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Analysis of Variance
Martin G. Larson, SD

Analysis of variance (ANOVA) is a statistical tech-
nique to analyze variation in a response variable
(continuous random variable) measured under con-

ditions defined by discrete factors (classification variables,
often with nominal levels). Frequently, we use ANOVA to
test equality among several means by comparing variance
among groups relative to variance within groups (random
error).

Sir Ronald Fisher pioneered the development of ANOVA
for analyzing results of agricultural experiments.1 Today,
ANOVA is included in almost every statistical package,
which makes it accessible to investigators in all experimental
sciences. It is easy to input a data set and run a simple
ANOVA, but it is challenging to choose the appropriate
ANOVA for different experimental designs, to examine
whether data adhere to the modeling assumptions, and to
interpret the results correctly. The purpose of this report,
together with the next 2 articles in the Statistical Primer for
Cardiovascular Research series, is to enhance understanding
of ANVOA and to promote its successful use in experimental
cardiovascular research. My colleagues and I attempt to
accomplish those goals through examples and explanation,
while keeping within reason the burden of notation, technical
jargon, and mathematical equations.

Here, I introduce the ANOVA concept and provide details
for 2 common models. The first model, 1-way fixed-effects
ANOVA, is an extension of the Student 2-independent-
samples t test that lets us simultaneously compare means
among several independent samples. The second model,
2-way fixed-effects ANOVA, has 2 factors, A and B, and
each level of factor A appears in combination with each level
of factor B. This model lets us compare means among levels
of factor A and among levels of factor B; furthermore, we
may examine whether combined factors induce interaction
effects (synergistic or antagonistic) on the response.

In the second ANOVA article, the author reviews several
multiple-comparisons procedures for analysis of differences
among means, including comparisons between pairs of group
means and more general contrasts among group means.
Usually, multiple-comparisons procedures are used to control
type I error rate across numerous hypothesis tests. In the third
ANOVA report, the author introduces repeated-measures
ANOVA for use when each experimental unit contributes
response data at each level of a fixed factor (eg, different

treatment doses). Statistical textbooks2,3 and online docu-
ments4,5 provide readers with more technical detail for similar
material or with broader coverage of topics beyond the scope
of these articles.

Background
In this section, I briefly review key terminology for defining
experimental design and ANOVA. An “experimental unit” is
the smallest unit of experimental material to which a factor or
combination of factors may be applied. Typically, each
experimental unit is a whole organism (eg, human, mouse, or
rat), but it may be at the suborganism level (eg, individual
myocytes) or supraorganism level (eg, an institution). To
determine the appropriate ANOVA model, we must know the
relations between factors and experimental units.

Statisticians distinguish 2 types of factors in experimental
design and ANOVA: “fixed factors” and “random factors.” A
“fixed factor” is one for which the specific levels are of
interest. An investigator could repeat the entire experiment
using identical factor levels both times. Conceptually, each
level of a fixed factor represents a distinct population with a
unique response mean. When an investigator deliberately
arranges or modifies the levels of a fixed factor, we call those
levels treatments. The primary ANOVA objective is to test
whether response means are identical across factor levels. In
contrast to a fixed factor, the levels of a “random factor”
represent a random sample from a potentially infinite number
of levels. Different factor levels would be chosen randomly if
the experiment were redone. With random factors, the
ANOVA objective is to make an inference about random
variation within a population.

When a factor level is applied to 2 or more independent
experimental units, it is “replicated.” If replicates are equal in
number for each factor level, the experimental design is
“balanced.” These concepts generalize to combinations of
factor levels.

An experiment may contain 2 or more factors combined in
2 different ways, either “crossed” or “nested.” With crossed
factors, each level of factor A is present in combination with
each level of factor B. For instance, each of 2 different
medications (factor A levels are drugs X and Y) could be
administered at either of 2 doses (factor B levels are low or
high), with each experimental unit receiving 1 drug at 1 dose.
In contrast to the situation with crossed factors, each level of

From the Department of Mathematics and Statistics, Boston University, Boston, Mass, and the Framingham Heart Study of the National Heart, Lung,
and Blood Institute, Framingham, Mass.

Correspondence to Martin Larson, SD, Framingham Heart Study, 73 Mount Wayte Ave, Framingham, MA 01702. E-mail mlarson@bu.edu
(Circulation. 2008;117:115-121.)
© 2008 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIRCULATIONAHA.107.654335

115

Statistical Primer for Cardiovascular Research

 at FMRP BRAZ 35042 MEDIC RIB 80 on January 11, 2008 circ.ahajournals.orgDownloaded from 

http://circ.ahajournals.org


a nested factor occurs in just 1 level of the factor within which
it is nested. In a study to compare for-profit versus nonprofit
institutions with respect to patients’ length of stay after
coronary artery bypass, institutional status is a fixed-factor
status (for profit/nonprofit), “hospital” is a random factor
(specific hospitals are its levels) nested within the fixed-
factor levels, and individual patients are the experimental
units.

We usually refer to ANOVA models using the terms “fixed
effects” or “random effects.” This should not cause confu-
sion, because fixed factors correspond with fixed effects
among factor levels (that is, between-population mean differ-
ences), and random factors correspond with random effects
among levels (that is, within-population random differences).
If the experimental design includes fixed and random effects,
then we use a “mixed-effects” ANOVA model.

One-Way Fixed-Effects ANOVA
Consider an experiment that has 2 or more treatments and
multiple replicates of each treatment. We use a 1-way
fixed-effects ANOVA model to test the null hypothesis that
all treatments have the same population mean. The alternative
hypothesis is that at least 1 population mean differs from the
others. We assess whether variability among sample means is
sufficiently large, relative to random error variance, that we
should reject the null hypothesis and conclude that true
differences exist among population means. The dot plot in
Figure 1 illustrates hypothetical data in which variation
among treatment means is small, consistent with identical
population means (left-most 3 groups), or large, favoring
unequal population means (right-most 3 groups).

Assumptions
When we model data using 1-way fixed-effects ANOVA, we
make 4 assumptions: (1) individual observations are mutually
independent; (2) the data adhere to an additive statistical
model comprising fixed effects and random errors; (3) the
random errors are normally distributed; and (4) the random
errors have homogenous variance. Violations of these as-
sumptions may compromise or invalidate the ANOVA re-
sults, so let us examine each individually.

Independence
The value of 1 observation must not influence the value of
other observations. All experimental units must be indepen-
dent, and each experimental unit must contribute only 1
response value.

Additivity
We can represent the data using a statistical model with
additive components. The model for 1-way fixed-effects
ANOVA may be written as follows: individual response�
(grand mean)�(treatment effect)�(random error).

Normality
We assume that the random errors within each treatment
group, the deviations from each group mean, have a normal,
or gaussian, probability distribution.

Homogeneous Variance
Finally, we assume that the within-group random errors have
identical variance across all treatment groups, represented by
the parameter �2.

Together, assumptions of independence, homogeneous
variances, and normality imply that residual errors are a
sample of independently and identically distributed normal
deviates.

ANOVA Calculations
Without going into mathematical details, the calculations
proceed as follows. For each observation, we write: deviation
from overall mean�individual value�overall mean. Squar-
ing each deviation and summing over all observations yields
the “total sum of squares” (SST). SST represents total
variability of observations from their overall mean, quantified
by the sum of their squared differences. An individual
deviation also can be written as: deviation from overall
mean�(treatment mean�overall mean)�(individual
value�treatment mean). With some algebra found in statis-
tical textbooks, SST partitions into 2 independent parts. The
2 parts are (1) “sum of squares between treatments” (SSA),
which is obtained by summing the terms (treatment
mean�overall mean)2, and (2) “sum of squares within treat-
ments” (SSE), which is obtained by summing the terms
(individual value�treatment mean)2. SSA represents variabil-
ity among group means, and SSE represents within-group
residual variability. Each sum of squares has its correspond-
ing “degrees of freedom” (abbreviated df), which is the
effective number of independent observations used in form-
ing that sum of squares. With N observations, the total sum of
squares, SST, has N�1 df; with a �2 treatment groups, the
“between-treatments” sum of squares, SSA, has (a�1) df;
finally, the “within-treatments” residual sum of squares has
(N�1)�(a�1)�(N�a) df. Interested readers can find rules
for determining df in standard statistical texts or online.2–4

Dividing each sum of squares by its df yields a quantity
called a “mean square.” The residual mean square,
MSE�SSE/(N�a), estimates the error variance, �2. If the
“null hypothesis” is correct, such that all treatments have the
same population mean, then the between-treatments mean
square, MSA�SSA/(a�1), also estimates �2. In that situa-
tion, the ratio of the 2 variance estimates, denoted by

Figure 1. Illustration of treatment effects. Left, Small treatment
differences relative to error variance. Right, Large treatment dif-
ferences relative to error variance.
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F�MSA/MSE, has the statistical distribution called the �
distribution, with (a�1) and (N�a) df. (The � distribution
was named in honor of Fisher.) Large values of the F ratio
provide evidence against the null hypothesis of equal treat-
ment population means. The probability value is the proba-
bility that a random variable selected from an � distribution
with (a�1) and (N�a) df will exceed the observed F value.

Table 1 displays calculations for the 1-factor fixed-effects
model. Scientific journals usually do not publish the full
ANOVA table due to limited space; some journals report the
F statistic, its df, and probability value, whereas others report
only the probability value. Subsequent to a “statistically
significant” result (that is, obtaining P��, where � is the
prespecified type I error rate), one may explore differences in
treatment means using multiple-comparisons methods cov-
ered in the next article in the present series on statistics.

Example 1: One-Way ANOVA
To illustrate 1-way ANOVA, let us explore data on levels of
soluble leptin receptor (sOB-R; ng/mL) according to catego-
ries of body mass index (BMI; kg/m2) for 188 men in the
Framingham Third Generation Cohort.6 sOB-R was measured
on a 10% random sample drawn from the full cohort. For
convenience, I analyzed men only and classified them into 4
BMI categories (20 to 24, 25 to 29, 30 to 34, and �35 kg/m2).
Additionally, I used natural-logarithm transformation to normal-
ize the distribution of response values. Table 2 and Figure 2
display descriptive statistics for log(sOB-R) in each BMI
group. Note that sample sizes are moderate to large (n�26 to
62), data distributions are approximately symmetrical, and
measures of spread (SDs and interquartile ranges) are similar
across groups. The box-plot graph (Figure 2) contains sub-
stantially more information about the distribution of values
than does a bar chart with error bars.

Table 3 displays calculations from 1-way ANOVA (SAS
procedure ANOVA).7 With N�188 men in 4 BMI categories,
there are (4�1)�3 df among groups and (188�4)�184 df
within groups. The sum of squares among BMI groups
(SSA�4.24) is 19.1% of the total sum of squares
(SST�22.17), and the ratio of mean squares is highly
statistically significant (F�14.50, df�3 and 184, P�0.0001).

These data provide strong evidence against the null hypoth-
esis that the BMI groups have the same population mean level
of log(sOB-R). Inspection of Table 2 or Figure 2 suggests an
inverse association, with decreasing log(sOB-R) as BMI
increases.

Checking Assumptions
If the design is balanced and the sample is large, ANOVA is
robust with regard to moderate deviations from assumptions
of homogenous variances and normal error. The calculated F
statistic still has approximately an � distribution. In contrast,
fixed-effects 1-way ANOVA is invalid if the observations are
not independent.3 It is important to check and report whether
one’s data adhere to the assumptions and to perform supple-
mentary analyses if serious violations exist.

Independence
Independence of observations is the most critical among the
4 assumptions. To check this assumption, we must examine
the research design. If the protocol stipulates random selec-
tion of experimental units from a defined population and
random assignment of treatments to experimental units, and if
the analysis uses a single response value for each experimen-
tal unit, then observations might be independent. Some
sources of nonindependence are obvious: multiple values
recorded over time for each experimental unit, or observa-
tions on multiple members of the same family. Matching or
blocking in the experimental design is not as obvious but is a
source of nonindependence. If the data contain correlated
observations, we must use a more complex model instead of

Figure 2. Box plots of log(sOB-R) levels by BMI group for 188
men in the Framingham Third Generation Cohort. Box width is
proportional to sample size (Table 2). Units are ng/mL for sOB-R
and kg/m2 for BMI.

Table 1. Display of Results for 1-Way Fixed-Effects ANOVA

Source of Variation df Sums of Squares Mean Square F Statistic P

Treatments a�1 SSA (among treatments) MSA�SSA/(a�1) MSA/MSE P

Error N�a SSE (within treatments) MSE�SSE/(N�a) � � � � � �

Total N�1 SST � � � � � � � � �

Note that P is the probability that an � random variable with df (a�1) and (N�a) exceeds the observed F statistic.

Table 2. Descriptive Statistics for Log(sOB-R) by BMI
Category

BMI Group, kg/m2 Sample Size Mean SD

20–24 60 3.81 0.32

25–29 62 3.52 0.31

30–34 40 3.56 0.32

�35 26 3.39 0.29

Units for sOB-R are ng/mL.
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1-way fixed-effects ANOVA. One approach to analyze cor-
related observations, repeated-measures ANOVA, appears
later in the present series on statistics. In this example, it is
reasonable to assume independent observations, because this
is a random sample from a large cohort, and 1 response
measurement per person is present.

Additivity
In the 1-way ANOVA model, failure to satisfy the additive
assumption often leads to nonhomogeneous variances, which
are covered next.

Homogeneous Variance
Levene’s test8 is widely used to test the null hypothesis that
variances are homogeneous. An alternative procedure, Bar-
tlett’s test, performs poorly with nonnormal data3 and should
not be used unless normality has been validated. Visual
inspection of Table 2 and Figure 2 suggests that the spread of
log(sOB-R) is similar in all BMI categories, and this is
confirmed by Levene’s test (P�0.94), so we conclude that
variances are not heterogeneous.

Normality
The Shapiro-Wilk procedure9 may be used to test normality
in samples with fewer than 2000 observations. In this exam-
ple, log-transformed sOB-R data are approximately normally
distributed in each BMI category (Shapiro-Wilk test P�0.11,
0.52, 0.17, and 0.91, respectively). The raw data deviate
severely from normality (at P�0.001 in 3 BMI categories)
with right skewness and/or high kurtosis, and this justifies
application of the normalizing logarithmic transformation.

The ANOVA model is just an approximation for the data,
and ANOVA assumptions may not be satisfied completely.
With normal data but heterogeneous variances, ANOVA is
robust for balanced or nearly balanced designs but not for
highly unbalanced designs.3 In the setting of normal data,
heterogeneous variances, and an unbalanced design, one
might use Welch’s ANOVA to accommodate unequal vari-
ances.10 With homogeneous variances but nonnormal data,
ANOVA is robust for balanced designs with large samples
but not for unbalanced design or small samples (n�5 per
group). In the setting of nonnormal data, homogeneous
variances, and a small sample or highly unbalanced design, a
nonparametric procedure such as the Kruskal-Wallis test11

may be preferred over 1-way ANOVA. If the data are not
normally distributed and variances are heterogeneous, a
transformation may be necessary. At the research design
stage, an investigator must realize the importance of a
balanced design and large sample.

Confidence Intervals
After 1-way ANOVA, one may wish to estimate a confidence
interval (CI) for a population mean or for the difference
between 2 population means. The form of the CI is (sample
estimate)�(confidence coefficient)�(standard error of sam-
ple estimate). To construct a 100(1��)% CI for the i-th
population mean, we proceed as follows. For the first quan-
tity, substitute the sample mean of group i. For the standard
error of the sample mean, use (MSE/ni)1/2, where ni is the
sample size for the i-th group, and MSE is the mean squared
error from the ANOVA model. Finally, for the confidence
coefficient, use the (1��/2) quantile of a t distribution with df
equal to “error df” in the ANOVA model. MSE appears in the
standard error calculation (not the individual group variance
estimator, si

2), because MSE is the ANOVA estimate of the
homogeneous within-population variance. Also, the ANOVA
“error df” is the df for the t distribution (not ni�1, the df
for si

2), because it is the df associated with MSE.
To construct a 100(1��)% CI for the difference between

means of populations i and j, the sample estimate is (sample
mean for group i�sample mean for group j), the standard
error is [MSE (1/ni�1/nj)][1/2], and the confidence coefficient
is as defined above. In constructing both types of CIs, for 1
population mean or for the difference between 2 population
means, we gain precision by using the ANOVA variance
estimate, MSE, instead of group-specific variances; conse-
quently, the average length of these CIs is shorter than CIs
based on group-specific variances. The next report in the
present series on statistics offers detailed discussion of
analyses after the initial F test, specifically, the use of
multiple-comparisons procedures.

Two-Way Fixed-Effects ANOVA
In a factorial experimental design, each factor is crossed with
the other factors. Consider 2 fixed factors, A and B, with a
levels for factor A, b levels for factor B, and ab levels formed
by combinations of A and B. Individual factors are associated
with “main” effects, whereas crossed factors create “interac-
tion” effects. If replicates exist for all ab levels, it is a
“complete” factorial design; otherwise, it is an “incomplete”
factorial design. For the following discussion, I assume that
the design is complete.

The factorial design enables one to examine individual
factors and their interactions; furthermore, the design pro-
vides natural replications that result from crossed factors.
Tests of main effects are tests of 1 factor averaged over levels
of the other factors. Absence of interaction between 2 factors
implies that the additive effect of 1 factor is identical across
all levels of the other factor. In that situation, tests and
interpretation of main factors are straightforward. If interac-
tions exist, one must interpret main effects cautiously, be-
cause relations among mean levels of 1 factor differ accord-
ing to levels of the second factor. See Figure 3 for an example
without interaction (top panel) and with interaction (bottom
panel).

Formal definition of the factorial 2-way fixed-effects
ANOVA model requires statistical notation to identify spe-
cific levels of A and B and of their combination, as well as to

Table 3. Results of 1-Way ANOVA for Log(sOB-R) by BMI
Category

Source of
Variation df

Sums of
Squares

Mean
Square

F
Statistic P

BMI category 3 4.24 1.413 14.50 �0.0001

Error 184 17.93 0.097 � � � � � �

Total 187 22.17 � � � � � � � � �

Units for sOB-R are ng/mL.
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denote each replicate within each combination. Conceptually,
the model for each observation is as follows:

(individual response)�(grand mean)

�(additive effect for the level of factor A)

�(additive effect for the level of factor B)

�(interaction effect for the combination of

levels of A and B)

�(random error).

As with 1-way ANOVA, deviations from the grand mean
when expanded algebraically, squared, and summed across
levels of both factors produce sums of squares associated
with main effects for factor A, main effects for factor B,
interaction effects due to combinations of A and B, and

random error. Corresponding df, mean squares, and F ratios
and probability values from hypothesis tests are displayed in
Table 4.

Some computational algorithms for 2-way ANOVA use
formulas that are valid only for complete, balanced factorial
designs. In practice, it is common to have unequal numbers in
each group, either because the study does not control the
numbers of observations or because some response data are
missing. When confronted with data from incomplete or
unbalanced factorial designs, an investigator must choose a
statistical software package that correctly handles the
calculations.

Example 2: Two-Way ANOVA
Here, I use the data set from the prior example with men
classified by BMI category and by high-density lipoprotein
(HDL) cholesterol category (low�HDL �40 mg/dL,
high�HDL �40 mg/dL). See Table 5 for descriptive statis-
tics; sample sizes vary from n�9 to n�46, SDs vary from
0.20 and 0.33, and the means vary from 3.27 (men with low
HDL, very obese) to 3.87 (men with high HDL, normal
BMI). Box plots (Figure 4) show that the data distributions
are reasonably symmetrical and that interquartile ranges are
roughly equal across BMI�HDL groups. Furthermore, vari-
ances are homogeneous (Levene’s test, P�0.82), and the data
are approximately normal (Shapiro-Wilk test, P�0.0025 in
men with low HDL and BMI 30 to 34 kg/m2, but P�0.07 to
0.89 in other groups).

Table 6 shows results from the 2-way ANOVA model with
interaction that was fitted with the SAS GLM (general linear
model) procedure.12 Because of the highly unbalanced de-
sign, typical ANOVA calculations (eg, SAS ANOVA proce-
dure7) would produce incorrect results. Table 6 displays type
III sums of squares and F tests. Type III sums of squares are

Figure 3. Illustration of interaction effects. Top, No interaction
between factors A and B. Bottom, Interaction (synergistic)
between factors A and B. Open squares (factor A, level 1) and
solid circles (factor A, level 2) represent population mean values
at 3 levels of factor B.

Table 4. Display of Results for 2-Way Fixed-Effects ANOVA

Source df Sums of Squares Mean Square F Statistic P

Factor A (a�1) SSA SSA/(a�1) MSA/MSE PA

Factor B (b�1) SSB SSB/(b�1) MSB/MSE PB

A*B interaction (a�1) (b�1) SSAB SSAB/�(a�1) (b�1)	 MSAB/MSE PAB

Error N�ab SSE SSE/(N�ab) � � � � � �

Total N�1 SST � � � � � � � � �

Note that PA, PB, and PAB are the respective probabilities that an � random variable with appropriate df (source df,
error df) exceeds the observed F statistic.

Table 5. Descriptive Statistics for Log(sOB-R) by BMI and HDL
Cholesterol Categories

BMI
Group, kg/m2

HDL Cholesterol
�40 mg/dL

HDL Cholesterol
�40 mg/dL

Sample
Size Mean SD

Sample
Size Mean SD

20–24 14 3.61 0.21 46 3.87 0.33

25–29 24 3.45 0.28 38 3.56 0.32

30–34 19 3.45 0.33 21 3.66 0.29

�35 9 3.27 0.20 17 3.45 0.31

Units for sOB-R are ng/mL.
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preferred in analyses of unbalanced designs, because these
statistics are calculated for each factor or interaction after
adjustment for all other effects in the model; they do not
depend on the ordering of variables. In this example, the main
effects are highly statistically significant with regard to both
the BMI group (F�9.18, 3 and 180 df, P�0.0001) and the
HDL group (F�14.67, 1 and 180 df, P�0.0002), but the
BMI�HDL interaction is not significant (F�0.51, 3 and 180
df, P�0.67). When the interaction is not statistically signifi-
cant, it is common to refit the model with the exclusion of the
interaction term to simplify the interpretation of main effects.
Here, one concludes that levels of log(sOB-R) are lower in
men with low HDL than in men who have higher HDL, that
levels of log(sOB-R) tend to decrease across BMI groups, and
that the pattern of decrease in log(sOB-R) across BMI groups
is similar in both HDL groups.

Study Design, Effect Size, Sample Size, and
Statistical Power

Principles that guide the design of randomized, controlled
trials include a clear statement of study objective, choice of
experimental design, selection of treatments, randomization

of subjects to treatments, and a priori determination of sample
size to achieve adequate statistical power.13 Here, I illustrate
the interplay of treatment effect size, sample size, and
statistical power. Effect size is a measure of scaled differ-
ences among population means, and power is the probability
of detecting a nonzero effect if one exists.

In 1-way ANOVA, power depends on the number of
treatments, the sample size distribution among groups, the
true effect size, the error variance, and the statistical signif-
icance level for the hypothesis test. I consider a simple case
of a balanced design having a�3 groups with n observations
per group and ��0.05 significance level. Furthermore, I
adopt a common convention that defines effect size by
��(maximum population mean�minimum population
mean)/�, where � is the within-population SD. By defining
effect size relative to �, we eliminate � from subsequent
calculations. This convention also sets the intermediate pop-
ulation mean exactly halfway between the smallest and
largest means, such that rescaled population means may be
represented with values ��/2, 0, and ��/2. Once all required
design features have been specified, statistical power may be
calculated with formulas and charts from textbooks,3 special
statistical software,14 or online power calculators.15

Figure 5 displays power for selected sample sizes from
n�5 to n�50 per group and effect sizes from ��0.20 to
��1.20 for conditions just described. Increased sample size
or effect size results in higher power. Sample size n�50 per
group provides good power (say, 0.80) if true effect size is
��0.63, but a study with n�15 per group has power 0.80
only if effect size is ��1.18, and a study with n�5 per group
has power 0.80 only if effect size is very large, ��2.24 (not
shown on graph). Also, power is higher for balanced designs
than for unbalanced and with few rather than many treatment

Figure 4. Box plots of log(sOB-R) levels
by HDL cholesterol group and BMI
group for 188 men in the Framingham
Third Generation Cohort. Box width is
proportional to sample size (Table 5).
Units are ng/mL for sOB-R, mg/dL for
HDL, and kg/m2 for BMI.

Table 6. Results of 2-Way ANOVA for Log(sOB-R) by BMI and
HDL Cholesterol Categories

Source df
Sums of Squares,

Type III
Mean

Square
F

Statistic P

BMI group 3 2.51 0.838 9.18 �0.0001

HDL group 1 1.34 1.338 14.67 0.0002

BMI*HDL 3 0.14 0.047 0.51 0.67

Error 180 16.42 0.091 � � � � � �

Total 187 22.17 � � � � � � � � �
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groups. Experiments should be designed to have reasonable
power (typically set at 0.80) to detect realistic treatment
differences, because inadequately powered experiments usu-
ally yield inconclusive results.
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Figure 5. Power in 1-way ANOVA as a function of sample size (n per group) and effect size (�). Significance level is 0.05; population
means are ��/2, 0, and �/2; and ��1.
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