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Stat

tical Primer for Cardio

cular Research

Survival Methods

Sowmya R. Rao, PhD; David A. Schoenfeld, PhD

his article gives an overview of survival methods in

medical studies. We briefly describe survival data and
discuss the methods used for analysis of such data. We apply
these methods to data from a clinical trial and discuss the
results. Survival methods are applicable when the measure of
interest is time to an event such as mortality or occurrence of
disease. The concept of censoring makes survival methods
unique. If a patient goes through the study without having the
event, his time to the event is (right) censored, in the sense
that we only know that the event happened after the last time
we observed the patient. Thus, for each patient we have 2
pieces of data: The first is a time that is either the patient’s
event time or the time that the patient was last followed up,
and the second is an indicator that denotes whether the time
is an event time or a follow-up time. Another way of thinking
of censoring is to assume that each patient has an event time
and a censoring time after which the patient would no longer
be observed. Whenever the censoring time is less than the
event time, the event time is missing. Survival methods also
assume that the censoring time is unknown when it is greater
than the event time.

Survival distributions are usually described in terms of 2
functions: the survival function, S(t), defined as the proba-
bility that a person survives past a specified time t; and the
hazard function, h(t), which is the instantaneous failure rate

and is defined as:
dS(t)
d(t)

MO= TS0

Suppose a patient has survived to time t; then the hazard
function is the probability that the patient will have an event in
the next instant. The hazard function is conceptually useful in
describing survival distributions but is rarely published. The
greater the hazard function, the shorter is the survival time.

The survival methods that we describe require that the
censoring time is independent of the event time. This is called
noninformative censoring. An example that illustrates when
this assumption would always be met is a clinical trial in
which patients enter the study over a period of time and there
are no dropouts. If the patient does not have an event before
the end of the study, the patient’s event time will be censored.
The distribution of the potential censoring time will only

depend on when the patient entered the study. This time will
be independent of the patient’s time to event as long as there
are no secular trends in the survival distribution. An extreme
example of an instance when these assumptions would not be
met is a study of time to death, where patients are no longer
followed up after they recover from a disease. Patients who
are lost to follow-up in a clinical trial or drop out of a clinical
trial are problematic because the time to their last observation
may or may not be related to their unobserved event time. For
instance, if patients who feel better drop out of the study, the
censoring may be informative. Approaches to this problem
have been the focus of an extensive literature.!

Estimating the Survival Function

The most commonly used descriptive statistics for survival
data are based on an estimate of the survival function. Often
the median is reported, which is the value of t where the
survival function, S(t), equals 0.5 (ie, 50% of the cohort is
event free). Sometimes the value of S(t) is reported at t=1, 5,
or 10. The mean survival time is rarely reported because, as
we shall see, it cannot be estimated reliably. Each of these
descriptive statistics starts with the estimation of the survival
function. Often the estimate of the entire function is included
in a report of a study. The advantage of this is that the
behavior of the function over various time periods may be of
interest. The curve may drop steeply at first because of early
events or may level off if patients who survive past a certain
point without an event are unlikely to have one in the future.
As we see in the next section, the curve cannot be estimated
past the longest follow-up time.

The Kaplan-Meier method? is frequently used to estimate
the survival function when there are censored data. The best
way to understand this method is to break up the time scale
into intervals that end at each event time. Let tt,,... be
ordered event times. Then, because no event occurs before
time t;, the value of S(t) is 1 from t=0 to just before t=t,.
Suppose that n; is the number of patients that are being
observed at time t; (by convention, if a patient’s censoring
time is t;, the patient is considered to be observed at t;), and
m, is the number of events at t,. Then, S(t) is

(ny—m,)

n;
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for t=t, up until just before t,. Note that this is simply the
proportion of patients that survive past t, among those who
survived until t;. At t,, one estimates the probability that a
patient survives past t, given that the patient lives up to t, by

(n,—my)
n, ’

The estimate of S(t) is then

|:(n1_ml):| [(nz_mz)]
X
n; n,

from t=t, up to just before t=t;. Most computer programs that
compute the Kaplan-Meier survival curve start with 2 col-
umns of data; the first is the survival or censoring time, and
the second is a censoring indicator that is O if the time is a
censoring time and 1 if the time is an event time.

The plots with survival time on the horizontal axis and the
proportion surviving, S(t), on the vertical axis when there is
censoring are called the KM curves. These start at 1 (because
probability of survival beyond time O is 1) and step down toward
zero. If there are subjects who survive beyond the study time,
then the survival curve does not go to zero but stays horizontal.
Because the survival curve does not change in intervals in which
no events occur, one can calculate the curve at event times only.
The mean time to an event is estimated by the area under the
survival function. If the largest time is an event time, then the
survival function goes to zero at that time, and this estimate is
finite. Otherwise, the mean time cannot be estimated. This is
why median survival is used more often than mean survival. The
median survival time is estimable only if the survival curve
drops to or below 0.5. The median survival time is estimated by
the value on the horizontal axis at the intersection of a horizontal
line drawn from the vertical axis to the survival line where
S()=0.5. If the KM curve drops to or below 0.5 but does not
equal 0.5, then the first event time when the curve falls below 0.5
is used.

Survival curves can be compared to assess differences in
treatment effects. If =2 groups are being compared, survival
curves are plotted for each group. If the survival curves are
parallel to each other, then the group that consistently has a
higher survival curve than the other has longer survival, and
the treatment given to this group is concluded to be the better
of the treatments being studied. Although visually the sur-
vival curves for the 2 groups might seem different from each
other, we need to test whether the “true” survival curves are
statistically different by using a formal test.

Hypothesis Testing
In most studies, one is interested in evaluating the effect of 1 or
more treatments or exposures (eg, aspirin/placebo, smoking) on
an outcome of interest (eg, first myocardial infarction) either by
itself or adjusted for other covariates. In survival analysis, the
outcome of interest is the survival time, and one is interested in
comparing the survival times between groups or assessing the
relationship of exposure/covariates to the survival time. Standard
methods of data analysis (eg, ¢ tests, linear or logistic regres-
sions) cannot be applied to survival data because they do not

account for censoring. If censored observations are excluded
from the analysis, the results will be biased.

Proportional Hazards or Log-Rank Test

The log-rank test can be used to test the hypothesis of no
difference in survival between the 2 groups. This test makes
the assumptions that the observations are independent and
that the censoring distribution is independent of the survival
distribution; notably, the censoring distribution can be differ-
ent in each group, so that the test can be used to compare a
current treatment group with a historical control.

This tests the null hypothesis that there is no statistical difference
between the survival curves in the 2 groups. The basic idea behind
the test is that at each event time t; there will be n;; patients in group
1 and ny patients in group 2. Under the null hypothesis of no
treatment effect, the probability that the treatment group of the
patient who had the event will be in group 1 is

ny;
(nj;+ny)

Thus, if we define an indicator variable §; to equal 1 if the
patient is from group 1 and zero if the patient is from group

2, then
Ny
iz{&i_ [(nn"‘nzi)]}

has a mean equal to zero. This is the numerator of the
log-rank test. The denominator is the standard deviation of
this quantity:

172
nlin2i(mli+m2i)(nli+n2i_mli_mZi):|

|:§‘: (nli+n2i)2(nli+n2i_1)

The log-rank test can be used to compare =2 survival curves.
It is preferable to use the multivariable regression method to
assess the relationship of many risk factors to survival.

Cox Proportional Hazards Model

This is the most popular method to evaluate the relationship
between covariates and survival with the use of a mathemat-
ical model. This is called a semiparametric model because it
does not assume any distribution for the baseline hazard. The
model is defined as

h(t; X, Xp,. - X ) =Ap(Dexp(A X+ A X+, . .+ A X))

where Ay(t) is the baseline hazard at time t and X,,X,, . . ., X
are k independent covariates. No assumptions are made
regarding the baseline hazard function.

We can test the association of each of the independent
variables with survival time adjusted for other covariates. It is
important to understand the meaning of the parameters in a
proportional hazards model. Suppose first that the covariate,
say X;, has 2 values, 0 and 1. Then, exp(A,) is the hazard ratio
for patients with x,=1 versus those with x,=0. That is the
instantaneous probability of an event in one group divided by
that probability in the other. Notice that we are modeling the
hazard so that if patients for whom x,=1 have longer survival
times, then A, will be negative. The model specifies that the



hazard ratio is constant over time and for the values of all the
other covariates. When the covariate is continuous, then exp(A,)
is the hazard ratio for a unit change in the value of x;. It is often
helpful to divide continuous covariates by their standard devia-
tion so that the units for each covariate are comparable, and
ApLA,,. .. have the same scale, which would be 1 standard
deviation. Hazard ratios are approximately equal to the relative
risk (ratio of risk in the exposed group to the risk in the
unexposed group) and are used interchangeably.

Parametric Methods
Parametric methods assume that the survival times follow a
specified distribution. Exponential, Weibull, Gompertz,
Gamma, and log-normal distribution are often used for
survival times. In the exponential model the hazard function
is constant, which means a person’s probability of an event in
the future is independent of how long the person has gone
without an event. Weibull, Gompertz, or Gamma can be used
when the hazard function is monotonically increasing or
decreasing. The log-normal distribution is assumed when the
hazard increases in the beginning and then decreases.
Probably the most commonly used parametric survival
model is the exponential model, which is defined as

h(t; X, Xo,. « X ) =eXp(Ao+A X FAX+. . . FAX) .

This model has some very useful properties. Without
covariates, the survival function is S(t)=exp[ —t exp(A,)]. The
hazard function is constant exp(),), the mean survival is
exp(—A), and the median survival is —exp(—Aq)Xlog(0.5).
To estimate A, let n be the total number of events and let f be
the total amount of follow-up; then A, is estimated by log(n/f),
which has a standard error of 1/4/n. The estimates from the
exponential model are the same as those from the propor-
tional hazards model when the data are exponential, which is
why the exponential distribution is often used for sample size
calculations even when the data are to be analyzed with a
proportional hazards model or a log-rank test.>+

Kalbfliesch and Prentice> provide more details on paramet-
ric methods.

A brief discussion of other issues related to survival
analysis is presented in the next section.

Additional Topics

Competing Risks

The concept of competing risks is another important issue to
consider when survival over time is studied. For example,
subjects in a cohort might be at risk of cardiovascular (other
than myocardial infarction) mortality or dying because of
myocardial infarction. The analysis approaches involve either
computing the all-cause hazards, in which all events are taken
into account, eg, cardiovascular mortality or death due to
myocardial infarction (whichever occurs first is the outcome),
and the cause-specific hazards, in which only the time to the
event of interest is observed, and the times to other events are
censored. For example, if cardiovascular mortality (other than
a myocardial infarction) is of interest, then only time to this
event is observed, and subjects who die due to myocardial
infarction are censored. Plots of cumulative hazard functions
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are generally preferred when cause-specific hazards are used,
and tests based on cumulative incidence have been developed
because the Kaplan-Meier curves and log-rank tests may give
biased results. For more information, see References by Gail
through Allison.6-10

Interval Censoring

It is important to identify the time origin in a survival analysis.
The usual time origin is the entry into the study. In that case, at
time O the value of n, is the total number of patients. However,
many survival techniques will also work without this restriction.
For instance, one can analyze age at death among nursing home
patients using survival theory. In that case, the time variable is
age, and n; will not decrease but will vary as people of different
ages enter the nursing home. This is known as truncation. For
those interested in this type of survival analysis, see Hyde'! and
Turnbull.'? There are also a wealth of techniques for the situation
in which the event time is only known up to an interval; for
instance, if the event were the development of a condition that
could only be diagnosed by an ultrasound or a laboratory test, all
that one would know was that it occurred after the last negative
test and before the next positive one. This is known as interval
censoring.'3

Time-Varying Covariates

The assumptions of proportional hazards may not hold for a
given data set. The proportional hazards model can be made
more general because one can add time-varying covariates to
handle situations in which the hazard ratio is not constant
over time or add interaction and quadratic terms when the
hazard ratio is not constant over other covariates. For in-

0.6 — Fish oil s T
---- Olive
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Cumulative Proportion of Time to First Event

0.5

Months

Kaplan-Meier analyses of the time to ICD shock for ventricular
tachycardia/ventricular fibrillation or death from any cause. A is
based on the intention to treat. B is limited to only those com-
pliant for at least 11 months. n at baseline=200 (fish oil)/202
(placebo); n at risk in month 4=165 (fish oil)/155(placebo); n at
risk in month 8=132 (fish oil)/129(placebo).
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stance, the covariate tXZ would model a situation in which
the hazard ratio increases linearly when Z=1 compared with
7Z=0. Thus, issues of whether the model “fits” the data are
actually issues about whether the model is correctly specified.
Tests of fit are described by Schoenfeld,*!* and Wei.'> and
the consequences of misspecification on testing are described
by Lagakos and Schoenfeld!¢ and Gail et al.!”

If the model is used for testing, the conclusion is that
misspecification is not a great problem.!® However, estimates
are biased and represent a weighted average of the hazard
over the duration of the study.

One of the advantages of covariate adjustment is that it can
help to ameliorate the effects of informative censoring. In an
analysis with covariates, the censoring distribution can depend
on the covariates. Informative censoring in this case would be a
dependency between the event time and the censoring time for
patients with the same value of all covariates included in the
model. Thus, for instance, if a covariate affected both the
censoring time and the event time, then the censoring would be
informative in a model without the covariate but noninformative
in a model with the covariate.

Power Calculations
Power calculations are useful for designing studies. To
calculate the power for survival analysis, one needs to know

the total number of subjects in the trial, accrual time (time
during which subjects are recruited in the study), failure time
(time at which an event or death occurs), median survival
ratio (or hazard ratio) or the minimum detectable hazard, and
the significance level.3+13.18 Standard software packages like
SAS, SPSS, S-PLUS, and STATA have procedures that are
simple to use for all methods described in this article.

Example
As an example of how these methods are used in practice,
consider the report “Prevention of Fatal Arrhythmias in
High-Risk Subjects by Fish Oil n-3 Fatty Acid Intake,” which
recently appeared in this journal.'®* We briefly summarize the
uses of survival methods in that report.

The aim of the study was to evaluate whether n-3 fatty
acids prevent potentially fatal ventricular arrhythmias in
high-risk patients. A total of 402 patients with implantable
cardioverter-defibrillators (ICDs) were randomly assigned to
double-blind treatment with either a fish oil or olive oil daily
supplement for 12 months. The primary end point was time to
first ICD event for ventricular tachycardia or fibrillation
confirmed by stored electrograms or death from any cause.
Analyses were performed both according to the intention to
treat and according to actual treatment. All randomized

Comparison of Baseline Characteristics of All Enrollees for the Placebo and Fish Qil
Treatment Arms in the Fatty Acid Antiarrhythmia Trial: Analysis of Time to First Event

Hazard Ratio 95% Cl P
Intention-to-treat analysis (n=402)
Unadjusted
Confirmed events 0.72 0.51-1.01  0.057
Including probable events 0.69 0.49-0.97 0.033
Multivariable analysis*
Confirmed events 0.67 0.47-0.95 0.024
Including probable events 0.66 0.46-0.92 0.016
On-treatment analysis for all on treatmentt (n=402)
Controlling for baseline left ventricular ejection fraction
Confirmed events 0.73 0.50-1.07 0.110
Including probable events 0.62 0.48-1.02  0.062
Multivariable analysis*
Confirmed events 0.67 0.46-0.98  0.037
Including probable events 0.65 0.45-0.95 0.026
On-treatment analysis for at least 11 months} (n=236)
Confirmed events 0.62 0.39-0.97 0.034
Including probable events 0.62 0.40-0.96  0.029
Multivariable analysis*
Confirmed events 0.52 0.32-0.83  0.0060
Including probable events 0.53 0.34-0.84  0.0070

*Multivariable model controlled for gender, left ventricular ejection fraction (continuous), New York
Heart Association class Ill congestive heart failure, history of myocardial infarction, history of prior
defibrillator therapies for ventricular tachycardia/ventricular fibrillation, time from ICD implant
(continuous), and sustained ventricular tachycardia as the indication for the ICD (all measured at

baseline).

t0n-treatment analysis for all subjects who had taken any of their prescribed oil supplements; the
follow-up was censored at 2 months after medication was stopped.
FO0n-treatment analysis only for those subjects who were on treatment at least 11 months.



subjects in this study were included in the intention-to-treat
analysis. The primary analysis, based on confirmed events,
was an intention-to-treat analysis of the survival free of
appropriate  ICD events for ventricular tachycardia/
ventricular fibrillation and/or death from any cause, which
included all ICD events that occurred during the 12-month
period after the first dose of the study drug, irrespective of the
duration of treatment. An “on-treatment” analysis was done
that included all ICD events that occurred no later than 2
months after treatment was stopped. In this analysis, the date
of cessation of treatment plus 2 months was used as the
censoring variable. To ensure that the time to event was
independent of time to noncompliance, conditional on covari-
ates in the model, the authors tested for associations between
baseline variables and time to noncompliance and used any
that were significant as covariates in this analysis.?®

Time to first event analysis was calculated by the Kaplan-
Meier method, and survival time across the 2 groups was
compared with log-rank tests. Cox proportional hazards
models were also performed to calculate hazard ratios and to
adjust for clinical covariates that were associated with non-
compliance in the on-treatment analysis and with the primary
end point in the multivariable analysis.

The survival plots displayed in the Figure and the results of
the analysis displayed in the Table were published previously
in Circulation."®

Time to First Event Analyses

In the primary analysis, according to the intention-to-treat
principle, there was a trend toward a longer time to first ICD
event for ventricular tachycardia/ventricular fibrillation con-
firmed by electrograms or death from any cause among
patients randomized to fish oil compared with those random-
ized to the olive oil placebo (P=0.057). According to the KM
estimates (Figure), 28% of patients in the fish oil arm (n=57)
and 39% of patients in the olive oil arm (n=78) had reached
the primary end point at 12 months. This difference corre-
sponds to a hazard ratio of 0.72. The multivariable analysis
that controlled for baseline clinical characteristics resulted in
a hazard ratio of 0.67, 95% confidence limits of 0.47 to 0.95,
and significance of P=0.024 (Table).

In the “on-treatment” analysis of “confirmed” events, which
included all who had taken any prescribed oil supplements
during the 12-month period, the hazard ratio was 0.73, which
was not significant (P=0.11). This analysis controlled for
baseline left ventricular ejection fraction, which was the only
variable affecting time to noncompliance. After the investigators
controlled for more baseline variables, the reduction in risk
associated with use of fish oil became significant (hazard ratio,
0.67; P=0.037) (multivariable analysis, Table).

It is interesting that the P value decreases in the multivari-
able analysis compared with the analysis that only considers
treatment. This is not necessarily due to confounding, which
was not large in this study. The effect is rather due to the fact
that a multivariable model that controls for factors that affect
the time to event increases the power to see a treatment effect
when the covariates are equally distributed between the
treatment groups, which is usually the case in clinical trials.
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This effect is quantified in Schoenfeld et al.2! When a study
is designed, it is often a conundrum to decide whether the
covariate analysis should be a primary or secondary analysis,
but the decision regarding the primary analysis and the
covariates to be used in the analysis should be made before
data collection for a confirmatory type of study. It has more
power at the cost of complexity.
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