Conversion of Petri Net Controllers for Manufacturing Systems
into Ladder Logic Diagrams

M. Uzam, A H. Jones, and N. Ajlouni

Intelligent Machinery Division
Research Institute for Design, Manufacture and Marketing
University of Salford, SALFORD MS5 4WT, UK
fax: ++ 44 161 745 59 99
e-mail: m.uzam@aeromech.salford.ac.uk

Abstract - As automated manufacturing systems become more complex,
the need for an effective design tool to produce both high level Discrete
Event Control System (DECS) and low level implementation, becomes
increasingly more important. Petri nets represent the most effective
method for both the design and implementation of DECSs. The
conversion of such Petri nets into real-time applications has recently
been greatly simplified through the advent of the Token Passing Logic
(TPL) methodology. The technique has been developed for normal Petri
nets, P-timed Petri nets, T-timed Petri nets and Coloured Petri nets. In
this paper the Petri net concepts are extended to deal with Petri net
controllers, by including actuators and sensors as formal structures
within the Petri net controller. The conversion of such a Petri net
controller into ladder logic diagrams is also demonstrated by
considering the control of a component sorting manufacturing system.

I. INTRODUCTION

To-date industry standard Petri net controllers do not exist, rather
Programmable Logic Controllers (PL.Cs) dominated the application
domain. In today's modemn factory, PLCs have emerged as the
mainstay in the execution of automation tasks. Their selection for
Discrete Event Control tasks is due to their low-cost, ruggedness and
ease of programming. Indeed, the majority of PLCs can be
programmed in a graphical symbolic language called ladder logic.
The very simplicity of the ladder logic programs which makes them
so transparent is also their greatest downfall. This is because when
developing complex control systems involving parallel tasks which
interact periodically the ladder logic programming language offers
little in the way of structural constructs to deal with problem. As
automated manufacturing systems become more complex, the need
for an effective design tool to produce high level Discrete Event
Control System (DECS) becomes increasingly more important. Petri
nets [1] have appeared as the most promising tool to facilitate such
design work. By using Petri net techniques Discrete Event models of
the manufacturing systems can be built which can be used for a
variety of design studies, including production ratio, deadlock and
control design. However, Petri net methods have not been used for
the direct design of PLC programs. This is because until the recent
advent of Token Passing Logic (TPL) there was no single technique
to convert Petri nets into a suitable format for implementation on a
PLC. Indeed, there have been many attempts to produce structured
methods to convert Petri nets into ladder logic, [2], [3], [4], [5], and

0-7803-3685-2/96 $5.00 © 1996 |IEEE

[6]. However until the advent of the Token Passing Logic (TPL) no
solution has been provided to cope with the full complexity of today’s
automation needs. The TPL methodology bridges the gap between
Petri net analysis and ladder logic. The technique is powerful and yet
simple to both understand and implement. Moreover, the thecnique
has also been extended to deal with P-timed Petri nets [7], [8], T-
timed Petri nets [9], and Coloured Petri nets [10], [11]. The TPL
methodology has also been developed to embrace statement lists [12],
[13] and knowledge based systems [14], [15]. In order to implement
Petri net designs directly as controllers some additional features to
ordinary Petri nets have to be defined. This is because Petri nets do
not have constructs to adequately deal with actuators and sensors.
This deficiency has prompted the advent of a Petri net controller
(PNC), which extends the ordinary Petri nets to deal with discrete
event control applications. These extensions involve interfacing the
Petri net to actuators and sensors.

The purpose of this paper is to establish a set of additional
features to ordinary Petri nets which facilitate the addition of sensor
readings at transitions and both the impulse and level control of
actuators. Finally, a Petri net controller is described for a component
sorting manufacturing system.

II. PETRI NET CONTROLLERS
AND TOKEN PASSING LOGIC

Ordinary Petri nets do not deal with actuators or sensors. Because
of this, it is necessary to define a Petri net controller (PNC) which can
embrace both actuators and sensors within the existing Petri net
framework. In a PNC sensors are used at transitions. The presence or
absence of sensor readings can be used in conjunction with the
normal Petri net pre-conditions to enable or fire transitions. In a PNC
two types of actuation are considered, namely impulse actions and
level actions, Actuators can be associated with either places or
transitions. With these additional features, it is possible to construct
Discrete Event Control Systems. In order to facilitate the conversion
of a PNC into a ladder logic diagram, the recently introduced TPL
methodology can be deployed.

The prime feature of the TPL technique is that it facilitates the
direct conversion of any Petri net Controllers into control logic. This

649

mailto:m.uzam@aeromech.salford.ac.uk

is achieved by adopting the Petri net concept of using tokens as the
main mechanism for controlling the flow of the control logic. Hence,
each place within the Petri net corresponds to a place within the PNC
program. The simulated movement of tokens is achieved by
deploying separate counters at each logic place, whose capacity is
equal to or greater than 1. These counters are then incremented and
decremented to simulate token flow. Thus, each logic place within
the PNC program has an associated counter, and the current count
value of the counter at the logic place represents the number of tokens
that would be at the corresponding place within the Petri net. The
assignment of a counter to a Petri net place is shown in Fig. 1.(a),
where C stands for counter. Finally, to complete the Petri net synergy,
if the counter associated with a place is non-zero and a Petri net like
transition associated with that place becomes active, then the counter
at the place is decremented by one, and the subsequent place linked
by the transition is incremented by one. In the case of single capacity
places the counters can be replaced by flags. Token flow is then
achieved by setting and resetting flags. The assignment of a flag to a
Petri net place is also shown in Fig. 1.(b), where F stands for flag. An
on delay timer can be readily used to model timed transitions and
timed places in PNC method.

P1 CAP(P1)>= 1 P1 Cl

a Petri net place
with a capacity >= 1

a PNC place
with a capacity >= |

(@)

P1 CAP(PI)=1 P1 F1
a Petri net place a PNC place
with a capacity = 1 with a capacity = 1

(b)

Fig, 1. Petri net places and their equivalent PNC places.

In essence, the Petri net places are represented by logic places, the
Petri net tokens are represented by separate counters at each logic
place. Moreover, the flow of Petri net tokens is simulated by counting
down and counting up the counters or similarly by sctting and
resetting the appropriate flags at the appropriate places. In the PNC,
actions can either be assigned to places or transitions. Places on
which actions are assigned are called control places, and transitions
on which actions are assigned are called control transitions. If an
action is assigned to a place for a finite time this corresponds to a P-
timed Petri net feature. However, if an action is assigned to a
transition for a finite time, this corresponds to a T-timed Petri net
feature.

In theory, the methodology can cope with any number of tokens
and provide a visual description of the control program which has all
the advantages of a full Petri net analysis. Furthermore, ocoloured
Petri net controllers can also be converted into control logic using this
methodology, simply by adding more counters or flags to each place.

It is believed that this new technique provides a tool which is a
simple, but sophisticated way of developing complex Discrete Event
Control Systems. It is these very features which will be vital to the
success of agile manufacturing systems.

The Petri Net Controllers are illustrated by considering
the following Petri net structures: Sensor readings at a
transition, level action at a place, impulse action at a place,
level action at a transition, and impulse action at a
transition.

A. Sensor Readings at a Transition

A standard transition with sensor readings is shown in
Fig. 2. In Petri net theory, a transition can only be fired if the
number of tokens at the input place is non zero and a signal
enabling the transition occurs{1]. In a PNC an enabling arc
can be used as an additional pre-condition to the Petri net
such that if the logic for a sensor reading is high then the
pre-condition is satisfied. Similarly, an inhibitor arc can be
used as an additional pre-condition to the Petri net such that
if the logic for a sensor reading is low then the pre-condition
is satisfied. The transition is fired when all the pre-
conditions are satisfied, and one or more pre-conditions
undergoes a change in logic state, This is shown at the
instances a, b, ¢, d in Fig. 3. Enabling arcs from sensors can
fire transitions when the state of the sensor goes from low to
high (leading edge - 1), {instance a and b}. Inhibitor arcs
from sensors can fire transitions when the state of the sensor
goes from high to low (trailing edge - |), {instance c}. If
the pre-conditions from the sensor readings are already
satisfied and a token enters an input place which previously
had no tokens, the presence of the token will also fire the
transition (leading edge - T), {instance d}. In the TPL
method, when a transition is fired, it withdraws a token from
the current logic place and adds a token to the next logic
place.

This is achieved by using a counter at each place to
represent the tokens. When a transition is fired, to simulate
the passing of a token the input counter is decremented and
the output counter is incremented by one. The ladder Logic
program for the standard transition with sensor readings
shown in Fig. 2 is given in Fig. 4.

PZQ C2

Fig. 2. Sensor readings on a transition in a PNC.

650

3 J'._
21
1 t
Number of tokens :
in place P1 - ‘3‘1 _______________________
|
31
|
21
1
Nurmber of tokens | !
in place P2 - ‘0‘1]'_" ____________________________
{
. 1
Reading of the |
1
Reading ofthe | | | |
sensor SI_2 --0-4 -0 -
a b ¢ d
Fig 3. Firing of the PNC shown in Fig, 2.
Cl SI1 SI2 Cl
-1 [~ [V Count Down ----
C2
------- Count Up ----

Fig. 4. Ladder logic diagram for the PNC shown in Fig. 2.

B. Level Action at a Place

In a PNC, actions can be assigned to places called control
places. If there is a condition on the output transition, then
the action is called /evel action because when a token is
deposited in a control place, actions are enabled up to the
moment when the token is removed from the place. Fig. 5.(a)
shows the Petri net place P2 on which a level action is
assigned. A level action at a given place within a Petri net
occurs only if the number of token at the place is non-zero.
Fig. 5.(b) shows a PNC place P2 on which a level action is
assigned. In a PNC, a level action at a place is controlled by
the counter or flag at the place. If the count value of a
counter at the control place is greater than zero or the related
flag is set then any actions associated with the place are
enabled. The firing of the Petri net shown in Fig. 5.(a) is
given in Fig. 6. Also, the ladder logic diagram for the PNC
shown in Fig. 5.(b) is given in Fig. 7.

P1
Trl
P2 Action(s)

Tr2

P3

(a))

Fig 5.(a). Level action(s) assigned on a place in Petri nets.
(b). Level action(s) assigned on a control place in a PNC.

651

Number of
tokens in P1
Number of
tokens in P2
Numnber of
tokens in P3

Ococurerce of firing condition
for transition Trl

Occurence of firing condition
for transition Tr2

Firing of Trl

Firing of Tr2

Level action(s)

Fig, 6. Firing of the Petri net shown in Fig, 5.(a).

F1 Trl F1
—==] [--=-] [Reset
F2
Set

F2 Action(s)
] [()

F2 Tr2 F2
Reset

F3
Set

Fig 7. Ladder logic diagram for the PNC shown in Fig, 5.(b).
C. Impulse Action at a Place

If there is no condition on the output transition from the
control place, then a token will only remain in the place for a
very short time (1). The action assigned to this control place
is then called an impulse action. In this case, when a token is
deposited in a control place the actions are enabled and
immediately disabled as the token is removed from the place,
hence creating an impulse action. Fig. 8.(a) shows the Petri
net place P2 on which an impulse action is assigned. An
impulse action at a given place within a Petri net occurs only
if the number of token at the place is non-zero. Fig. 8.(b)
shows a PNC place P2 on which an impulse action is
assigned. In a PNC, an impulse action at a place is controlled
by the counter or flag at the place. If the count value of a
counter at the control place is greater than zero or the related
flag is set then any actions associated with the place are
enabled. The firing of the Petri net shown in Fig. 8.(a) is
given in Fig. 9. Also, the ladder logic diagram for the PNC
shown in Fig. 8.(b) is given in Fig. 10.

P1
P1 F1
Trl - Trl
P2
P2 Acti
on(s) -
1
Tr2 Tr2
P3
P3 3
@)

Fig, 8.(a). Impulse action(s) assigned on a place in Petri nets.
(b). Impulse action(s) assigned on a oontrol place ina PNC.

Number of
tokens m P1
Number of
tokens in P2
Number of
tokens in P3

Occurence of firing condition
for transition Trl

for transition Tr2

Firing of Trl
Firing of Tr2
Impulse action(s)
Fig 9. Firing of the Petri net shown in Fig, 8.(a).
FI Trl F1
-] [-~--1 | Reset
F2
Set
F2 Action(s)
~ «)
F2 F2
| Reset --------
C3
------ Count Up -----

Figure 10. Ladder logic diagram for the PNC shown in Fig. 8.(b).
D. Level Action at a Transition

When considering a level action, it is important to realise
that two signals are required to trigger the level action, one
signal to enable the action and one signal to disable the
action. This requirement for two signals is easily achieved at
a level action at a place as shown in Fig. 5.(b). However, in
the case of a level action at a transition this can not be
achieved, unless a hierarchical transition is deployed.

The transition Trl shown in Fig. 11.(b) is a hierarchical
transition. There are two conditions for the transition Trl.
The first one is an enabling event (Trl.) which is used to
enable the action(s). The second condition for transition Trl
is a disabling event (Tr12,) which is used to disable the
action(s). When the firing condition Trl2, occurs, the
number of tokens at the input place P1 is decremented by 1
and the number of tokens at the hidden place within the
hierarchical transition Trl is incremented by 1. A level
action at a hierarchical transition within a Petri net occurs
only if the number of token at the place in the hierarchical
transition is non-zero. When the firing condition Trl24
occurs, the number of tokens at the hidden place is
decremented by 1 and the number of tokens at the output
place P2 is incremented by 1. To achieve these effects in a
PNC, a counter has to be assigned to the transition. When
Tr12, occurs, flag F1 associated with place Pl is reset and
counter C12 is incremented by 1. Hence, when the count
value of C12 is non-zero it enables the related actions. When
Tr124 occurs, counter C12 is decremented and counter C2
associated with place P2 is incremented by 1. It is evident
that this hierarchical transition arrangement is required since
there is no such feature in ordinary Petri nets. During the
time between the conditions enabling event Trl2, and
disabling event Trl24, action(s) will be enabled. The firing
of the Petri net shown in Fig. 11.(a) is given in Fig. 12. Also,
the ladder logic diagram for the Petri net shown in Fig.
11.(b) is given in Fig. 13.

Pl Pl
F1
Trle c12
Trld
P2
(a) ®)

Fig 11.(a). Level action(s) assigned on a transition in Petri nets.
(b). Level action(s) assigned on a cortrol transition in a PNC.

Number of

tokens in P!
Number of

tokens in P2
Occurence of firing condition I
Trle for transition TrT
Occurence of firing condition I
Trld for transition Trl

Firing of Trl

Level action(s)

Fig. 12. Firing of the Petri net shown in Fig, 11.(a).

652

F1 Tri2,
] =] [

F1
Reset
Cl2
L Count Up -----
C12 Action(s)
~] [«)

C12 Trl2y4 C12
][] [Count Down ---
C2
------- Count Up -----

Fig, 13. Ladder logic diagram for the PNC shown in Fig, 11.(b).
E. Impulse Action at a Transition

In a PNC, impulse actions can be assigned to the
transitions. In this case, the actions are impulse actions
because the action associated with transition is carried out as
the transition is fired. Fig. 14.(a) shows the Petri net
transition Trl on which an impulse action is assigned. If
there is a token in place P1 and the firing condition for
transition Trl occurs then a token is removed from place P1
and put in place P2. The impulse action at a transition Trl
occurs only as the transition is fired. Fig. 14(b) shows the
PNC transition Trl on which an impulse action is assigned.
In the PNC, impulse actions are carried out when the input
flag F1 is reset and the output flag F2 is set. In the case of
counters this corresponds to counting down and counting up
the counters. The firing of the Petri net shown in Fig. 14.(a)
is given in Fig. 15. Also, the ladder logic diagram for the
PNC shown in Fig. 14.(b) is given in Fig. 16.

P1
m n ()

Trl Trl

[Action(s) | 1 |

Action(s)

P2 P2
n O
(2) ®)

Fig 14.(a). Impulse action(s) assigned on a transition in Petri nets.
(b). Impulse actiory(s) assigned on a cortrol transition ina PNC.

Number of
tokens in P1

Number of
tokens in P2

Occurence of firing condition
for transition Trl

Firing of Tri

Impulse action(s)

Fig 15. Firing of the Petri net shown in Fig, 14.(a).

F1 Trl Action(s)
wee] [| ()
F1
Reset
F2
Set

Fig, 16. Ladder logic diagram for the PNC shown in Fig. 14.(b).

III. MANUFACTURING SYSTEM EXAMPLE

The Manufacturing System, shown in Fig. 17, represents
a component sorting processes that can be controlled by
virtually any PLC.

The conveyor is driven by the conveyor motor Al
(Actuator 1). A random selection of part A and part B are
placed on the conveyor, The part As and part Bs need to be
identified and separated. This is done by two sensors, a
proximity sensor S1 (Sensor 1) and an infra-red reflective
sensor S2 (Sensor 2). By using these two sensors a
distinction can be made between the part As and part Bs. By
means of the sort solenoid A2 (Actuator 2), part As can be
¢jected into Storage I. Part Bs, meanwhile, continue on the
conveyor and are deflected into Storage II. An infra-red
emitter/detector S3 (Sensor 3) is used to determine whether
or not there is a component in front of the sort solenoid A2.
If sensor S3 is active, the sort solenoid A2 can be used to
eject either a part A or part B into Storage 1. If no action is
taken the component is carried into Storage 1I by the
conveyor, In Table 1 sensor readings are explained.

Storage |
for Part A

¢

Conveyor motor ‘
Al

Mixed parts I 4
(Aand B)
—> ¢ m m|¢]
o0 o]

Storage II
for Part B

S182 S3
A2

Sort solenoid
@ PatA

B : Part B

Conveyor belt

Fig. 17. Manufacturing system.

TABLE I
Sensor readings Interpretations
S1 & (not S2) Part A
S1 & S2 Part B
S3 Part A or Part B

653

IV. PETRI NET CONTROLLER
FOR THE MANUFACTURING SYSTEM

A Petri Net Controller (PNC) for the manufacturing
system is given in Fig. 17. The controller design is achieved
by using a Petri net model of the manufacturing system. A
queue structure is deployed for the two types of part by places
P1,...P8, where places P1, P3, PS5, P7 are used to construct a
queue for part As and places P2, P4, P6, P8 are used to
construct a queue for part Bs. Note that inhibitor arcs at
transitions Tr3,...,Tr8 construct a queue for both part types.
In the controller part As need to be put into Storage I and
also part Bs need to be put into Storage II. This is achieved
by using places P9 and P10. After this is done the sensor
readings are added to the PNC. The distinction between part
As and part Bs is achieved by using sensor SI_1 and sensor
SI_2, at Trl and Tr2. Sensor reading SI_3 is used at Tr7 and
Tr8 to detect presence of a component and at Tr9 and Tr10
to detect the absence of the component. Finally, the conveyor
motor action is assigned to place P11 and the sort solenoid
action is assinged to transition Tr9. Once, the PNC has been
designed, flags and counters are then assigned to the places
as shown in Table II.

P2 T4 P4 Tr6 P6
F2 F4 F6

Fig. 18. Petri Net Controller for the manufacturing system.

TABLE II
PNC
Places Interpretation
Pso Coming components

P1 first place of conveyor belt for part A

P2 first place of conveyor belt for part B

P3 second place of conveyor belt for part A

P4 second place of conveyor belt for part B

P35 third place of conveyor belt for part A

P6 third place of conveyor belt for part B

P7 fourth place of conveyor belt for part A

P8 fourth place of conveyor belt for part B

P9 place for part As in storage I

P10 place for part Bs in storage 11
Pll Conveyor motor is off
P12 Conveyor motor is on

V. LADDER LOGIC DIAGRAM
FOR THE PETRI NET CONTROLLER

The ladder logic diagram, shown in Fig. 19, is obtained
for the Petri Net Controller given in Fig. 18. The LLD is
achieved by using direct mapping form PNC to LLDs. The
ladder logic symbols are defined in Table III. The ladder
logic program has been structured in such a way that rung 0
initialises the system, rungs 1 to 10 represent the transitions
Trl to Trl0 respectively. Finally, rung 11 represents level
action Al (conveyor motor operation) at the place PO and
rung 12 represents level action A2 (sort solenoid operation)
at the transition Tr9. By adopting this concept further clarity
can be added to the system documentation.

0 FO FO
..... Wi Set
1 S[1S12 F1
----- 10U Set
2 SL.1SL2 F2
eeer] [[Set
3 F1 F3 F4 F3
o] [V Set
Fl1
--- Reset ~—-s--—
4 F2 F3 F4 F4
el S I It Set
F2
--- Reset ----emmmr
5 F3 F5 F¢ FS
-----) - Set
F3
--- Reset -~--emmem-
6 F4 F5 F6 F6
o] e e Set
F4
--- Reset -—--=—m—ss
7 FS F7 F8 F7
] [l Set
F5
-~ Reset ---~-aeen
8 F6 F7 F8 F8
eee] [Vl - Set
F6
-- Reset ~----mmn-
9. F7 F9
e 1 Set
F7
--- Reset =--—unamm
9 F9 SIL3 c9
----- 111 Count Up —---—
F9
t-— Reset -----—mum
10 F8 SI 3 C10
----- V{1 Count Up —---s-
F8
--- Reset ----eeamnn
11 FO Al
----- 1 ()
12 F9 A2
11 ()

Fig. 19. LLD for the PNC.

654

TABLE Il
LLD Symbols Definition
F Flag
C Counter
SI Sensor input
A Action (Output)

VI. CONCLUSIONS

As automated manufacturing systems become more complex, the
need for an effective design tool to produce both high level Discrete
Event Control System (DECS) and low level implementation,
becomes increasingly more important. Petri nets represent the most
effective method for both the design and implementation of DECSs.
The conversion of such Petri nets into real-time applications has
recently been greatly simplified through the advent of the Token
Passing Logic (TPL) methodology. The technique has been
developed for normal Petri nets, P-timed Petri nets, T-timed Petri
nets and Coloured Petri nets. In this paper the Petri net concepts have
been extended to deal with Petri net controllers, by including
actuators and sensors as formal structures within the Petri net
controller. The conversion of such a Petri net controller into ladder
logic diagrams has also been demonstrated by considering the control
of a component sorting manufacturing system.

VII. REFERENCES

1. R David, H. Alla, Petri Nets and Grafcet , Tools For
Modelling Discrete Event Systems, Englewood Cliffs,
NJ: Prentice Hall Inc., 1992.

2. M. A Jafari, T. O. Boucher, “A Rule - Based System
For Generating Ladder Logic Control Program From a
High Level System Model”, Journal of Intelligent
Manufacturing, 5, 1994, pp. 103 - 120,

3. T. Satoh, H. Oshima, K. Nose, S. Kumagai, “Automatic
Generation System of Ladder List Program By Petri
Net”, in Proceedings of the IEEE International
Workshop on Emerging Technologies on Factory
Automation - Technology For The Intelligent Factory,
1992, pp. 128 - 133.

4. S. Rattigan, “Using Petri Nets to Develop Programs for
PLC Systems”, Lecture Notes in Computer Science 616:
Application and Theory of Petri Nets, 1992, pp. 368 -
372.

5. A. Taholakian, W.MM. Hales, “The Design and
Modelling of PLC Programs Using Petri Nets”, in
Proceedings of the International Conference on Planned
Maintenance, Reliability and Quality Assurance,
Cambridge, England, 6-7 April 1995, pp. 194 - 199.

6. J. Greene, “Petri Net Design Methodology for Sequential
Control”, Masuarement and Control, vol. 22,
December/January 1989/1990, pp 288 - 291.

7. AH Jones, M. Uzam, A. H. Khan, D. Karimzadgan, SB.
Kenway, “A General Methodology for Converting Petri Nets Into
Ladder Logic; The TPLL Methodology”, in Proceedings of the
CIMAT 96, France, May 29-31 1996, pp. 357-362.

8. M. Uzam and A H. Jones, “Design of a Discrete Event Control
System for a Manufacturing System Using Token Passing
Ladder Logic”, in Proceedings of the CESA 96 IMACS Multi-
Conference, Symp. on Discrete Events and Manufacturing
Systems, Lille, France, July 9-12, 1996, pp. 513 - 518.

9. AH. Jones, M. Uzam, and N. Ajlouni, “Design of Discrete Event
Control Systems for Programmable Logic Controllers Using T-
Timed Petri Nets”, in JEEE International Symposium on
Computer-Aided Control System Design - CACSD 96,
Michigan, USA, September 15-17, 1996.

10. M. Uzam and A H. Jones, “Towards a Unified Methodology for
Converting Coloured Petri Net Controllers into Ladder Logic
Using TPLL : Part I - Methodology”, in International Workshop
on Discrete Fvent Systems, WODES 96, Edinburgh, UK, August
19-21, 1996.

11. A.H. Jones and M. Uzam, “Towards a Unified Methodology for
Converting Coloured Petri Net Controllers into Ladder Logic
Using TPLL : Part I - An Application”, in International
Workshop on Discrete Event Systems, WODES' 96, Edinburgh,
UK, August 19-21, 1996.

12.AH. Jones and M. Uzam, “Design of Sequential Control
Systems is Statement Lists Using TPL: Part I - Token Passing
Statement List fo appear in 2nd Portuguese Control
Conference - Controlo 96, Porto, Portugal, September 11-
13, 1996.

13.M. Uzam and AH. Jones, “Design of Sequential Control
Systems is Statement Lists Using TPL: Part IT - An Application”,
fo appear in 2nd Portuguese Control Conference -
Controlo 96, Porto, Portugal, September 11-13, 1996.

14. A -H. Jones, M. Uzam and D. Karimzadgan, “Design of
Knowledge Based Sequential Control Systems”, in
Proceedings of the First International Symposium on
Computing for Industry - ISSCI’96, Motpellier, France,
May 27-30 1996.

15.AH. Jones, M. Uzam and P.B. de Moura Oliveira,
“Design of Knowledge Based Sequential Control Systems
for Manufacturing Systems”, in Proceedings of the IEFE
Mediterranean Symposium on New Directions in Control
& Automation - MSCA’96, Crete, Greece, June 10-14,
1996, pp.764 - 769.

655

