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Stat

tical Primer for Cardio

cular Research

Hypothesis Testing

Means

Roger B. Davis, ScD; Kenneth J. Mukamal, MD, MPH

In most biomedical research, investigators hypothesize
about the relationships of various factors, collect data to
test those relationships, and try to draw conclusions about
those relationships from the data collected. In many cases,
investigators test relationships by comparing the average
level of a factor between 2 groups or between 1 group and a
standard reference. This framework is as true for understand-
ing the basic role of cardiac myosin binding protein-C
phosphorylation in cardiac physiology! as it is for evaluating
non-high-density lipoprotein cholesterol (HDL-C) as a pre-
dictor of myocardial infarction in large groups of individu-
als.? In this article we describe hypothesis testing, which is
the process of drawing conclusions on the basis of statistical
testing of collected data, and the specific approach used to
test means (or average levels of a collected data element).
These concepts are covered in detail in many statistical
textbooks at various levels, including Pagano and Gauvreau,?
Zar,* and Kleinbaum et al.>

Hypothesis Testing

The purpose of statistical inference is to draw conclusions
about a population on the basis of data obtained from a
sample of that population. Hypothesis testing is the process
used to evaluate the strength of evidence from the sample and
provides a framework for making determinations related to
the population, ie, it provides a method for understanding
how reliably one can extrapolate observed findings in a
sample under study to the larger population from which the
sample was drawn. The investigator formulates a specific
hypothesis, evaluates data from the sample, and uses these
data to decide whether they support the specific hypothesis.

The first step in testing hypotheses is the transformation of
the research question into a null hypothesis, Hy, and an
alternative hypothesis, H,.¢ The null and alternative hypoth-
eses are concise statements, usually in mathematical form, of
2 possible versions of “truth” about the relationship between
the predictor of interest and the outcome in the population.
These 2 possible versions of truth must be exhaustive (ie,
cover all possible truths) and mutually exclusive (ie, not
overlapping). The null hypothesis is conventionally used to
describe a lack of association between the predictor and the
outcome; the alternative hypothesis describes the existence of
an association and is typically what the investigator would like

to show. The goal of statistical testing is to decide whether there
is sufficient evidence from the sample under study to conclude
that the alternative hypothesis should be believed.

Hypothesis testing has been likened to a criminal trial, in
which a jury must use evidence to decide which of 2 possible
truths, innocence (H,) or guilt (H,), is to be believed. Just as
a jury is instructed to assume that the defendant is innocent
unless proven otherwise, the investigator should assume there
is no association unless there is strong evidence to the
contrary. A jury’s verdict must be either guilty or not guilty,
in which case a not-guilty verdict does not equal innocence.
Rather, it indicates that the burden of proof has not been met.
Similarly, an investigator can only reject H, or fail to reject it;
failure to reject does not prove that the null H, is true.

In a criminal trial in the United States, the required burden
of proof is “beyond a reasonable doubt.” For hypothesis
testing, the investigator sets the burden by selecting the level
of significance for the test, which is the probability of
rejecting Hy when H, is true. The standard value chosen for
level of significance is 5% (ie, P=0.05), which is a much
weaker standard than used in the criminal justice system. This
standard means that even if no association between predictor
and outcome exists in the population, the investigator is
willing to accept a 1 in 20 chance of a false-positive
conclusion that an association does exist.

Just as hypothesis testing can reject a true null hypothesis
(referred to as a type I error), it can fail to reject H, when the
predictor and outcome are associated (type II error). The
probability of such a false-negative conclusion is called (.
The quantity (1—p) is called the power of the test and is
simply the probability of drawing the correct conclusion (ie,
rejecting Hy) when an association between predictor and
outcome actually does exist.

In most cases, investigators are equally interested in
whether a predictor leads to higher or lower levels of the
outcome. In this situation, we specify a 2-sided statistical test,
in which we accept a combined rate of false-positives (for
both the higher and lower level of the outcome) of only 5%.
If only 1 direction is of interest, a 1-sided test may be
appropriate, but this choice requires strong justification.
Because a 1-sided test is less stringent, many readers (and
journal editors) appropriately view 1-sided tests with skepti-
cism.” Two-sided tests should also be considered the default
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(top) and right-skewed (bottom) distributions.

option because an investigator’s intuition about how a study will
come out may be incorrect. If an investigator chooses a 1-sided
test but observes results opposite to those expected, the strongest
statement that can be made is that the null hypothesis was not
rejected. For these reasons, the investigator should always
specify the hypotheses, the methods of analysis, and the level of
significance before initiating the research.

Means

In clinical practice and in biomedical research, we collect
substantial amounts of numerical data. To analyze such data
correctly, it is critical to recognize the different types of
numerical data and the various methods specific to each type.
Stevens?® proposed 4 classes of measurement scales: nominal
scales use numbers strictly as labels for categories with no
natural ordering; ordinal scales represent categories with a
natural ranking; interval scales use numbers in a truly
quantitative sense in which differences between observations
are meaningful (eg, temperature); and ratio scales are interval
scales that also have a meaningful zero value (eg, height).

The mean of a measure for a population is simply its
arithmetic average. It is usually denoted by w. The mean from
the sample that we actually observe, usually designated by X,
is the sum of the observed measurement for each individual in
the sample, divided by n, the number in the sample. The mean
is an appropriate measure for ordinal and ratio scales but not
for nominal or ordinal scales.*

The Figure shows 2 theoretical distributions of data. The first
pattern follows a normal distribution. The distribution is sym-
metrical (ie, the right-hand side is a mirror image of the left-hand
side), and the mean and median occur at the same value. Many
characteristics we observe approximate this pattern, such as
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height or HDL-C. The second distribution is skewed and
asymmetrical; there are more observations far to the right of the
mean than there are far to the left. The mean of this distribution
is larger than its median, because the extreme values to the right
increase the mean but do not affect the median. This general
pattern is seen in the distributions of C-reactive protein, triglyc-
erides, and coronary artery calcification, as well as medical costs
and hospital length of stay. Analysts often perform logarithmic
transformation of right-skewed variables like these to improve
their fit to a normal distribution.

Although the mean can be skewed by extreme values, there
are important reasons why it is the most commonly used
measure of “center” in statistical testing. First, when the
distribution of a measurement is reasonably symmetrical,
statistical tests of the mean tend to have the most power (ie,
when differences between groups exist, these tests are most
likely to detect them). Second, for some measurements, we
may want the center to reflect the pull of extreme values. For
example, when measuring health care costs, we may want the
“average” expenditure to reflect the almost inevitable pres-
ence of a few subjects with very high costs.® In such a case,
the mean multiplied by the sample size recreates the total
expenditure in the sample, but the median does not.

One-Sample Tests

In some research projects, the study design includes only a
single sample, and the goal may be to determine whether the
outcome measure for the population from which the sample
was drawn has same mean as some standard population.
Determining an appropriate standard for comparison for these
designs is often an issue. Nonetheless, when well-established
standards exist, investigators may wish to use these standards
for maximal comparability. In this situation, we might per-
form a 1-sample (not 1-sided)  test.

To provide a concrete example, we examine data from a
trial of black tea consumption in 28 adults (Table). As a
preliminary step, we might be interested in testing whether
the population from which these individuals derive tends to
have baseline levels of HDL-C that differ from the overall US
population as a test of their generalizability. The distribution
of HDL-C in the US adult population is well characterized
and has a mean of ~50.7 mg/dL.'° Therefore, we would want
to determine whether the data from our 28-person sample
support a conclusion that the population from which these
older adults came has HDL-C levels that differ from 50.7
mg/dL. We would state the null and alternative hypotheses as
follows:

Ho: ppprc = 50.7
HA: MuDL-C # 50.7

To decide which of these hypotheses we believe, we first
calculate the mean and standard deviation (SD; a measure of
the “spread” or variability of the measurement) of baseline
HDL-C in the sample. These are called X and s, respectively.

X (sample mean) = 63.2
s (sample standard deviation) = 13.7
n (sample size) = 28
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Baseline and 6-Month HDL-C Levels Among 28 Participants in
a Trial of Black Tea Consumption

ID Sex Baseline HDL-C, mg/dL 6-Month HDL-C, mg/dL
1 Female 64 74
2 Female 60 70
3 Female 59 65
4 Male 65 67
5 Female 64 62
6 Male 62 67
7 Male 54 51
8 Female 68 93
9 Female 67 56

10 Female 79 78

1 Female 45 58

12 Male 48 52

13 Female 59 60

14 Female 65 76

15 Female 87 74

16 Male 49 36

17 Male 46 42

18 Male 46 50

19 Female 97 79

20 Male 36 35

21 Male 67 60

22 Female 56 58

23 Male 62 57

24 Female 65 68

25 Female 65 60

26 Female 81 89

27 Female 83 58

28 Female 71 70

We then calculate the ¢ statistic, as follows:

_ X o
P

In this equation, the numerator is the difference between
the observed sample mean HDL-C and the hypothesized
mean if the null hypothesis is true (ie, 50.7). The denominator
is the standard error, a measure of the variability of the
sample mean. The farther the ¢ statistic is from zero, the
stronger the evidence that H, is true. Put differently, we
would conclude that the evidence against the null hypothesis
is strong if the sample mean is far from the standard value
compared with the inherent variability of the sample mean.

X—po 63.2-50.7 125
t= - [
(s \g) (13.7/\/ﬁ) 2.6

To decide between H, and H,, we compare the 7 statistic to the
t distribution with (n—1) df. Tables that provide critical values of
the ¢ distribution are available in introductory statistical texts and
are published online.!" For a 2-sided test at the 5% level of
significance, the critical value of the ¢ distribution with 27 df is
2.05. This value has an important interpretation; specifically, if

4.83

H, is true (ie, the sample was truly drawn from a population with
MupLc=50.7 mg/dL), 95% of samples of this size (n=28) will
produce a ¢ statistic between —2.05 and 2.05. Therefore, if the ¢
statistic for our sample is >2.05 or <—2.05, we reject H, and
conclude that the population from which these participants came
has HDL-C levels that differ from the general population. If 7 is
between —2.05 and 2.05, there is not enough evidence to refute
the default assumption that this group’s HDL-C is the same as in the
general population. As seen in the calculation of the 1-sample ¢ test,
1=4.83, so we reject Hy and conclude that our sample has a different
HDL-C than does the general US population.

The mathematical derivation of the test statistic assumes
that the mean HDL-C of the sample X is normally distributed.
This assumption is satisfied if the outcome we are measuring
(in this case HDL-C) is itself normally distributed. The ¢ test
performs reasonably well even if the underlying distribution
of the measure deviates moderately from normality, a char-
acteristic referred to as the test’s robustness. Even if the
underlying distribution of the measure itself deviates substan-
tially from normality, the distribution of the mean typically
approximates normality when the sample size is large, a result
called the central limit theorem. How large is large enough is
a complex question, but as a practical matter, statisticians
seem reasonably comfortable with samples of 60 to 100 in
most circumstances.

When the normality of the distribution is in question and
the sample size is too small to invoke the central limit
theorem, one relies on different, nonparametric tests such as
the Wilcoxon signed rank test. Nonparametric tests (a topic
that will be covered in a future article in this series) do not
compute test statistics on the basis of the observed values of
the outcome but rather on their rank ordering within the
sample. Although these tests also examine the location of the
distribution, they compare medians rather than means, and
they tend to have less statistical power than ¢ tests when the
underlying distribution truly is normal.

Two-Sample Tests

Many studies obtain data from 2 samples and seek to test whether
the means of the 2 populations represented by the samples are
different. Typically, the statistical hypotheses are as follows:

Hy: i = po
Hat oy # 1o

Selection of the appropriate 2-sample statistical test de-
pends on the study design, specifically whether the 2 samples
are paired or independent of each other. In a paired design,
each observation in 1 sample is linked in some way to 1
specific observation in the other sample. Examples include
designs in which each individual is measured both before and
after an intervention or studies of treated participants matched
to individual untreated controls. Independent samples have no
link between specific observations in the 2 samples.

Paired Tests

Whenever research is designed as a matched or paired study,
the appropriate analysis takes the matching into account. The
paired ¢ test is the standard method for comparing means of
paired samples. For each matched pair of observations, we
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compute the difference between them, d;. Note that if the 2
groups have the same mean (ie, if H, is true), we would
expect the differences between pairs to center around zero.
We next compute the mean and SD of the paired differences.
The test statistic is

_ 4
TGl

in which the numerator is the mean of the paired differences,
and the denominator is the standard error of d. This test is
identical to the 1-sample ¢ test of Hy: w,=0.

The reason for designing a matched study is to eliminate a
potential source of variability in the outcome being measured.
This advantage is lost if the appropriate test is not performed.
For matched designs, the paired ¢ test will generally have
greater statistical power than the equivalent test for indepen-
dent samples if the matching is appropriate. However, if the
matching criterion is not associated with the outcome mea-
sure, the matching is ineffective (ie, does not reduce a source
of variability) and will not improve power.

In our tea study, we measured HDL-C levels in each
participant 6 months apart. These measurements are obvi-
ously paired within each participant, and hence they
comprise 28 pairs of data points. The Table shows the
baseline and 6-month HDL-C levels for each of the
participants. To test the hypothesis that HDL-C levels
changed over time, we could test whether the baseline
value of each pair differs substantially from the 6-month
value. For each matched pair, we calculate the difference
in levels of HDL-C. We calculate the mean and SD of the
differences for the 28 pairs and use these to calculate the
paired ¢ statistic as follows:

H0: Mbaseline = M6-month
HA: Mbaseline F H6-month

d, = 74—64 = 10
d, = 70—60 = 10

d= 5 _ 0.179
= —>g )
s =10.234
d -0.179
t —-0.09

T s/ 10234/

We compare —0.09 to the ¢ distribution with 27 degrees of
freedom. From this, we determine P=0.93, so we fail to reject
the null hypothesis and conclude HDL-C did not change from
baseline to 6 months.

Independent Samples

When the data in the 2 samples are not matched, tests for
independent samples are appropriate. Usually the assump-
tion is made that the distributions in the 2 groups have the
same variance, o~. Essentially, we assume that the predic-
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tor under investigation shifts the distribution of the out-
come to the left or right but does not change its variability.
This assumption can be tested by comparing the ratio of
the estimated variances in the 2 groups to the F distribution
(details are beyond the scope of this article).* Some
statistical software packages automatically conduct this
test when a 2-sample ¢ test is requested. This test will reject
the hypothesis that the variances are equal when the
observed ratio is far from 1.0. As a general rule, ratios
between 0.5 and 2.0 are acceptable for small samples (<30
per group), as are ratios between 0.67 and 1.5 for moderate
samples (<100 per group).

Going back to our tea trial, suppose we want to test the
hypothesis that HDL-C levels in men in the trial differ
from levels in women, as we would expect. The first step
is to compute the means X, and X, and SDs s, and s, in the
2 samples (ie, in the enrolled men and women).

HO Y Mmale = Mfemale
HA: Hmale 7 Mtemale

Xpate = 53.5
Spate = 10.2
Mypate = 10
Xfomale = 68.6
Stomate = 12.6
Nfomale = 18

On the basis of the observed SDs, the data do not provide
evidence that the variances in the 2 groups are distinct

SZ

female

< - >= 1.53,
Smale

so it is reasonable to assume that HDL-C levels in men and
women share a common variance.

Because we can now assume a single common variance,
we compute the pooled estimate of the variance as follows,

(n,—1) s, + (n—1) s/
n, + n—2

s, (pooled variance) =

~(9)(10.2)* + (17) (12.6)

26 = 139.8

which is a weighted average of the SD squared in the 2 groups
of sample sizes n, and n,. The 7 statistic is then calculated as

X=Xy 53.5—68.6 —15.1
t= = = = —3.25

1,1 11.8 L2 o7
" \\n, "y “\\10 " 18

This test statistic is compared with the ¢ distribution with
(n;+n,—2) df. Just as in the 1-sample test, the numerator of
this statistic is the difference between the means of the 2
samples, and the denominator is a measure of the variability
of this difference between means. If the difference is large
relative to the variability, then there is strong evidence against
the null hypothesis of no difference.

We apply these methods to test whether HDL-C levels are
the same for men and women in our trial. We compare —3.25
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to the ¢ distribution with 26 degrees of freedom. From this, we
determine P=0.003.

In some circumstances, we should not assume that the 2
populations have equal variances. Because the 2 SDs are no
longer assumed to be estimating the same parameter, the test
statistic does not use a pooled estimate of the variance. The
statistic, called Welch'’s ¢, is calculated as

)_Cl_)_Cz

S]Z 322
7+7
ng np

and is compared with a ¢ distribution. To determine the
number of df, we calculate
S12 S22 2
7+7
ny np

v (the degrees of freedom)= <s12>2<s22>2

ny ny

nl_l nz_l

and round down to the nearest integer.

Just like the 1-sample ¢ test, the 2-sample ¢ tests assume
that the sample means follow a normal distribution but are
robust to moderate departures from that assumption. For data
that deviate substantially from the normal distribution, there
are nonparametric tests such as the Wilcoxon rank sum test.
These tests compare the location of each sample’s distribu-
tion but do not test their means per se.

t Tests and Confidence Intervals

Another concept related to hypothesis testing about means is
the confidence interval (CI), which is closely linked to the
probability value derived from a ¢ test. A CI for a given mean
estimates the range of values that, based on the sample mean
and its variability, are likely to include the true population
mean w. In most cases, we are interested in the 95% CI,
which corresponds directly to the 5% false-positive rate we
accept in standard hypothesis testing.

Summary
In summary, we have described some of the standard methods
for testing hypotheses about the means of observed measure-
ments. These methods are appropriate for measures made on
ratio or interval scales and include ¢ tests to compare 1 sample

to a reference group and to compare 2 paired or 2 independent
samples. These methods tend to yield better power than
nonparametric alternatives yet are typically robust to the
distribution of the measurement being tested, especially when
sample sizes are large. Methods for comparing means of >2
groups will be covered later in the series, as will methods for
comparing means while adjusting for other factors.
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