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Stat

tical Primer for Cardio

cular Research

Hypothesis Testing

Proportions

Kimberlee Gauvreau, ScD

he process of drawing conclusions about an entire

population on the basis of the information contained in a
random sample drawn from that population is known as
statistical inference. Methods of statistical inference fall into
2 general categories: estimation and hypothesis testing. With
estimation, our goal is to describe or estimate some charac-
teristic of a population of interest, such as the mean pulmo-
nary regurgitation fraction of all patients alive 10 years after
repair of tetralogy of Fallot or the proportion of children with
acute Kawasaki disease who develop coronary artery abnor-
malities. With hypothesis testing, we begin by claiming that
the population parameter of interest is equal to some postu-
lated value (or, in the situation in which we are comparing 2
populations, that the 2 parameters are equal to each other).
This statement about the value of the population parameter is
called the null hypothesis (H,). The alternative hypothesis
(H,) is a second statement that contradicts the null. Together,
the null and alternative hypotheses account for all possible
values of the population parameter; consequently, 1 of the 2
statements must be true. After formulating the hypotheses
needed to answer our study question, we draw a random
sample from the population of interest and use the informa-
tion in this sample to calculate a test statistic. The test statistic
is compared with the critical values of an appropriate prob-
ability distribution. If there is evidence that the sample could
not have come from a population with the postulated value of
the parameter, as determined by a comparison of the magni-
tude of the test statistic with the critical values of the
probability distribution, we reject the null hypothesis. This
occurs when the probability value of the test is sufficiently
small, usually <0.05. The probability value is the probability
of observing a test statistic as large as we got, or even larger,
given that the null hypothesis is true. In this case we conclude
that the data are not compatible with the null hypothesis; they
are more supportive of the alternative. Such a test result is
said to be statistically significant. If the probability value of
the test is large, we fail to reject the null hypothesis.

The Sample Proportion
With dichotomous or binary data, values fall into 2 unordered
categories or classes that are mutually exclusive; examples of
dichotomous variables include gender and survival to hospital
discharge after a surgical procedure yes/no. With this type of

data, the proportion of times that a particular outcome occurs
is the parameter of interest.

If we wish to calculate the proportion of times that some
outcome occurs in a population, we count the number of subjects
in the population who experience the outcome and divide by the
total number of individuals in the population. The population
proportion is represented by p. For a random sample, we count
the number of subjects in the sample who experience the
outcome and divide by the total number in the sample. The
proportion of outcomes in the sample, called the sample propor-
tion, is denoted by p.

When analyzing proportions, we often rely on the binomial
distribution. Suppose that we randomly select a sample of 20
patients from the population of children with acute Kawasaki
disease. How many of the children in this sample will develop
coronary artery abnormalities? The outcome development of
coronary artery abnormalities is a dichotomous variable; a child
either develops abnormalities or does not. We assume that each
child in the population has the same probability of developing
abnormalities, denoted by p. In this case, the number of children
out of 20 who develop coronary artery abnormalities follows a
binomial distribution.’

In practice, the binomial distribution can be cumbersome to
work with if the sample size n is large. As an alternative, we
often use approximate procedures based on the normal distribu-
tion. If n is large, then the sample proportion p has a normal
distribution.!

One-Sample Test for a Proportion
In some clinical studies, a single sample of patients is collected.
The goal of the study is to determine whether the proportion of
times that an outcome occurs in the population from which the
sample was drawn is equal to the proportion of times it occurs in
an appropriate standard or reference population.

For example, suppose that we are interested in examining
cognitive function as measured by the intelligence quotient (1Q)
score for individuals who have survived a Fontan procedure. The
Fontan procedure is an operation performed on patients with
complex congenital heart defects that result in 1 functional
ventricle rather than 2.2 In the general population, IQ scores are
scaled to have a normal distribution with mean 100 and SD
15.3-> Approximately 2.5% of the values in a normal distribution
lie >2 SDs below the mean; therefore, ~2.5% of IQ scores in
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the general population lie <70. We wish to know whether the
proportion of Fontan survivors who have an IQ score <70 is
also equal to 0.025, the proportion for the general population.

To conduct a hypothesis test, we begin by claiming that p, the
proportion of Fontan survivors with an IQ score <70, is in fact
equal to the proportion in the general population. This postulated
proportion is represented by p,. Therefore, we test the null
hypothesis

Ho.'p =p0=0025
against the alternative
H,:p#0.025.

Together, these 2 hypotheses account for all possible values
of the population proportion p; 1 and only 1 of the hypotheses
must be true.

We draw a random sample from the population of Fontan
survivors, measure IQ score for each patient in the sample, and
compare the sample proportion of individuals with an IQ score
<70 to the postulated proportion p,=0.025. In a sample of size
n=128, 10 patients had an IQ score <70; therefore, p=
10/128=0.078. Note that p is a random variable; if we were to
select a different sample of size 128, we would almost surely get
a different value for the sample proportion because of sampling
variability. How much variability is allowed? In other words, is
the difference between the observed sample proportion p and the
postulated proportion p, too large to be attributed to sampling
variability alone?

To answer this question, we must quantify the amount of
variability expected in the sample proportion; we do this
using the SD of p, defined as follows

ypX(1=p)/n.

This is also called the standard error of p. The difference
between p and p, divided by the standard error gives us the
test statistic

o= D—Do
\PoX (1=po)/n.

The denominator of the test statistic,
\PoX(1=po)/n,

is the value of the standard error given that the null hypothesis is
true and p=p,. If the null hypothesis is true, this test statistic has
a standard normal distribution with mean 0 and SD 1. The larger
the absolute value of the test statistic, meaning the farther it is
from 0, the stronger is the evidence that the null hypothesis is not
true. For the standard normal distribution, 2.5% of the values lie
below the critical value —1.96 (=2 SDs below the mean), and
2.5% lie above 1.96. Therefore, if we are conducting a 2-sided
hypothesis test at the 0.05 level of significance, we reject H,
when z <—1.96 or z >1.96.

The probability value of the test for Fontan survivors, defined
as the probability of observing a sample proportion as far from
the postulated value of 0.025 as 0.078, or even farther, given that
the null hypothesis is true and p really is 0.025, is P<<0.001
(Figure 1). Because this probability is <0.05, we reject the null
hypothesis; the data in the sample are more compatible with the

H,:p=p,=0.025
H,:p+#0.025

n=128,p=10/128=0.078

P—Do

‘\/pox(lfpo)/n

B 0.078—0.025
J0.025x(1-0.025)/128

=3.84

Figure 1. One-sample test for a proportion compared to a
known value. The test statistic tells us that the sample propor-
tion p is 3.84 standard errors above the postulated proportion
Po; when the standard normal distribution is used, the probabil-
ity that this occurs given that the null hypothesis is true is
P<0.001. Therefore, we reject the null hypothesis.

alternative that p#0.025. In fact, it appears that the proportion of
Fontan survivors who have an IQ score <70 is >2.5%, the
proportion in the general population.

The mathematical derivation of the 1-sample test statistic
assumes that the sample size n is large enough that the
binomial distribution can be approximated by a normal
distribution. In general, this assumption is satisfied if n is
large and p is not too close to either O or 1. One rule of thumb
states that we should have both nXp =5 and nX(1—p) =5.1

If the sample size is not large enough, an exact method of
hypothesis testing uses the binomial distribution itself rather than
relying on the normal approximation.® This test is more compu-
tationally intensive than the normal theory method but can be
performed by many statistical software packages. For large
sample sizes, the 2 methods produce nearly identical probability
values. For small samples, the exact binomial test is preferred.

Two-Sample Tests for Proportions
Rather than compare the proportion of times that an outcome
occurs in a single population with the known proportion for
some standard or reference population, it is more common to
compare the proportions in 2 different populations, neither of
which is known. Most often we want to know whether the 2
proportions are equal. The hypothesis test we use depends on
whether our data come from independent or paired samples.

Independent Samples

When samples are drawn from 2 independent populations, the
normal theory method described for the 1-sample test can be
generalized to compare the proportions of times an outcome
occurs in each of 2 populations. The null hypothesis claims
that the 2 population proportions are identical, or

Hy:pi=p>
whereas the alternative hypothesis says that they are not
Hy:pi#p,.

We draw a random sample from each population and calcu-
late 2 sample proportions p; and p,. If the null hypothesis is
true, we expect the 2 sample proportions to be fairly close to



TABLE 1. Data for 500 Patients Undergoing the
Fontan Operation

Early Failure

Yes No Total

Heterotaxy Syndrome Yes 9 32 4
No 75 384 459

Total 84 416 500

each other. We reject H; if they are too far apart. The test
statistic takes the form

A ~

Pi1—P2

: pX (1 Axl !
PX(1—=p) n1+n2

where p is the proportion of times that the outcome occurs in
the 2 samples combined. Again this test statistic follows a
standard normal distribution; therefore, H, will be rejected if
z <—1.96 or z >1.96. The probability value of the test is the
probability of observing 2 sample proportions as far apart or
even farther apart than the observed values p, and p,, given
that the null hypothesis is true and p,=p,. Although this
technique is straightforward, when presented with a compar-
ison of proportions from 2 independent populations, it is more
common to apply contingency table methods.

To illustrate, a study evaluated factors associated with early
failure of the Fontan procedure. Early failure was defined as
death, takedown of the Fontan circulation, or cardiac transplan-
tation within 30 days of the operation or before hospital
discharge.” One research question was as follows: Is there any
difference in the proportion of early failures for patients with and
without a diagnosis of heterotaxy syndrome, which involves
abnormal left/right placement of 1 or more organs in the body?
The null hypothesis that the 2 population proportions of early
failure are the same, H,: p,=p,, implies that there is no
association between heterotaxy syndrome and early failure.

Data from a sample of 500 patients are arranged in a tabular
format known as a contingency table (Table 1). In its simplest
form, the 2X2 contingency table, 2 dichotomous variables are
involved. The rows of the table represent the values of one
variable (eg, presence of heterotaxy syndrome), and the columns
the other (eg, early failure). The entries in the cells of the table
are the counts that correspond to a particular combination of
categories.

The )* test compares the observed frequencies in each
category or cell of the table (O) with the expected frequencies
given that the null hypothesis is true (E). It is used to determine
whether the deviations or differences between observed and
expected counts in the 4 cells are too large to be attributed to
sampling variability alone. The test statistic takes the form

4
xX’=>,(0,—E)"/E,
i=1

This statistic has a ¥ distribution with 1 degree of freedom;
the larger the test statistic, the stronger is the evidence that the
null hypothesis is not true. If we are conducting the test at the
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Hy:p =p,

H,:p, # p,

or

H : There is no association between heterotaxy syndrome and early failure.

H , : There is an association between heterotaxy syndrome and early failure.

0,=9,0,=32,0,=75,0, =384
E,=69,E, =341,E =77.1,E,=381.9

4
7 =Y(0,-E)IE

i=1

=[(9—6.9)2 }{(32—34.1)2}{(75—77.1)2}{(384—381.9)2}=0.85
6.9 34.1 77.1 381.9

n =415 =9/41=0.220
n, =459, p, =75/459=0.163
$=84/500=0.168

= pP-p,
JPx (U= pyx(U/n +1/n,)
B 0.220-0.163
- \/0.168><(1—0.168)><(1/41+1/459)
=0.921

Figure 2. Tests for equality of proportions in 2 independent sam-
ples. The first test statistic has a x? distribution with 1 degree of
freedom; the second has a standard normal distribution. Note that
(0.921)>=0.85. The probability of obtaining a test statistic this large
or larger given that the null hypothesis is true is P=0.36 in both
cases. Therefore, we falil to reject the null hypothesis.

0.05 level of significance, we reject the null hypothesis when
X° >3.84. Note that this is mathematically equivalent to the
hypothesis test based on the standard normal distribution; the
critical value of 3.84 for the x’ test is actually (1.96).2 The
probability value for the test (Figure 2) is the probability of
observing differences O—F as large as or even larger than
those obtained given that the null hypothesis is true. Because
this probability is >0.05, we fail to reject the null hypothesis.
The data are more compatible with the null hypothesis of no
association between heterotaxy syndrome and early failure
than they are with the alternative hypothesis.

In addition to assuming that the observations or subjects are
independent, the ¥ test is based on an approximation that works
best when the samples are fairly large and the proportions being
compared are neither too big nor too small. As a conservative
guideline, no cell in a 2X2 table should have an expected count
<5.!If this assumption is violated, then the Fisher exact test can
be used instead.® It is never wrong to use the exact test, and it is
preferable for small sample sizes.

Paired Samples
We now consider the situation in which the dichotomous data
of interest come from paired rather than independent samples.
The defining characteristic of paired dichotomous data is that
for each observation in the first sample, there is a correspond-
ing observation in the second sample.

A study was conducted to investigate the association between
a diagnosis of cardiac enlargement based on chest x-ray and the
same diagnosis based on echocardiogram.® The same group of
study subjects had both tests performed; therefore, each individ-
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TABLE 2. Data for 95 Patients Undergoing Evaluation for
Cardiac Enlargement

Echocardiogram

Normal Enlarged Total

Chest x-ray Normal 72 7 79
Enlarged 6 10 16
Total 78 17 95

ual had 2 diagnoses. Is one test more likely than the other to
result in a diagnosis of cardiac enlargement? The null hypothesis
is that there is no association between a diagnosis of cardiac
enlargement and the particular testing modality used; the alter-
native hypothesis is that there is an association, meaning that one
test is more likely than the other to produce a diagnosis of
cardiac enlargement.

A sample of 95 subjects underwent both testing procedures;
diagnosis was assessed independently by 2 different physicians.
By chest x-ray, 16 patients had a diagnosis of cardiac enlarge-
ment. By echocardiogram, 17 patients had this diagnosis. Ten
patients received the diagnosis on both tests. The data are
summarized in Table 2. Each entry in the table corresponds to
the pair of results for a single individual. Therefore, the sample
size is 95 pairs rather than 190 measurements.

With this type of data, the concordant pairs, in which a patient
has the same diagnosis on both the chest x-ray and the echocar-
diogram, provide no information about differences between the
2 tests. Therefore, we discard the concordant pairs and instead
focus on the discordant pairs, in which a patient gets different
diagnoses with the 2 different procedures. If the null hypothesis
is true and there is no relationship between a diagnosis of cardiac
enlargement and testing modality, then we would expect the
numbers of each of the 2 different types of discordant pairs to be
equal. In other words, the number of pairs in which the chest
x-ray is normal but the echocardiogram indicates enlargement
(represented by r) should be equal to the number of pairs in
which the echocardiogram is normal and the chest x-ray indi-
cates enlargement (represented by ). The McNemar test is used
to determine whether the observed difference between r and s is
larger than would be expected by sampling variability alone. The
test statistic takes the form

2:(r—s)z

r+s

X

and again has a y* distribution with 1 degree of freedom. The
probability value of the test is the probability of observing a
difference as big as or bigger than the absolute value of r—s,
given that H, is true. Because the probability value of this test
is large (Figure 3; P=0.78), we fail to reject the null
hypothesis; the data are compatible with the null hypothesis.
Note that this hypothesis test does not assume that either
diagnostic modality is a gold standard.

If a statistically significant result had been found, the conclu-
sion drawn would necessarily be conditional on an observed
difference in testing modalities; keep in mind that the concordant
pairs of data were discarded. For example, if we had determined
that there were more pairs in cases in which the chest x-ray is
normal and the echocardiogram indicates cardiac enlargement

H,: There is no association between testing modality

and a diagnosis of cardiac enlargement.
H ,: There is an association between testing modality

and a diagnosis of cardiac enlargement.

r+s
_(@-oy
7+6
=0.08

Figure 3. McNemar test for paired dichotomous data. The test
statistic has a )2 distribution with 1 degree of freedom. The
probability of obtaining a test statistic this large or larger given
that the null hypothesis is true is P=0.78. Therefore, we fail to
reject the null hypothesis.

than the other way around, we would have concluded that in
situations in which the 2 tests produce different results, it is more
likely that the echocardiogram will identify cardiac enlargement.

The McNemar test is based on an approximation that works
best when the number of discordant pairs is fairly large. If this is
not the case, an exact binomial test is available for small
samples.©

Summary
We have described elementary methods for testing hypothe-
ses about proportions for 1 or 2 populations. These methods
are used for dichotomous data and include a z test based on
the normal distribution to compare 1 sample proportion with
a postulated or reference value, as well as ) tests to compare
proportions in 2 independent or paired samples. With small
samples or proportions close to 0 or 1, exact tests should be
used instead of these large-sample approximate procedures.
Methods to account for concomitant or confounding variables
will be addressed later in the series.

Disclosures
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