject characteristics.

Suppose we wish to compare the survival experience of cancer pa-
tients on two different therapies adjusting for age and gender, patient
characteristics known to be associated with survival time. A natural
place to begin is to put a regression model type structure on the hazard
function. In general we specify the hazard function as a function of
time and the covariates. In the hypothetical example there are three
covariates: treatment, age and gender. For ease of notation assume for
the remainder of this section and the next that there is one covariate de-
noted x. A regression model for the hazard function that addresses the
study goal is

h(t,x, B) = hy()r(x, B). 3.5)

The hazard function, as expressed in (3.5), is the product of two func-
tions. The function, hy(t), characterizes how the hazard function

changes as a function of survival time. The other function, r(x,pj3),
characterizes how the hazard function changes as a function of subject
covariates. The functions must be chosen such that A(t,x,8)>0. Note
that hy(t) is the hazard function when r(x,8)=1. When the function
r(x,B) is such that H(x=0,8)=1, hy(t) is frequently referred to as the
baseline hazard function. Under the model in (3.5) the ratio of the

hazard functions for two subjects with covariate values denoted x, and
Xq 18

HR(t,x,,xo)=:g—’2’% ,

SO
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HR(t, x,,x,) = ho(D)r(x,, B)
T by (r(xg, B)
— r(x, )

. 3.6
r(x, ) ©5-6)

The hazard ratio (HR) depends only on the function r(x,B). If the ratio
function HR(t,x,,x,) is easily interpreted, then the actual form of the
baseline hazard function is of little importance.

Cox (1972) was the first to propose the model in (3.5) when he
suggested using r(x,)=exp(xf). With this parameterization the haz-
ard function is

h(t,x, B) = hy(t)e™ (3.7)
and the hazard ratio is
HR(t, x,, X,) = P17, (3.8)

This model is referred to in the literature by a variety of terms, such as
the Cox model, the Cox proportional hazards model or simply the pro-
portional hazards model. Part of the appeal of the Cox model is the

interpretation of (3.8) as a “relative risk”-type ratio. For example,
when a covariate is dichotomous, such as gender, with a value of x, =1

for males and x, =0 for females, the hazard ratio in (3.8) becomes

HR(t,x;,x,) = €P.

If the value of the coefficient is 8 =1n(2), then the interpretation is that
males are “dying” at twice the rate of females. We defer further dis-
cussion of the interpretation of the ratio in (3.8) as a function of the
coefficients to Chapter 4.

The Cox model in (3.7) is the most frequently used form of the
hazard function in (3.5). The term proportional hazards refers to the
fact that in (3.7) the hazard functions are multiplicatively related, that is,
their ratio is constant over survival time. This is an important assump-
tion and methods for assessing its validity are presented in Chapter 6.
Other parametrizations have been considered, most notably additive
models. One example of an additive model is the additive relative haz-
ard model whose hazard function is
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h(t,x, B) = hy(£)(1+ xf3). (3.9)

Software packages, such as BMDP and EGRET, offer the user the choice
of using (3.7) or (3.9) or a mix of the two. We discuss these and other
additive models in Chapter 9. Other more generally parametrized posi-
tive functions have been suggested [see Andersen, Borgan, Gill and
Keiding (1993, Chapter VII)], but none are in wide practical use. We
focus primarily on (3.7), the proportional hazards model, as it is the
most frequently used model in applied settings.

The hazard functions in (3.5), (3.7) and (3.9) are called semi-
parametric functions since they do not explicitly describe the baseline
hazard function, hy(¢). It was noted at the beginning of this chapter that
one way to specify the distribution of survival time is through the haz-
ard function. Thus, a natural question is: What is the survivorship func-
tion for a model with hazard function (3.5)? If we use the relationship
shown in (2.29), then the survivorship function is

S(t, x, B) = e™H0xP) (3.10)

where H(t,x, B) is the cumulative hazard function at time ¢ for a subject

with covariate x. We have assumed that survival time is absolutely con-
tinuous, in which case the value of the cumulative hazard function may
be expressed, using methods of calculus, as

H(t,x,B) = J:h(u, x, B) du

=r(x, ﬁ)J:ho(u) du
= r(x, B)H, 2). | (3.11)

For those not comfortable with the methods of calculus, the expression
in (3.11) may be thought of as a measure of the cumulative baseline
risk, H,(t), which is modified by the function, r(x,f3), for a subject with

covariate x. Substituting the result (3.11) into (3.10), the survivorship
tunction for the general semiparametric hazard function is

S@t, x, ) = e TP,

Thus it follows that
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S(t, X, ﬁ) — [e—Ho(;) ]r(x.p)
=[s,e]*?, (3.12)

where S,(t) = e ") is the baseline survivorship function.
Under the Cox model, the survivorship function is

S(t,x,8) =[Sy (O] 7. (3.13)

The form of the expression for the survivorship function in (3.13) is a
consequence of the multiplicative relationship between the baseline haz-
ard function and the exponential function that describes the effect of
the covariates. The value of the baseline survivorship function is always
between zero and one (true of any survivorship function). Suppose the
covariate is age, denoted a, which we model using x= a—a. The base-
line survivorship function corresponds to a subject whose age is equal to
the mean age, a, of the data. Assuming that the risk associated with age
is positive (as is usually the case), then B> 0, and for a> a it follows
that x > 0, exp(xB)>1 and- S(t,x,8) < S,(t). The interpretation is that

the survivorship experience is less favorable for age a than at the mean
age. In other words, at any point in time, the proportion of subjects
alive at age a is smaller than the proportion alive at age a. Similarly, if
age is a<a, then x <0, exp(xB)<1 and S(z,x,B)> S,(¢), implying that
the survivorship experience is more favorable at age a than at the mean
age.

In the next section, we consider estimation of the parameters in the
proportional hazards model.

3.3 FITTING THE PROPORTIONAL HAZARDS
REGRESSION MODEL

A brief introduction to the use of maximum likelihood to fit regression
models to survival time data was provided in Chapter 1. The models fit
in Chapter 1 correspond to those given in (3.1) (3.4), where both the
systematic and, more importantly, the error components are fully speci-
fied. This complete specification allowed for an explicit expression for
the likelihood function. We noted in Chapter 1 that the maximum like-
lihood approach described was used by most software packages to fit
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these models. The natural place to begin is with an exploration of
whether the likelihood equation given in (1.5) can be used with the pro-
portional hazards model in (3.7).

Assume we have n independent observations each containing infor-
mation on the length of time a subject was observed, a single covariate
whose value is determined at the time observation begins and remains at
that value throughout the follow-up of the subject, and whether the ob-
servation was a survival time or was right censored. The data are de-
noted by the triplet (1,,x;,¢;), i = 1,2,...,n. In order to apply the likeli-
hood function given in (1.5) to the survivorship function in (3.13), we
need to obtain an expression for the density function. An application
of methods from calculus shows that the density function is the ratio of
the hazard function to the survivorship function [see (2.36)], yielding
the expression

f(t,x,B)=h(t,x,B)x S, x,B). (3.14)

Substituting (3.14) into the likelihood equation in (1.5) yields

l(ﬁ) = ﬁ{[h(mxnﬁ) X S(t,,x,,ﬁ)]c' X[S(f;,xpﬁ)]l—cl }.

i=1

and further algebraic simplification yields

i(B) = f[{[h(:,, 5, B x[8(1, %, B)J}. (3.15)

i=1

As noted in Chapter 1, the estimate of the parameter, S, is the value

that maximizes the log-likelihood function. The log-likelihood func-
tion, obtained by taking the log of the likelihood (3.15) and substituting
expressions for the hazard function in (3.7) and the survivorship func-
tion in (3.13), is

L(B)= g{c, In[ho(r,)]+ %8+ [, (1))} (3.16)

Full maximum likelihood requires that we maximize (3.16) with respect
to the unknown parameter of interest, [, and the unspecified baseline
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hazard and survivorship functions. The proportional hazards model in
(3.7) is chosen in order to avoid having to explicitly specify the error
component of the model; therefore, it is not possible to use the log-
likelihood function in (3.16). This problem is discussed in some detail
in Kalbfleisch and Prentice (1980).

Cox (1972) proposed using an expression he called a “partial like-
lihood function” that depends only on the parameter of interest. He
speculated that the resulting parameter estimators from the partial likeli-
hood function would have the same distributional properties as full
maximum likelihood estimators. Rigorous mathematical proofs of this
conjecture came later, and the counting process approach based on
martingales, as detailed in Andersen, Borgan, Gill and Keiding (1993,
Chapter VII) and Fleming and Harrington (1991, Chapter 4), simplified
earlier work. At this point, it is not vital that one understand the mathe-
matics of these details. An intermediate level of presentation of the con-
struction of the partial likelihood is provided in Collett (1994). The
essential idea is similar to the one used to generate the conditional lo-
gistic regression model for matched case-control studies or other strati-
fied designs that introduce a large number of nuisance parameters into
the model [see Hosmer and Lemeshow (1989, Chapter 7)]. In the pres-
ent setting, the partial likelihood is given by the expression

G

n x,B
l,,(ﬁ)=£[ -f—;—lg , 3.17)

JER()

where the summation in the denominator is over all subjects in the risk
set at time f;, denoted by R(f;). Recall that the risk set consists of all

subjects with survival or censored times greater than or equal to the
specified time.

The expression in (3.17) assumes that there are no tied times, and it
is often modified to exclude terms when ¢, =0, yielding

m eX(l)B

L(B)= | W. (3.18)

i=1
JeR(yy)
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where the product is over the m distinct ordered survival times and x;,

denotes the value of the covariate for the subject with ordered survival
time f,,. The log partial likelihood function is

Lp(ﬂ)=2 x(,.)ﬂ—ln[ Zex'pil ' (3.19)

i=l JjeR(ty)

We obtain the maximum partial likelihood estimator by differentiating
the right hand side of (3.19) with respect to f3, setting the derivative
equal to zero and solving for the unknown parameter. The derivative of
(3.19) with respect to 8 is

ije”p

dL,(B) j€Rgy)

jER(‘“))

= i{xm ~%, }s (3.20)

where
By =
I Ve
e (]
1eR(t;))
and

f“'l = zwa(ﬂ)x] ’

JeRGyy)

We note that equation (3.20) looks different from the correspond-
ing equation for the exponential regression model (1.11). The main
difference is that equation (3.20) does not incorporate the actual values
of survival time. In fact, the estimator obtained when setting the deriva-
tive in (3.20) equal to zero and solving for f3 yields the value such that
the sum of the risk-set-weighted means of the covariate is equal to the
sum of the covariate over the non-censored subjects.
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Another expression for the derivative in (3.20) is obtained by taking
the log of (3.17) and differentiating with respect to B, yielding

X;e

e | A
= : feR@W) L 3.21

JjeR(s,)

Most software packages provide the maximum partial likelihood esti-
mator. We denote the solution to (3.20) and (3.21) as .

The estimator of the variance of the estimator of the coefficient is
obtained in the same manner as variance estimators are obtained in most
maximum likelihood estimation applications. The estimator is the in-
verse of the negative of the second derivative of the log partial likeli-
hood at the value of the estimator. In particular, taking the derivative of
(3.20) we obtain the following expression:

r 21
xB 2,%,8 x,B
I’L,B) _ ¢ [Ze'][Zx '][Zx,e']
p _ JeR(,y) JjeR(,) JjeR(1yy) |
'—aﬁz—'-'Z‘ 7

= 2 P
{ jeRtyy)

The form of this expression may be simplified by using the definition
of w;(B) following (3.20). The simplified expression is

2L ILB) 2
3ﬂ2 __2 2 ( :)' (3.23)

i=1 jeR(1)

>, (3.22)

s

The negative of the second derivative of the log partial likelihood in
(3.22) or (3.23) is called the observed information, and we will denote it
as

9’L,(B)
B

Later in this chapter we will consider models containing more than one
covariate and the result in (3.24) will be called the observed information

1(6)=-

(3.24)
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Table 3.1 Estimated Coefficient, Standard Error, z-Score,
Two-Tailed p-Value and 95% Confidence Interval for the
Proportional Hazards Model Containing Age

Variable Coeff. Std. Err. 2z P>zl 95% CIE
AGE 0.0814 0.0174 4.67 <0.001 0.047, 0.116

matrix. The estimator of the variance of the estimated coefficient is the
inverse of (3.24) evaluated at 8 and is

Var(B)=I(B)". (3.25)

The estimator of the standard error, denoted S%Z(,B), is the positive
square root of the variance estimator in (3.25).

As an example, we can use the data from the HMO-HIV+ study to
fit a model containing age of the subject as the covariate. The results
are shown in Table 3.1. The value of the estimated coefficient is

,B= 0.0814, and the estimated standard error of the estimated coefficient

is SE(B) = 0.0174. \

Typically, the first steps following the fit of a regression model are
the assessment of the significance of the coefficient and the formation
of a confidence interval. We discuss methods that can be used for each
of these tasks.

We begin by presenting three different tests to assess the signifi-
cance of the coefficient: the partial likelihood ratio test, the Wald test
and the score test.

The partial likelihood ratio test, denoted G, is calculated as twice the
difference between the log partial likelihood of the model containing
the covariate and the log partial likelihood for the model not containing
the covariate. Specifically,

G=2{L,(B)- L,0)}. (3.26)
where

L,(0)=-) In(n), (3.27)
i=l

and n; denotes the number of subjects in the risk set at observed survival
time f,.
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Under the null hypothesis that the coefficient is equal to zero (along
with other mathematical conditions), this statistic will follow a chi-square
distribution with 1 degree-of-freedom. This distribution can be used to
obtain p-values to test the significance of the coefficient. The mathe-
matical details using a counting process approach to the partial likeli-
hood may be found in Andersen, Borgan, Gill and Keiding (1993) and
Fleming and Harrington (1991). In practice, the “sufficiently” large
sample size cited for likelihood ratio tests translates in this case to hav-
ing the number of observed noncensored survival times be large.

Software packages fitting the proportional hazards model typically
provide the value of the log partial likelihood for the fitted model and
the value of G. For the example in Table 3.1, these values are

L,(B)=-288.518 and G =21.350. We can use (3.26) to obtain the log
partial likelihood of model zero! as

L,(0)=L,(B)-G/2=(-288.518)-(21.35/2) = —299.195.

The significance level for the test is Pr(xz(l)z 21.35)< 0.001, so we re-

ject the null hypothesis and conclude that age is significantly related to
survival time. We defer discussion of the interpretation of the coeffi-
cient until the next chapter.

Another test for significance of the coefficient can be computed
from the ratio of the estimated coefficient to its estimated standard er-
ror. This ratio is commonly referred to as a Wald statistic. Under the
same mathematical assumptions required for the log partial likelihood
ratio test, the Wald statistic will follow a standard normal distribution.
The Wald statistic and its p-value are typically reported by software
packages. Some statistical packages report the square of the Wald sta-
tistic, which follows a chi-square distribution with one degree-of-
freedom. Unlike normal errors linear regression where the square of
the ¢-statistic for the coefficient in a univariable model is equal to the F-
test for significance, the Wald and log partial likelihood ratio test are not
numerically related. The equation for the Wald statistic is

r=—b (3.28)

I This will be useful later when we extend the partial likelihood ratio test to the
mutivariable regression setting.
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and the value shown in Table 3.1 is

2=(0.0814/0.0174) = 4.67.

The two-tailed p-value is Pr(lzl > 4.67)< 0.001.

The third test one is likely to encounter is the score test. The test
statistic is the ratio of the derivative of the log partial likelihood, equa-
tion (3.20), to the square root of the observed information, equation
(3.24), all evaluated at S =0. The equation for the score test is

/29
*= . (3.29)

Under the hypothesis that the coefficient is equal to zero and the same
mathematical conditions required for the Wald and partial likelihood
ratio tests, this statistic follows a standard normal distribution. The value
of the score test for the example in Table 3.1 is z* =4.69 and the two-
tailed p-value is Pr(|z*|>4.69)<0.001. The score test, when computed
by a software package such as SAS, may be reported as the square of
the value of (3.29), which will follow a chi-square distribution with one
degree-of-freedom under the null hypothesis.

In practice, the numeric values of the three tests (\/5, z and z')

should be quite similar and thus lead one to draw the same conclusion
about the significance of the coefficient. In situations where there is
disagreement, making it necessary to choose one test, the partial likeli-
hood ratio test is the preferred choice.

A clear advantage of the score test is that it may be computed with-
out evaluating the maximum partial likelihood estimator of the coeffi-
cient. For this reason, the score test has gained some favor as a test to
use in model building applications in which evaluation of the estimator
is computationally intensive. We return to consider this point further
when we discuss variable selection in Chapter S.

The confidence interval for the coefficient shown in Table 3.1 is
called the Wald-statistic-based interval. Its endpoints are based on the
same assumptions as the Wald test for significance, i.e., that the estimator
is distributed normally with standard error estimated by the square root
of (3.25). The endpoints of a 100(1 - @) percent confidence interval for
the coefficient are
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»B T Zl—aIZSAE(ﬁ)-

The endpoints of the 95 percent confidence interval shown in Table 3.1

are computed as
0.08141+1.96x0.0174,

yielding the interval 0.047<[3<0.116. The interval does not include
zero and is consistent with the results of all three tests of significance.
We conclude that age is associated with survival time.

Up to this point we have considered models in which only one
covariate is of interest. One advantage of using regression in any statis-
tical analysis is the ability to include multiple covariates in the model
simultaneously. The proportional hazards model may be formulated to
include a variety of covariates. We now focus on the extension of the
model to include a collection of p covariates whose values are measured
on each individual at the time follow-up begins and remain fixed over
time. Covariates whose values change over time, often referred to as
time-dependent or time-varying covariates, as well as other covariate
scenarios are discussed in Chapter 7.

Let the p covariates for subject i be denoted by the vector
X; = (X, X;2,.-»X,). This vector may be any collection of covariates:

continuous covariates, design variables for nominal scale covariates,
products of covariates (interactions) and other higher order terms. De-
note the triplet of observed time, covariates and censoring variable as
(t4;,X;,¢;), i=12,...,n. The partial likelihood for the multivariable
model is obtained by replacing the single covariate, x, in (3.18) with the
vector of covariates, x. Its expression is so similar to (3.18) that it will
not be repeated.

There are p equations, one for each covariate, similar to (3.20)
which, when set equal to zero and solved, yield the maximum partial
likelihood estimators. We denote the vector of coefficients as
B’ =(B,B,.-...B,). The equation for the kth covariate is

ane P

aL,(B) & iRt
p - Xoos — J (1) .
dB, g‘ W E‘e"’[s

jeR(‘“))

= i{xu&) = Xy } (3.30)
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where
Z wy (B)x
JeR(yy)
and
x,ﬁ
Wi B®= z
e IB
1R (1)

We use x,, to denote the value of covariate x, for the subject with ob-
served ordered survival time t;. We denote the maximum partial likeli-

hood estimator as ﬁ'= (Bl,ﬁz,...,ﬁp).

The elements of the p by p information matrix are obtained by ex-
tending the definition in (3.24) to include all second-order partial de-
rivatives, namely

d*L(B)

B>
The general form of the elements in this matrix is obtained from (3.23).
The diagonal elements are

IB)=-

J:L LB & 2
op: — =Y, Y wylx %) (3.31)
k i=1 jeR(tyy)
and the off-diagonal elements are
LB &
— = wylx, =%, N\x,—X,,] (3.32)
9B, ;,e%,,,"( )

The estimator of the covariance matrix of the maximum partial likeli-
hood estimator is obtained by extending (3.25) and is the inverse of the
observed information matrix evaluated at the maximum partial likeli-
hood estimator,

Var @) =1(B)". (3.33)
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Software packages typically provide the value of the estimated standard
error for all estimated coefficients in the model. Most packages provide
the user with the option of obtaining the full estimated covariance ma-
trix for the estimated parameters.

Consider a model for the HMO-HIV+ study that contains age, IV
drug use and their product (interaction). This model may be used to
determine whether the association of age with survival time is different
for subjects with and without a history of IV drug use. The model is
used here to present the results of fitting a multivariable model and to
demonstrate how the partial likelihood ratio test may be used to assess
the significance of subsets of parameters. We present the results of fit-
ting the model in Table 3.2.

The log partial likelihood ratio test is not only the easiest test to
compute, but is also the best of the three tests for assessing the signifi-
cance of the fitted model. Its value is obtained from (3.26). The log

partial likelihood for model O is the same for this example as in the uni-
variable model in Table 3.1, L,(0)=-299.193. The log partial likeli-

hood for the fitted model is Lp(ﬁ)=—281.684 and the value of the log
partial likelihood ratio test is

G =2[(-281.684)—(-299.193)] = 35.02.

Under the null hypothesis that all three coefficients are simultaneously
equal to zero and, under the mathematical regularity and large sample
conditions referred to above, G will follow a chi-square distribution with
three degrees-of-freedom (one for each coefficient). The significance

level for the test in this example is Pr(y2(3)235.02)<0.001, providing

evidence that at least one of the coefficients in the model is significantly
associated with survival time.
The computation of both the score and Wald tests for the multiple

Table 3.2 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for the
Proportional Hazards Model Containing Age, History of IV
Drug Use and Their Interaction

Variable Coeff.  Std. Err. 2 P>zl 95% CIE
AGE 0.094 0.0229 4.11 <0.001 0.049, 0.139
DRUG 1.186  1.2565 0.94 0.345 -1.277, 3.649

AGExXDRUG _ -0.007 0.0337  -0.20 0.841 -0.073, 0.059
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proportional hazards regression model requires matrix calculations.
Specifically, we denote the vector of first partial derivatives whose ele-
ments are given in (3.29) as u(B). Under the hypothesis that all coeffi-
cients are equal to zero, and under the mathematical conditions needed
for the partial likelihood ratio test, the vector of scores u(0)=u(B)|4.,

will be distributed as multivariate normal with mean vector equal to zero
and covariance matrix given by the information matrix evaluated at the

coefficient vector equal to zero, I(o)=I(B)Ip=o' The elements in this

matrix are obtained by evaluating the expressions in (3.31) and (3.32)
with the coefficient vector equal to zero. The score test statistic is

u’(0)[1(0)] " u(0),

which is distributed asymptotically as chi-square with p degrees-of-
freedom. The Wald test is obtained from equivalent theory which states
that, under the null hypothesis, the estimator of the coefficient, ﬁ, will
be asymptotically normally distributed with mean vector equal to zero
and a covariance matrix that is estimated by the expression in (3.33).
The multiple variable Wald test statistic is

BIP)B.

which is also distributed asymptotically as chi-square with p degrees-of-
freedom. Both the score and Wald test require matrix calculations that,
while not difficult from a purely technical perspective, are inconvenient
to perform in most packages. This is in contrast to the partial likelihood
ratio test which is easily performed from readily available output. For
this reason we will not make extensive use of the multiple variable score
and Wald tests in this text. The values for the multiple variable score
and Wald tests for the model in Table 3.2 are 35.146 and 32.167, re-
spectively, each with p-value < 0.001.

In contrast to the multiple variable Wald test, the univariate Wald
tests based on individual estimated coefficients can provide guidance,
during the model building process, as to possible variables that might be
eliminated from the model without compromising model performance.
The individual significance levels in Table 3.2 suggest that age may be
significant, but the picture is not as clear with respect to IV drug use and
its interaction with age. To explore this further we fit a reduced model
that excludes the interaction term. The results are shown in Table 3.3.
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Table 3.3 Estimated Coefficients, Standard Errors,
z-Scores, Two-Tailed p-Values and 95% Confidence
Intervals for the Proportional Hazards Model Containing
Age and History of IV Drug Use

Variable Coeff. Std. Err. 2 P>lzl 95% CIE

AGE 0.092 0.0185 4.97 0.001 0.056, 0.128
DRUG 0.941 0.2555 3.68 0.001 0.440, 1.442

The Wald tests for both remaining coefficients are significant. The
partial likelihood ratio test for the excluded interaction term, keeping
age and IV drug use in the model, is obtained by comparing the values
of the log partial likelihood function for the models in Tables 3.2 and
3.3. This test is analogous to the partial F-test in linear regression, in
that two models that have a common set of covariates are being com-
pared. As in any multivariable analysis, we must make sure that both
models have been fit to the same set of data. Since the HMO-HIV+
study does not have any missing data, this is not an issue in this exam-
ple. The value of the log partial likelihood function for the reduced
model is -281.704 which, when compared to that of the larger model,
yields a test statistic whose value is

G = 2[(-281.684) - (-281.704)] = 0.04.

Under the null hypothesis that the interaction variable has a coefficient
equal to zero, given that age and history of IV drug use are in the
model, this statistic will follow a chi-square distribution with one degree-
of-freedom. The significance level for the test in this case is p = 0.841,
indicating that the interaction term does not contribute to the model.

In summary, the basic techniques for fitting the proportional haz-
ards model are identical to those used in other modeling scenarios, such
as the linear, logistic and Poisson regression models. Maximum likeli-
hood methods are used to obtain estimators of the coefficients and their
standard errors. We use log-likelihood functions in a standard manner
to obtain test statistics that are used with the chi-square distribution to
assess the overall significance of the model and to compare nested mod-
els. The only difference between the analysis of the proportional haz-
ards model and other models is that the likelihood function is a partial,
rather than a full, likelihood function.
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3.4 FITTING THE PROPORTIONAL HAZARDS MODEL
WITH TIED SURVIVAL TIMES

The partial likelihood function methods described in the previous sec-
tion are based on the assumption that there were no tied values among
the observed survival times. Since most, if not all, applied settings are
likely to have some tied observations, modifications are needed. A
number of approaches to handle tied data have been suggested and, of
these, three are used by software packages: an exact expression that is
derived in Kalbfleisch and Prentice (1980) and approximations due to
Breslow (1974) and Efron (1977). The analyses presented in the previ-
ous section were all based on the Breslow approximation described be-
low. An alternative to an approximate partial likelihood is to use one of
the discrete time models discussed in Chapter 7.

We will not present the expression for the exact partial likelihood.
The basis for its construction is to assume that the d ties at a particular
survival time are due to lack of precision in measuring survival time.
Thus the tied values could actually have been observed in any one of
the d! possible arrangements of their values. The exact partial likeli-
hood is obtained by modifying the denominator of (3.18) to include
each of these arrangements. The SAS software package includes the
option of using the exact partial likelihood.

The approximations derived by Breslow (1974) and Efron (1977)
are designed to provide expressions that are more easily computed than
the exact partial likelihood, yet that still account for the fact that ties are
present among the observed values of survival time. For ease of nota-
tion, we present the approximations to the exact partial likelihood for
the case when the model contains a single covariate. The Breslow ap-
proximation uses as the partial likelihood

lpl A= ﬁ d, ?
2

JeR(1yy)

ex(l)Qp

(3.34)

where d; denotes the number of subjects with survival time t; and x,

is equal to the sum of the covariate over the d;, subjects, that is,

X(iy+ = ij » where D(t,) represents the subjects with survival times
JeD(1y)

equal to #,. The Efron approximation is a bit more complicated and
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yields a slightly better approximation to the exact partial likelihood than
the Breslow approximation. It uses as the partial likelihood

m exu)op
lpz(ﬂ) = l_I - . (3.35)
i=l I"I Z ex/ﬂ _ k-1 Zexzﬂ
k=1 jeR(t,) L jeD(1,)

Note that when d; =1, the terms in the numerators and denominators of
(3.18), (3.34) and (3.35) are identical.

The maximum partial likelihood estimator for B in the presence of
ties is obtained in the same manner as in the non-tied data case, with the
exception that derivatives are taken with respect to the unknown pa-
rameter in the log of either the Breslow (1974) or Efron (1977) ap-
proximation to the partial likelihood. These equations are similar in
form to (3.20)-(3.21). The estimator of the variance of the estimated
coefficient is obtained from the second partial derivative evaluated at the
value of the estimator, and results are similar to (3.23)—(3.25).

The HMO-HIV+ study provides a good setting for a comparison of
the estimators obtained from the three forms of the partial likelihood in
the presence of tied survival times. In this study, there are 31 distinct
survival times among the 100 subjects, with the number of deaths at a
particular time ranging from 1 to 17. If there are major differences in
the estimators obtained from the three versions of the partial likelihood
with ties, it should be apparent in this example because there are many
tied survival times. The values of the estimator using each of the three
methods are shown in Table 3.4 for the model containing age and IV
drug use.

The results shown in Table 3.4 support the fact that the Efron
(1977) method of correcting for tied survival times yields estimates
closer to those obtained from the exact partial likelihood than estimates
obtained from the Breslow (1974) approximation. While this is true in a
strict numeric sense, all three point estimates are close to one another.
The Breslow estimates differ from the exact estimates by 6-8 percent
and the Efron estimates differ by 0.5 percent. The estimated standard
errors are nearly identical. Hence, we would reach the same scientific
conclusion using the estimates from the Breslow partial likelihood as we
would using the estimates from the other two partial likelihoods. Thus,
given a choice, one would prefer to use the Efron approximation, but in
this example, the Breslow approximation yields acceptably close esti-
mates.
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Table 3.4 Estimated Coefficients and Standard Errors
for Age and IV Drug Use Obtained from the Exact
Partial Likelihood, Breslow and Efron Approximations

AGE DRUG
Method Coeff. Std. Err. Coeff. Std. Err.
Exact 0.0977 0.0187 1.0226 0.2572
Breslow | 0.0915 0.0185 0.9414 0.2555
Efron 0.0971 0.0186 1.0167 0.2562

The Breslow (1974) approximation is available in many software
packages. The Efron (1977) approximation is available in the SAS and
S-Plus packages. In many applied settings there will be little or no
practical difference between the estimators obtained from the two ap-
proximations. Because of this, and since the Breslow approximation is
more commonly available, unless stated otherwise, analyses presented in
this text will be based on it.

3.5 ESTIMATING THE SURVIVORSHIP FUNCTION OF
THE PROPORTIONAL HAZARDS REGRESSION
MODEL

An estimator of the survivorship function of the proportional hazards
model is available as an option in most software packages. This esti-
mator may be used to describe the survival experience of subgroups of
subjects of particular interest, adjusted for other covariates. This par-
ticular application is discussed in detail in Chapter 4. In this section we
present- how the estimator itself is obtained.

The expression for the survivorship function can be found in (3.13)
and is repeated here for convenience:

S@t,x,B) = [S,(0)] P (3.36)

This indicates that once we have an estimator of the regression coeffi-
cients, all we need is an estimator of the baseline survivorship function.
A likelihood-based approach, which assumes that the hazard is constant
between observed survival times, is the foundation of the method. The
details may be found in Lawless (1982) and are sketched here. A deri-
vation of the estimator from the counting process approach is discussed
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by both Fleming and Harrington (1991) and Andersen, Borgan, Gill
and Keiding (1993).

The essential idea of the likelihood approach is to mimic the argu-
ments that lead to the Kaplan—Meier estimator of the survivorship func-
tion described in Chapter 2, equation (2.1). The key point in that de-
velopment is the use of the quantity & =1—d,/n, as an estimator of the
conditional survival probability at observed ordered survival time ¢,

The Kaplan—Meier estimator of the survivorship function is the product
of estimators of the individual conditional survival probabilities. The
expression for the conditional survival probability that leads to this es-
timator is a; =5(¢,)/S(f,-;)).- To extend this argument to the propor-
tional hazards model, we define the conditional baseline survival prob-
ability as o; = Sp(2;))/So(%;-1y), and the conditional survival probability
is

exp(x'B) exp(x'B)
St %.B) _ | [So0tw)] _ { Syt } R
St-n-%P) [So(t(i-l))]cxp(x i So(tny) ‘

Maximum likelihood methods are employed conditional on the
partial likelihood estimator of the regression coefficients in the model,

ﬁ. In order to simplify the notation, we let é, =exp(x’ﬁ), and the esti-

mator of the conditional baseline survival probability is obtained by
solving the equation

y_o_-¥4, (3.37)

iep, 1= Q" [er,

where R, denotes the subjects in the risk set at ordered observed survival
time ¢, and D, denotes the subjects in the risk set with survival times
equal to ¢.

If there are no tied survival times, D, contains one subject and the
solution to (3.37) is

6!

=\ . (3.38)
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If there are tied survival times, the solution to (3.37) is obtained using
iterative methods. The estimator of the baseline survivorship function is
the product of the individual estimators of the conditional baseline sur-
vival probabilities

So0=[]&. (3.39)

St

where @&, is the solution to (3.37). This estimator is used in some soft-

ware packages, for example, SAS and STATA. Other packages may use
an approximation to the solution for (3.36) due to Breslow (1974). To

obtain this solution, one replaces a,é' on the left-hand side of (3.37)

with the approximation af‘ z1+é, In(er;). The solution to (3.36) is
then

& =exp[—d,/ Zé,], (3.40)

IGR,

and the estimator of the baseline survivorship function is again the
product of the individual conditional survival probabilities. One uses
(3.39) with the estimator in (3.40).

The estimator of the survivorship function in (3.36) is obtained by
substituting the estimators of the baseline survivorship function and the
estimator of the coefficients using covariate values of interest. Software
packages typically provide the value of the estimator of the survivorship
function using the observed time and covariates for all (noncensored as
well as censored) subjects.

Some software packages provide an estimator of the baseline hazard
function, which is a simple function of the estimator of the conditional
survival probabilities, namely

i;o(t(‘)) = 1_ &‘.

The individual pointwise estimators of the baseline hazard function will
typically be too “noisy” or unstable (see Figure 2.12) to use them-
selves. However, by using smoothing methods referred to in Chapter 1,
one may get a sense of the shape of the underlying baseline hazard
function.

The estimator of the cumulative baseline hazard function is more
practical to use since it is less noisy than the estimator of the baseline
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hazard function. Its estimator is obtained using the expression for the
survivorship function shown in (2.29), namely

So(t)=e~H®,

thus the estimator of the cumulative baseline hazard function is
Ay =-In[5,(n)]

The estimator of the cumulative hazard function for a specific value of
the covariates is

A x.B)=- 1n[§(t, X, ﬁ)]
=P[5, (3.41)

which, when graphed as a function of time, may provide a useful
graphical descriptor of the “risk” experience.

We do not present an application of the estimators of the cumulative
hazard function or survivorship function in this chapter. We defer it to
Chapter 4, where we discuss the interpretation of the coefficients from a
fitted proportional hazards model, the assumption of proportional haz-
ards and graphical presentation of fitted models.

EXERCISES

1. Using the data from the WHAS for grouped cohort 1 (1975 and
1978), with length of follow-up as the survival time variable and status at
last follow-up as the censoring variable, do the following:

(a) Fit the proportional hazards model containing age, sex, peak
cardiac enzymes, left heart failure complications and MI order.

(b) Assess the significance of the model using the partial log likeli-
hood ratio test. If it is possible in the software package, assess for the
significance of the model using the score and Wald tests. Is the statisti-
cal decision the same for the three tests?

(c) Using the univariate Wald tests, which variables appear not to
contribute to the model? Fit a reduced model and test for the signifi-
cance of the variables removed using the partial log likelihood ratio test.

(d) Fit the reduced model in problem 1(c) using the Breslow, Efron
and exact methods for tied survival times. Compare the estimates of the
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coefficients and standard errors obtained from the three methods for
handling tied survival times. Are the results similar or different?

(e) Estimate the baseline survivorship function for the model fit in
problem 1(c). Graph the estimated baseline survivorship function ver-
sus survival time. What covariate pattern is the “baseline” subject for
the fitted model?

(f) Repeat problem 1(e) using age centered at the median age of 65
years. Explain why the range of the estimated survivorship functions in
problems 1(e) and 1(f) are different.

(g) Using the model fit in problem 1(f) estimate the value of the
survivorship function for each subject at his or her respective observed
value of time. Graph the values of the estimated survivorship function
versus survival time. Why is there scatter in this plot that was not present
in the graphs in problems 1(e) and 1(f)?

2. Repeat problem 1 for each of the other grouped cohorts.

3. Repeat problem 1 using all the data from the WHAS (i.e., ignore co-
hort).



CHAPTER 4

Interpretation of a Fitted
Proportional Hazards
Regression Model

4.1 INTRODUCTION

The interpretation of a fitted proportional hazards model requires that
we be able to draw practical inferences from the estimated coefficients
in the model. We begin by discussing the interpretation of the coeffi-
cients for nominal (Section 4.2) and continuous (Section 4.3) scale
covariates. In Section 4.4 we discuss the issues of statistical adjustment
and the interpretation of estimated coefficients in the presence of statis-
tical interaction. The chapter concludes with a discussion of the inter-
pretation of fitted values from the model and covariate adjusted survi-
vorship functions.

In any regression model, the estimated coefficient for a covariate
represents the rate of change of a function of the dependent variable
per-unit change in the covariate. Thus, to provide a correct interpreta-
tion of the coefficients, we must determine the functional relationship
between the independent and dependent variables, and we must define
the unit change in the covariate that is likely to be of interest.

In Chapter 3 we recommended that the hazard function be used in
regression analysis to study the effect of one or more covariates on sur-
vival time. The first step in the process of interpreting the coefficients is
to determine what transformation of the hazard function is linear in the
coefficients. In the family of generalized linear models (i.e., linear, lo-
gistic, Poisson and other regression models) this linearizing transforma-
tion is known as the link function [see McCullagh and Nelder (1989)].
This same terminology can be applied to proportional hazards regres-

sion models.
113
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The proportional hazards model can be used when the primary goal
of the analysis is to estimate the effect of study variables on survival
time. Suppose, for the moment, that we have a regression model con-
taining a single covariate. Since the hazard function for the propor-
tional hazards regression model is

h(e, x, B) = o (1)e””,

it follows that the link function is the natural log transformation. We
denote the log of a hazard function as g(t,x, ) =In[A(t,x,8)]. Thus, in

the case of the proportional hazards regression model, the log-hazard
function is

g(t.x, B) = In[hy (£)] + xB. (4.1)

The difference in the log-hazard function for a change from x=a to
x=bis

[g(t.x=a,B)-g(t.x = b,ﬂ)] = {ln[h0 (0)]+ aﬂ} - {ln[h0 0]+ bﬂ}
~aB-bp
=(a-b)B. (4.2)

Note that, since the baseline hazard function, h,(t), appears in both
log hazards, it subtracts itself out. Thus, the difference in the log haz-
ards does not depend on time. This critical proportional hazards as-
sumption is examined in detail in Chapter 6, when we discuss methods
for assessing model adequacy and assumptions.

The log hazard is the correct function to use to assess the effect of
change in a covariate. However, it is not as easily interpreted as the ex-
pression we obtain when we exponentiate (4.2), namely

HR(t,a,b,B8)= exp[g(t,x =a,B)-g(t,x= b,ﬂ)]
_ h(t,a,B)

h(t,b, B)
=el@ b8, (4.3)

The quantity defined in (4.3) is the hazard ratio, and it plays the same
role in interpreting and explaining the results of a survival analysis that
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the odds ratio plays in a logistic regression.! We return to this point in
the next section.

The results in (4.2) and (4.3) are important as they provide the
method that must be followed to interpret the coefficients in any pro-
portional hazards regression model correctly. The presence of censored
observations of survival time in the data does not alter the interpretation
of the coefficients. Censoring is an estimation issue that was dealt with
when we constructed the partial likelihood function, see (3.17). Once
we have accounted for the censoring, we can ignore it.

4.2 NOMINAL SCALE COVARIATE

We begin by considering the interpretation of the coefficient for a di-
chotomous covariate. Dichotomous or binary covariates occur regu-
larly in applied settings. They may be truly dichotomous (e.g., gender)
or they may be derived from continuous covariates (e.g., age greater
than 40 years).

Assume for the moment that we have a model containing a single
dichotomous covariate, denoted X, coded O or 1. Following the proce-
dure described in (4.2), the first step in interpreting the coefficient for X
is to calculate the difference in the log hazard for a one unit change in
the covariate. This yields

8(t,1,B)- &(1,0,8)=(1-0)B = B.

Thus, in the special case when the dichotomous covariate is coded zero
and one, the coefficient is equal to the change of interest in the log haz-
ard. We can exponentiate, following (4.3), the value of the difference in
log hazards to obtain the hazard ratio

HR(,1,0,8)=€”. (4.4)

The form of the hazard ratio in (4.4) is identical to the form of the
odds ratio from a logistic regression model for a dichotomous covariate.
The difference is that, in the current context, it is a ratio of rates rather
than of odds. In order to expand on this difference, suppose that we
followed a large cohort of males and females for 5 years and noted

! See Hosmer and Lemeshow (1989) Chapter 3 for a detailed discussion of the in-
terpretation of the coefficients in a logistic regression model.
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whether a subject “died” during this period of time. In this hypotheti-
cal setting one might be tempted to analyze the end-of-study binary
variable, death (yes = 1), using a logistic regression model. One should
note that this binary variable is what we have defined as the censoring
variable for the observation of time to death.2 Suppose the value of the
odds ratio for X, denoting gender (1 = male), is 2.0. This is interpreted
to mean, under conditions where the odds-ratio approximates the rela-
tive risk, that the probability of death by the end of the study is 2 times
higher for a male than for a female. A hazard ratio of 2 obtained from
(4.4) means that, at any time during the study, the per-unit time rate of
death among males is twice that of females. Thus, the hazard ratio is a
comparative measure of survival experience over the entire time period,
whereas the odds-ratio is a comparative measure of event occurrence
only at the study endpoint. They are two different measures, and the
fact that they may be of similar magnitude in an applied setting is, in a
sense, irrelevant. Note that if one is able to observe the survival time for
all subjects, logistic regression cannot be used at all.

In order to illustrate further the interpretation of the hazard ratio for
a dichotomous covariate, survival times were created for a hypothetical
cohort of 10,000 subjects, with 5,000 in each of two groups and a theo-
retical hazard ratio of 2.0. Subjects whose survival time exceeded 60
months were considered censored at 60 months. Each month the num-
ber at risk, the number of deaths, the estimated hazard rates,
h,(t)=d,(¢)/n,(¢), k=0,1 and ratio, HR(¢) = h(¢)/hy(t) were computed.
These quantities are listed in Table 4.1 for the first 12 months and the
last 13 months of this study. The hazard ratio is graphed for the entire
study period in Figure 4.1. The average estimated hazard ratio,

HR =(1/58) x > HR(t), has been added to Figure 4.1. The hazard rates

and their ratios indicate that, during each month of the 60 months of
follow-up, the death rate for group 1 is approximately twice that seen in
group 0. The scatter about 2.0 is due to the randomness in the number
of deaths observed at each time.

2 Even though the two regression models can, under certain conditions, yield
similar coefficients, see Hosmer and Lemeshow (1989, Chapter 8), we are not sug-
gesting that a logistic regression of the censoring variable be used in place of a
proportional hazards regression of survival time. We assume the reader has a clear
understanding of the interpretation of coefficients from a logistic regression model
and use it only to explain the difference between the interpretation of a coefficient
under the two regression models.
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The increase in the scatter over time in Figure 4.1 is due to the fact
that the number in the risk sets decreases over time. There were no
deaths at 58 months in group 1, so the hazard rate for group 1 and the
rate ratio cannot be estimated, at least using the same estimator used for
the other months. By design of the example, all values of time greater
than or equal to 60 months are censored, so the point estimate of each
hazard rate is zero and the estimate of the hazard ratio is undefined.

Table 4.1 Partial Listing of the Number of Deaths,
the Number at Risk and the Estimated Hazard Rate in
Two Hypothetical Groups and the Estimated Hazard
Ratio at Time ¢

t do() mo() k()  di(d  m(@® M) HR()

1 109 5000 0.022 207 5000 0.041 1.9

2 216 4891 0.044 378 4793 0.079 1.79
3 190 4675 0.041 370 4415 0.084 2.06
4 162 4485 0.036 367 4045 0.091 2.51
S 165 4323 0.038 262 3678 0.071 1.87
6 178 4158 0.043 250 3416 0.073 1.71
7 153 3980 0.038 245 3166 0.077 2.01
8 160 3827 0.042 227 2921 0.078 1.86
9 153 3667 0.042 226 2694 0.084 2.01
10 142 3514 0.04 189 2468 0.077 1.9

11 120 3372 0.036 185 2279 0.081 2.28

'

149 3252 0.046 199 2094 0.095 2.07

48 28 708 0.04 10 92 0.109 275

49 30 680 0.044 S 82 0.061 1.38
50 27 650 0.042 7 71 0.091  2.19
51 26 623 0.042 8 70 0.114  2.74
52 21 597 0.035 3 62 0.048 1.38
53 23 576 0.04 5 59 0.085 2.12
54 25 553 0.045 5 54 0.093  2.05
55 22 528 0.042 2 49 0.041 098
56 23 506 0.045 5 47 0.106 2.34
57 22 483 0.046 3 42 0.071 1.57
58 25 461 0.054 0 39 o . =

59 20 436 0.046 2 39 0.051 1.12
60 0 416 0 0 37 0 *

* Estimator undefined.
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In most applied settings, there will be too much variability in the
pointwise estimators of the hazard rates, d(t)/n(t), for a figure like Fig-
ure 4.1 to be particularly informative about the value of the hazard rate
or to determine whether it is constant over time. More sophisticated
methods are considered in Chapter 6.

Table 4.2 presents the results of fitting the proportional hazards
model containing the dichotomous variable for IV drug use in the

HMO-HIV+ study. The point estimate of the coefficient is = 0.779.
Since IV drug use was coded as 1 = yes and 0 = no, we know from (4.3)
and (4.4) that we can obtain the point estimator of the hazard ratio by
exponentiating the estimator of the coefficient. In this example the es-
timate is

HR = %7 =2.18.

In the case of a dichotomous covariate coded zero and one, the haz-
ard ratio depends only on the coefficient. Like the odds-ratio estimator
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Figure 4.1 Graph of the estimated hazard ratios and the mean hazard ratio
(HR =2.0) from Table 4.1.
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Table 4.2 Estimated Coefficient, Standard Error, z-Score,
Two-Tailed p-Value and 95% Confidence Interval for IV
Drug Use from the HMO-HIV+ Study

Variable Coeff.  Std. Err. Z P>zl 95% Conf. Int.
DRUG 0.779 0.2422 3.22 0.001 0.304, 1.254

in logistic regression, the sampling distribution of the estimator of the
hazard ratio is skewed to the right, so confidence interval estimators
based on the Wald statistic and its assumption of normality may not
have good coverage properties unless the sample size is quite large.
Comparatively speaking, the sampling distribution of the estimator of
the coefficient is better approximated by the normal distribution than
the sampling distribution of the estimated hazard ratio. As a result, its
Wald statistic-based confidence interval will have better coverage prop-
erties. In this case, we obtain the endpoints of a 95 percent confidence
interval for the hazard ratio by exponentiating the endpoints of the con-
fidence interval for the coefficient. In the current example these are

exp[B + 1.963’1‘3(/3)] = exp[0.779 £ 1.96 x 0.2422] = 1.355, 3.504.

Alternative confidence interval estimators have been studied, one of
which is based on the partial likelihood. To date, this method has not
been implemented in most software packages.

The interpretation of the estimated hazard rate of 2.18 is that sub-
jects with a history of IV drug use die at about twice the rate of those
without a history of IV drug use, throughout the study period. The
confidence interval suggests that ratios as low as 1.4 or as high as 3.5
are consistent with the observed data, at the a =0.05 level.

As discussed in Chapter 3, the partial likelihood ratio test, the Wald
test and the score test can be used to assess the significance of a coeffi-
cient. In the current example, the value of the partial likelihood ratio
testis G =10.20, with a p-value equal to 0.001. The Wald test statistic is
z=3.22, with a p-value also equal to 0.001. Both of these tests indicate
that the coefficient for IV drug use is significant. One should note that
the confidence interval for the hazard ratio does not include 1.0, an-
other indicator of its significance. Most software packages provide out-
put for the coefficients, but some, such as STATA, provide hazard ratios
and/or coefficients.
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Note that Table 4.2 contains no intercept term. This is the price one
pays for choosing the semiparametric proportional hazards model. The
intercept, were one present, would correspond to the log baseline hazard
function, in this case drug group 0. The implication of this in practice
is that we cannot, from the regression output of a proportional hazards
model, reconstruct group-specific hazard rates. Only ratios can be esti-
mated. If it is critical to have individual estimates of group-specific
hazard rates, then one should use one of the fully parametric models
discussed in Chapter 8.

Occasionally, the coded values for a dichotomous variable differ by
more than 1 (e.g., +1, —~1). In this case, it is not possible to obtain the
estimator of the hazard ratio by simply exponentiating the estimator of
the coefficient. One can always obtain the correct estimator by explic-
itly evaluating (4.2) and (4.3). If, as shown in (4.2) and (4.3), the two
values are denoted as a and b, then the estimator of the hazard ratio is

HR(¢,a,b, B) = e, (4.5)

The endpoints of a 100(1 — &) percent confidence interval estimator for

the hazard ratio can be obtained by exponentiating the endpoints of the
confidence interval estimator for (a-b)8,

exp[(a —b)Btla- b|z,_ans'f3(B)], 4.6)

where |a - b| denotes the absolute value of (a-b).

If a nominal scale covariate has more than two levels, denoted in
general by K, we must model the variable using a collection of K-1
“design” (also known as “dummy” or “indicator”) variables. The
most frequent method of coding these design variables is to use refer-
ence cell coding. With this method, we choose one level of the variable
to be the reference level, against which all other levels are compared.
The resulting hazard ratios compare the hazard rate of each group to
that of the referent group.

In Chapter 2, we considered an example in which age of subjects in
the HMO-HIV+ study was categorized into four groups [20-29],
[30-34], [35-39] and [40-54]. Our goal was to describe, qualita-
tively, how survival experience in the cohort changes with age, through
plots of estimated survivorship functions and a log-rank test. We can
continue along these same lines by fitting a proportional hazards model
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Table 4.3 Coding of the Three Design Variables for
the Age Groups in the HMO-HIV+ Study

Age Group AGE_2 AGE_3 AGE_4
1:[20—29] 0 0 0
2:(30 - 34] ! 0 0
3:(35-39] 0 1 0
4:[40-54] 0 0 1

to these data. The estimated hazard ratios provide a convenient and
easily interpreted summary measure of the comparative survival experi-
ence of the four groups.

The methods discussed in this example may be applied to any
covariate with multiple groups. The coding for the three design vari-
ables based on the four age groups, using the youngest age group as the
referent group, are presented in Table 4.3. The results of fitting a pro-
portional hazards model using these three design variables are presented
in Table 4.4.

The value of the partial likelihood ratio test for the overall signifi-
cance of the coefficients is G =19.56 and the p-value, computed using a
chi-square distribution with three degrees-of-freedom, is less than
0.001. This suggests that at least one of the three older age groups has
a hazard rate that is significantly different from the youngest age group.
The p-values of the individual Wald statistics indicate that the hazard
rate in each of the three older groups is significantly different from that
in the youngest (or reference) age group.

Before we can use (4.2) and (4.3) to obtain estimators of the hazard
ratios, we need the equation for the log-hazard function. The log-
hazard function, ignoring the log baseline hazard function, for the
model fit in Table 4.4 is

g(t,AGE_GRP,B)= B,AGE _2 + 8,AGE_3 + $,AGE _4.
The estimator of the hazard ratio comparing age group 2 to age group

1 is obtained by first calculating the difference in the estimators of the
log-hazard functions, (4.2),

[g(t, AGE_GRP =2,p) - ¢{r, AGE_GRP = 1,{3)]

=(B|1 +320+B30)—(B,0+320+B30)= Bl y
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Exponentiating the result, we obtain
HR(2,1)= b .

We obtain the estimators of the other two hazard ratios by proceeding in
a similar manner, and these are

HR(3,1) = e
and
HR(4,1) =P .

We calculate the value of the estimates in the example, shown in the sec-
ond column of Table 4.5, by exponentiating the values of the coeffi-
cients, from Table 4.4.

When reference cell coding is used to create the design variables, the
estimators of the hazard ratio comparing each group to the referent
group are obtained by exponentiating the respective estimators of the
coefficients.

We construct confidence interval estimators of the hazard ratios by
exponentiating the endpoints of the confidence intervals for the indi-
vidual coefficients. For example, the endpoints of the 95 percent confi-
dence interval estimate for HR(2,1) shown in Table 4.5 are

exp[B, +1.965E(f, )] = exp[1.197 £1.96 x 0.4520] = 1.37,8.01.

Similar calculations yield the endpoints for the other two confidence
interval estimates.

The hazard ratios in Table 4.5 suggest: (1) subjects in their early
thirties are dying at a rate which is about 3.3 times greater than subjects
in their twenties, (2) subjects in their late thirties are dying at a rate

Table 4.4 [Estimated Coefficients using Referent Cell
Coding, Standard Errors, z-Scores, Two-Tailed p-Values and
95% Confidence Intervals for Age Categorized into Four
Groups from the HMO-HIV+ Study
Variable  Coeff. Std. Err. 2 P>zl 95% Conf. Int.
AGE_2 1.197 0.451 2.65 0.008 0.313, 2.081
AGE_3 1.313 0.459 2.86 0.004 0.414, 2.213
AGE_4 1.860 0.469 3.96 <0.001 0.941, 2.780
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which is about 3.7 times greater than subjects in their twenties and (3)
subjects 40 or older have a mortality rate that is approximately 6 times
greater than subjects in their twenties.

Given the similarity of the hazard ratios comparing each of the two
age groups [30-34] and [35-39] to the referent group, it would make
sense to test whether the survival experience in these two groups differs.
We can estimate their hazard ratio and determine whether it is different
from 1.0. We do this by using the general approach in (4.2) and (4.3).
The specific difference in the hazard functions for the two groups is

[g(t,AGE_GRP =3, ﬁ) - g(t. AGE_GRP = Z.B)]
= (B|0 + le + B_,,O) "(Bxl + Bzo'*' Bso)
=@“A'

The estimator of the hazard ratio is

HR(3,2)= e(ﬁz ~B) ’

and its estimate is exp(1.313-1.197)=1.123. In order to obtain a con-

fidence interval, we need an estimator for the variance of the difference
between the two coefficients. The variance of the difference between
two variables is

V’ﬁr(Bz -Bl) = Vﬁr(ﬁz)+V’£r(B,)—2C’aV(Bx'ﬁz) '

where Var denotes the estimator of the variance of the estimator in the
parentheses and Cov denotes the estimator of the covariance of the two

Table 4.5 Estimated Hazard Ratios (HR) and 95%
Confidence Intervals for Age Categorized into
Four Groups from the HMO-HIV+ Study

Age Group HR 95% Conf. Int.
1:[20-29] 1.00

2:(30-34] 3.31 1.37, 8.01

3:[35-139] 3.72 1.51, 9.14

4:[40-54] 6.43 2.56, 16.12
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estimators in the parentheses. These estimates may be obtained from
most software packages by requesting the estimated covariance matrix
of the estimated coefficients. Table 4.6 presents the covariance matrix
for the estimated coefficients for the three age groups.

The estimated variances and covariance needed are V’a:r(ﬂ,) =

0.2034, V’z;r(ﬁz)=0.2106 and CGV(B,,Bz)=0.1637. The estimate of

the variance of the difference in the two coefficients is

vfatr(B2 - B)=02034+0.2106 -2 0.1637 = 0.0867 ,
and the estimated standard error is
s’i~:(B2 - B)=0294s.
The endpoints of the 95 percent confidence interval estimate are

exp[(ﬁ2 - B,) + 1.968%(32 - B, )]
= exp[(l.3l3 ~1.197) £1.96 x 0.2945]
=0.63, 2.00.

The confidence interval includes 1.0, indicating that the hazard rates for
the two age groups may in fact be the same.

Instead of using the confidence interval, we could test the hypothesis
of the equality of two coefficients via a Wald test. Many software pack-
ages allow the user to test whether specified contrasts of model coeffi-
cients are equal to zero. This is a convenient feature, especially when
contrasts of interest are more complicated than simple differences. The

Wald test for the contrast 3, ~ B, is

Yo B,-B, _1313-1.197
(B, -B) 02945

= 0.395,

and the two-tailed p-value computed from the standard normal distribu-
tion is 0.69. Since the p-value is large, greater than 0.05, we fail to re-
ject the hypothesis that the two coefficients are equal and conclude that
the death rates in the two age groups may not be different.
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Table 4.6 KEstimated Variances and Covariances for the
Three Estimated Coefficients in Table 4.4

Variable (Coeff.) AGE 2 AGE_3 AGE_4
AGE_2 0.2034 0.1637 0.1705
AGE_3 0.1637 0.2106 0.1666
AGE_4 0.1705 0.1666 0.2203

The test for a general contrast among the K -1 coefficients for a
nominal scaled covariate with K levels is described as follows. Let the
vector of estimators of the coefficients be denoted

6'=(Bl'32""'BK—I)

and the estimator of the covariance matrix be denoted V(ﬁ) Let the
vector of constants specifying the contrast be denoted

¢’ =(c;,Cq0eCxoy)s

where the sum of the constants is zero. The single degree-of-freedom
Wald test for the contrast is

0-—B %)
c'V(B)c

and the two-tailed p-value is obtained using the standard normal distri-
bution. Most software packages will report the square of the Wald test
and use the chi-square distribution to calculate the p-value. The
equivalence of these two approaches follows from the fact that the dis-
tribution of the square of a N(0,1) random variable follows a x?(1) dis-
tribution.

In the HMO-HIV+ study, it may be of interest to determine whether
the average hazard ratio of the middle two age groups is equal to the
hazard ratio for the oldest age group. The vector of constants for this
contrast is ¢’ =(0.5,0.5,—1), the vector of estimated coefficients is given
in Table 4.4, and the covariance matrix is shown in Table 4.6. We used
STATA to perform the calculations, but other software packages, for

example, SAS, could have been used. The value of the test statistic is
0 =2.31 with a p-value equal to 0.021. We conclude that the oldest age
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group has a hazard rate that is significantly greater than the average rate
of the middle two age groups.

The method of using a contrast to compare coefficients can be es-
pecially useful when trying to pool categories of a nominal scale covari-
ate recorded with more levels than can be practically used. Practical
considerations are of primary importance in deciding which categories
to combine, but contrasts may be used to judge whether the hazard rates
of clinically similar groups are statistically similar.

Referent cell coding is the most frequently used scheme for coding
design variables; however, it is just one of many possible methods. An
alternative is deviation from means coding. This type of design variable
coding may be used when one simply needs an overall assessment of
differences in hazard rates. To illustrate the method, we apply it to the
four age groups in the HMO-HIV+ study. This coding is obtained by
replacing the first row of zeros in Table 4.3 with a row in which each
value is equal to —1. The resulting estimated coefficient for an age
group estimates the difference between the log hazard of the group and
the arithmetic mean of the log hazards. The exponentiated estimated
coefficient provides the ratio of the hazard rate of the particular group
to the geometric mean of the hazard rates of all K groups.

The results of fitting a proportional hazards model using the devia-
tion from means coding are shown in Table 4.7. The value of the par-
tial likelihood ratio test for the overall significance of the coefficients is
identical to that obtained using reference cell coding and is G=19.56
with a p-value, computed using a chi-square distribution with three de-
grees-of-freedom, less than 0.001. The value of 0.104 for the estimated
coefficient of design variable AGE_2 is equal to the estimate of the dif-
ference between the log-hazard rate for age group 2, [30, 34], and the
estimate of the mean log-hazard rate. The Wald statistic has a p-value of
0.589, indicating that the log-hazard rate for this age group may not
differ significantly from the average log-hazard rate. The coefficient
for group 4 is 0.768 and its Wald statistic has a p-value less than 0.001.
Thus, the log-hazard rate for this age group is significantly larger than
the average log-hazard rate.

The coefficients in Table 4.7 are all positive, indicating that the av-
erage log-hazard rate falls between the log-hazard for age groups one
and two. The estimated difference between the log hazard for the first
age group and the average log-hazard rate is the negative of the sum of
the coefficients in Table 4.7 and is —1.093. The easiest way to obtain an
estimate of its standard error, Wald statistic, etc., is to make a small
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Table 4.7 Estimated Coefficients Using the Deviation from
Means Coding, Standard Errors, z-Scores, Two-Tailed

p-Values and 95% Confidence Intervals for Age Categorized
into Four Groups from the HMO-HIV+ Study
Variable  Coeff. Std. Err. z P>zl 95% Conf. Int.
AGE 2 0.104 0.192 0.54 0.589 -0.272, 0.481
AGE_3 0.221 0.206 1.07 0.285 -0.183, 0.624
AGE 4  0.768 0.209 3.67 <0.001 0.357, 1.178

change in the coding of the design variables and refit the model. We
merely switch the row coded —1 with any other row. We do not recom-
mend that hazard ratios be reported when using deviation from means
coding, because the ratio cannot be interpreted in the same manner as
the ratio from referent cell coding. The comparison is not a compari-
son of two distinct groups, but rather of one group to the geometric
mean hazard rate of all groups combined.

Many other methods for coding design variables are possible. For
example, coding that compares each group to the next largest group or
each group to the average of the higher groups. These methods tend to
be appropriate in special circumstances and will not be discussed further
in this text. In general, the method of referent cell coding, perhaps fol-
lowed by contrasts, should provide a useful and informative analysis in
most circumstances.

4.3 CONTINUOUS SCALE COVARIATE

The interpretation of the coefficient for a continuous covariate is easier
than that of a nominal scale variable in one sense, since indicator vari-
ables need not be introduced, but more difficult in another sense. Be-
fore we can use (4.2) and (4.3) to obtain an estimator of a hazard ratio
we must do two things. First and foremost, we must verify that we have
included the variable in its correct scale in the model. In this section we
will assume that the log hazard is linear in the covariate of interest.
Methods to assess the scale are discussed in Chapter 5. Second, we must
decide what a clinically meaningful unit of change in the covariate is.
Once these two steps are accomplished we may apply (4.2) and (4.3).
We illustrate the method using the HMO-HIV+ study and age as the
covariate. The results of fitting a proportional hazards model contain-
ing age are shown in Table 4.8. The estimated coefficient in Table 4.8
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gives the change in the log hazard for a 1-year change in age. Often a
1-year change in age is not of clinical interest. The HMO physicians
conducting the study may be more interested in a S-year change in age.

We obtain the correct change in the log-hazard function for a
change of c units in a continuous covariate by using (4.2) and (4.3)
with a=x+c and b=x. This yields the following change in the log
hazard:

[8(.x + . B) - g(t.x.B)] = {In[ s (1)] + (x + c)B} — {In[ Ay ()] + xB}
=(x+c)B-xB
=cf (4.8)
The change is simply equal to the value of the change of interest times

the coefficient for a one-unit change. The estimator of the hazard ratio
is

H’i((c) = ¢P (4.9)

and the endpoints of a 100(1- &) percent confidence interval estimator
of the hazard ratio are

exp|cBt 2,-anldSE(B)] - (4.10)

Applying (4.9) and (4.10) for a 5-year change in age in the HMO-
HIV+ study, we obtain an estimated hazard ratio of

HR(5) = £50%! =1.50
and the endpoints of a 95 percent confidence interval are

exp[5x0.081+1.96 x 5% 0.0174] =1.264, 1.778.

Alternatively, we could have calculated the endpoints of the 95 percent
confidence interval by multiplying the endpoints in Table 4.8 by 5 and
then exponentiating. We suggest, for continuous covariates, that the
hazard ratio for the clinically interesting unit of change, along with its
confidence interval, be reported in any table of results. The unit of
change should be indicated in the table heading or in a footnote.
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Table 4.8 Estimated Coefficient, Standard Error, z-Score,
Two-Tailed p-Value and 95% Confidence Interval for Age
in the HMO-HIV+ Study

Variable Coeff.  Std. Err. b4 P>zl 95% Conf. Int.
AGE 0.081 0.0174 4.67 <0.001 0.047, 0.116

The interpretation of an estimated hazard ratio of 1.5 is that the
hazard rate increases by 50 percent for every S-year increase in age and
is independent of the age at which the increase is calculated. The inde-
pendence of the increase in age is due to the fact that the log hazard was
assumed to be linear in age and subtracts itself out of the calculation in
(4.8). The confidence interval estimate suggests that an increase in the
hazard rate of between 30 and 80 percent is consistent with the data.

In summary, we wish to emphasize that the interpretation of the es-
timated hazard ratio for a continuous covariate depends not only on the
assumption of linearity in the log hazard but also on the basic premise
of a proportional hazards model. Methods for checking these assump-
tions are considered in detail in Chapters 5 and 6, respectively.

4.4 MULTIPLE-COVARIATE MODELS

The primary asset of any regression model is its ability to include mul-
tiple covariates and thereby statistically adjust for possible imbalances in
the observed data before making statistical inferences. This process of
adjustment has been given different names in various fields of study. In
traditional statistical applications it is called analysis of covariance, while
in clinical and epidemiological investigations it is often called control of
confounding. A statistically related issue is the inclusion of higher or-
der terms in a model representing interactions between covariates.
These are also called effect modifiers. The strengths and limitations of
statistical adjustment and inclusion of interactions in generalized linear
models apply when using the proportional hazards regression model to
analyze survival time. In this section we discuss these issues and estab-
lish a set of basic guidelines that we employ when discussing model de-
velopment in the next chapter.

The UMARU IMPACT Study (UIS) is introduced in Section 1.3
(Table 1.3) and provides some excellent examples for demonstrating
the statistical issues involved in adjustment and interaction. The analy-
ses presented in this section are in no way definitive. They are used
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simply to demonstrate the interpretation of fitted proportional hazards
models. Two variables collected on subjects in the UIS were age and IV
drug use history. For demonstration purposes, we have recoded IV
drug use history into a dichotomous variable, d, coded 0 = never and 1
= ever. We assume the log-hazard function is linear in the covariates
and that our primary analysis goal is to estimate the hazard ratio associ-
ated with IV drug use, d.

Suppose we generate a proportional hazards model that contains
only IV drug use. The log-hazard function of the model is

g(t.d.,6,)=1n[hy(t)]+ 8.

The difference in the log-hazard functions is

[8(t.d =1,6,) - g(t.d = 0,6,)] = {In[R(£)] + 16, } - {In[ Ry ()] + 06, }
=6, . (4.11)

Suppose we generate a second model that contains both age and IV
drug use. The log-hazard function for the larger model is

g(r.d,a,B)=In[hy(1)]+dB, +aB, , (4.12)

where a denotes age. The adjusted log-hazard ratio is obtained from
(4.2) and (4.12), comparing a subject of age a who has a history of IV
drug use to one of the same age a who does not have a history of IV
drug use, and is

[¢(t.d =1,a,B) - g(t,d = 0,a,B)]
= {ln[h0 (0] +18, + aﬁz} ~ {ln[h(,(t)] +0pB, + aﬁz}
=P, +(a-a)B,
= B;. (4.13)

The results shown in (4.11) and (4.13) indicate that we have two
estimators of the desired log-hazard ratio: (1) The so-called crude or

unadjusted estimator é, from (4.11), obtained from fitting the model
that does not include age, and (2) the adjusted estimator ﬁ, from (4.13),

the coefficient of d obtained from fitting a model containing d and age.
If the two estimators are similar, then adjustment for age was unneces-
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sary, in a statistical sense. If the estimators are different, then adjustment
was needed and the variable age is a confounder of the hazard ratio for

d. The extent of adjustment, or difference, between 6, and ﬁ, is a
function of the difference in the distribution of age within the two IV

drug use groups and the strength, ﬁz, of the association between age
and survival time.

Suppose that the model containing age, (4.12), is the correct model,
and denote the average age of subjects with and without a history of IV
drug use as a; and a,, respectively. An approximation of the average
log-hazard functions [see Fleming and Harrington (1991) page 134 for
an exact expression] for the two drug use groups is

g(t.d = 0,B) = In[y ()] + @, B,

and

g(t.d=1B)= l“[ho(‘)]'*'ﬁl +a,p,.

Taking the difference between these two expressions, the crude or un-
adjusted log-hazard ratio is approximately

él "Bl +(a, “‘70)32‘ (4.14)

Thus, the crude estimator will be approximately equal to the adjusted
estimator if the difference in the mean age of the two drug use groups is
zero or if the coefficient for age is zero. The two estimators will differ
if at least one of the two is large or both are moderate in size. We rec-
ommend that the percent change in the adjusted estimate be computed
as a measure of the amount of adjustment. The percent change estima-
tor, in general, is defined as

AB% = 1009-;2{-‘i , (4.15)

where § denotes the crude estimator from the model that does not con-
tain the potential confounder and ﬁ denotes the adjusted estimator
from the model that does include the potential confounder. We discuss
the use of (4.15) in model building in Chapter 5.

If we assume (4.14) is true, then the approximate percent change is
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~ A ~

aBw=10092P - 100(@; )5, (4.16)
B B

an expression that isolates the two contributors to adjustment. In prac-
tice, one would evaluate only (4.15). The expressions in (4.14) and
(4.16) are provided as a tool to assist in explaining why the crude and
adjusted estimators could be different.

The results of fitting the two models to the UIS data are shown in
Table 4.9. We note that AGE is missing for 5 subjects and DRUG is
missing on an additional 18 subjects, so analyses have been restricted to
the 605 subjects with complete data. The adjusted estimate for DRUG is
0.44 and the crude estimate is 0.32, a change of

ABw=100x 232204 _ _27ep,
0.44

The reasons the estimate changed are: (1) age is strongly associated with
survival time, p = 0.001 in Table 4.9, and (2) the mean ages in the two
drug use groups are different, 26.64 (never) and 31.05 (ever). Thus,
both contributors to confounding on the right-hand side of (4.14) are
large. In this example the right-hand side of (4.14) is equal to

0.32=0.44 - 0.026(31.05-26.64),

which is nearly identical to the crude estimate in Table 4.9,

A practical question is how large must the percent change in the co-
efficient be to indicate that we need to include the potential confounder
in the model. There are no rules, only suggestions. In practice, we have
found that a change greater than 15-20 percent indicates that adjust-
ment is needed.

The ability of the proportional hazards regression model to provide
correct adjusted estimates of log-hazard ratios depends on having fit the
correct model. In practice, this means that the proportional hazards
model is correct and that we have fit a model containing the correct
covariates, all of which are scaled correctly. These issues are discussed
in detail in Chapters 5 and 6.

The derivation of the adjusted estimator in (4.13) implicitly assumes
that the log-hazard ratio is constant for all ages. If this is not the case,
then the two variables are said to interact; in other words, age modifies
the effect of IV drug use. We address this question by determining
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Table 4.9 Estimated Coefficients, Standard Errors, z-Scores, Two-
Tailed p-Values and 95% Confidence Intervals for Two Models Fit
to the UIS Data

Model  Varable  Coeff.  Std. Err. Z P>lz| 95% Conf. Int.
Crude  DRUG  0.321 0.0948 3.39 0.001 0.135, 0.507

Adjusted DRUG  0.439 0.1007 436 <0.001 0.242, 0.637
AGE -0.026 _ 0.0078 -3.37 0.001  -0.042, -0.011

whether an interaction between the two variables (their product) con-
tributes significantly to the model. The log-hazard function for the in-
teractions model is obtained by adding the product of IV drug use and
age to the model in (4.12) and is

g(t.d,a,B) = In[hy(£)] + dB, +aP, +(d xa)B, . (4.17)

If we assume for the moment that (4.17) is the correct model, then the
only way we can obtain the correct expression for the log-hazard ratio
for IV drug use is to apply (4.2). The log-hazard ratio is

[g(t,d =1,4,B) - g(t,d=0,aq, B)]
={Inko(1)] + 18, +ap, + (1 a)B,} - {Inko(1)] + OB, + af; + (0 x @), }
=pi+ap; . (4.18)

The implication of the result in (4.18) is that the log-hazard ratio for IV
drug use depends on the age of the subject. Conversely, when there is
no interaction (i.e., B, =0), the log-hazard ratios in (4.13) and (4.18)
are the same. In general, the reason we include interactions in a model
is to better estimate the effects of the covariates since point and interval
estimators obtained from (4.13) and (4.18) are different. This will hap-
pen only when the interaction term in (4.18) is statistically significant, as
assessed via the partial likelihood ratio or an equivalent test. We rec-
ommend inclusion of interaction terms in a model only when they are
statistically significant. We address this point in greater detail in the
next chapter.

The primary goal of the UIS was to compare the effectiveness of
two treatment interventions, “TREAT” in Table 1.3. Table 4.10 pres-
ents the results of fitting a proportional hazards model containing
treatment, a second model containing treatment and age and a third
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model containing these variables along with their interaction. For illus-
trative purposes, we use a larger level of statistical significance, p < 0.15,
than we might choose to use in an actual model building application.
The coefficient for treatment in the crude model is significant. When
we add age to the model, the value of the partial likelihood ratio test
comparing the new model to the model that contains treatment only is
G =3.42 with a p-value equal to 0.064, and the percent change in the
coefficient for treatment is —1.5 percent. Thus, we conclude that age is
associated with survival time but is not a confounder of the treatment
effect. The partial likelihood ratio test comparing the age adjusted
model to the interactions model is G = 2.57 with a p-value equal to
0.109. Thus, from a statistical significance point of view, the best model
is the interactions model. However, it appears from that model that the
significant treatment and age effects seen in the adjusted model have
disappeared. The estimator of the log-hazard function for the interac-
tions model, ignoring the log baseline hazard function, is

g(t, TREAT, AGE, B) = B,TREAT + B,AGE + B,TREAT x AGE.

The estimators of the log-hazard functions for the two treatment groups
are

g(t, TREAT =0, AGE, B) = B,AGE
and
g(t, TREAT = 1, AGE, B) =B + (/}2 +B, )AGE.

The coefficient for age, Bz =—0.002 in Table 4.10, is the slope in age of
the log-hazard function for treatment group 0. The fact that it is not
significant implies that age is unrelated to survival time in treatment
group 0. The slope in age for treatment group 1 is the sum of the age

and interaction coefficients, ﬂ2 + ﬂ, = -0.002 +(-0.023) = —0.025 in Ta-
ble 4.10, and its significance can only be tested using the method of
contrasts discussed in Section 4.2. This results in a Wald statistic
z=2.41 with a p-value equal to 0.016, which is significant. We con-
clude, therefore, that there is evidence of a significant association be-
tween age and survival time in treatment group 1.

To obtain an estimator of treatment effect we can apply (4.2). The
estimator of the difference in log-hazard functions is
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[g(z,TREAT =1,AGE, B) - g1, TREAT = 0, AGE, ﬂ)]
= {nko(1)] + B, + B,AGE + ,AGE] - {in[y(1)] + §,AGE]

~

= B, + B,AGE. (4.19)

The magnitude of this estimator depends on the age of the subject. The
estimator of the coefficient for treatment, Bl, would be the estimator of
treatment effect for a subject with age zero years. If we had centered
the age data by subtracting the mean, then the coefficient, B, , is the es-
timator of treatment effect for a subject of age equal to the mean. To
display the results of fitting such a model, we recommend that a table be

presented containing point and interval estimates of treatment effect for
a few key values of age. The point estimator is

HR(TREAT, AGE) = exp(/}, + B3AGE) :

and the confidence interval estimator is

exp[([il + B,AGE) £ 7,_,,,SE(B, +[33AGE)], (4.20)

where
s’is([i, + BsAGE) = {v’é r ([3, ) + AGE?Var ([33) + 2AGEc’6v([3, B, )}05 :

and the required estimated variances and covariance are obtained from
the covariance matrix included in computer output. Table 4.11 con-
tains values of the hazard ratio and associated 95 percent confidence

Table 4.10 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for Three
Models Fit to the UIS Data

Model Variable Coeff. Std. Ermr. 2 P>zl 95% Conf. Int.
Crude TREAT -0.220 0.089 -2.46 0.014 -0.395, -0.045
Adjusted TREAT -0.223 0.089 -2.50 0.013 -0.398, -0.048
AGE -0.013 0.007 -1.84 0.066__-0.027, 0.001

Interaction TREAT 0.523 0474 1.10 0.271 -0.407, 1.453
AGE -0.002 0.010 -0.18 0.861 -0.022, 0.018

TREATXAGE -0.023 0.015 -1.60 _0.110 -0.052, 0.005
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Table 4.11 Estimated Hazard Ratios (HR) and
95% Confidence Intervals for Treatment Effect
in the UIS at Ages 25, 30, 35 and 40

Age HR 95% Conf. Int.
25 0.944 0.723, 1.234
30 0.841 0.700, 1.011
35 0.749 0.617, 0.909
40 0.667 0.502, 0.886

interval for subjects of age 25, 30, 35 and 40 years.

The estimated hazard ratios in Table 4.11 are all less than one and
decrease with age, indicating that the longer treatment period, TREAT =
1, is beneficial or protective for return to drug use and becomes in-
creasingly beneficial the older the subject. The confidence intervals
support a significant treatment effect for subjects 35 years and older.

Another form of an interactions model is one that contains continu-
ous covariates that have been transformed, and one would like to esti-
mate hazard ratios in the original measurement scale.

For example, suppose a log-hazard function contains both age and
the square of age and we would like an estimate of the hazard ratio for a
c year change in age. To obtain the correct expression for the differ-
ence in log-hazard functions for a ¢ year change in age we must use
(4.2) which yields

(8(. AGE + c.B) - g(t, AGE, B)] = {In[h(+)] + B,(AGE +c) + B,(AGE +c)* }

—{in[ky()] + B,AGE + B,AGE?}
= Bic +B,[2AGE x c +¢?],

an expression which depends on both the change and the age at which
the change is calculated. We obtain point and interval estimators of the
hazard ratio by extending the result shown in (4.20). This yields the
point estimator

HR(AGE + ¢, AGE) = exp[B,c +B,(2AGExc+c?)|,  @.21)

and the endpoints of the 100(1 — @) percent confidence interval are
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exp{ﬁ,c + ﬁz (2AGE Xc+ cz) t z,_a,zs’ﬁ[ﬁlc + ﬁz (2AGE X ¢ +c? )]} ,

(4.22)
where

S’ﬁ[ﬁ,c +B, (2AGE x ¢ + cz)]
c? ar(ﬁ,)+(2AGEXC+c2)2V’£r([§2) >

+2¢ X (2AGE x c+cz)CGV(Bpl§z)

Expressions similar to (4.21) and (4.22) result when (4.2) is applied
to other nonlinear transformations of a covariate.

Multiple variable proportional hazards regression models can be
effective tools for sharpening estimates of hazard ratios for covariates.
In the absence of interactions, one must be aware at each step in the
model evaluation process of the amount of adjustment or confounding
that is being controlled. If interactions are present in a model, then con-
founding is no longer an issue, as the estimate of effect depends on the
value of other covariates and thus cannot be removed. In all cases, the
interpretation depends on the assumption that the proposed model fits
the data, the subject of Chapter 6.

4.5 INTERPRETATION AND USE OF THE
COVARIATE-ADJUSTED SURVIVORSHIP
FUNCTION

Methods for estimating the survivorship function following the fitting of
a proportional hazards model were presented in Section 3.5. The key
step presented in that section was the estimation of the baseline survivor-
ship function, §0(t), shown in (3.39). This estimator may be combined
with the estimators of the coefficients in the model using (3.36) to ob-
tain the estimator of the survivorship function, adjusting for the covari-
ates, as follows:

3x.B) =[S0 (4.23)
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All software packages allow the user to request calculation of the
estimator of the baseline survivorship function. The estimator may be
used to derive other functions of survival time, for example, the estima-
tor in (4.23), which is essential for graphical description of the results of
the analysis and for other analyses, such as model assessment. We dis-
cuss graphical methods and estimation of quantiles and their interpreta-
tion in this section. Model assessment is discussed in Chapter 6.

We begin with the model containing IV drug use in the HMO-HIV+
study discussed in Section 4.2. In this section we use a dichotomous
grouping variable, but the methods may be used with any nominal scale
covariate. Table 4.2 presents the results of fitting the model. The esti-
mator of the baseline survivorship function for this model is an estima-
tor of the survivorship function for DRUG = 0. If we request that the
baseline survivorship function be computed as part of the analysis, then
the software evaluates (3.39), denoted

S(1), i=1,2,...,n, (4.24)

for each subject in the study, regardless of their survival status or value
of IV drug use. It follows from (3.43) that the estimator §0(t) is con-
stant between observed survival times. Thus, the estimated value for
subjects who were censored is equal to the value at the largest observed
survival time for which they were still at risk.

We can compute an estimate of the survivorship function for DRUG
= 1 by using the previously calculated value of the baseline survivorship
function and evaluating

3(1, DRUG =1,5, =0.779) =8, ™

, 1=1,2,...,100, (4.25)

where the value of the coefficient for DRUG is obtained from Table 4.2.
The graphs of the two estimated survivorship functions, (4.24) and
(4.25), are shown in Figure 4.2. The plot has been drawn with steps
connecting the points rather than straight lines to emphasize the
fact that the estimator is constant between observed survival times. It
follows from (4.24) and (4.25) that each function has been plotted at
exactly the same n =100 values of time. The shape of the two curves is
a consequence of the proportional hazards assumption. The ratio of the
hazards at each point in Figure 4.2 is forced to be equal to 2.18 =
exp(0.779).
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We presented a plot in Chapter 2, Figure 2.7, that is similar in ap-
pearance to Figure 4.2. There is an important distinction. The two
curves in Figure 2.7 are based on separate, nonparametric Kaplan-
Meier estimators. The Kaplan-Meier estimator uses only the data in
each group and does not assume the hazards are proportional. The dis-
tinction between the curves in Figure 2.7 and Figure 4.2 is analogous to
the distinction between a plot of the observed cumulative percent distri-
bution as compared to a plot of the cumulative distribution function
based on an assumption of normality (i.e., using the observed sample
mean and variance). If the data are nearly normally distributed, the two
curves will look alike, but the latter curve will be “smoother” (due to
the normality assumption) than the former curve.

The difference between the curves in Figures 2.7 and 4.2 can be
most clearly seen between 15 and 56 months. The lower curve in Fig-
ure 2.7 is constant between 15 and 56 months. No survival times in the
IV drug use present group were observed in this interval and the largest
observed time was a censored observation at 56 months. The lower
curve in Figure 4.2, however, has jumps at each observed survival time,

led

A [V Drug Use Present
© [V Drug Use Absent
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Figure 4.2 Graph of the estimated proportional hazards model survivorship
function for IV drug use present (A) and absent (o) for the HMO-HIV+ study.
Points are plotted at each observed time for both curves.



140 INTERPRETATION OF PROPORTIONAL HAZARDS MODEL

in the DRUG = 0 group between 15 and 56 months. Furthermore, the
lower curve in Figure 4.2 does not end at 56 months with the value at 15
months, as was the case in Figure 2.7. The curve takes a downward
jump as the hazard ratio is 2.18 at each point.

Another way one can think of the curves plotted in Figure 4.2 is to
consider them as being like “fitted” or “predicted” regression lines.
Here the “prediction” is on the survivorship probability scale. In this
example, there is an implicit model-based extrapolation present in Fig-
ure 4.2. The lower curve, in the interval from 15 to 56 months, predicts
or estimates the survivorship experience if: (1) the estimate of the base-
line survivorship function correctly describes the survivorship experi-
ence in the IV drug use absent group, and (2) the proportional hazards
model is correct.

The situation in Figure 4.2 is analogous to using linear regression to
model weight as a function of height in males and females. It is likely
that the shortest subjects are female and the tallest subjects are male.
Once a model has been fit, the software may be used to graph the fitted
model over the entire observed range of heights. A point on the line for
females in the range of heights only observed for males is a prediction
that depends on the unverifiable assumption that the fitted model is cor-
rect for females as tall as the tallest males. We have extrapolated the
model beyond the observed range of data. The same type of extrapola-
tion can occur in plots of survivorship functions.

As noted, the extrapolation in Figure 4.2 is in an interval between
observed values. A more serious extrapolation problem would have oc-
curred if the largest observed time in the IV drug use present group had
been 12 months. These extrapolation issues suggest that one must give
careful consideration to what points are used when plotting a covariate-
adjusted survivorship function. A more conservative plot than Figure
4.2 is shown in Figure 4.3 where points are plotted only for observed
values of time. The plot in Figure 4.2 has 200 plotted values while there
are 100 plotted values in Figure 4.3.

The plot in Figure 4.3 is constant for the IV drug use present group
between 15 and 56 months and thus better reflects the observed data.
Figure 4.3, in conjunction with the analysis in Table 4.2, illustrates the
significantly poorer survival experience of the IV drug use present
group.

If the observed range of survival times is comparable for each
group, we recommend using a plot like Figure 4.2 as it uses all the data
and reflects best the fitted model and its assumptions. However, if there
are clinically important differences in the observed range of survival
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Figure 4.3 Graph of the estimated proportional hazards survivorship function for
IV drug use present (A) and absent (o) for the HMO-HIV+ study. Points are plot-
ted at observed times for each group.

times, then we recommend using a plot like Figure 4.3. One must use
caution when reading the literature, as it may be difficult to determine
whether plotted data involve inappropriate extrapolation of the fitted
model. The best approach in practice is to provide results from both a
thorough univariate analysis of survival experience in subgroups of spe-
cial interest, as well as results from a regression analysis.

As noted in the previous section, the strength of regression model-
ing is the ability to adjust statistically for possible imbalances in the ob-
served data. As an example of a more complicated model, suppose we
fit a proportional hazards model containing age and IV drug use. The
goal is to present survivorship functions for the two drug use groups,
controlling for age. We must give some thought to what we mean by
controlling for age.

We would like the estimated survivorship function to use the covari-
ates in the same way that covariates are controlled for in a linear regres-
sion. In linear regression, a point on the regression line (or plane for a
multiple variable model) is the model-based estimate of the conditional
mean of the dependent variable among subjects with values of the
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covariates defined by the point. The analogy to linear regression can
help our thinking, but the situation is a bit more complicated in a pro-
portional hazards regression analysis. Since the model does not contain
an intercept, we do not have a fully parametric hazard function and thus
the model cannot predict an individual point estimate of the conditional
“mean” survival time. The estimated survivorship function in (4.23) is
the proportional hazards model-based estimator of the conditional sta-
tistical distribution of survival time. The word “conditional” here
means restricting observation to a cohort with covariate values equal to
values specified. Pursuing this notion further, suppose we were able to
follow an extremely large cohort of subjects for 5 years. Suppose also
that the cohort is large enough that we can perform a fully stratified
analysis and compute the Kaplan-Meier estimator of the survivorship
function for each possible set of values of the covariates, such as, IV
drug users who are 40 years old. If the proportional hazards model is
correct, then the estimator in (4.23) and the Kaplan-Meier estimator
should be similar, within statistical variation. One may use this estima-
tor, (4.23), to describe survival time graphically and to compute esti-
mates of quantiles, such as the median, in the same way the Kaplan-
Meier estimator was used in Chapter 2.

The most frequent use of estimated survivorship functions in ap-
plied settings is to provide curves, like those in Figure 4.2 or 4.3, which
may be used to compare groups visually and control for other model
covariates. If the model does not contain grouping variable by covari-
ate interactions, then the resulting survivorship functions are in a sense
“parallel” in a way similar to lines with the same slope in a linear re-
gression. In practice, one would choose one set of “typical” values of
the other covariates. For a continuous covariate like age, we usually
choose the common value to be the mean, median or another central
value. In the HMO-HIV+ study, the mean age is 36.02 and the median
age is 35. Thus, 35 seems like a good value to use for age in this exam-
ple. If we merely fit the proportional hazards model containing age and
IV drug use and request computation of the baseline survivorship func-
tion, then the program would estimate survivorship experience for IV
drug use absent and, although biologically impossible, age equal to zero
years. To obtain the estimate of the two age-adjusted survivorship
functions, we would have to evaluate the expression in (4.23) using the
coefficients from the fitted model with (DRUG =0,AGE =35) and
(DRUG =1,AGE =35). This approach, while algebraically correct, can
cause unwanted round-off and computational error in some situations.
We would like to avoid computations that involve exponentiating large
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Table 4.12 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for the
Model Containing IV Drug Use and Age Centered at 35 Years
in the HMO-HIV+ Study

Variable  Coeff. Std. Err. 2 P>lzl 95% Conf. Int.

DRUG 0.941 0.2555 3.68 <0.001 0.441, 1.442
AGE_ C  0.092 0.0185 495  <0.001 0.055, 0.128

positive or negative numbers. One way to do this is to center continu-
ous covariates. In the current example, we fit the model using
AGE_C = AGE-135, and the results are shown in Table 4.12. These
results are identical to ones which would have been obtained if we had
used age uncentered, with the only difference being in the baseline sur-
vivorship function. When we center agc, not only are our results com-
putationally more accurate, but the estimate of the baseline survivorship
function corresponds to IV drug use absent and age equal to 35 years,
the zero value of the two covariates in the model. To obtain the second
estimated survivorship function we compute

g(t].DRUG =1,AGE_C=0, ﬁ) - [S:O (t] )]CXp(lx0,94l)

. j=1.2,...,100 .

Graphs of the two estimated survivorship functions, plotted at ob-
served values of time in each group, are shown in Figure 4.4. In this
example, we chose these points to plot because of the absence of data in
the interval from 15 to 56 months in the IV drug present group. The
curves in this graph provide proportional liazards estimates of the survi-
vorship experience of two cohorts of 35-year-old subjects differing in
their IV drug use. Each point on the two curves depends on the actual
observed survival times and the proportional hazards assumption.

The shapes of the curves in Figure 4.5 are determined by the choice
of age equal to 35 as the center or “zero” value and the proportional
hazards assumption. In order to illustrate the parallelism in the plots for
any value of age and the effect of the choice of the center, four sets of
curves have been plotted in Figures 4.5a—4.5d. The plots use age equal
to 30, 35, 40 and 45 years, respectively. Since these plots have been
prepared to demonstrate the effect of centering and the proportional
hazards assumption, the two curves in each plot use all observed survival
times. The basic parallelism is present, as the hazard ratio at each point
in each of the four plots is 2.18. The progressive steepness in the plots
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Figure 4.4 Graph of the age-adjusted estimated proportional hazards survivorship
function for IV drug use present (A) and absent (o) for the HMO-HIV+ study.
Points are plotted at observed survival time for each group.

is due to the fact that age is inversely related to survival, has a positive
coefficient in the log-hazard function and is increasing from Figure
4.5a to 4.5d. For simply demonstrating the effect of IV drug use on
survival controlling for age, any one of the four plots could have been
used. Since the median age was 35, the plot in Figure 4.4 corresponds
to Figure 4.5b, but with the noted difference in plotted values.

When the fitted model is even moderately complex,-it may be diffi-
cult to decide what combination of covariate values best represents the
middle of the data. We recommend that continuous covariates be cen-
tered to avoid potential numerical problems. In such complex situa-
tions, plots based on values of a quantity called the risk score are fre-
quently used in practice. The risk score is the value of the linear por-
tion of the proportional hazards model. In a model containing p
covariates, the estimator is

Bx, -

7(xB)=

p
k=1
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For ease of notation, we denote the value of the estimator of the risk
score for the jth subject as

A p A
= r(xj,B) = Z‘kalk . (4.26)
k=1
and, to be in agreement with notation used in Chapter 3, its exponenti-
ated value as

(4.27)

Most software packages will provide calculated values of either or both
(4.26) and (4.27). The baseline survivorship function corresponds to a
risk score of zero which may or may not be of clinical interest. Typi-
cally, one can obtain the values of the quartiles of the risk score from a
descriptive statistics routine and obtain the estimated survivorship func-
tion from (4.23) by evaluating

§(z,,?;,.l3)=[§o(t,)]“p(F'), j=12,.0n,  (4.28)

where the r‘;], q =25,50,75, correspond to the empirical quartiles of the

risk score.

This procedure may be modified when we wish to graph the esti-
mated survivorship functions for a grouping variable, controlling for a
risk score based on the remaining covariates. In this setting, we subtract
out the contribution of the grouping variable to the risk score, calculate
the median value of what remains, and then add back in the contribution
of the grouping variable when calculating the estimator of the survivor-
ship function. Suppose the grouping variable is dichotomous and is the
first of the p covariates in the model. The modified risk score, obtained
by removing the effect of the grouping variable, is

rm, =?'j—,é,xj,, j=12,..,n.

If we denote the median of the modified risk scores as rmg,, then the
estimates of the survivorship functions for the two groups at this median
are
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${10x = 0.7, B) = [S5(1) )]“p(';"”*ﬁ‘(°’) (4.29)
and o
31,05 = L) = [ 72 (4.30)

for j=1,2,...,n subjects. Before plotting the graphs of (4.29) and
(4.30), one should examine the range of observed survival times in the
two groups for biologically important gaps.

The data from the UIS may be used to provide examples of plotting
survivorship functions from a more complex model. This model has
been chosen for demonstration purposes only. We have not attended to
a number of important modeling details and, as a result, this model
should not be construed as being the final model for assessing treatment
effect. Table 4.13 presents the results of fitting a model containing
treatment, age, history of IV drug use (0 = never, 1 = previous or re-
cent) and the number of previous drug treatments. We centered age at
30 years and the number of previous drug treatments at 3. The results
in Table 4.13 support a significant treatment effect after adjusting for
the other variables in the model. The estimated hazard ratio for treat-

b fo ’okﬁvi ‘hl (months)

(b) Age Contered st 33 Yean

(moothe)

Sarvival (monshs)
(c) Age Contered st 40 Years (d) Age Centored st 43 Yean

Figure 4.5 Graphs of the age-adjusted estimated proportional hazards survivor-
ship function for IV drug use present (A) and absent (o) at four different ages in the
HMO-HIV+ study.
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ment and the 95 percent confidence interval are HR = exp(—.227)=0.80

and (0.666, 0.954), respectively. The estimate supports a protective
effect for the longer treatment, with about a 20 percent reduction in the
hazard rate for returning to drug use.

In this example, the equation for the estimated risk score for the jth
subject is

7, =-0.227x TREAT, —0.031 x(AGE _C,)+0.343x DRUG,
+0.031x(NDRGTX _C,)

and the modified estimated risk score is
Fm, =F,—(~0.227x TREAT, ) .

The median value of the modified risk score is 0.1588 and the equa-
tions for the estimators of the modified risk score-adjusted survivorship
functions obtained from (4.29) and (4.30) are

3(t,, TREAT = 0,7imgo, B) =[34(, ] I 4.31)
and
$(t,, TREAT =1, 7imgs,B) =[S, )]“"(o"ssa'o'w) . (432)

Since the observed range of survival times in the two treatment groups 1is
comparable, we chose to use all observed survival times to plot (4.31)
and (4.32), which are shown in Figure 4.6. Since the analysis is based
on a large number of subjects (593 of the 628 subjects had complete
data on the four covariates), the use of separate plotting symbols has
been suppressed to avoid an unnecessarily cluttered graph.

The two curves in Figure 4.6 reflect both the use of the median
modified risk score and the assumption of proportional hazards. Use of
other quantiles of the modified risk score would shift the curves to the
left or right in a manner similar to Figure 4.5. The longer times until
return to drug use for the longer duration treatment group are illus-
trated in the graph.

We can use adjusted estimated survivorship functions, such as those
shown in Figures 4.5 and 4.6, to estimate the adjusted median survival
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Table 4.13 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for the
Model Containing Treatment (TREAT), Age-30 (AGE_C), IV
Drug Use (DRUG) and Number of Prior Drug Treatments-3
(NDRGTX _C) from the UIS, n = 593
Variable Coeff.  Std. Erm. 2 P>lzl  95% Conf. Int.
TREAT -0.227 0.0916 -2.48 0.013 -0.407, -0.048
AGE_C -0.031 0.0079 -3.87 <0.001 -0.046,-0.015
DRUG 0.343  0.1043 3.29 0.001 0.138, 0.547
NDRGTX_C  0.031  0.0080 3.87 <0.001 0.015, 0.047

times in the same manner as described in Section 2.3. If the graph is
not too complicated, we can use the graphical approach illustrated in-
Figure 2.6. However, since this is not likely to be accurate enough in
most applied settings, we determine the estimator as

iy = min{t :8(e.x.B) < 0.50} , (4.33)
| o=
.8 -
%‘ 6 =
¥
g 4o
TREAT =1
29 TREAT =0
() =
0 500 1000 1500

Time to Drug Use From Admission (Days)

Figure 4.6 Graphs of the modified risk score-adjusted estimated survivorship
function for treatment in the UIS.
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where the estimator of the survivorship function in (4.33) is any one of
the adjusted estimators. Application of (4.33) to the estimates graphed
in Figure 4.6 yields adjusted estimated median time to return to drug
use of 159 days and 190 days for the short and long treatments, respec-
tively.

Confidence interval estimators for the covariate-adjusted estimator
of the median survival time are discussed in the next section. In general,
the methods are a bit more complex than those discussed to this point in
the text. The methods have not been implemented in standard statistical
software packages, but one could write a routine to calculate the confi-
dence interval estimator.

The covariate-adjusted survivorship function in (4.23) is the one
most frequently used in applied settings. An alternative estimator, first
proposed by Makuch (1982) and further studied by Thomsen, Keiding
and Altman (1991), is discussed and recommended by Marubini and
Valsecchi (1995, Chapter 6). The estimator, called the “direct adjusted
survival curve” by Makuch, is obtained by averaging the individual es-
timated survivorship functions over all subjects at each observed time.
The average may be computed overall or within subgroups of subjects.
As shown in Marubini and Valsecchi (1995), the direct adjusted esti-
mator is easy to compute for a simple model containing one or two di-
chotomous covariates, but a more complicated model requires special
programming. Evaluation of the direct estimator requires calculating an
average over all subjects in specified groups at each observed value of
time. In order to illustrate the method, we computed the directly ad-
justed estimator for the model shown in Table 4.12. It is presented in
Figure 4.7, along with the estimator in (4.23) for the IV drug use
groups present and absent shown in Figure 4.4. The two sets of curves
in Figure 4.7 certainly convey the same message regarding the effect of
treatment and, in this case, would yield similar estimates of the median
time to drug relapse in each drug group. The difference between the
two estimators is most easily explained if we focus on a single value of
time, say 24 months. The value of the upper covariate-adjusted esti-

mated survivorship function, (4.23), is just S,(24), that is, the survivor-
ship function for age equal to 35 years and IV drug use absent. The
direct adjusted estimate for this group at 24 months is

51
5(24,DRUG =0) = %25(24,1)1100 ,=0,AGE; -35), (4.34)
j=1
where
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" A exp(0xB, +{AGE,-35)x3
§(24,DRUG ,=0.AGE,-35)=[S0(24)] p(0xA, +{AGE, )sz).

The mean on the right-hand side of (4.34) is the average restricted to
the 51 subjects in the HMO-HIV+ study who had no history of IV drug
use. The point on the lower covariate-adjusted curve is

’S A exp{ Ix .l
$(24,DRUG =1,AGE_C=0)=|5,(24)] o(xh)

and the corresponding point on the directly-adjusted curve is

- 1 & A
§(24,DRUG =1)= 525(24, DRUG, =1,AGE; -35), (4.35)
j=l

where

S a exp(1x B, + AGE,-35)x B
S(24,DRUGJ =1,AGE, _35) — [50(24)] p(lxﬁ,+(A J 3s)xp,).

The mean on the right-hand side of (4.35) is the average restricted to
the 49 subjects in the HMO-HIV+ study who had a history of IV drug
use. In order to obtain the graph of the direct-adjusted survivorship
functions in Figure 4.7, the expressions in (4.34) and (4.35) must be
computed for each observed value of time.

Marubini and Valsecchi (1995) state that the directly adjusted esti-
mator better takes into account the variability in the observed values of
the covariates. The difference between the two adjusted curves is due to
the fact that the survivorship function is a non-linear function of the
covariate (i.e., age) in the example. Which of the two adjusted curves,
covariate or direct, one should use in practice depends on the goal of
the analysis. If the purpose is to provide a figure to be used to compare
survivorship under different levels of a nominal scale covariate, the
more easily calculated covariate-adjusted curve is likely to be adequate
in most applied settings.

Model-based estimation of the survival probability at a fixed time
point is another application of the estimator in (4.23). For example, we
may use the results in Table 4.12 to obtain an estimator of the probabil-
ity of survival to 18 months for a subject with specified age and history
of IV drug use. This is analogous to using a fitted linear regression
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Figure 4.7 Graphs of the covariate age-adjusted and direct age-adjusted estimated
survivorship function for IV drug use present and absent for the HMO-HIV+ study.

model to predict the outcome in a new subject. Suppose our new sub-
ject is 42 years old and has a previous history of IV drug use. The pre-
dicted 18-month survival probability for this subject is

n N exp(1x0.941+7x0.092)
$(18,DRUG =1,AGE_C = 42 -35) =[5,(18)]

- [0.3239]cxp(lx0.941+7x0.092) — [0.3239]4.879 — 0.0041'

where the value of §0(1 8) is obtained from a tabulation of the estimated
baseline survivorship function. Thus the fitted model3 predicts less than
a 1 percent chance of survival to 18 months. We discuss the confidence
interval estimator for the predicted survival probability in the next sec-
tion. The entire survivorship function may be obtained using the same

3 We wish to remind the reader that the HMO-HIV+ study data are hypothetical
and, as such, fitted models should not be used to draw substantive, real-world con-

clusions.
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method discussed above for covariate-adjusted survival curves (i.e., con-
sidering (4.23) with the stated covariate values as a function of time).

The estimated survivorship function, (4.23), can be an effective tool
to describe the results of a regression analysis of survival time. We wish
to reemphasize the importance of giving careful thought to the plotted
range of the curve and estimates of survival probabilities. It is all too
easy, with current statistical software, to present graphs and predictions
that may inappropriately extrapolate the fitted model.

4.6 CONFIDENCE INTERVAL ESTIMATION OF
THE COVARIATE-ADJUSTED SURVIVORSHIP
FUNCTION

In this section we present a confidence interval estimator for the covari-
ate-adjusted survivorship function. The method and resulting formula
are not difficult to understand as they follow from the methods dis-
cussed in Chapter 2 for the Kaplan-Meier estimator. However, applica-
tion requires that one use matrices and matrix calculations, and these
require greater computing expertise than is required in other sections.

Andersen, Borgan, Gill and Keiding (1993) present an estimator
[equation (7.2.33), page 506] of the variance of the log of the covari-
ate-adjusted survivorship function. Their estimator is identical to one
presented by Marubini and Valsecchi (1995, in the Appendix to Chap-
ter 6). As noted in Chapter 2, better coverage properties are obtained if
a confidence interval for the survivorship function is based on the log-
log transformation of the function. An expression for a variance esti-
mator for this further transformation is given by Andersen, Borgan, Gill
and Keiding (1993) following (7.2.33). The equation for the variance
estimator for a fixed set of the p covariates, denoted x,, is

Var {m[- 1n(§(z,xo,f3))]} =AB)+ B(txoB), 36

where

W)= S
( ) {1,,[30(:)]} %’[C(‘(f)'ﬁ)]

é("xo'é) =(xo — 'i(z))'V’z;r (ﬁ)(xo -X(1)),
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(‘(z)’ ) e

[GR('(‘))

’ ijex;p*

4 jeR(t(,))

ln[so( )] fySt m

and

J

We note that d; represents the number of subjects with survival time
equal to f, and Var (B) denotes the estimator of the covariance matrix

of the estimated coefficients. The endpoints of a 100(1-«) percent
confidence interval for the log-log function are

ln[— ln(§(t, xo,ﬁ))] * z,_a,zs%{ln[— ln(S‘(t, xo,ﬁ))]} , (4.37)

where S?E{ } in (4.37) denotes the estimator of the standard error and,
in this case, is the positive square root of the estimator in (4.36). If we

denote the lower and upper endpoints obtained from (4.37) as I(t,xo,ﬁ)

and u(t,xo,ﬁ), then the lower and upper endpoints of the confidence

interval estimator of the survivorship function are obtained in a manner
similar to (2.8) and are

exp{- exp[u(t, X, B)]} and exp{— exp[l(t, Xo, B)]} (4.38)

The expressions in (4.37) and (4.38) may be used to obtain a con-
fidence interval for an individual predicted survival probability or to
provide a pointwise confidence band for a covariate-adjusted survivor-
ship function. In the previous section, we used the fitted model shown
in Table 4.12 for the HMO-HIV+ study to predict the 18-month sur-
vival time for a 42-year-old subject with a history of prior drug use.
The model-based prediction was 0.004. We use (4.37) and (4.38) to
obtain the endpoints of a 95 percent confidence interval, giving us the
interval (0.00005, 0.04894). The interpretation of this interval is that a
predicted probability in this interval would be consistent with the ob-
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served data. Stated another way, the subject has at best a 4.9 percent
chance of surviving 18 months.4

We obtain pointwise confidence bands for the survivorship function
by evaluating (4.38) at each observed survival time. These can be plot-
ted, along with the estimated survivorship function, similar to the plot in
Figure 2.5. The Hall and Wellner joint confidence bands discussed in
Chapter 2 have not been extended to the covariate-adjusted survivorship
function.

We plotted, in Figure 4.4, age- (equal to 35) adjusted survivorship
functions for both levels of the IV drug use variable. Confidence bands
for each function are obtained through definition of the fixed covariate
X,. These have been calculated and are shown separately in Figures
4.8a and 4.8b. The confidence bands for the IV drug use groups ab-
sent and present in (4.37) and (4.38) are

x!, = (DRUG = 0,AGE_C =0) and x/, =(DRUG =1,AGE_C =0),

respectively. The graphs have been drawn in a manner similar to Figure
4.2, using each observed survival time. The general shape of the confi-
dence bands is similar to those presented in Chapter 2, although they are
wider and more skewed for longer survival times.

We can also use the graphs to obtain a confidence interval estimate
of the median survival time (or other quantile) by following the same
method described in Chapter 2. A more accurate determination may be
obtained by applying (4.33) to the lower and upper confidence bands,
respectively. Applying (4.33) to the actual values generating the curves
in Figures 4.8a and 4.8b yields age-adjusted median survival times and
95 percent confidence limits for IV drug use present of 5 (4, 7) and for
IV drug use absent of 10 (8, 14). These confidence intervals are essen-
tially an extension of the Brookmeyer-Crowley method discussed in
Chapter 2. We noted in Chapter 2 that the Brookmeyer—Crowley
method assumes that there are no tied survival times. However, there are
a number of ties in the HMO-HIV+ study and, as a result, the presented
confidence interval estimate should be interpreted cautiously, as the ef-

4 One should not infer from this statement or our presentation of the methods in
this text that we advocate the use of fitted survival time models and possible sub-
sequent predictions as tools for individual patient/subject decision-making. This is
a difficult and sensitive subject, and a statistical model should be one small part of
a much larger discussion.
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Figure 4.8 Graphs of age-adjusted estimated survivorship function and 95%
pointwise confidence limits for IV drug use present and absent for the HMO-HIV+

study.
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fect of ties on the coverage properties of the interval has not been stud-
ied.

In applied settings, we recommend that adjusted point and interval
estimates of median survival time be used for descriptive purposes only.
One should avoid the temptation to use the confidence intervals to draw
inferential conclusions about the equality of median survival times.
This hypothesis should be tested via the partial likelihood ratio test for
the significance of the coefficient for the grouping variable in the fitted
proportional hazards model.

In Section 4.5 we presented a covariate-adjusted survivorship func-
tion that used the median risk score for a single curve and a modified
risk score when adjusted survivorship functions for two groups were
compared. Unfortunately, we cannot directly employ the variance esti-
mator and confidence interval in (4.37) and (4.38), since the median
value of the risk score may not correspond to a single fixed set of
covariates. One solution is to rerun the analysis adjusting for the set of
covariate values yielding a risk score that came closest to the median.
However, it is possible, with a complex model, that several sets of covarni-
ate values will have risk scores equally close to the median value. In this
case, one could choose the set that seems clinically closest to a middle
set of values. The adjusted survival curves obtained from using the ac-
tual median risk score and the ones obtained from the set of covariates
with risk score nearest the median should be quite similar and adequate
for descriptive analyses. Again, this is an issue only if one wants to add
confidence bands to the plot of a risk score-adjusted survivorship func-
tion.

EXERCISES

1. Using all the data from the WHAS (i.e., ignore cohort), with length of
follow-up as the survival time variable and status at last follow-up as the
censoring variable, do the following:

(a) Fit the proportional hazards model containing sex and estimate
the hazard ratio, pointwise and with a 90 percent confidence interval.
Interpret the point and interval estimates.

(b) Add age to the model fit in 1(a). Is age a confounder of the
effect of sex? Explain the reasons for your answer.

(c) Is there a significant interaction between age and sex? (Use
a =0.10 for this problem).
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(d) Using the model fit in 1(c) estimate the hazard ratio, pointwise
and 90 percent confidence interval, for gender at age 50, 60, 65, 70 and
80.

(e) Using the model fit in 1(c), estimate (pointwise and with a 90
percent confidence interval) the hazard ratio for a 10-year increase in
age for each gender.

(f) Using the model fit in 1(c), compute, and then graph, the esti-
mated survivorship functions for 65-year-old males and females. Inter-
pret the survivorship experience presented in this graph.

(g) Using the graph in 1(f), estimate the median survival time for
65-year-old males and females.

2. Repeat problem 1, parts (b)—(d), with age broken into four groups at
its quartiles. In part (d) estimate hazard ratios for each age group.

3. Using the data from the WHAS (i.e., ignore cohort), with length of
follow-up as the survival time variable and status at last follow-up as the
censoring variable, do the following:

(a) Fit the proportional hazards model containing age centered at
65 years, sex, peak cardiac enzymes centered at 650, cardiogenic shock
complications, left heart failure complications and MI order and obtain
the estimated baseline survivorship function. (Note: In this problem,
ignore the possible sex X age interaction investigated in problems 1 and

2.) Estimate hazard ratios (via point estimates and 95 percent confi-
dence intervals) for each variable in the model.

(b) Using the methods for the modified risk score, compute and
graph estimated survivorship functions for subjects with and without
cardiogenic shock complications. Use the estimated survivorship func-
tions to estimate the median survival time.



CHAPTER S

Model Development

5.1 INTRODUCTION

In any applied setting, performing a proportional hazards regression
analysis of survival data requires a number of critical decisions. It is
likely that we will have data on more covariates than we can reasonably
expect to include in the model, so we must decide on a method to select
a subset of the total number of covariates. When selecting a subset of
covariates, we must consider such issues as clinical importance and ad-
justment for confounding, as well as statistical significance. Once we
have selected the subset, we must determine whether the model is
“linear” in the continuous covariates and, if not, what transformations
are suggested by the data and clinical considerations. Which interac-
tions, if any, should be included in the model is another important deci-
sion. In this chapter we discuss these and other practical model devel-
opment issues.

The end use of the estimated regression model will most often be a
summary presentation and interpretation of the factors that have influ-
enced survival. This summary may take the form of a table of estimated
hazard ratios and confidence intervals and/or estimated covariate-
adjusted survivorship functions. Before this step can be taken, we must
critically examine the estimated model for adherence to key assump-
tions (e.g., proportional hazards) and determine whether any subjects
have an undue influence on the fitted model. In addition, we may cal-
culate summary measures of goodness-of-fit to support our efforts at
model assessment. Methods for model assessment are discussed and
illustrated in Chapter 6.

The methods available to select a subset of covariates to include in a
proportional hazards regression model are essentially the same as those

158
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used in any other regression model. In this chapter we present three
methods for selecting a subset of covariates. Purposeful selection is a
method that is completely controlled by the data analyst, while stepwise
and best subsets selection of covariates are statistical methods. These
approaches to covariate selection have been chosen since use of one or
more of them will yield, in the vast majority of model building applica-
tions, a subset of statistically and clinically significant covariates.

A word of caution: statistical software for fitting regression models
to survival data is, for the most part, easy to use and provides a vast array
of sophisticated statistical tools and techniques. One must be careful,
therefore, not to lose sight of the problem and end up with the software
prescribing the model to the analyst rather than the other way around.

Regardless of which method is used for covariate selection, any sur-
vival analysis should begin with a thorough bivariate analysis of the as-
sociation between survival time and all important covariates. These
methods are discussed in detail in Chapter 2. For categorical covariates,
this should include Kaplan—Meier estimates of the group-specific survi-
vorship functions, point and interval estimates of the median and/or
other quantiles, survival time and use of one or more of the significance
tests to compare survivorship experience across the groups defined by
the variable. For descriptive purposes, continuous covariates could be
broken into quartiles, or other clinically meaningful groups, and the
methods for categorical covariates could then be applied. Alternatively,
point and interval estimates of the hazard ratio for a clinically relevant
change in the covariate could be used in conjunction with the signifi-
cance level of the partial likelihood ratio test. These results should be
displayed using the tabular conventions of the scientific field.

5.2 PURPOSEFUL SELECTION OF COVARIATES

Purposeful selection of covariates begins with a multivariable model that
contains all variables significant in the bivariate analysis at the 20-25
percent level, as well as any other variables not selected with this crite-
rion, but which are judged to be of clinical importance. If there are
adequate data to fit a model containing all study covariates, this full
model could be the beginning multivariable model. The rationale for
choosing a relatively modest level of significance is based on recom-
mendations for linear regression by Bendel and Afifi (1977), for dis-
criminant analysis by Costanza and Afifi (1979), and for change in co-
efficient modeling in epidemiology by Mickey and Greenland (1989).
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Use of this level of significance should lead to the inclusion, in the pre-
liminary multivariable model, of any variable that has the potential to be
either an important confounder, or is statistically significant. Following
the fit of the initial multivariable model, we use the p-values from the
Wald tests of the individual coefficients to identify covariates that might
be deleted from the model. Some caution should be taken at this point
not to reduce the size of the model by deleting too many seemingly
nonsignificant variables at one time. The p-value of the partial likeli-
hood ratio test should confirm that the deleted covariate is not signifi-
cant. This is especially important when a nominal scale covariate with
more than one design variable has been selected for deletion, since we
typically make a rough guess about overall significance based on the
significance levels of the individual coefficients of the design variables.
Following the fitting of the reduced model, we assess whether or not re-
moval of the covariate has produced an “important” change in the co-
efficients of the variables remaining in the model. In general, we use a
value of about 20 percent as an indicator of an important change in a
coefficient. If the variable excluded is an important confounder, it
should be added back into the model. This process continues until no
covariates can be deleted from the model.

At this point, we recommend that any variable excluded from the
initial multivariable model be added back into the model to confirm that
it is neither statistically significant nor an important confounder. We
have encountered situations in practice where a variable had a bivariate
test p-value that exceeded 0.8 but it became highly significant when
added to a multivariable model. At the conclusion of this step we have
the “preliminary main effects model.”

The next step is to examine the scale of the continuous covariates in
the preliminary main effects model. A number of techniques are avail-
able, all of which are designed to determine whether the data support the
hypothesis that the effect of the covariate is linear in the log hazard and,
if not, which transformation of the covariate is linear in the log hazard.
The simplest method is to replace the covariate with design variables
formed from the quartiles or other cutpoints that may have been used in
the bivariate descriptive analysis. The estimated coefficients for the de-
sign variables are plotted versus the midpoints of the groups and, at the
midpoint of the first group, a point is plotted at zero. If the correct
scale is linear in the log hazard, then the polygon connecting the points
should be nearly a straight line. If the polygon departs substantially
from a linear trend, its form may be used to suggest a transformation of
the covariate. The advantage of the quartile method is that it does not
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require any special software. The disadvantage is that it is not powerful
enough to detect subtle, but often important, deviations from a linear
trend.

Another approach is to use the method of fractional polynomials,
developed by Royston and Altman (1994), to suggest transformations.
We wish to determine what value of x”? yields the best model for the
covariate. In theory, we could incorporate the power, p, as an additional
parameter in the estimation procedure. However, this would greatly in-
crease the complexity of the estimation problem. Royston and Altman
propose replacing full maximum likelihood estimation of the power by
a search through a small but reasonable set of possible values. We will
provide a brief description of the method and later demonstrate its use,
along with the other methods, in an example.

The method of fractional polynomials may be used with a multi-
variable proportional hazards regression model, but, for sake of sim-
plicity, we describe the procedure using a model with a single continu-
ous covariate. The hazard function for the proportional hazards regres-
sion model shown in (3.7) is

h(t’x’ﬁ) = ho(t)ex’j’

and the log-hazard function, which is linear in the covariate, is

In[A(t,x, B)] = In[hy(£)] + xB.

One way to generalize this log-hazard function is to specify it as
. J
ln[h(t, x, ﬁ)] =In[hy(r)]+ Z F,(x)B, .
j=1

The functions F;(x) are a particular type of power function. The value

of the first function is F(x)=x?. In theory, the power, p,, could be
any number, but in most applied settings we would try to use something
simple. Royston and Altman (1994) propose restricting the power to be
among those in the set g ={-2,-1,-0.5,0,0.5,1,2,3}, where p, =0 de-
notes the log of the variable. The remaining functions are defined as
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x",p; #p
F(x)= AN
j( {Fj—l(x)ln(x)’ P;=Pj

for j=2,...,J and restricting powers to those in . For example, if we
chose J =2 with p, =0 and p, =-0.5, then the log-hazard function is

tn[h(z, x,B)] = In[ko (1)) + In(x)B, + 71; B,.

As another example, if we chose J =2 with p, =2 and p, =2, then the
log-hazard function is

In[A(z, x,B)] = In[y(£)] + x2B, + x* In(x),.

The model is quadratic in x if p, =1 and p, =2. Again, we could allow
the covariate to enter the model with any number of functions, J; but in
most applied settings an adequate transformation may be found if we
useJ =1 or 2. Implementation requires, for J =1, fitting 8 models, that
is, p, € fo. The best model is the one with the largest log partial likeli-
hood. The process is repeated with J =2 by fitting the 64 models ob-
tained from all possible pairs of powers, that is, (p,, pz) € foX g, and the
best model is again the one with the largest log partial likelihood. The
relevant question is whether either of the two best models is significantly
better than the linear model. Let L(1) denote the log partial likelihood
for the linear model, thatis, J=1 and p, =1, and L(p,) denote the log
partial likelihood for the best J =1 model and L(p,,p,) denote the log
partial likelihood for the best J=2 model. Royston and Altman
(1994) suggest, and verify with simulations, that each term in the frac-
tional polynomial model contributes approximately 2 degrees-of-
freedom to the model, effectively one for the power and one for the co-

efficient. Thus, the partial likelihood ratio test comparing the linear
model to the best J =1 model,

G(Lp)=-2{L(1)- L(p,)} ,

is approximately distributed as chi-square with 1 degree-of-freedom
under the null hypothesis of linearity. The partial likelihood ratio test
comparing the best J =1 model to the best J =2 model,
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G{Pl,(PpPz)]= —Z{L(p,)—L(P,.Pz)},

is approximately distributed as chi-square with 2 degrees-of-freedom
under the null hypothesis that the second function is equal to zero.
Similarly, the partial likelihood ratio test comparing the linear model to
the best J =2 model is distributed approximately as chi-square with 3
degrees-of-freedom. Note that to keep the notation simple, we have
used p, to denote the best power both when J=1 and as the first of the
two powers for J=2. These are not likely to be the same numeric
value in practice.

In an applied setting, the partial likelihood ratio tests are used to
choose which of the three forms of the covariate is best. In general, we
recommend that, if a more complicated model is selected for use, it
should provide a statistically significant improvement over a simpler
model, and the transformations should make clinical sense.

The only software package that has fully implemented the method
of fractional polynomials is STATA. In addition to the method as de-
scribed above, STATA’s fractional polynomial routine offers the user
considerable flexibility in expanding the set of powers searched; how-
ever, in most settings the default set of values should be adequate.

Graphical methods to check the scale of covariates may be per-
formed in most software packages. The most easily used of these are
similar to residual methods from linear regression; see Ryan (1997). A
complete discussion of residuals is provided in Chapter 6. The reader
wishing to know the details of residual construction is welcome to read
Section 6.2 before proceeding, but it is not necessary for the purpose of
using them in plots to assess the scale of a covariate. The components
of the residual for the ith subject are the value of the censoring variable,

¢;, and the estimated cumulative hazard I?,. = ﬁ(t,,x,,ﬁ); see (3.41), and

these are used to calculate the martingale residuals, defined as

Therneau, Grambsch and Fleming (1990) suggest fitting a model that

excludes the covariate of interest. The results are used to calculate M,
and to generate smoothed values (e.g., the lowess smooth). These are
then plotted versus the values of the excluded covariate, and the shape
of the plot, and especially the smooth, provides an estimate of the func-
tional form of the covariate in the model. Grambsch, Therneau and
Fleming (1995) expand on their earlier work and suggest that one begin
with a fit of the model containing all covariates. They demonstrate in
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simulations and examples that a plot of the log of the ratio of a
smoothed ¢ to a smoothed H versus the covariate has greater diagnostic
power than their earlier proposed method. Both of these plots are illus-
trated in the example in this chapter. Descriptions of applications of
these and other related methods may be found in Therneau (1995).

Gray (1992) suggests that spline functions may be used as a way of
modeling a continuous covariate without meeting stringent assumptions
of a linear scale. Ryan (1997) discusses the construction and use of
spline functions in linear regression. Harrell et al. (1996) demonstrate
the use of spline functions in a variety of modeling settings, including
the proportional hazards model. Since spline functions are not readily
available in most software packages, they will not be discussed further or
used in the example.

The final step in the variable selection process is to determine
whether interactions are needed in the model. In this setting, an interac-
tion term is a new variable that is the product of two covariates in the
model. There may be special considerations that dictate that a particular
interaction term or terms be included in the model, regardless of the
statistical significance of the coefficient(s). If this is the case, these in-
teraction terms and their component terms should be added to the main
effects model and the larger model fit before proceeding with a statisti-
cal evaluation of other possible interactions. However, in most settings,
there will be insufficient clinical theory to justify automatic inclusion of
interactions.

The selection process begins by forming a set of biologically plau-
sible interaction terms from the main effects in the model. The signifi-
cance of each separate interaction is assessed by adding it to the main
effects model and using the partial likelihood ratio test. All interactions
significant at the 5 percent level are then added jointly to the main ef-
fects model. Wald statistic p-values are used as a guide to selecting in-
teractions that may be eliminated from the model, but significance
should be checked by the partial likelihood ratio test.

Several important points should be kept in mind when selecting in-
teraction terms. Since the reason for including interactions is to im-
prove inferences and obtain a more realistic model, we feel that all inter-
action terms should be statistically significant at usual levels of signifi-
cance, such as 5 or 10 percent, and perhaps as low as 1 percent in some
settings. Inclusion of nonsignificant interactions in a model will need-
lessly increase standard error estimates, thus unnecessarily widening
confidence interval estimates of hazard ratios.
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When an interaction term is added to a model, large changes in the
coefficients of the corresponding main effects are likely to occur.
However, changes in the main effect coefficients induced by interaction
terms are not relevant and, as a result, do not indicate confounding.
When interaction terms are present, the corresponding main effect terms
do not, in most cases, estimate hazard ratios of interest. In addition,
when there is statistically significant interaction, we include the corre-
sponding main effect terms in the model regardless of their statistical
significance. We are interested in examining how the main effect and
interaction terms combine to estimate hazard ratios.

At this point we have a preliminary model. Our next step would be
to assess its fit and adherence to key assumptions. These methods are
discussed in the next chapter.

We illustrate the method of purposeful selection of covariates using
the data from the UIS. These data were introduced in Section 1.3 and
the variables are defined in Table 1.3. Recall that the goal of the study
was to compare the effectiveness of two treatments (of different lengths)
for the prevention of return to drug use at two different sites. At this
point we will not consider the covariate, length of stay, for inclusion in
the model since it is related to the outcome variable, time to drug use as
measured from admission date. We will use it when we consider ex-
tending the proportional hazards model to include time-dependent or
varying covariates in Chapter 7.

A modification that is sometimes used in a clinical trial setting where
there is a clear “treatment” variable is to exclude the treatment variable
from the variable selection process. The treatment variable is then
added to the preliminary main effects model containing all of the vari-
ables associated with outcome, irrespective of treatment. The rationale
for this approach is that one obtains an estimate of the additional effect
of treatment, adjusting for other covariates. This approach is in contrast
to modeling in epidemiological studies where “treatment” would be the
risk factor of interest. In these settings, selection of variables may be
based on the change in the coefficient (estimate of effect) of the risk
factor variable. Thus, rather than being the last variable to enter, the risk
factor enters the model first. What this points out is that one must have
clear goals for the analysis and proceed thoughtfully using a variety of
statistical tools and methods. The variable selection methods discussed
may be an integral part of this analysis. In the example, we include the
treatment variable among those in the first multivariable model.

The results of the bivariate analysis of each covariate in relation to
time to drug relapse are presented in Table 5.1 for discrete covariates
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Table 5.1 Estimated Median Time to Drug Use with 95%
Brookmeyer—-Crowley Confidence Intervals, Log-Rank Test and
Partial Likelihood Ratio Test p-Values for Categorical Covariates

in the UIS (n = 628)

Median Partial
Time to Log-Rank Likelihood
Drug Use Test Ratio Test
Variable Category (95% CIE) p-Value p-Value
HERCOC Both 150 (106,196) 0.047 0.051

Heroin 142 (110, 184)
Cocaine 183 (148, 226)
Neither 181 (154, 220)
IVHX Never 194 (171, 228) <0.001 <0.001
Previous 170 (130, 226)
Recent 147 (115, 168)

RACE White 152 (124, 174) 0.007 0.006
Other 193 (164, 232)

TREAT Short 130 (113, 154) 0.009 0.010
Long 190 (175, 226)

SITE A 156 (131, 174) 0.124 0.121
B 198 (159, 231)

AGE 20 - 27 154 (121, 198) 0.282 0.282

28 - 32 148 (123, 180)
33-37 162 (121, 207)
38-56 189 (162, 242)
BECKTOTA 0-<10 211 (166, 245) 0.229 0.229
10 - <15 169 (124, 208)
15 -<25 168 (136, 192)
25 - <55 147 (106, 187)
-1 170 (142, 227) 0.002 0.002
-3 177 (162, 207)
-6 127 (106, 183)
- 40 123 (106, 184)

NDRUGTX

and in Table 5.2 for continuous covariates. All variables, except age
categorized in four groups, are significant at the 20 percent level and
therefore are candidates for inclusion in the multivariable model. The
discrete forms, in Table 5.1, of the continuous covariates in Table 5.2
are presented primarily for descriptive purposes. If a variable is signifi-
cant with either coding scheme, the variable should be added to the list
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Table 5.2 Estimated Hazard Ratio for Time to Drug Relapse with
95% Confidence Intervals, Wald Test and Partial Likelihood Ratio
Test p-Values for Continuous Covariates in the UIS (n = 628)

Partial Like-
Hazard Ratio lihood Ratio
for Change Wald Test Test
Variable Change (95% CIE) p-Value p-Value
AGE S years 0.94 (0.87, 1.01) 0.074 0.072
BECKTOTA 10 points 1.12 (1.02, 1.22) 0.020 0.021
NDRUGTX S treatments  1.16 (1.08, 1.25) <0.001 <0.001

for inclusion in the multivariable model and used in its continuous
form. We assess the correct scale of the variable following the fitting of
the preliminary main effects model.

Before we fit the multivariable model, we note the close agreement
in Table 5.1 between the significance levels of the partial likelihood ra-
tio test and the log-rank test. This is as expected since, for a discrete
covariate, the score test is algebraically related to the log-rank test and
the performance of the score test is quite similar to the partial likelihood
ratio test. The implication is that the log-rank test is an acceptable
choice for purposes of covariate selection for the initial multivariable
model.

Table 5.3 presents the results of fitting the multivariable propor-
tional hazards model containing all variables significant at the p < 0.20
level in the bivariate analysis. This analysis includes 575 subjects for
whom complete information is available on all covariates. Examining
the p-values for the Wald statistics with the goal of trying to simplify the
model, we note that none of the design variables for previous heroin or
cocaine use is significant. The coefficient for intervention site is also
not significant but, due to its importance in the study design, we keep it
in the model. We next fit a model excluding previous heroin or cocaine
use. Table 5.4 presents the results of fitting this reduced model. The
partial likelihood ratio test comparing the models in Tables 5.3 and 5.4
is G=1.39 which, with 3 degrees-of-freedom, has a p-value of 0.71,
supporting our decision to remove the variable. The maximum change
in the coefficient for any variable remaining in the model is 18.5 per-
cent for the design variable for recent IV drug use, IVHX_3. This is not
judged to be an important enough change to warrant inclusion of the
heroin and cocaine use design variables in the model, so we proceed
with the simpler model.
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Table 5.3 Estimated Coefficients, Standard Errors, z-Scores, Two-
Tailed p-Values and 95% Confidence Intervals for the Proportional
Hazards Model Containing Variables Significant at the 20% Level
in the Bivariate Analysis for the UIS (n = 575)

Variable Coeff. Std. Err. b4 P>iz| 95% CIE
AGE -0.029 0.008 -3.53 <0.001 -0.045, -0.013
BECKTOTA 0.008 0.005 1.68 0.094 -0.001, 0.018
NDRUGTX 0.028 0.008 3.42 0.001 0.012, 0.045
HERCO_2 0.065 0.150 0.44 0.663 -0.228, 0.359
HERCO_3 -0.094 0.166 -0.57 0.572 -0.418, 0.231
HERCO_4 0.028 0.160 0.18 0.861 -0.286, 0.342
IVHX 2 0.174 0.139 1.26 0.208 -0.097, 0.446
- IVHX 3 0.281 0.147 1.91 0.056 -0.007, 0.569
RACE -0.203 0.117 -1.74 0.082 -0.432, 0.026
TREAT -0.240 0.094 -2.54 0.011 -0.425, -0.055
SITE -0.102 0.109 -0.94 0.348 -0.317, 0.112

Log-likelihood = —2640.0305.

Examining the p-values for the Wald statistics in Table 5.4, we find
that other than SITE (which, for practical reasons, will stay in the model)
and BECKTOTA (which is marginally significant), the only non-
significant variable is one of the pair of design variables IVHX_2 and
IVHX_3, which together describe previous IV drug use. Two possible
modeling strategies are: (1) Keep the design variables intact using all
three codes, or (2) collapse the categories for “never” and “previous”
to create a binary variable coded as “not recent” versus “recent.” The

Table 5.4 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for the

Reduced Proportional Hazards Model for the UIS (n = 575)

Variable Coeff. Std. Err. z P>le| 95% CIE
AGE -0.028 0.008 -345 0.001 -0.044, -0.012
BECKTOTA 0.008 0.005 1.60 0.110 -0.002, 0.077
NDRUGTX 0.028 0.008 335 0.001 0.012, 0.044
IVHX 2 0.196 0.137 143 0.153 -0.073, 0.465
IVHX_3 0.333 0.120 2.78 0.006 0.098, 0.568
RACE -0.209 0.116 -1.81 0.071 -0.436, 0.018
TREAT -0.232 0.094 -247 0.013 -0.415, -0.048
SITE -0.099 0.109 -0.92 0.359 -0.312, 0.113

Log-likelihood = -2640.7278.
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Table 5.5 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for the

Reduced Proportional Hazards Model for the UIS (n = 575)

Variable Coeff. Std. Err. 2 P>zl 95% CIE
AGE -0.026 0.008 -3.25 0.001 -0.042, -0.010
BECKTOTA 0.008 0.005 1.70  0.090 -0.001, 0.018
NDRUGTX 0.029 0.008 3.54 <0.001 0.013, 0.045
IVHX 3 0.256 0.106 241 0016 0.047, 0.464
RACE -0.224 0.115 -1.95 0.051 -0.450, 0.001
TREAT -0.232 0.093 -2.48 0.013 -0.416, -0.049
SITE -0.087 0.108 —0.80 0.422 —0.298, 0.124

Log-likelihood = -2641.7294.

second choice yields a simpler model and may be preferred if the non-
significant design variable does not confound the associations of the
remaining variables in the model. Table 5.5 presents the results of fit-
ting the model with IV drug use recoded as “not recent” versus
“recent.” The partial likelihood ratio test comparing the models in
Tables 5.4 and 5.5 is G=2.00 which, with one degree-of-freedom,
yields a p-value of 0.157. The maximum percent change in a coeffi-
cient is —23.1 percent for the new binary variable, IVHX_3, but this
change is uninterpretable since the reference group is different in the
two models. Arguments could be given for the use of either the three-
code version or the collapsed two-code version of the IV drug use vari-
able. We will use the binary variable as it yields a simpler model and
going from three to two codes has not changed the coefficients for any
of the other variables, most notably treatment.

The next step in the modeling process is to examine the scale of the
three continuous variables in the model: AGE, BECKTOTA and
NDRUGTX. The first method we illustrate is the use of design vari-
ables. This approach to scale selection involves, for each of the three
continuous variables, replacing the variable in the model with three de-
sign variables formed using the cutpoints shown in Table 5.1. Table 5.6
presents a summary of the resulting coefficients and group midpoints.
The second step is to graph the coefficients against the group mid-
points. These are shown in Figure 5.1.

The plots of the coefficients for age and especially Beck score sup-
port an assumption of linearity in the log hazard. The shape of the plot
for number of previous drug treatments is more complicated. Analysis
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Table 5.6 Estimated Coefficients for the Three Design Variables
Formed from the Cutpoints Shown in Table 5.1 for the Variables
AGE, BECKTOTA and NDRUGTYX, in the UIS (n = 575)

AGE BECKTOTA NDRUGTX
Midpoint Coeff. Midpoint Coeff. = Midpoint Coeff.
24.0 0.000 5.0 0.000 0.5 0.000
30.5 0.036 12.5 0.047 2.5 -0.070
35.5 -0.209 20.0 0.098 5.0 0.259
47.5 -0.391 40.0 0.216 23.5 0.399

of the Wald statistics shows that the coefficient for the second group is
not significant, and the Wald test of the equality of the coefficients for
the third and fourth groups is z=1.02 with a p-value of 0.312, also not
significant. This suggests that an alternative coding possibility is to
form a binary covariate using the median (three previous treatments) as
the cutpoint. The results of fitting this model are encouraging, in that
the coefficient for the new binary variable was highly significant and the
fitted model had a log partial likelihood that was only slightly smaller
than that from the model with the three design variables. We defer dis-
cussing this model until we explore the use of the method of fractional
polynomials for examining the scale of the three continuous covariates.

The results of the fractional polynomial analysis for age and Beck
score confirm what was observed in the plot of the design variables in
Figures 5.1a and 5.1b. An assumption of linearity in the log hazard
seems quite reasonable for these two variables, so the computer output
will not be presented.

The analysis of number of previous drug treatments (NDRUGTX)
suggested that the log hazard is not linear. Table 5.7 presents the frac-
tional polynomial results. The table contains four rows, and each row
corresponds to a particular parametrization of the number of previous
drug treatments. The first row represents a model containing all covari-
ates in Table 5.5 except NDRUGTX, that is, the coefficient is set equal
to zero. The model represented in the second row is the one shown in
Table 5.5, as noted by the power of 1 in the last column. The signifi-
cance level reported in the third column of the second row is for the
partial likelihood ratio test of NDRUGTX entering the model as a linear
term, that is,

G =[5294.497 - 5283.459] =11.038
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and p = 0.00099. The best power when NDRUGTX enters the model
with a single, J=1, term is p,=0.5 (i.e., the square root of
NDRUGTX). The approximate partial likelihood ratio test comparing
the use of p,=1to p,=0.5is

G =[5283.459 - 5283.088] = 0.371,

and the reported p-value is Pr[ 2212 0.371]= 0.543. From this we con-

clude that a model using the square root of NDRUGTX is no better than
a model using NDRUGTX as a linear term. The best powers when
NDRUGTX enters the model with two terms, J =2, is described by
(p, =-1, p, ==1). The interpretation is that the two terms are x~' and
(x")ln(x). Since NDRUGTX is equal to zero for some subjects, the
software fits the model using x =(NDRUGTX+1)/10. The partial like-
lihood ratio test of this model versus the linear model is

) {23 %) ©
BECKTOTA
(a) Estimated Coefficients foe Grouped Age (b) Estimated Coefficients for Grouped Beck Score
-1.194
-
205 T T 1 § 1§
53 NDRUGTX 25'5 5 NDRUGTX «
(c) Estimated Coefficients for Grouped Drug Treatments (d) Fractional Polynomial Piot for Drug Treatments

Figure 5.1 Graphs of estimated coefficients versus group midpoints for
(a) AGE, (b) BECKTOTA, (c) NDRUGTX, and (d) the best two-term fractional
polynomial model (-1,~1) for NDRUGTX.
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Table 5.7 Summary of the Use of the Method of Fractional
Polynomials for Number of Previous Drug Treatments for
the UIS (n = 575)

G for Model  Approx.

-2xLog-like. vs Linear p-Value Powers
Not in model 5294.497
Linear 5283.459 0.000 0.001° 1
J=1@2df) 5283.088 0.371 0.543* 0.5
J=2(4df) 5276.543 6.916 0.038" -1, -1

* Compares linear model to model without NDRUGTX.
* Compares the best J = 1 model to one with NDRUGTX linear.
* Compares the best J = 2 model to the best J = 1 model.

G =[5283.459 - 5276.543] = 6.916,

and its significance is p=Pr{x?(3)26.916]=0.075. The partial likeli-
hood ratio test of the best J =1 model to the best J =2 model is

G =[5283.088 — 5276.543] = 6.545

with p= Pr[ x}(2)2 6.545] =0.038. This test has 2 degrees-of-freedom

since, when J is increased from 1 to 2, two additional terms (power and
coefficient) are added to the model. To aid in the interpretation of the
best two-term model, its graph is presented in Figure 5.1d. Even though
the vertical scales are different in Figures 5.1c and 5.1d, there is a strik-
ing similarity in their shape, suggesting that the drop in the log-hazard
function for a few previous drug treatments may be an important find-
ing. This point is discussed in more detail in Chapter 6.

The two residual-based plots discussed earlier may be used as an
alternative or adjunct to the method of fractional polynomials. The
plots are shown in Figure 5.2 for age, in Figure 5.3 for the Beck score,
and in Figure 5.4 for number of previous drug treatments. Each figure
contains two plots. The top plot (a) is of the residuals and their smooth
from a model that excludes the covariate of interest. The bottom plot
(b) is of the log of the ratio of smoothed censor to smoothed cumulative
hazard, called the expected in the figure headings. Since the scales of
the two plots are different, plot (b) tends to overemphasize the shape,
but the shapes in the two plots are consistent with each other.

For the sake of clarity we describe in some detail the steps used to
produce the two plots in Figure 5.2. For Figure 5.2a, we fit a model
containing the covariates in the model shown in Table 5.5, excluding
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AGE. We requested that the values of M,, the martingale residuals, be

calculated and saved. Figure 5.2a is a scatterplot of the M, and their
lowess smooth versus age.

To construct Figure 5.2b, we began by fitting the model in Table
5.5, including AGE, and requested that the martingale residuals be cal-

culated and saved, also denoted as 151, for ease of notation. These re-

siduals were used to calculate H, =c, ~ M,, where c is the censoring vari-
able. The values of c; were plotted versus age and a lowess smooth was

calculated and saved, denoted c,,,. The values of ﬁ, were plotted ver-

sus age and a lowess smooth was calculated and saved, denoted H,_.
The smoothed values were used to calculate

f= n{ ;Im ]+ B,ce X AGE,,

ism

where f,c =—0.026 from Table 5.5. Figure 5.2b is a plot of the pairs

( f,.,AGE,.) connected by straight lines. The plots in Figure 5.3 and
Figure 5.4 were obtained in an identical manner. The size of the plot-

ting symbol for 1t71,. in Figure 5.2a, 5.3a and 5.4a has been reduced to
emphasize the smoothed values.

The smoothed values in Figures 5.2a and 5.2b are nearly straight
lines, supporting our treatment of age as linear in the model. The plots
in Figures 5.3a and 5.3b demonstrate the instability of smoothed values
in areas where there are not many values. One subject had a Beck score
of 54 and was censored at 621 days, and the next smallest Beck score
was 43. Thus, one subject is causing the downturn seen in both parts of
Figure 5.3. After eliminating the effect in the plot of this one subject,
the smoothed values are nearly a straight line and support treating the
Beck score as linear in the model.

The plots in Figure 5.4 show the same decline and then rise in the
log hazard for number of previous drug treatments that was observed in
Figure 5.1. The graphs clearly illustrate the nonlinear behavior of
number of previous drug treatments in the model. However, even the
most experienced analyst would be hard-pressed to come up with a
parametric function describing this shape. An advantage of the method
of fractional polynomials is that it suggests the functional form for non-
linearly scaled continuous covariates.
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Table 5.8 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for the
Proportional Hazards Model Using the Best Two-Term
Fractional Polynomial Model for Number of Previous Drug
Treatments for the UIS (n = 575)

Variable Coeff. Std. Err. 2 P>zl 95% CIE
AGE -0.028 0.008 -3.46  0.001 -0.044, -0.012
BECKTOTA 0.009 0.005 1.84 0.066 -0.001, 0.019

NDRUGFP1 -0.523 0.124 -4.20 <0.001 -0.767, -0.279
NDRUGFP2 -0.195 0.048 -4.04 <0.001 -0.289, -0.100

IVHX_ 3 0.259 0.108 239 0.017 0.047, 0.470
RACE -0.242 0.116 -2.10  0.036 -0.468, -0.016
TREAT -0.211 0.094 -2.25 0.024 -0.395, -0.027

SITE -0.105 0.109 -0.97  0.335 -0.319, 0.109

Log-likelihood = -2638.272.

In summary, thoughtful model development should include the use
of both the graphical methods described and the method of fractional
polynomials to assess the scale of continuous covariates.

The final decision as to what scale to use comes down to a choice
between a model with a single linear term, a binary variable using the
median as the cutpoint, and the best two-term fractional polynomial
model. The model with a single square root term is no better than the
model with a single linear term. As noted in the discussion of the use of
design variables, the model using a binary covariate with the median as
the cutpoint was slightly better than the linear model, (log-likelihood =
—~2644.61 using a linear term versus a log-likelihood = —~2643.58 using
the binary coding). Given the simplicity and ease of interpretation of
the binary coding, this model is the better of these two. The best frac-
tional polynomial model is considerably more complicated than the bi-
nary model. However, consultation with the study team confirmed that
the drop and rise in the log-hazard function seen in Figures 5.1c and
5.1d is not only plausible but of considerable interest. Thus, we will
proceed using the scaling of NDRUGTX as selected by the method of
fractional poly-nomials. Table 5.8 presents the results of fitting this
preliminary main effects model. In this model

NDRUGFP1 = [(NDRUGTX +1)/10]"
and

NDRUGFP2 = [(NDRUGTX +1)/10]" x In[(NDRUGTX +1)/10].
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Figure 5.2a contains residuals from the model excluding AGE and Fig-
ure 5.2b the log of the ratio of smoothed values.
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Figure 5.2 Plots of two residual-based methods for selecting the scale of AGE in
the UIS (n = 575).
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Figure 5.3a contains residuals from the model excluding BECKTOTA
and Figure 5.3b the log of the ratio of smoothed values.
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Figure 5.3 Plots of two residual-based methods for selecting the scale of
BECKTOTA in the UIS (n = 575).
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Figure 5.4a contains residuals from the model excluding NDRUGTX
and Figure 5.4b the log of the ratio of smoothed values.
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Figure 5.4 Plots of two residual-based methods for selecting the scale of
NDRUGTX in the UIS (n = 575).
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Table 5.9 Interaction Variables, Degrees-of-Freedom (df)
and p-Values for the Partial Likelihood Ratio Test for the

Addition of the Interaction to the Model in Table 5.8

Interaction Variables df p-Value
AGE BECKTOTA 1 0.989
NDRUGTX 2 0.028
IVHX_3 1 0.460
RACE 1 0.896
TREAT 1 0.190
SITE 1 0.028
BECKTOTA NDRUGTX 2 0.316
IVHX_3 1 0.241
RACE 1 0.649
TREAT 1 0.354
SITE 1 0.912
NDRUGTX IVHX_3 2 0.392
RACE 2 0.746
TREAT 2 0.214
SITE 2 0.640
IVHX_3 RACE 1 0.568
TREAT 1 0.534
SITE 1 0.385
RACE TREAT 1 0.310
SITE 1 0.001
TREAT SITE 1 0.247

The next step in the model building process is to add the design
variables for heroin or cocaine use back into the model to be sure that
they are neither significant in their own right nor confounders of the
other main effects. The partial likelihood ratio test for the inclusion of
heroin or cocaine use in the model is G =1.67 which, with 3 degrees-of-
freedom, yields a p-value of 0.644. The maximum percent change in a
coefficient was less than 20 percent for all main effects in Table 5.8.
We therefore conclude that heroin or cocaine use is not required in the
model.

The final step in the model building process is the consideration of
interaction terms. This step begins with the creation of a list of plausible
interactions formed from the main effects in Table 5.8. Consultation
with the study team determined that any pair of variables in the prelimi-
nary main effects model could generate a clinically plausible inter-



PURPOSEFUL SELECTION OF COVARIATES 179

Table 5.10 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for the
Preliminary Interactions Proportional Hazards Model for the UIS
(n_= 575)

Variable Coeff. Std. Err. 2 P>zl 95% CIE
AGE -0.054 0.028 -1.94 0.053 -0.109, 0.001
BECKTOTA 0.010 0.005 2.01 0.044 0.000, 0.020
NDRUGFP1 -0.674 0.644 -1.05 0.294 -1.938, 0.589
NDRUGFP2 -0.172 0.252 -0.68 0.496 -0.667, 0.322
IVHX_3 0229 0.108 2.13 0.034 0.018, 0.441
RACE -0.488 0.135 -3.62 <0.001 -0.752,-0.224
TREAT -0.242 0.095 -2.56 0.010 -0.427,-0.057
SITE -1.119 0.546 -2.05 0.040 -2.190,-0.049
AGEXSITE 0.026 0.017 1.60 0.111 -0.006, 0.059
RACEXSITE 0.863 0.248 348 0.001 0.376, 1.349
AGEXNDRUGFP1 0.002 0.019 0.08 0.933 -0.036, 0.040
AGEXNDRUGFP2 -0.002 0.008 -0.26 __ 0.796 -0.017, 0.013

Log-likelihood = -2627.424

action. These are added, one at a time, to the preliminary main effects
model. Table 5.9 presents the two variables forming the interaction, the
degrees-of-freedom and the p-value for the partial likelihood ratio test
comparing the models with and without the interaction. Thus Table 5.9

Table 5.11 Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for the
Preliminary Final Proportional Hazards Model for the UIS

(n_= 575)

Variable Coeff. Std. Err. 2 P>lz| 95% CIE
AGE -0.041 0.010 —4.18 <0.001 -0.061, -0.022
BECKTOTA 0.009 0.005 1.76  0.078  -0.001, 0.018

NDRUGFP1 -0.574 0.125 —4.59 <0.001 -0.820, -0.329
NDRUGFP2 -0.215 0.049 —4.42 <0.001 -0.310, -0.119
IVHX_3 0228 0.109 2.10 0.036 0.015, 0.441
RACE -0467 0.135 -3.47 0.001 -0.731, -0.203
TREAT -0.247 0.094 -2.62  0.009 -0.432, -0.062
SITE -1.317 0.531 -2.48 0.013 -2.359, -0.275
AGEXSITE 0.032 0.016 202 0.044 0.001, 0.064
RACEXSITE 0.850 0.248 343 0.001 0.365, 1.336

Log-likelihood =-2630.418
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contains all possible pairs of variables. The interaction terms are
formed as the arithmetic product of the pair of variables. The interac-
tions involving the number of previous drug treatments are formed us-
ing the two terms obtained from the method of fractional polynomials.
Three interactions are identified as being significant, p < 0.05: age and
number of previous drug treatments, age and site and race and site.
These interactions were added to the preliminary main effects model in
Table 5.8, and the resulting fitted model is shown in Table 5.10.

The p-values for the Wald tests suggest that the interaction between
age and number of previous drug treatments may not be important in
the larger interactions model. We note that the two coefficients for this
interaction are of approximately the same magnitude, but with opposite
signs. This suggests that these two variables may be highly colinear. To
explore this, we fit the model containing only AGEXNDRUGFP1. The
Wald statistic for its coefficient was significant (p = 0.013). However,
the Wald statistic for AGEXSITE in this model was not significant (p =
0.107). To further explore the interactions with age, we fit a model
containing only AGEXSITE. In this model, the Wald statistic for the
coefficient was signifcant (p = 0.044). Thus it appears that we have a
choice between two models, one containing only AGEXNDRUGFPI, the
other containing only AGEXSITE. Since the latter model is simpler
and easier to interpret, we define our preliminary final model as the one
presented in Table 5.11. The model will not be identified as the final
model until its fit and adherence to model assumptions nas been
checked. Before this important topic is considered in detail in Chapter
6, we consider stepwise and best subsets selection of covariates, two sta-
tistical methods for selection of main effect variables.

5.3 STEPWISE SELECTION OF COVARIATES

Covariates may be selected for inclusion in a proportional hazards re-
gression model using stepwise selection methods that operate in an
identical manner to those used in other regression models, such as linear
or logistic regression. The statistical test used as a criterion is most often
the partial likelihood ratio test. However, the score test and Wald test are
also often used by software packages. From the conceptual point of
view, it does not matter which test is actually used. However, the partial
likelihood ratio test is the best of the three tests and should be used
when there is a choice.
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We assume familiarity with stepwise methods from either linear or
logistic regression, thus the presentation here will not be detailed. De-
tailed descriptions of stepwise selection of covariates may be found in
Hosmer and Lemeshow (1989), Chapter 4, for logistic regression and in
Ryan (1997), Chapter 7, for linear regression.

We begin by describing the full stepwise selection process, which
consists of forward selection followed by backward elimination. The
forward selection process adds to the model the covariate that is most
statistically significant among those not in the model. The backward
elimination process checks each covariate in the model for continued
significance. Two variations of the full stepwise procedure available in
most software packages are to use forward selection only or backward
elimination only.

Most software packages that have implemented stepwise selection of
covariates for the proportional hazards model treat all the covariates
available for selection as if they were continuous. This implies that to
consider nominal scale covariates with more than two levels correctly,
one must create and include in the list of covariates the individual de-
sign variables. An additional problem is that the individual design vari-
ables are not considered as a unit, and the program may select a subset
of them. When this occurs, there has been an implicit recoding of the
covariate and the user must make sure that the recoding makes clinical
sense or must add the unselected design variables into the model when it
is examined in more detail. We will return to this point in the example.
The stepwise procedure will be described, as it is currently implemented
by default, using single degree-of-freedom tests for entry and removal
of covariates.

Step 0: Assume that there are p possible covariates, denoted x;, j =

1,2,...,p. This list is assumed to include continuous covariates as well as
all design variables for nominal scaled covariates. Thus, for example, a
particular x; might stand for age or for the design variable for IV drug

use at level 2. At step O the partial likelihood ratio test and its p-value

for the significance of each covariate is computed by comparing the log
partial likelihood of the model containing x; to the log partial likeli-

hood of model zero (i.e., the model containing no covariates). This test
statistic is

GO(j)=-2[L?(j)- L(0)}, j=L2,...p, (5.1)
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where L(0) is equal to the log partial likelihood of model zero, the no

covariate model, and [‘?(j) is equal to the log partial likelihood of the
model containing covariate x,. The test’s significance level is

PO (j)=Pr 22 (1) 2 G°(j)] . (5.2)

Evaluation of (5.1) and (5.2) requires fitting p separate proportional
hazards models. The parenthesized superscript in (5.1) and (5.2) de-
notes the step, and j indexes the particular covariate. The candidate for
entry into the model at step 1 is the most significant covariate and is de-
noted by x, , where

p(o)(e,)=m]in[p(°)(j)]. (5.3)

For the variable x, to be entered into the model, its p-value must be
smaller than some pre-chosen criterion for significance, denoted pg. If
the variable selected for entry is significant (i.e., p®(e,)< pg), then the

program goes to step 1; otherwise it stops.

Step I: This step begins with variable x, in the model. Then p-1
new proportional hazards models (each including one remaining vari-
able along with x, ) are fit, and the results are used to compute the par-
tial likelihood ratio test of the fitted two-variable model to the one-
variable model containing only x, ,

G("(j)=—2[L‘”(j)—L(xq)]. j=12,...p and j#e,  (5.4)

where the values of the deviance in (5.4) are -2 times the partial log
likelihoods of the respective models. The p-value for the test of the sig-
nificance of adding x; to the model containing x, is

PP (j) =P ()2 GV (j)] . (5.5)

The variable selected as the candidate for entry at step 2 is x, where

p(e2) = min[pV(j)] . (5.6)
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If the selected covariate x, is significant, p’(e,)< p, then the pro-

gram goes to step 2; otherwise it stops.
Step 2: This step begins with both x, and x, in the model. Dur-

ing this step, two different evaluations occur. The step begins with a
backward elimination check for the continued contribution of x, . That

is, does X, still contribute to the model after X, has been added? This

is essentially an evaluation of (5.4) and (5.5) with the roles of the two

variables reversed. From an operational point of view, we choose a dif-
ferent significance criterion for this check, denoted p,. We choose this

value such that p, > p. to eliminate the possibility of entering and re-
moving the same variable in an endless number of successive steps. As-
sume the variable entered at step 1 is still significant.

The program fits p—2 proportional hazards models (each includ-
ing one remaining variable along with x, and x, ) and computes the

partial likelihood ratio test and its p-value for the addition of the new
covariate to the model, namely

G (j)==2[LP(j) - L(%,,.%,, )| j=12..p and j#eye,
and
PP (j) =P 22 ()2 GP(j)] .

The covariate x, selected for entry at step 3 is the one with the smallest
p-value, that is,

p(2)(83) = min [P(z)(j)] .

Jreq.eq

The program proceeds to step 3 if p®(e;)< p,; otherwise it stops.

Step 3: Step 3, if reached, is similar to step 2 in that the elimination
process determines whether all variables entered into the model at earlier
steps are still significant. The selection process then followed is identi-
cal to the selection part of earlier steps. This procedure is followed until
the last step, step S.

Step S: At this step one of two things may happen: (1) all the
covariates are in the model and none may be removed or (2) each
covariate not in the model has p'®(j)> p.. At this point, no covariates

are selected for entry and none of the covariates in the model may be
removed.
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The number of variables selected in any application will depend on
the strength of the associations between covariates and survival time and
the choice of pz and pg. Due to the multiple testing that occurs, it is
nearly impossible to calculate the actual statistical significance of the
full stepwise process. Research in linear regression by Bendel and Afifi
(1977) and in discriminant analysis by Costanza and Afifi (1979) indi-
cates that use of pg =0.05 excludes too many important covariates and
that one should choose a level of significance of 15 percent. In many
applications it may make sense to use 25-50 percent to allow more vari-
ables to enter than will ultimately be used and then narrow the field of
selected variables using p < 0.15 to obtain a multivariable model for
further analysis. An unavoidable problem with any stepwise selection
procedure is the potential for the inclusion of “noise” covariates and
the exclusion of important covariates. ‘One must always examine the
variables selected and excluded for basic scientific plausibility.

The model at this point is likely to contain continuous covanates,
and these should be examined carefully for linearity using the previ-
ously discussed methods. The next step is to see if there are any inter-
actions which significantly improve the model. The procedure for
stepwise selection is to use as candidate variables a list of plausible inter-
actions among the main effects previously identified during the initial
stepwise model building. One must begin with a model containing all
the main effects, and the final model is selected using usual levels of
statistical significance.

As an example of stepwise selection we consider covariates in the
UIS. The list of candidate variables includes: age, Beck score, number
of previous drug treatments, race, treatment, site, three design variables
for previous heroin or cocaine use and two design variables for previous
IV drug use, for a total of 11 covariates. The exact order of variable
selection will depend on whether one uses the partial likelihood ratio
test, the score test or the Wald test. The results presented in Table 5.12
were obtained using the partial likelihood ratio test. The variables se-
lected are the same as those selected by the score test.

For illustrative purposes, the results presented in Table 5.12 were
obtained using entry and removal p-values of p;=0.5 and p,=0.8.
There were a total of 10 steps, counting step 0. At step O, the variable
with the smallest p-value was the number of previous drug treatments,
NDRUGTX, with p = 0.004. Since this value is smaller than p, =0.5,
the variable enters the model at step 1. At step 1 AGE has the smallest
p-value with p = 0.0064 and it is smaller than p;=0.5, so AGE enters
the model at step 2. At step 2, both AGE and NDRUGTX have p-values
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to remove which are less than p, =0.8 and thus remain in the model.
Among the variables not in the model, the design variable for IV drug
use at level 3, IVHX_3 (a recent user), has the smallest p-value and it is
less than the criteria for entry into the model. Then the program goes
to step 3, where the three-variable model is fit. All the p-values to re-
move are less than 0.8 and no variables are taken from the model. The
variable with the smallest p-value for entry is treatment, TREAT, with p
= 0.0107, which is less then 0.5. The program then goes to step 4 and
fits the four-variable model.

This process of fitting, checking for continued significance, and se-
lection continues until step 9. At this step, each of the nine variables in
the model has a p-value to remove which is less than 0.8, and the p-
values to enter for the two variables not in the model exceed 0.5.
Therefore, the program terminates the selection process at step 9.

We use the results in Table 5.12 with a significance level of 0.15 to
identify the preliminary main effects model by proceeding sequentially
to the next step, as long as the smallest p-value for entry is less than
0.15. The first time it exceeds 0.15 is at step 6. At this step, the poten-
tial variable for inclusion is the design variable for previous IV drug use
at level 2, IVHX_2 (previous user). Using the 15 percent rule, we would
take as our model the one fit at step 6 which contains NDRUGTX, AGE,
IVHX_3, TREAT, RACE and BECKTOTA. Inclusion of only IVHX_3
implies a recoding of previous IV drug use to 1 = recent, O = not recent.
If we were performing variable selection for the first time, we might

Table 5.12 Results of Stepwise Selection of Covariates, p-Value
for Entry to the Right and p-Value to Remove to the Left of the
Solid Line in Each Row for the UIS (n = 575). Columns are in
Order of Entry.

Step INDRUGTX AGE IVHX 3 TREAT RACE BECKTOTIVHX_2HERC_3 SITE HERC_MERC_4

0 | 0.0004 0.0759 0001 0.011 0005 0.035 0.883 0.058 0294 0.044 0434
0.0004 |0.0064 0.010 0009 0.013 0036 0832 0.109 0426 0.113 0.832
<.0001 0.0064} 0.001 0.007 0.016 0046 0997 0.037 0327 0.048 0.618
0.0008 0.0005 0.001 | 0.011 0058 0.102 009 0.275 0.790 0481 0.577
0.0005 0.0004 0.001 0.011 | 0.081 0.109 0.101 0232 0.631 0431 0476
0.0010 0.0007 0.003 0015 0.081 0.085 0.148 0258 0382 0.528 0.526
0.0009 0.0011 0.007 0.015 0.064 0085 |0.179 0208 0420 0.528 0.450
0.0016 0.0005 0.003 0.016 0.093 0.102 0.179 10279 0.357 0.537 0.545
0.0013 00004 0.014 0014 0098 0.087 0238 0280 |0.348 0676 0.908
0.0014 0.0004 0.027 0.012 0069 0.095 0213 0273 0.348) 0.688 0.968

O 00 N N Vi & W N
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choose the model at step 7 to avoid having to recode this variable. If we
do this, the next phase of the model building process would be the
steps we went through during the purposeful selection of covariates.
Recall that that process suggested the same set of covariates.

At this point, we examine the scale of the continuous covariates in
the model following the same procedure illustrated in the previous sec-
tion. This analysis yields the same model as in Table 5.8 if we add
SITE for the same reasons it was included when we discussed purposeful
selection. Stepwise selection of interactions proceeds using as candidate
variables the interactions listed in Table 5.9. At step O, the model con-
tains all the main effects, the model in Table 5.8. Since all the stepwise
selection programs perform single degree-of-freedom selection tests,
there are a total of 27 individual interaction terms to choose from at step
0, since the process of checking the scale of the continuous covariates
has led to transforming NDRUGTX into two nonlinear terms.

For illustrative purposes we discuss the variables selected using 0.15
as the significance level for entry. We use a smaller level of significance
for entry as we wish to include in the model only those interactions that
are significant, since confounding is not an issue when selecting interac-
tions. Three interactions were identified as being important: At step 1,
the RACE by SITE interaction entered the model with p = 0.001; at step
2, the AGE by NDRUGFP2 interaction entered the model with p =
0.006; and at step 3, the AGE by SITE interaction entered the model

Table 5.13 [Estimated Coefficients, Standard Errors, z-Scores,
Two-Tailed p-Values and 95% Confidence Intervals for the

Preliminary Final Proportional Hazards Model for the UIS
(n = 575)

Variable Coeff. Std. Err. Z P>zl 95% CIE

AGE -0.054 0.012 453 <0.001 -0.077,-0.031

BECKTOTA  0.010 0.005 2.07 0.038  0.001, 0.020
RACE -0483 0.135 -3.59 <0.001 -0.747, -0.219

TREAT -0.222 0.094  -2.37 0.018 -0.406, -0.039

SITE -0.278 0.122  -2.28 0.023 -0.517, -0.039

IVHX 3 0.234 0.108 2.17 0.030  0.023, 0.445
NDRUGFP1 -0.838 0.160 -5.25 <0.001 -1.151,-0.525
NDRUGFP2 -0.229 0.049 470 <0.001 -0.325,-0.134
RACEXSITE 0.897 0.247 3.63 <0.001 0412, 1.382
AGEXNDRUGFP1 0.007 __ 0.003 2.77 0.006  0.002, 0.012

Log-likelihood = -2628.739.
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with p = 0.113. Using the 5 percent level of significance, we would
choose the model at step 2 containing all the main effects, the RACE by
SITE interaction and, surprisingly, the AGE by NDRUGFP2 interaction.

At this point we have a somewhat complicated model to sort out.
Subsequent analyses (details are not presented) reveal that: (1) there is a
significant interaction of AGE with either one of the two fractional
polynomial variables for number of previous drug treatments, (2) it
does not seem to matter which of the two fractional polynomial vari-
ables AGE interacts with as both models have almost the same log par-
tial likelihood and (3) the AGE by SITE interaction is significant only if
the AGE by NDRUGFP1 or the AGE by NDRUGFP2 interaction is not
included in the model (see Table 5.11).

Thus it appears that there are two possible models, each with the
same eight main effect terms and two interaction terms: (1) the model in
Table 5.11 containing the AGE XSITE and RACE X SITE interactions
and (2) the model in Table 5.13 containing the RACE X SITE and AGE
X NDRUGFPI1 interactions. We defer deciding which of the two models
to use for inferential purposes until after we have examined each for
adherence to model assumptions, goodness-of-fit, and influential obser-
vations. From a practical point of view, we favor the model in Table
5.11 as it does not include any interaction terms involving fractional
polynomials, making it easier to interpret. However, if nothing changes,
the estimate of the effect of treatment is about the same in both models,
so from that point of view we could use either model.

5.4 BEST SUBSETS SELECTION OF COVARIATES!

In the previous section we discussed stepwise selection of covariates.
The advantage of stepwise selection is that most analysts are familiar
with its use from other regression modeling settings and it is available in
most major software packages. A disadvantage is that the procedure
considers only a small number of the total possible models that can be
formed from the covariates. The method of best subsets selection pro-
vides a computationally efficient way to screen all possible models.

The conceptual basis for best subsets selection of covariates in a
proportional hazards regression is the same as in linear regression. The

! Implementation of the methods in this section requires matrix calculations not automatically per-
formed by software packages. If one is familiar with simple matrix algebra and the software pack-
age has matrix capabilitics, then they are relatively easy to perform.
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procedure requires a criterion to judge a model. Given the criterion, the
software screens all models containing g covariates and reports the
covariates in the best, say 5, models for ¢=1,2,..., p, where p denotes
the total number of covariates.

Software to implement best subsets normal errors linear regression is
readily available and has been used to provide best subsets selection ca-
pabilities for non-normal errors linear regression models such as logistic
regression, see Hosmer and Lemeshow (1989, Chapter 4). There are
three requirements to use the method described by Hosmer and
Lemeshow: (1) It must be possible to obtain estimates of the coefficients
of the model containing all p covariates from a weighted linear regres-
sion where the dependent variable is of the form

x'ﬁ + wefghtx (resi?lual),

(2) the weight must be an easily computed function of the variance of
the residual and (3) both weight and residual must be easily computed
functions of the estimated coefficients and covariates. Only require-
ment 1 is satisfied by the proportional hazards regression model when it
is fit using the partial likelihood. The difficulty is that even though the
partial likelihood, see (3.17), is a product of n terms, the terms are not
independent of each other. Each “subject” may contribute informa-
tion to more than one term in the product, that is, “subjects” appear in
every risk set until they fail or are censored. Thus Hosmer and Le-
meshow’s method may not be used to perform best subsets proportional
hazards regression. We do not want to dwell on this point, but feel that
it is important to explain why this well-known and easily used approach
is not appropriate in this setting.

Kuk (1984) described how best subsets selection in a proportional
hazards regression model may be performed with a normal errors linear
regression best subsets program if the program allows input of the data
via a covariance matrix. Kuk’s method is related to a general method
described by Lawless and Singhal (1978), which requires special soft-
ware. We will illustrate Kuk’s method using BMDPIR, but any best
subsets linear regression program which permits a covariance matrix as
data input can be used.

The computational steps one must perform to use Kuk’s method are
as follows: :

(1) Fit the proportional hazards model containing all p covari-
ates. This model must contain all the design variables for nominal scale
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covariates coded at more than two levels. As was the case in stepwise
selection, these related design variables will be considered as distinct bi-
nary variables in the best subsets selection method.

(2) Obtain the estimated covariance matrix of the estimated co-

efficients, denoted as \/a\r(ﬁ), and obtain its inverse, denoted

1 =[Var )| .

This matrix is the observed information matrix. If the program does
not provide the observed information matrix, then one must compute its
value.

(3) Compute the px1 matrix B=I({B)B and the 1x1 matrix
C=BIB)B.

(4) Use the matrices computed in steps 2 and 3 to form the
(p+1)x(p+1) matrix

Az[um B ]
B (n-p)+C

[There is a small mistake in Kuk (1984) in that he adds (n—p—1) to C.]

(5) Verify that the matrix A is correct. This may be done by
performing linear regression with covariance matrix input, A, declaring
the (p+1)st variable as the dependent variable and assigning the names
used in fitting the proportional hazards regression model in step 1 to the
first p variables. The estimated coefficients and estimated standard er-
rors of the estimated coefficients obtained from the linear regression
output should be equal to those computed in step 1 from the propor-
tional hazards regression model. The mean residual sum-of-squares
should be equal to n—1. [Another small mistake in Kuk (1984) is that
he states that this mean square is equal to 1.0.]

(6) Use a best subsets linear regression program with data set up
as in step 5. Select Mallow’s C [Mallows (1973)] as the criterion for
best subsets [see Ryan (1997, Chapter 7) for a discussion of the use of
Mallow’s C in normal errors linear regression modeling].

The result of using these computational tricks is that best subsets are
chosen using the values of multivariable Wald tests obtained after fitting
the full p variable proportional hazards model, that is, the model fit in
step 1. We will apply best subsets selection to the 11 possible main ef-
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Table 5.14 Five Best Models Identified Using Mallow’s C.
Model Covariates, Mallow’s C, the Wald Test for the Excluded

Covariates, Its Degrees-of-Freedom and p-Value for the UIS
(n = 575)

Model Model Covariates C W & »p

1 AGE, BECK, NDRUGTX, IVHX_3, RACE, TREAT 5.064.06 5 0.541
2 AGE, BECK, NDRUGTX, IVHX_2, IVHX_3, RACE, TREAT 5.21 2.21 4 0.697
3 AGE, BECK, NDRUGTX, HER_3, IVHX_3, RACE, TREAT 5.48 248 4 0.648
4 AGE, BECK, NDRUGTX, IVHX_2, IVHX_3, TREAT 593493 5 0.424
S__AGE, NDRUGTX, IVHX_2, IVHX_3, RACE, TREAT 594494 5 0.423

fect variables used in the UIS. For sake of illustration, consider a possi-
ble model that excludes 4 variables: the three design variables for heroin
or cocaine use and SITE. The significance of the excluded variables
may be assessed by the partial likelihood ratio test comparing the full
11-variable model to the 7-variable model containing AGE,
BECKTOTA, NDRUGTX, IVHX_2, IVHX_3, RACE and TREAT. An
equivalent test is the multivariable Wald test for the coefficients of the 4
excluded variables obtained following the fit of the full 11-variable
model. The value of this 4 degrees-of-freedom Wald test is 2.41 and
the value of Mallow’s C for this 7-variable model is
521=2.21+(11-2x4).

In order to establish the relationship between Mallow’s C and the

Wald statistic in general, denote the value of the multivariable Wald test
for g variables excluded from the full p variable model by W,. The

multivariable Wald test was described in Chapter 3 and is distributed as
chi-square with degrees-of-freedom equal to the number of coefficients
hypothesized to be equal to zero. The value of Mallow’s C reported by
BMDP9R, in step 6 above, is

C=W,+(p-2q) . (5.7)

As in linear regression, good models will be ones with small values of C.
Under the hypothesis that the coefficients for the g variables excluded
from the model are zero, the mean of the Wald test is approximately q.
Thus, the mean of Mallow’s C is approximately p — g, the number of

variables in the model. This is the same reference standard for Mal-
low’s C used in normal errors linear regression.

Table 5.14 reports a summary of the five best models obtained by
performing the six-step procedure with the UIS data. The best model
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contains the same six covariates identified using both purposeful and
stepwise selection methods. The second best model is the same as one
alternative model identified by the stepwise method. The remaining
three models suggest other possible sets of covariates. The values of
Mallow’s C are relatively homogeneous across the five models. This is
also the case for the Wald test p-values. The covariates selected for these
models suggest that any good model is going to contain age, number of
previous drug treatments, a binary variable for recent IV drug use, and
treatment. There are four other covariates suggested.

Since no one model appears to be superior to the other four, one
possible strategy is to fit a multivariable model containing all eight
covariates used in the five models in Table 5.14. Following the fit of
this model, we would proceed as in purposeful selection to try and re-
duce the size of the model. Based on models fit in the section on pur-
poseful selection of covariates, this process would return us to model 1
in Table 5.14. The next steps in model development are the same as
those described and illustrated in the section on purposeful selection of
covariates: assessment of the scale of continuous covariates and identifi-
cation of interactions.

An alternative method for best subset selection is to mimic the ap-
proach used in stepwise selection and choose as best models those in
which the covariates in the model are significant. Selection of covariates
thus proceeds by inclusion rather than exclusion. The best models
containing p— q covariates are those with the largest values of a test of
the significance of the model. Theoretically, one could use any one of
the three equivalent tests: partial likelihood ratio, Wald or score test.
The SAS package, PROC PHREG, has implemented this selection
method using the score test. Models identified are, for each fixed num-
ber of covariates, the ones with the largest value of the score test.

The problem with using the score test for model significance is that
it is difficult to compare models of different sizes since the score test
tends to increase with the number of covariates in the model. One pos-
sible solution is to use the values of the score test to approximate the
value of Mallow’s C in (5.7). Let the score test for the model contain-
ing all p covariates be denoted S, and the score test for the model con-
taining a particular set of p—gq covariates be denoted S,_,. The value

of the score test for the exclusion of the g covariates from the full p
variable model is approximately S, =S,-S,_,. Since the Wald and

score tests are equivalent, this suggests that an approximation to Mal-
low’s C for a fitted model containing p—gq covariates is



192 MODEL DEVELOPMENT

C=S,+(p-29). (5.8)

We note that if covariate selection had been based on the partial likeli-
hood ratio test instead of the Wald and score test, the value of C in (5.7)
would be equal to the value in (5.8).

As an example, consider model 1 in Table 5.14, with p-g=
11-5=6 covariates in the model. The value of the score test for the
significance of the 11-covariate model is S;; =49.35, and the value of
the score test for the significance of the 6-covariate model is S5 =45.52.
The approximation to the score test for the addition of the 5 covariates
to the 6-covariate model is

Ss =8, =S¢ =49.35-45.52 =3.83.
The value of the approximation to Mallow’s C is
C=3.83+(11-2%5)=4.83

and the correct value from Table 5.14 is 5.06. The approximation is
close, but certainly not perfect. Of more practical interest is what mod-
els would be selected as best using (5.8) in conjunction with the values
of the score tests provided by SAS in PROC PHREG. The best five
models using this approach are summarized in Table 5.15.

The results in Table 5.15 are quite similar to those in Table 5.14.
The three best models are the same and the fourth best model in Table
5.15 is the same as the fifth best model in Table 5.14. Thus it appears
that the approximation in (5.8) provides a useful way to rank order
models containing different numbers of covariates when models have

Table 5.15 Five Best Models Identified Using the Score Test
Approximation to Mallow’s C. Model Covariates, Approximate
Mallow’s C and the Approximate Score Test for the Excluded
Covariates for the UIS (n = 575)

Model Model Covariates c S,
1 AGE, BECK, NDRUGTX, IVHX_3, RACE, TREAT 4.83 3.83
2 AGE, BECK, NDRUGTX, IVHX_2, IVHX_3, RACE, TREAT  5.00 2.00
3 AGE, BECK, NDRUGTX, HER_3, IVHX_3, RACE, TREAT  5.20 2.20
4 AGE, NDRUGTX, IVHX_2, IVHX_3, RACE, TREAT 5.43 4.43
5 AGE, NDRUGTX, IVHX_3, RACE, TREAT 5.94 6.52
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been selected using the score test for model significance.

One point that must be kept firmly in mind when using procedures
such as stepwise or best subsets selection to identify possible model
covariates is that the results should be taken as suggestions for models to
be examined in more detail. One cannot rule out the possibility that
these methods may reveal new and interesting associations, but the col-
lection of covariates must make clinical sense to the researchers. The
statistical selection procedures suggest, but do not dictate, what the
model might be.

5.5 NUMERICAL PROBLEMS

The software available in the major statistical packages for fitting the
proportional hazards model is easy to use and, for the most part, con-
tains checks and balances that warn the user of impending numerical
disasters. However, there are certain configurations of data that cause
numerical difficulties that may not produce a suitable warning to the
user. The problem of monotone likelihood described by Bryson and
Johnson (1981) is one such problem. This problem in a survival analy-
sis is similar to the occurrence of a zero frequency cell in a two by two
contingency table or when the distributions of a continuous covariate is
completely separated by the binary outcome variable in logistic regres-
sion. The problem occurs in a proportional hazards regression when
the rank ordering of the covariate and the survival times are the same.
That is, at each observed survival time the subject who fails has the larg-
est (smallest) value of one of the covariates among the subjects in the
risk set.

To illustrate the problem, we created a hypothetical data set con-
taining 100 observations of survival time in days, truncated at one year
with approximately 30 percent of the observations censored. We cre-
ated a dichotomous covariate whose value is equal to one if the observed

Table 5.16 Estimated Coefficient, Standard Error,
z-Score, Two-Tailed p-Value and 95% Confidence
Intervals for a Proportional Hazards Model Containing
a Monotone Likelihood Covariate (n =100)

Variable Coeff. Std. Err. 2 P>zl 95% CIE
X 37.08 9.7E6 0.00 1.00 -1.92E7, 1.92E7
Log-likelihood = -209.74.
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Table 5.17 Estimated Coefficients, Standard Errors,
z-Scores, Two-Tailed p-Values and 95% Confidence
Intervals for a Proportional Hazards Model Containing
Two Highly Correlated Continuous Covariates (n =100)

Variable  Coeff. Std. Emr. 2 P>lzl 95% CIE
x1 18.00 4144 043 0.66 —63.2, 99.2
x2 =17.72 4144 043  0.66 -98.9, 63.5

Log-likelihood = -228.19.

survival time was less than the median and zero otherwise. The results
of fitting the proportional hazards model are shown in Table 5.16,
where the notation “9.7E6” means 9.7x108.

The estimated coefficient and its standard error are unreasonably
large. The software also required 25 iterations to obtain this value. As
in the case of logistic regression, any implausibly large coefficient and
standard error is a clear indication of numerical difficulties. In this case,
a graph of the covariate versus time would indicate the problem.

The example in Table 5.16 is a simple one since it involves a single
covariate. In practice, the situation is likely to be more complex, with a
combination of multiple covariates inducing the same effect. Bryson
and Johnson (1981) show that certain types of linear combinations (e.g.,
a simple sum of the covariates) may yield monotone likelihood. In
these situations the problem will manifest itself with unreasonably large
coefficients and standard errors.

Extreme collinearity among the covariates is another possible prob-
lem. Most software packages contain diagnostic checks for highly cor-
related data, but clinically implausible results may be produced before
the program’s diagnostic switch is tripped. The results of fitting a pro-
portional hazards model when the relationship between the two covari-
ates is x, = x, +u, where u is the value of a uniformly distributed ran-
dom variable on the interval (0, 0.01), are shown in Table 5.17. The
correlation between the covariates is effectively 1.0, yet the program
prints a result. Similar results were obtained until u«~ U(0,0.0001), at
which point one of the covariates was dropped from the model by the
program.

The bottom line is that it is ultimately the user of the software who is
responsible for the results of an analysis. Any analysis producing
“large” effect(s) or standard error(s) should be treated as a “mistake”
until the involved covariate(s) are examined critically.
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EXERCISES

For all exercises in this section involving analyses from the WHAS, use
survival time defined by LENFOL, censoring defined by FSTAT, and
data from all cohorts (i.e., ignore YEAR).

1. An important step in any model building process is assessing the
scale of continuous variables in the model. The two continuous vari-
ables, AGE and CPK, in the WHAS present a challenge. Use the meth-
ods discussed in this chapter to assess the scale of AGE when it is the
only covariate in a proportional hazards model. Repeat this process for
CPK. In this problem, pay particular attention to the effect that a few
subjects with either small or large values of the covariate can have on the
methods for assessing the scale of a covariate.

2. Using the methods for model building discussed in this chapter, find
the best model for estimating the effect of the covariates on long-term
survival following hospitalization for an acute myocardial infarction in
the WHAS. This process should include the following steps: variable
selection, assessment of the scale of continuous variables and selection
of interactions.

3. Present the results of the model selected in problem 2 in a table or
tables that are suitable for publication in an applied journal. This pres-
entation should include estimates of hazard ratios, with confidence in-
tervals.

Note: Save any work done for problems 2 and 3 as there is a problem in
Chapter 6 dealing with the assessment of fit of this model.



CHAPTER 6

Assessment of Model Adequacy

6.1 INTRODUCTION

Model-based inferences depend completely on the fitted statistical
model. For these inferences to be *“valid” in any sense of the word, the
fitted model must provide an adequate summary of the data upon which
it is based. A complete and thorough examination of a model’s fit and
adherence to model assumptions is just as important as careful model
development.

The goal of statistical model development is to obtain the model
which best describes the “middle” of the data. The specific definition
of “middle” depends on the particular type of statistical model, but the
idea is basically the same for all statistical models. In the normal errors
linear regression model setting, we can describe the relationship between
the observed outcome variable and one of the covariates with a scatter-
plot. This plot of points for two or more covariates is often described as
the “cloud” of data. In model development we find the regression line,
plane or hyperplane that best fits/splits the cloud. The notion of “best”
in this setting means that we have equal distances from observed points
to fitted points above and below the surface. A “generic” main effects
model with some nominal covariates, which treats continuous covariates
as linear, may not have enough tilts, bends or turns to fit/split the cloud.
Each step in the model development process is designed to tailor the
regression surface to the observed cloud of data.

In most, if not all, applied settings the results of the fitted model will
be summarized for publication using point and interval estimates of
clinically interpretable measures. Examples of summary measures in-
clude the mean difference in linear regression, the odds ratio in logistic
regression and the hazard ratio for the proportional hazards regression

196
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model. Since any summary measure is only as good as the model it is
based on, it is vital that one evaluate how well the fitted regression sur-
face describes the data cloud. This process is generally referred to as
assessing the adequacy of the model; like model development, it in-
volves a number of steps. Performing these in a thorough and consci-
entious manner will assure that the inferential conclusions based on the
fitted model are the best and most valid possible.

The methods for assessment of a fitted proportional hazards model
are essentially the same as for other regression models, and we assume
some experience with these, particularly with logistic regression [see
Hosmer and Lemeshow (1989, Chapter 5)]. Requirements for model
assessment are: (1) methods for testing the assumption of proportional
hazards, (2) subject-specific diagnostic statistics that extend the notions
of leverage and influence to the proportional hazards model and (3)
overall summary measures of goodness-of-fit.

6.2 RESIDUALS

Central to the evaluation of model adequacy in any setting is an appro-
priate definition of a residual. As we discussed in Chapter 1, the fact
that the outcome variable is time to some event and the observed values
may be incomplete or censored is what sets a regression analysis of sur-
vival time apart from other regression models. In earlier chapters we
suggested that the semiparametric proportional hazards model is a use-
ful model for data of this type and we described why and how it may be
fit using the partial likelihood. This combination of data, model and
likelihood make definition of a residual much more difficult in model-
ing survival time than is the case with other statistical models.

Consider a logistic regression analysis of a binary outcome variable.
In this setting, values of the outcome variable are “present” (y=1) or
“absent” (y=0) for all subjects. The fitted model provides estimates
of the probability that the outcome is present (i.e., the mean of Y).
Thus, a natural definition of the residual is the difference between the
observed value of the outcome variable and that predicted by the model.
This form of the residual also follows as a natural consequence of char-
acterizing the observed value of the outcome as the sum of a systematic
component and an error component. The two key assumptions in this
definition of a residual are: (1) the value of the outcome is known and
(2) the fitted model provides an estimate of the “mean of the dependent
variable” or systematic component of the model. Since assumption 2



198 ASSESSMENT OF MODEL ADEQUACY

and, more than likely, assumption 1 are not true when using the partial
likelihood to fit the proportional hazards model to censored survival
data, there is no obvious analog to the usual “observed minus pre-
dicted” residual used with other regression models.

The absence of an obvious residual has lead to the development of
several different residuals, each of which plays an important role in ex-
amining some aspect of the fit of the proportional hazards model. Most
software packages provide access to at least one of these residuals. Only
two packages, SAS and S-PLUS, have full residual analysis capabilities
at this time. This situation is likely to change as other packages update
and modify their proportional hazards routines.

We assume, for the time being, that there are p covariates and that
the n independent observations of time, covariates and censoring indi-
cator are denoted by the triplet (z,x;,c;), i=12,...,n, where ¢, =1 for
uncensored observations and is zero otherwise. Schoenfeld (1982) pro-
posed the first set of residuals for use with a fitted proportional hazards
model and packages providing them refer to them as the “Schoenfeld
residuals.” These are based on the individual contributions to the de-
rivative of the log partial likelihood. This derivative for the kth covari-
ate is shown in (3.21) and is repeated here as
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where

The estimator of the Schoenfeld residual for the ith subject on the kth
covariate is obtained from (6.1) by substituting the partial likelihood

estimator of the coefficient, B, and is

~
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