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Survival Methods
Additional Topics

David Oakes, PhD; Derick R. Peterson, PhD

Survival analysis concerns outcome variables that are the
times to the occurrence of events such as myocardial

infarction, hospitalization for heart failure, or death. Rao and
Schoenfeld1 give an excellent account of frequently used
techniques in survival analysis, including Kaplan–Meier es-
timation of a single survival distribution, the log-rank test for
comparing 2 survival distributions, and Cox’s proportional-
hazards model (PHM) for assessing the affect of multiple
predictors on survival.

Our article delves more deeply into the methodology, empha-
sizing the use of time-dependent covariates both as devices
for assessing the fit of a model and as risk predictors in their
own right. We review the accelerated life model as an
important alternative to the PHM. We address the analysis of
event-time data when individuals may experience multiple
events and the use of combined end points. We describe the
use of cumulative incidence curves as an alternative to
Kaplan–Meier estimation in situations involving competing
risks. Finally, we mention some issues related to the analysis
of quality of life and cost-effectiveness data in survival
studies.

Review of Cox’s PHM
Recall that the hazard function h(t) for an event at time t is the
instantaneous event rate among t subjects who have not yet
experienced the event. It is related to the survivor function
(probability of not yet having experienced the event), S(t), by
the expression h(t)��[1/S(t)]dS(t)/dt (Rao and Schoenfeld1).
Cox’s model states that the hazard function for an individual
with covariates x1, x2, . . ., x3 takes the form

(1) h�t;x1,x2,…,xk��h0�t�exp��1x1��2x2�· · ·��kxk�

where h0(t) is the so-called baseline (or reference) hazard
and the xj are covariates. Model 1 implies that the ratio of the
hazard functions for 2 individuals is constant over time
because the term h0(t) cancels from the ratio and the other
terms are free of t. When, as often happens, a covariate x is
an indicator variable, say, in a clinical trial, and x�0 or x�1
for patients randomized to placebo or active therapy, respec-
tively, then the quantity exp(�) represents the hazard ratio for
patients assigned to active therapy compared with patients
assigned to placebo. When k�1, so that the model includes

�2 covariates, the effect of each is interpreted as if all the
others are “held constant.” Software for fitting Cox’s model
provides estimates �̂j of the coefficients �j for each covariate
in model 1 and their SEs, SE (�̂). The corresponding esti-
mated hazard ratio is exp ��̂�, and its 95% CI is (exp{�̂�
1.96SE (�̂)}, exp{�̂�1.96SE (�̂)}). To be precise, such a CI,
calculated from an estimate and its SE, is called a Wald
interval; other approaches to the calculation are sometimes
preferable, but the Wald approach is usually adequate. When
x is numeric (eg, blood pressure in mm Hg or body mass
index in kg/m2), then � and its associated quantities are
interpretable analogously to regression coefficients. For ex-
ample, if � represents the coefficient of blood pressure
(measured in mm Hg), then exp(�) represents the hazard ratio
associated with a 1-mm Hg increase in blood pressure.

Note that, depending on the units of x, a hazard ratio
close to unity can represent a very substantial effect; as an
extreme example, a hazard ratio of 1.001 for the covariate
age expressed in days corresponds to a hazard ratio of
1.001365�1.44 per year of age or 1.4410�38.3 per decade of
age. Likelihood ratio statistics with approximate �2 distribu-
tions can be used to compare 2 different models, provided
that 1 is nested within the other. This happens, for example,
if the covariates in a “smaller” model are a subset of the
covariates in a “larger” model. As an illustration, the statistic
for comparing a model for predicting mortality with age and
gender as covariates with a model including only age answers
the question of whether gender is associated with mortality,
controlling for (or adjusting for) age. The related, but differ-
ent, question of whether the relationship between mortality
and gender depends on age can be addressed by including an
additional term representing the statistical interaction be-
tween age and gender. This idea is illustrated below.

Application to the Multicenter Diltiazem
Postinfarction Trial

We illustrate Cox’s model with an analysis of the Multicenter
Diltiazem Postinfarction Trial (MDPIT)2 of the effect of
diltiazem therapy on the risk of a recurrent cardiac event. In
this study, 2466 post–myocardial infarction patients were
randomized to placebo or diltiazem therapy. The primary
outcome measure was the time from enrollment to the first
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recurrent cardiac event, defined as cardiac death or nonfatal
reinfarction. For patients who did not experience a recurrent
cardiac event (the majority), the time to event was censored at
the last follow-up visit (see Rao and Schoenfeld1). Although
diltiazem therapy had no significant overall effect, further
analysis revealed a significant interaction between diltiazem
therapy and pulmonary congestion on x-ray. Among patients
without pulmonary congestion on x-ray, diltiazem therapy
reduced the risk of an event; however, among patients with
pulmonary congestion, the risk was increased. Although such
post hoc subgroup analyses must be interpreted very cau-
tiously, this finding is made more credible by the statistical
significance of the test for interaction or inequality of the 2
hazard ratios. The first entry in Table 1 represents the hazard
ratio estimate with 95% CI for the effect of pulmonary
congestion for patients allocated to placebo, ie, (PC, P) versus
(No PC, P). The second and third entries give corresponding
estimates for the effect of diltiazem therapy compared with
placebo among patients without pulmonary congestion, (No
PC, D) versus (No PC, P), and among patients with pulmonary
congestion, (PC, D) versus (PC, P). We define 3 binary
covariates. Although the reader need not dwell on this, an
appropriate coding to obtain these hazard ratios is to set x1�1
for patients with PC, x1�0 for patients without PC, x2�1 for
patients in the (No PC, D) group, x2�0 for patients in the
other 3 groups, x3�1 for patients in the (PC, D) group, and
x3�0 for patients in the other 3 groups.

A slightly different coding of the 3 covariates is more
convenient for testing for statistical interaction, ie, that the
true hazard ratio for diltiazem relative to placebo differs for
patients without and with pulmonary congestion. We obtain
P�0.03, suggesting that diltiazem has different effects in the
2 groups.

Because Cox’s model estimates ratios of hazards rather
than absolute values, we must select 1 category of patient (ie,
1 set of covariate values) as a reference value for which the
hazard ratio is set to unity. The software for fitting Cox’s
model can be used to construct survival curves corresponding
to specific sets of values for the covariates. These curves are
constructed under the proportional-hazards assumption, so
they may differ from Kaplan–Meier estimates based on relevant
subsets of the data because the latter curves are not con-
strained by this assumption. However, they are more variable
if the assumption holds.

The prespecified primary analysis of MDPIT included
adjustment for 3 further covariates: New York Heart Asso-
ciation classification, use of �-blockers at randomization, and
days since index myocardial infarction. Adjustment means
that covariates representing these factors were included in
model 1, along with the treatment comparisons of primary
interest.

The analysis also included stratification on enrolling hos-
pital. This means that different and possibly nonproportional
baseline hazard functions, h0(t), are allowed for each enroll-
ing hospital. This forces the analysis to depend on compari-
sons of patients within the same stratum (hospital), eliminat-
ing effects of systematic differences between strata. When
there are many strata (MDPIT had 38), this approach is generally
preferable to the use of additional covariates to adjust for strata
effects because it yields a more stable estimation procedure and
provides greater flexibility in allowing nonproportional-hazards
functions in different strata.

When the additional baseline covariates are strongly
associated with survival, the adjusted hazard ratios for the
treatment effect are generally more precise than the unad-
justed estimates. In MDPIT, the hazard ratios and associated
95% CIs for the effect of diltiazem relative to placebo became
0.77 (95% CI, 0.61 to 0.98) for patients without pulmonary
congestion and 1.41 (95% CI, 1.01 to 1.96) for patients with
pulmonary congestion, with P�0.0042 for the test of inter-
action. When adjustment covariates are both predictive of the
outcome and highly correlated with the variables of interest,
as often happens in observational studies, adjusted estimates
can differ substantially from unadjusted estimates, not only in
precision but also in magnitude and even direction.

The Accelerated Life Model as an
Alternative Formulation

For complete (ie, uncensored) data, multiple linear regres-
sion is a standard technique for assessing the joint effect of
predictors x1, x2,. . .,xk on an outcome variable y. The re-
sponse is expressed as a linear combination of covariates plus
a random “error” (or deviation). These deviations typically
are assumed to have zero mean and constant variance and to
be uncorrelated. Because survival times are necessarily pos-
itive, it is usual to take their logarithms before fitting models
to survival data. Because the logarithm of a product of
numbers equals the sum of their logarithms, the parameters �j

represent multiplicative rather than additive effects on the
original time scale. This gives the following model:

(2) logT��0��1x1�· · ·��kxk��

This model is called the accelerated life or accelerated
failure time (AFT) model. It has some similarities with model
1 in the way that the covariates xi are combined into a single
linear predictor via the coefficients �i, but there also are some
important differences. In the AFT model, the linear combi-
nation of covariates predicts the mean value of the response
variable y, whereas in the PHM, it predicts the hazard
function. As mentioned by Rao and Schoenfeld,1 for expo-
nential distributions, which have constant hazard functions,
the entire right side of model 1 does not depend on t, and the
AFT model (model 2) is equivalent to the PHM. The only

Table 1. MDPIT Study: Analysis Using the PHM

Hazard Ratio (PC Versus No PC)
for Patients Assigned to Placebo

Hazard Ratio (D Versus P)
for Patients Without Pulmonary Congestion

Hazard Ratio (D Versus P)
for Patients With Pulmonary Congestion

1.82 (1.36–2.42) 0.80 (0.63–1.01) 1.25 (0.94–1.74)

Values in parentheses are 95% CI.
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difference is in the sign of the coefficients; because increas-
ing hazards correspond to shorter survival times and a lower
mean survival, a positive � in model 1 corresponds to a negative
� in model 2.

This equivalence extends to a wider class of distributions,
namely those with a power law form for h0(t), ie, with h0(t)
proportional to tk�1. This class of distributions, known as the
Weibull family, has increasing hazard if k�1, has decreasing
hazard if k�1, and reduces to the exponential family with
constant hazard function if k�1. Software for fitting AFT
models assuming exponential or Weibull distributions, or
other parametric families including the log normal and log
logistic, to censored survival data is widely available. Various
methods for fitting semiparametric AFT models to censored
data (ie, models that do not assume a specific form for the
distribution of the errors �) have been developed, but their use
is not yet common in applied work.

It typically happens that PHMs and parametric AFT models
fitted to the same data set will give estimated coefficients of
opposite directions but in similar numerical ratios and with
similar levels of relative importance as judged by their
corresponding Wald statistics (ratio of the estimated coeffi-
cient to its SE). However, this may not be the case if the true
model does not have a monotone hazard (So-called “bathtub”
hazard functions, which decrease initially, reach a minimum
value, and subsequently increase, are an example of this).

We fit Weibull distributions to the data from the MDPIT
study and contrast this fit with the fit from the PHM. The
AFT model (model 2) asserts that the percentiles of the
distributions of survival time corresponding to different
values of the covariate are in a fixed ratio; ie, the ratio of the
medians of the 2 distributions is the same as that of their 10th,
20th, etc, percentiles. This ratio is called the scale factor.
Table 2 presents estimates of the scale factors in the same
format as the hazard ratios in Table 1.

Comparison of Tables 1 and 2 shows the expected pattern
of effect. Hazard ratios exceeding unity correspond to scale
factors less than unity and vice versa. The estimated value of
the index parameter k in the Weibull distribution is �̂ � 0.54.
This corresponds to a decreasing hazard function; the risk of
an event decreases with longer time from entry.

Testing Proportional Hazards:
Application to MDPIT

We now consider possible violations of the PHM. Covariates
that are highly predictive of early failure may become less
influential as time progresses. For example, a simple way to
investigate this possibility is to allow separate hazard ratios
for different time periods, thus making the proportional-
hazards assumption only within each smaller time interval.
For example, in the MDPIT study of the effect of diltiazem on
the risk of a recurrent cardiac event, we fit separate coeffi-

cients for the time periods of 0 to 90 days, 90 to 365 days, and
�365 days. Specifically, in equation 1 we may replace certain �j

by �j1, �j2, or �j3, depending on whether t�90, 90�t�365, or
t�365. Such a model can be fit with most standard software.
The proportional-hazards assumption can then be formally
tested via the likelihood ratio test for the null hypothesis H0:
�j1��j2��j3 for all j. Overall, the fit of the PHM was
satisfactory (�2

6�10.6, P�0.1), although there was some
suggestion that both the adverse effects (ie, among patients
with pulmonary congestion) and the beneficial effects (among
patients without pulmonary congestion) of diltiazem therapy
were more evident early than later.

If Weibull distributions of survival time, as presented
earlier, are assumed for each of the 4 groups of patients, then
the proportional-hazards assumption is satisfied if and only if
the 4 index parameters are the same. This null hypothesis can
be tested by comparing the fit of a single model to the
combined data with that of 4 different Weibull distributions
fit to the data from each group. The likelihood ratio statistic
is �2

3�3.52 (P�0.32), indicating little evidence against the
null hypothesis.

The Long-QT Syndrome Analysis: An
Example of Nonproportional Hazards

We now turn to a recent observational study among long-QT
syndrome (LQTS) adolescents 10 to 20 years of age.3 The
primary outcome was the occurrence of aborted cardiac arrest
(ACA) or sudden cardiac death (SCD). Subjects were in-
cluded in the study if they had survived to 10 years of age
without suffering an event, and age was used as the primary
time variable. Figure 1 shows Kaplan–Meier estimates of
survival over the decade. The curves do not cross. Survival
for female subjects is always higher than survival for male
subjects at each age in this range, but the pattern of the curves
suggests that the risk is lower for female subjects over the
earlier years but then increases more rapidly than the risk for
male subjects. The standard log-rank test applied to these data
gives P�0.31. The reason for the nonsignificance is not lack
of information—the analysis is based on a total of 126 events
observed among 2772 adolescents— but violation of the
proportional-hazards assumption.

In contrast, were follow-up for this analysis to have been
concluded at 13 rather than 20 years of age, the log-rank
probability value would have been highly significant
(P�0.0001) despite being based on only 27 events. Analysis
using time-dependent covariates suggested that in the range
of 10 to 13 years of age the hazard for male subjects was 4.6
times that for females (95% CI, 2.0 to 10.4), that from 13 to
18 years of age the hazards for the 2 genders were approxi-
mately equal (hazard ratio, 1.1; 95% CI, 0.6 to 1.9), and that
from 18 to 21 years of age the hazard for female subjects was
somewhat higher than that for male subjects (hazard ratio,

Table 2. MDPIT Study: Analysis Using the Accelerated Life Model

Scale Factor (PC Versus No PC)
for Patients Assigned to Placebo

Scale Factor (D Versus P)
for Patients Without Pulmonary Congestion

Scale Factor (D Versus P)
for Patients With Pulmonary Congestion

0.33 (0.19–0.57) 1.52 (0.97–2.36) 0.65 (0.35–1.20)

Values in parentheses are 95% CI.
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2.3; 95% CI, 1.0 to 5.6). This pattern of time-dependent
effects (nonproportional hazards) persisted when other co-
variates were included in the model.

Because of this nonproportionality, the authors chose to
stratify on gender when examining the effect of other predic-
tors, including the QTc interval. As indicated above, such an
analysis is equivalent to fitting models of the form of equation 1
separately for male and female subjects, ie, allowing different
functions h0(t) for the 2 genders, but requiring that the fitted
coefficients �j be the same for the 2 genders. The estimated
effect of QTc can then still be summarized by a single hazard
ratio applicable both to male and female subjects. It is more
difficult to summarize the effect of gender in a way that is
both succinct and accurate. Simply quoting the single, highly
nonsignificant probability value or associated hazard ratio
would be grossly misleading because it would suppress the
clear pattern of divergence followed by partial convergence
of the 2 curves shown in Figure 1.

Figure 2 shows plots of estimated survival curves from
a gender-stratified Cox model, adjusting now for the QTc
interval, here dichotomized at 530 ms. The hazard ratio for
subjects with a QTc interval �530 ms compared with those
of the same gender and QTc interval �530 ms was 3.0 (95%
CI, 2.0 to 4.2; P�0.0001). Figure 2 forces proportionality for
the 2 QTc-specific curves within each gender, but the curves
for male and female subjects reflect the actual data, separat-
ing at first and then converging, like the 2 curves in Figure 1.
Alternatively, we could plot the individual Kaplan–Meier
curves for all 4 groups; however, this strategy becomes
problematic when many groups are to be compared because
each curve would then be based on very small samples.

Time-Dependent Covariates for
Dynamic Effects

Time-dependent covariates can be used to model dynamic
effects. For example, in the MDPIT study, we examined the
prognostic significance of nonfatal reinfarction as a predictor
of cardiac death.4 This was done by incorporating an (addi-
tional) covariate x(t) into the PHM model 1. This covariate
took the value x(t)�0 for any patient who did not have a
nonfatal reinfarction; for a patient who did suffer a nonfatal
infarction, this covariate was x(t)�0 before the occurrence of
this event and x(t)�1 after its occurrence. The hazard ratio
exp(�) associated with the corresponding coefficient � then
represents the risk of cardiac death among patients who have
suffered a recurrent event relative to that among patients who
have survived the same length of time since entry, have not
suffered a recurrent event, and have the same values of any
baseline covariates also included in the model. For our data,
after adjustment for several baseline predictors, the occur-
rence of a nonfatal reinfarction (ie, subsequent to the index
infarction that led to the patient being eligible for the study)
increased the subsequent risk of cardiac death 3-fold among
all patients and 5-fold among patients who had no infarction
before the index infarction.

Somewhat similar issues arose in the early days of heart
transplantation surgery. Because eligible patients have to wait
for a suitable donor heart to become available, in evaluations
of the effectiveness of heart transplantation at prolonging life,
it is not valid just to compare the overall survival of patients
who ultimately receive a heart transplant with those who do
not. The inclusion of any such covariate that effectively looks
ahead in time (eg, to the time at or after transplant) to

Overall logrank p−value = 0.310; censored at age 13, logrank p−value < 0.0001
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Figure 1. LQTS study: survivor functions for ACA/SCD by gender. Survivor functions were calculated for time from 10 years of age to
ACA/SCD using separate Kaplan–Meier estimates for male and female subjects. See text for details.
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determine its value at earlier time points (eg, at the time
origin) constitutes a critical violation of the fundamental
principles and assumptions underlying all survival analysis
methods. The pretransplant survival (measured from the point
at which the patient is judged eligible for a transplant) of
patients who receive a transplant should be credited to the
nontransplanted group. This can be done by defining a
time-dependent covariate x(t) that takes the value x(t)�0 for
a patient until and unless that patient receives a transplant and
subsequently changes to x(t)�1. When analyzed this way, the
early data from some early studies did not show any benefit
of heart transplantation in saving life. Of course, the picture
is now very different because of the development of drugs
such as cyclosporine that can control the risk of rejection. For
further discussion of the statistical issues, see Turnbull et al,5

Mantel and Byar,6 and Cox and Oakes.7

In the LQTS study, it was decided to model �-blocker
therapy as a time-dependent covariate. Note that this therapy
was introduced as and when it was judged to be needed; the
situation would be very different in a randomized clinical trial
to evaluate the effectiveness of �-blocker therapy. Use of a
time-dependent covariate to represent �-blocker therapy al-
lows patients to switch from 1 risk group to the other (on/off
�-blockers) over time in accordance with their actual use of
this medication at that time. Similar reasoning applies to the
effect of prior events such as syncopal episodes. Hobbs et al3

recently demonstrated that considering both the number and
timing of past syncopal episodes significantly improved their
ability to estimate the risk of ACA/SCD. As expected, having
�1 prior event or having more recent events (within 2 years)

significantly elevated the risk of ACA/SCD compared with
having fewer or more distant prior events.

Competing Risks and Composite Outcomes
As mentioned, the primary outcome for the MDPIT study was
the time to the earlier of cardiac death or nonfatal reinfarc-
tion. One reason for using such composite outcome measures
is to gain power. If the PHM is correct, the power to detect a
treatment effect of a specified magnitude is determined by the
number of events. For example, in a randomized study with
equal allocation to active treatment and placebo, 66 events are
required to provide 80% power to detect a true hazard ratio of
2.0 using a 2-sided significance level of 0.05. Detecting a
hazard ratio of 1.5 under the same assumptions would require
191 events. Schoenfeld8 provides a discussion. In MDPIT,
251 patients suffered cardiac death. Inclusion of the nonfatal
reinfarctions increased the total number of primary outcome
events to 428, thus substantially increasing the overall power
of the study to detect treatment effects of moderate size.
(Note that this calculation still counts each patient at most
once. Only the first event is counted for patients who suffer
multiple reinfarctions or a reinfarction followed by cardiac
death.) In such situations, it is important to check, informally
at least, that the effects of the treatment on the 2 components
of the end point are in a consistent direction. Otherwise, a
beneficial effect on 1 component might be balanced by an
adverse effect on another component, leading to a possibly
misleading conclusion of no overall effect. To avoid this
problem, it is sometimes recommended that separate analyses
be conducted for each component of the composite scale.

Not Kaplan−Meier curves: Within gender strata, PH for QTc has been enforced by the stratified Cox model
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Figure 2. LQTS study: survivor functions from a gender-stratified model. Survivor functions for time from 10 years of age to ACA/SCD
were calculated from a Cox model stratified by gender and including a binary indicator variable for QTc interval. Within each gender,
the 2 QTc curves are constrained to follow the PHM but not vice versa. See text for details.
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This approach has its own serious problems, however, espe-
cially if the different components are ordered by severity in
some sense (clearly, a cardiac death is a more “severe”
outcome than a nonfatal reinfarction). Fleiss et al9 criti-
cized the then-widespread practice of analyzing nonfatal
reinfarctions separately, treating deaths as censoring events.
Nonfatal reinfarction may be reduced by either a lower
overall rate of reinfarction or a higher fatality rate among
these reinfarctions. The 2 possibilities clearly have very
different implications.

A related issue concerns the appropriate presentation of
cumulative incidence rates and survival curves for different
possible outcomes. Consider, for example, calculation of the
cumulative incidence of nonfatal reinfarction. In computing
the survival curve for cardiac death, we would not censor
patients who suffered a nonfatal reinfarction. Further
follow-up data on these patients are available, so there is no
need to exclude these data from the analysis. Moreover, as we
saw previously, patients who suffer a nonfatal reinfarction are
subsequently at substantially increased risk of cardiac death,
so censoring their follow-up time at the reinfarction would
lead to a falsely optimistic estimate of overall survival.
Presentation of the nonfatal reinfarction data is more difficult.
We cannot say what the nonfatal reinfarction rate would have
been among the patients who died if they had not died, and
even if we could, that information would not be very useful.
The “noninformative censoring” assumption (Rao and Schoen-
feld1) implicit in the calculation of the Kaplan–Meier estimate
would not be satisfied. Pepe10 suggested calculating cumula-
tive incidence rates, which estimate the marginal probability
of the relevant event having occurred before time t, in
contrast to the Kaplan–Meier estimate, which purports to
estimate the conditional rate of the event of interest if all other
types of event were removed. As Pepe stated, “Competing
risks are acknowledged as such in the cumulative incidence
function.” More recently, Fine and Gray11 proposed an analog
of Cox’s model for cumulative incidence functions.

Multiple Events
Throughout this article, we have assumed that the statistical
analysis includes only a single event of interest for each
patient. Multiple reinfarctions can occur, of course (1 patient
in MDPIT had 4), and the question arises as to whether and
how information on multiple events should be included in the
analysis. The simplest approach, according to Andersen and
Gill,12 is to extend the Cox model for the hazard function to
a similar model for the intensity function, now defined as the
time-dependent rate of occurrence but without the condition
that the event has not already occurred. However, this
approach, at least in its simplest form, ignores the difference
between multiple events happening to the same individual
and single events happening to multiple individuals. There-
fore, we do not recommend it for routine use.

Two popular approaches to the analysis of multiple events
are the conditional approach of Prentice et al13 and the
so-called marginal approach of Wei et al.14 In the conditional
approach, the times between successive events are modeled
sequentially, with the risk of each event expressed condition-
ally on the entire sequence of previous events experienced by

that individual. It is usual to “reset” the time clock after each
event, leading to modeling the sequence of “gap times” (inter-
vals between events) rather than the event times themselves
(although the original paper considered both possibilities).

In the marginal approach, separate PHMs of the form of
model 1 are postulated for the occurrence of the first, second,
etc, event to occur to each individual. Parameter estimates
from the separate analyses are then combined, and an adjust-
ment is made to the SE to account for the correlations
between the estimates (which can be substantial). The con-
ditional approach is more natural and mechanistically plau-
sible. The marginal approach has the counterintuitive feature
that individuals are considered “at risk” for their second and
subsequent events even before they have experienced their
first event. However, when the original time origin has a very
specific meaning in terms of the analysis (when, for example,
it represents the date of randomization in a clinical trial), the
marginal approach has the advantage of linking the occur-
rence of each outcome to that same time origin and thus
providing greater power to detect a given magnitude of
treatment effect, supposing the effects on the different com-
ponents are qualitatively consistent.

Both approaches are now available in standard software.
The key message to the practitioner is that the different
approaches can lead to different models and thus to different
parameter estimates. In particular, it is important to be clear,
when reviewing an analysis, whether the parameter estimates
refer to total times to events or to gap times between events.

Statistical Analysis of Quality of Life and
Medical Cost Data

There is increasing interest in the evaluation of the effect of
medical and surgical interventions on both the quality of life
experienced by the patient and the costs incurred or saved by
the procedure. Suppose that we have devised measures Q(t)
of the total cumulative quality of life experienced by a patient
up to time t from entry to the study and C(t) of the total costs
incurred. The definition and construction of such measures
involve complex issues outside the scope of this article, but
we may suppose that, for each patient, we have observed or
calculated data on C(t) and Q(t) at intervals throughout the
study or until follow-up on that patient ceases for any reason.
For patients who die, we will have complete data, while for
those who survive to the end of the study or who are lost to
follow-up, we will have incomplete data, including observa-
tions only up to the point of last contact. Statistical analysis of
such data must allow for the informative nature of such
censoring. Patients who die will tend to have had a lower
quality of life and higher rate of accumulating costs than
patients who survive. The correct method of analysis involves
a concept known as inverse probability weighting. Each
individual with complete data is taken to represent a number
w���1 of individuals in the underlying population who
might have been observed had there been no censoring, where
� is the (estimated) probability that such an individual would
not be censored.15–18
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