
1 0 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

software construction

W
e are surrounded by real-world
state machines: ballpoint pen re-
tractor mechanisms, vending ma-
chines, washing-machine con-
trollers, digital watches. They are
a trivial but underused technol-

ogy that can simplify how we implement
programs that must track how they got to
their current state before handling a new

event. However, many programmers feel
that state machines are only useful when
they’re developing communication protocol
stacks, which is not an everyday activity.

This is unfortunate. State machines can
be appropriate in surprising circumstances.
Correctly applied, they will result in faster,
more modular, less coupled, and easier to
maintain code. State machines make it easy
to eliminate duplication, honoring the DRY
principle.1 They also let you write more ex-
pressive code, because you can specify intent
and implementation independently. These
are all good, pragmatic, reasons to investi-
gate them further, so let’s look at some sim-
ple state machine implementations and
problems they can solve.

Stating the obvious
A state machine is a system with a set of

unique states. One state is special—it repre-
sents the system’s initial state. One or more of
the other states are final states; when an event
causes us to reach one of these the state ma-
chine exits. States are connected by transitions.
Each transition is labeled with the name of an
input event. When that event occurs, we fol-
low the corresponding transition from the cur-
rent state to arrive at the new state. State ma-
chines are often represented as diagrams with
the states shown as circles and the transitions
as labeled arrows between the states. Figure 1
shows a simple state machine that exits when
a set of coin tosses results in a head, then a tail,
and then another head. It starts in state S0. If
we toss a tail, the transition loops back and
we stay in S0; otherwise, we move on to S1.
This state moves to S2 if we toss a tail next.
From there we move on the S3, a final state,
if we see another head. This type of state ma-
chine is sometimes called a deterministic fi-
nite state machine or automaton. The graph
in Figure 1 is a state transition diagram.

Using state machines
A state machine is useful whenever we

have a program that handles input events
and has multiple states depending on those
events. These situations arise frequently in
communications, parsing, emulations, and
handling user input. You can spot a program
that’s a candidate for a state machine by
looking for code that contains either deeply
nested if statements or many flag variables.
You can eliminate the flags and flatten the
nesting using a state machine.

State Machines
Dave Thomas and Andy Hunt

E d i t o r s : A n d y H u n t a n d D a v e T h o m a s � T h e P r a g m a t i c P r o g r a m m e r s
a n d y @ p r a g m a t i c p r o g r a m m e r. c o m � d a v e @ p r a g m a t i c p r o g r a m m e r. c o m

N o v e m b e r / D e c e m b e r 2 0 0 2 I E E E S O F T W A R E 1 1

SOFTWARE CONSTRUCTION

A while ago, Dave wrote a simple
Web-based order-handling system.
Customers could pay by check or
purchase order. When orders were
initially entered, a confirmation was
mailed. When payment was received,
the products were shipped. If that
payment was a purchase order, the
program generated an invoice and
tracked its subsequent payment sta-
tus. Because events could occur
weeks apart, the status had to be
tracked in a database.

After a while, the code started to
get messy and handling the special
cases began to get ugly. So, Dave
reimplemented the code as a simple
state machine. This state machine
ended up having a dozen or so states
and perhaps 15 action routines to
deal with transitions between these
states. The resulting code was a lot
clearer (and a lot shorter). And when
the customer changed the applica-
tion’s business rules, typically Dave
just changed a few entries in the table
that defined the state transitions.

However, that’s a fairly complex
example. Let’s look at something
simpler, such as a program that
counts words in text. Here the input
events are the characters we read,
and the states are “W: in a word”
and “S: not in a word.” We can in-
crement the word count whenever
we transition from S to W. Figure 2
shows the state transition diagram.
Note that we’ve added a semantic ac-
tion to one of the transitions—we in-
crement a count on the S →→ W tran-
sition. On its own, this example
might not be particularly com-
pelling—the code required to imple-
ment the state machine word counter
is probably about the same size as the
conventional version. However, say
our requirement changed slightly—
our client tells us that the program
should now handle HTML files, ig-
noring any text between “<” and
“>”. We also deal with quoted
strings, so that “Now is the <IMG
src="clock.gif" alt="<time>">

for all good people” should count
seven words, and correctly ignore the
“>” in the quoted string. If we had
taken the conventional approach,

we’d now need flags for “skipping a
command” and “in a quoted string.”
With the state machine, it is a simple
extension, shown in Figure 3.

Implementing state machines
For very simple state machines, we

find it is easiest to implement the
states and transitions manually. We
use a variable to keep the current state
and update it as events happen. Typi-

cally we’ll have a case statement to
handle the different states or events.

However, once we start becoming
more complex, we convert the state
transition diagram to a 2D table. The
table is indexed by the current state
and the input event, returning the re-
sulting next state. It’s convenient to
include an action code in each table
entry too, because this tells us what
to do on each transition. These table

Start Head Tail Head

Tail Head

Tail

S0 S1 S2 S3

Figure 1. A state machines that exits for a head-tail-head sequence
of coin tosses.

Start

eof

eof

isalpha(ch)
[count++]!isalpha(ch)

isalpha(ch)

!isalpha(ch)

S eof

W

Figure 2. A state
transition
diagram that
counts words in
our text input.

Start

ch == ’<’

ch == ’>’

ch == ’ ” ’

ch == ’ ” ’

ch == ’<’

!isalpha(ch)
[count++] *

isalpha(ch)

S Cmd

W

* *

Str

*

Figure 3. A state machine that counts words in HTML. We omitted
the eof transitions (shown in Figure 2) for clarity.

1 2 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 2

SOFTWARE CONSTRUCTION

entries are conveniently represented
as structures or simple data-only
classes. A more sophisticated imple-
mentation could replace these table
entries with objects that include the
behavior to be performed. Applica-
tions coded this way often have a
trivial main loop:

while eventPending(){
event = getNextEvent();
entry = transitions
[currentState][event];

entry.executeAction();
currentState =
entry.nextState();

}

Once we have a program in this
form, we can easily change it as new
requirements come along. For exam-
ple, if our client suddenly wants us to
count HTML commands, we merely
add a new action to the S →→ Cmd and
W →→ Cmd transitions in the table. If
we notice that we’re handling HTML
comments incorrectly, we just add a
couple of new states and update the
table accordingly—the main program
doesn’t change at all.

More sophisticated implementations
Once you get into the realm of

large state machines, maintaining the
state table manually becomes an er-
ror-prone chore. Rather than coding
the table directly in our implementa-
tion language, we normally write a
plain text file containing a simpler
representation and use this to gener-
ate code. For the HTML word
counter, our state file might start
something like:

S: LT →→ (CMD NONE),
WORD →→ (W INC),
default →→ (S NONE)

W: LT →→ (CMD NONE),
W →→ (W NONE),
default →→ (S NONE)

Depending on the target language,
we might then generate from this a
header file containing the definitions of
the states, events and actions, and a
source file containing the transition
table. The actions could be defined as

enumerations or possibly as a set of
function pointers. Robert Martin of
Object Mentor implemented state ma-
chine compilers for Java and C++ based
on these principles. You can download
them from www.objectmentor.com/
resources/downloads/index.

State machines and object-oriented
development

If you’re working in an object-
oriented environment, the same basic
principles apply. However, you can
also use classes to provide a clean in-
terface to the thing being modeled. In
Design Patterns,2 the Gang of Four
present the State pattern. Their ex-
ample is a TCP connection. As the
connection changes state (presum-
ably driven by an internal state tran-
sition system similar to the ones we
discussed earlier), the connection ob-
ject changes its behavior. When the
connection is in the closed state, for
example, a call to open it might suc-
ceed. However, if the connection is
open already, the same call will be re-
jected. This is a tidy approach to
managing the external interface to a
state driven system.

S tate machines are an underused
tool. The next time you find your-
self adding “just one more flag”

to a complex program, take a step
back and see if perhaps a state ma-
chine might handle the job better.

References
1. A. Hunt and D. Thomas, “Don’t Repeat Your-

self,” The Pragmatic Programmer, Addison-
Wesley, Boston, 2000.

2. E. Gamma et al., Design Patterns, Addison-
Wesley, Boston, 1995.

Dave Thomas and Andy Hunt are partners in The
Pragmatic Programmers, LLC. They feel that software consultants
who can’t program shouldn’t be consulting, so they keep current
by developing complex software systems for their clients. Con-
tact them via www.pragmaticprogrammer.com.

How to
Reach Us

Writers
For detailed information on submitting articles,
write for our Editorial Guidelines (software@
computer.org) or access http://computer.org/
software/author.htm.

Letters to the Editor
Send letters to

Editor, IEEE Software
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or
daytime phone number with your letter.

On the Web
Access http://computer.org/software for
information about IEEE Software.

Subscribe
Visit http://computer.org/subscribe.

Subscription Change of Address
Send change-of-address requests for magazine
subscriptions to address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for IEEE
and Computer Society membership to
member.services@ieee.org.

Missing or Damaged Copies
If you are missing an issue or you received
a damaged copy, contact help@computer.org.

Reprints of Articles
For price information or to order reprints,
send email to software@computer.org or fax
+1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact William Hagen, IEEE Copyrights and
Trademarks Manager, at whagen@ieee.org.

How to
Reach Us

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

