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Stat

tical Primer for Cardio

cular Research

Rank Score Tests

Lisa M. LaVange, PhD; Gary G. Koch, PhD

Nonparametric statistical methods are useful tools for data
analysis when there is reason to believe that the outcome
variables of interest may fail certain distributional assump-
tions required for parametric methods. Variables may be
ordered categories in nature and thereby not suitable for
analysis methods that assume normally distributed variables,
such as ¢ tests or analyses of variance and covariance.
Variables may also be metric or continuous but subject to
excessive variability or the presence of outliers. When the
research hypothesis involves comparing a sample of subjects
under 2 conditions or at 2 time points or comparing 2 samples
of subjects with respect to an outcome variable of interest,
then univariate nonparametric methods based on rank score
tests can be invoked. A study design feature such as random
assignment of conditions or treatments is typically all that is
required for these methods to be valid. Furthermore, the
methods can be quite powerful under a number of alterna-
tives, particularly those involving shifts in the median.

The Wilcoxon signed rank test, the Spearman rank corre-
lation coefficient, and the Wilcoxon rank sum test are among
the most commonly used nonparametric tests and cover a
variety of research questions. These tests are described here.
Although the focus is on hypothesis testing, related methods
for estimation of confidence intervals are also presented.
Extensions of nonparametric methods to handle stratification
and covariate adjustment are also described. Scenarios in
which nonparametric methods may be most useful and the
power they can be expected to yield are discussed. The
methods are illustrated with data from a clinical trial assess-
ing the impact of exposure to low levels of carbon monoxide
on exercise capacity in patients with ischemic heart disease.

Wilcoxon Signed Rank Test
When the response variable of interest is a metric measure-
ment that follows a symmetrical distribution with substantial
variability or outliers, then the Wilcoxon signed rank test'? is
a useful test for differences between paired samples of
subjects or paired conditions on a sample of subjects. For a
sample of size n, let i=1,...,n identify the subjects in the
sample, let X; and Y; denote the observed values of the
outcome variable under the 2 conditions or at the 2 time
points of measurement for the ith subject, and let d; denote the
difference (X;—Y;). If A represents the median of the distri-

bution of difference values {d;}, then the null hypothesis is
that A=0. That is, the null hypothesis is the hypothesis that
the true, underlying difference between the 2 conditions is
zero. The following steps describe the calculation of the test
statistic to assess the null hypothesis against the alternative of
a shift in location associated with one of the conditions or
time points:

1. Differences {d;} are formed for each pair of observations
on each subject.

2. The ranks of the absolute values of the nonzero differences
are computed, with ties assigned the average of the
applicable ranks (called midranks); zero differences are
ignored.

3. The signs of the differences are computed as —1 or 1.

4. Signed ranks are then computed by multiplying the sign of
the difference by the corresponding rank.

5. The test statistic is calculated by dividing the sum of the
signed ranks U by the square root of the sum of squares of
the signed ranks S to form U/S; S is the standard deviation
of U.

The null hypothesis that the median difference is zero is
assessed by comparing the test statistic U/S to critical values
of the standard normal distribution for large sample sizes (eg,
n=20) or by tabulating the exact critical region for small
sample sizes. Computation of P values from critical values
for both the normal approximation and the exact distribution
is available through commercial statistical software packages
(eg, SAS Proc Univariate?® and StatXact*).

When there are no ties among the observed differences and
no differences equal to zero, then the signed rank test statistic
simplifies to a commonly used form. If 7" denotes the sum of
the positive ranks, then U=2T—n(n+1)/2 and

= \n(n+1)(2n+1)/6.

The significance of U/S is determined by comparison with a
standard normal distribution or by computation of the exact
critical region, as above.

If it is assumed that the distribution of the {d;} is contin-
uous and symmetrical, a point estimate of the median differ-
ence A is given by

A=Median| f,=(d+d;)/2] for 1=<i<i'=n.
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The n(n+1)/2 quantities involved here are the n differences
and their n(n—1)/2 pairwise averages. Furthermore, a confi-
dence interval can be constructed about A via the methods of
Hodges and Lehmann on the basis of the exact distribution of
T.l.5v6

The asymptotic relative efficiency (ARE) is a useful way to
compare a nonparametric test with its parametric counterpart.
Briefly, the ARE can be defined as the ratio of sample sizes
required by the 2 statistics to achieve the same power under
a certain distributional assumption.” For a test of paired
samples or paired conditions on a sample of subjects, the
paired ¢ test would be the parametric test of choice. The ARE
of the Wilcoxon signed rank test relative to the paired ¢ test is
at least 0.864 in the entire class of continuous symmetrical
distributions and at least 0.955 when the differences {d;}
follow a normal distribution.>

Example Dataset

The methods described above are illustrated with an example
from cardiovascular research. Example data are from a
clinical trial designed to assess the impact of low levels of
exposure to carbon monoxide (CO) on exercise tolerance in
patients with ischemic heart disease.® A total of 42 nonsmok-
ing patients with documented obstructive coronary artery
disease and a history of exercise-induced ischemia were
enrolled in this 2-period crossover study. The study period
consisted of 3 days, a training day and 2 exposure days during
which patients were exposed to either air or CO in an
environmentally controlled chamber. On all 3 days, patients
followed a bicycle exercise protocol in which exercise was
conducted at increasing work loads until angina, fatigue, or
hypertension occurred. On the first or training day of the
study, patients became familiar with the environmentally
controlled chamber and conducted a training exercise on the
bicycle. Patients demonstrating exercise-induced ischemia
during training were then randomly assigned to one of 2
exposure sequences, exposure to air followed by carbon
monoxide (Air:CO) and the reverse (CO:Air). Cardiac func-
tion and exercise capacity were measured on each day after
exposure in the chamber.

A total of 30 patients (8§ women and 22 men) successfully
completed training and were randomized to exposure se-
quence. The outcome variable used for illustration here is
duration of exercise (seconds) after the exposure condition,
provided in Table 1 for each patient. This outcome variable
typically has a somewhat skewed distribution and can be
subject to outliers, and therefore the use of nonparametric
methods for hypothesis testing is particularly appealing. The
order variable groups the patients according to order of
exposure (1=CO first and 2=Air first). Therefore, 16 pa-
tients were exposed to CO on the first day and exposed to Air
on the second day, and 14 patients were exposed to Air on the
first day, followed by CO on the second day. The baseline
measure corresponds to the duration of exercise recorded on
the training day before randomization.

The Wilcoxon signed rank test can be used to test for
differences between duration of exercise under the 2 expo-
sures. First, differences are formed between the 2 exercise
times, and the absolute values of the nonzero differences are
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TABLE 1. Example Data From Ischemic Heart Disease Clinical
Trial: Duration of Exercise in Seconds After Exposure to Air
and CO

Duration After Duration After

Patient ~ Order Baseline, s Exposure to Air, s Exposure to CO, s
1 1 240 270 285
2 1 270 220 220
3 1 450 406 370
4 1 540 540 480
5 1 1020 1020 1020
6 1 560 540 540
7 1 240 180 180
8 1 810 780 780
9 1 780 780 780
10 1 750 868 840
1 1 300 505 330
12 1 190 540 360
13 1 360 510 322
14 1 1002 1020 1020
15 1 475 462 540
16 1 900 798 720
17 2 390 370 300
18 2 405 325 300
19 2 285 280 280
20 2 640 795 720
21 2 400 345 320
22 2 1100 1280 1170
23 2 840 720 490
24 2 780 740 720
25 2 510 780 780
26 2 540 510 550
27 2 395 1020 780
28 2 855 614 750
29 2 1200 840 840
30 2 540 720 759

ranked across the 30 patients. Differences of zero are ignored,
and midranks are used in the case of ties. Signs are then
applied to indicate which differences are <0 or >0, corre-
sponding to a decrease and an increase in exercise time,
respectively. Table 2 provides the rank matrix for the exam-
ple data. In this example, the sum of the positive ranks is
T=166.5, the sum of the signed ranks is U=123, the square
root of the sum of squares of the signed ranks (the standard
deviation of U) is S§=53.56, and the test statistic is
U/§=2.296. The exact P=0.0198, and the approximate
P=0.0217, both indicating that the null hypothesis of a zero
median for the difference between exposure conditions in
exercise times is rejected in favor of a significant difference.
Subjects were able to exercise for significantly longer periods
of time after exposure to Air than after exposure to CO. The
Hodges-Lehmann point estimate for the median difference is
54.0 seconds with a 95% confidence interval of 15.5 to 110.0.
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TABLE 2. Rank Matrix for the Wilcoxon Signed Rank Test

Difference Air Signed

Patient Order vs CO, s Ranks*
2 1 0
5 1 0
6 1 0
7 1 0
8 1 0
9 1 0
14 1 0
19 2 0
25 2 0
29 2 0
1 1 —15 -1.0
24 2 20 2.0
18 2 25 35
21 2 25 3.5
10 1 28 5.0
3 1 36 6.0
30 2 -39 -7.0
26 2 —40 -8.0
4 1 60 9.0
17 2 70 10.0
20 2 75 11.0
15 1 —78 -125
16 1 78 12,5
22 2 110 14.0
28 2 -136 -15.0
11 1 175 16.0
12 1 180 17.0
13 1 188 18.0
23 2 230 19.0
27 2 240 20.0

*Signed ranks reflect ranks of absolute values of differences, with zeroes
ignored and midranks used in the case of ties.

Spearman Rank Correlation Coefficient
The Spearman rank correlation coefficient is a measure of
association between 2 variables that is particularly useful
when 1 or both variables are either ordered categorical or are
continuous but from a highly skewed distribution. The
coefficient can be used to test the null hypothesis of no
association between the 2 variables versus the alternative
hypothesis of an association. To compute the Spearman rank
correlation coefficient, the values of each of the 2 variables
are first ranked, with the use of midranks in the case of ties,
and the standard Pearson correlation coefficient is then
computed with the use of these ranks. Let i=1,. . .,n identify
the n subjects in the sample, and let X; and Y; denote the
variable values for the ith subject. Let R; and S; denote the
ranks of X; and Y, respectively. Then the Spearman rank
correlation coefficient is given by the following equation:

D (R—R)(S,—S)
rs= = =
D R-RPS(S-3)?

A test of significance for the association between the 2
variables of interest (X and Y) is given by (n—1)r¢, which is
approximately )* distributed with 1 degree of freedom, when
the 2 variables are independent and thereby have no associ-
ation (ie, the null hypothesis is true).’

The Spearman rank correlation coefficient is appropriate
for both ordered categorical and continuous variables. The
computations are valid with the use of midranks, and there-
fore ties with respect to either variable can be accommodated.
Critical values of the test statistic can be computed with the
large-sample x* approximation when sample sizes are large
(eg, n=40) and through tabulation of the critical regions of
the exact distribution, when sample sizes are small. The
statistical procedures SAS Proc FREQ? and StatXact* both
provide exact probability levels for the Spearman rank
correlation test.

Example Dataset, Continued

In the example study, it may be of interest to determine
whether the differences in exercise times under the 2 expo-
sure conditions vary with baseline values. If baseline appears
to be correlated with differences in exercise times, then an
analysis that adjusts for baseline differences among subjects
may be warranted. The Spearman rank correlation coefficient
can be applied to assess this correlation. To compute the
correlation coefficient, the differences in exercise times
between the 2 conditions require ranking, irrespective of zero
values. Midranks are again used in the case of ties. The
ranked values are provided in Table 3.

The Spearman rank correlation coefficient for baseline by
differences in exercise times is —0.1093 with P=0.5564,
indicating no significant association between these 2 vari-
ables. A logical follow-up question is whether baseline is
correlated with exercise times after either exposure condition.
The Spearman rank correlation coefficient between the base-
line value and exercise time after exposure to Air is 0.7843
(P<<0.0001) and between baseline and exercise time after
exposure to CO is 0.8234 (P<<0.0001). Baseline values are
therefore strongly associated with postexposure exercise
times, regardless of the condition. The difference between
conditions with respect to exercise duration does not, how-
ever, appear to vary with baseline.

Wilcoxon Rank Sum Test
When the research question of interest involves comparing 2
samples or groups of subjects with respect to a response
variable, such as comparing disease outcomes among patients
randomized to receive a test versus control treatment, the
Wilcoxon rank sum test has utility. The null hypothesis in this
setting is that of no association between the 2 groups of
subjects and the response variable, and the alternative hy-
pothesis is that of a location shift for the population repre-
sented by one group versus the other, eg, relatively more
higher values of the response variable as a result of the test
treatment. The Wilcoxon rank sum test can be applied
regardless of whether the response variable is metric or
ordered categorical, and, as is the case for the signed rank
test, the methods of Hodges and Lehmann can be applied to



TABLE 3. Rank Matrix for the Wilcoxon Rank Sum Test and
Spearman Correlation

Difference Air vs

Patient Order Co, s Ranks*
1 1 —15 5.0
2 1 0 10.5
3 1 36 20.0
4 1 60 21.0
5 1 0 10.5
6 1 0 10.5
7 1 0 10.5
8 1 0 10.5
9 1 0 10.5
10 1 28 19.0
1 1 175 26.0
12 1 180 27.0
13 1 188 28.0
14 1 0 10.5
15 1 —78 2.0
16 1 78 24.0
17 2 70 22.0
18 2 25 17.5
19 2 0 10.5
20 2 75 23.0
21 2 25 17.5
22 2 110 25.0
23 2 230 29.0
24 2 20 16.0
25 2 0 10.5
26 2 —40 3.0
27 2 240 30.0
28 2 —136 1.0
29 2 0 10.5
30 2 -39 4.0

*Ranks of differences incorporate all values, including zeroes, and midranks
are used in the case of ties.

compute point estimates and confidence intervals for the
difference in medians between the 2 samples.

Let n, denote the sample size in the first group and n,
denote the sample size in the second group. The total sample
size is n=n,+n,. The Wilcoxon rank sum test is computed as
follows:

1. Ranks are assigned to all observations of the response
variable, pooling across groups of subjects and using
midranks for ties.

2. The test statistic can most easily be expressed in the
manner previously described for the Spearman rank cor-
relation coefficient by letting S have the value 1 for the n,
subjects in group 1, and the value O for the n, subjects in
group 2 (where n=n,+n,), and letting R correspond to the
ranks of the response variable.

3. The significance level is calculated by comparing the test
statistic to the x* distribution with 1 degree of freedom,
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when sample sizes are large (eg, =20 per group). When
sample sizes are small and subjects are randomly allocated
to groups (either by the design of the study or as implied
by the null hypothesis), the significance level is calculated
by comparing the test statistic to the critical region of the
exact distribution.'?

If there are no ties among the ranks, then the test statistic
simplifies to a commonly used form. Let 7 be the sum of the
ranks in group 1. Then the rank sum test statistic is given by

T—n,(n+1)/2
V/nlnz(n1+n2+l)/12'

The statistical procedures SAS Proc NPARIWAY? and
StatXact* both provide exact probability levels for the Wil-
coxon rank sum test.

If it is assumed that metric distributions for the 2 groups
have the same shape and scale, Hodges-Lehmann estimates
for the difference in medians between the 2 groups of
patients, A, and confidence limits about A are available. The
point estimate corresponds to the median of all pairwise
differences between observations in one group versus those in
the other group. There are n,n, such differences.

The ARE for the Wilcoxon rank sum test relative to the ¢
test for comparing 2 independent samples is at least 0.864
when the alternative hypothesis is a location shift in the
distributions of the 2 samples and all continuous distributions
are considered. When the distributions are normal, the ARE is
at least 0.955. Note that when the distributions of the
response variables are highly skewed, with long tails at either
end, then the ARE can exceed 1.0, indicating that the
Wilcoxon rank sum test will be more powerful than a 7 test in
this instance.!!

Example Dataset, Continued

The association between order of exposure and difference in
exposure times can be assessed by applying the Wilcoxon
rank sum test because order of exposure defines 2 groups of
patients for comparison. The sum of the ranks for subjects
exposed to CO first is 245.5, and the sum of the ranks for
patients exposed to Air first is 219.5. Expected values of
these 2 quantities under the null hypothesis of no association
are 248.0 and 217.0, respectively, where expected value is
defined as the average value of the sum of the ranks across all
possible randomizations of n, subjects to the first group and
n, subjects to the second group. The Wilcoxon rank sum test
statistic=219.5, and the exact P=0.9250, compatible with no
difference between the 2 groups with respect to differences in
exercise duration. The approximate P=0.9178. The Spear-
man rank correlation coefficient for order of exposure by
differences in exercise times is —0.0197, and P=0.9178,
identical to that associated with the Wilcoxon rank sum test,
which is compatible with no correlation between these 2
variables.

For this example dataset, the fact that the order of exposure
conditions did not appear to be related to the response
variable validates the use of a signed ranks analysis of
exercise times under the 2 conditions, ignoring the order of
exposure. Had order been related to response, then a proper
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crossover analysis of the study data would be required that
accounted for the order of exposure in assessing the impact of
CO versus air on exercise times.'?

Extensions of the Rank Sum Test
The Wilcoxon rank sum test can be extended to allow for
covariate adjustment in a nonparametric analog to ANCOVA.
Rank ANCOVA!? can be performed through the following
steps:

1. Ranks are computed for the response variable, ignoring
groups and using midranks in the case of ties.

2. Ranks are then computed for the covariate, ignoring
groups and using midranks in the case of ties.

3. A linear regression model is fit, regressing the ranked
response variable onto the ranked covariates (with groups
ignored), and the residuals are output.

4. A test of the association between group and the response
variable, adjusting for the covariate, is provided by apply-
ing computations like those described for the Spearman
rank correlation coefficient (the formula for r,), but with R
equal to the residuals, S=1 for subjects in group 1, and
S=0 for subjects in group 2.°

The method in step 4 for comparing the residuals in the 2
groups is an extension of the Wilcoxon rank sum test to
provide covariate adjustment. Rank ANCOVA can provide
additional power through the variance reduction typically
associated with a baseline covariate adjustment, even when
the response variable does not follow a normal distribution.!#

Stratification may also be an important aspect of the study
design resulting from patients being sorted into subsets before
the conduct of the study, (eg, male and female strata or strata
consisting of patients from different clinical centers in a
multicenter study). Extensions for the Wilcoxon rank sum test
and the test for the Spearman rank correlation coefficient that
account for stratification are available.>!© The stratified
extension for the Wilcoxon rank sum test is referred to as the
van Elteren statistic.'> Computations for this method are
shown in the technical appendix in the online-only Data
Supplement and are available through SAS Proc FREQ.?

Example Dataset, Continued
Rank ANCOVA can be applied to the example dataset to
assess the impact of order of exposure on the differences in
exercise times between exposure conditions while controlling
for baseline values. Following the steps outlined above, the
difference scores between air and CO are ranked as for the
Wilcoxon rank sum test (Table 3). Baseline values are also
ranked, and a linear regression model is fit with the use of
SAS Proc GLM.? The residuals from the model are output,
and the Pearson correlation coefficient between the residuals
and the order variable is computed as —0.0372. The proba-
bility value from the exact test is 0.8437 and from the
asymptotic test is 0.8412, both showing little association
between order of exposure and difference scores, after adjust-
ment for baseline values. These results are similar to the
unadjusted test of association computed above. Because the
Spearman rank correlation coefficient showed no evidence of
association between baseline exercise times and the differ-

ence in exercise times, the fact that the covariate adjustment
had little impact on the results of the unadjusted Wilcoxon
rank sum test is not surprising.

To illustrate the extension of these methods for stratifica-
tion, subjects were stratified according to whether their
baseline value was below the median of 540 seconds versus
equal to or above the median. A stratified Wilcoxon rank sum
test (ie, van Elteren test) was then performed. The probability
value for testing the null hypothesis of no association in all
strata is 0.8810 and therefore is compatible with no associa-
tion between order of exposure and differences in exercise
duration after stratifying on baseline value (below versus
above the median).

Discussion

Nonparametric methods such as those described here are
most useful in situations in which their use is prespecified
before data analysis. When response variables are ordered
categories or when it is known in advance that assumptions
about metric response variables will likely fail, then such
prespecification is possible at the time the statistical analysis
plan is prepared. In these situations, nonparametric methods
will have good power properties, with power as high as 93%
of that expected for standard parametric methods (eg, t tests)
applied under ideal circumstances.

The methods described here all address a shift in location
as the alternative hypothesis, in which location corresponds to
the median of the response variable distribution. If trans-
formed data are expected to be normally distributed (eg, the
response variable follows a log-normal distribution), then
nonparametric methods will be at least 95% efficient, and
their use precludes identifying the most optimal
transformation.

When the response variable is so highly skewed that the
distribution appears to have an “L” or “J” shape, the Wilcox-
on tests will not have good power, and Savage (or log-rank)
tests will be better.'®© With highly skewed distributions, both
groups of subjects will tend to have ranked values on one side
of the median, but only one group will have ranked values on
the other or tail side of the distribution. In this case, only the
rank values on the tail side are informative, and against this
alternative, the Wilcoxon rank sum test will not be the most
appropriate test. Because the Wilcoxon tests address shifts in
location only, ranked values from both groups are expected to
occur to the left and to the right of the median, and both are
informative. Under the alternative hypothesis of a shift in
location, one group will tend to have ranks on one side of the
overall median, whereas the other will tend to have ranks on
the opposite side. This is precisely the setting in which the
Wilcoxon tests are most useful and nearly as powerful as
parametric methods applied when all assumptions hold.
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None.
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