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Emerging sporotrichosis is driven by clonal and
recombinant Sporothrix species

Anderson Messias Rodrigues1,2, G Sybren de Hoog2, Yu Zhang2 and Zoilo Pires de Camargo1

Sporotrichosis, caused by agents of the fungal genus Sporothrix, occurs worldwide, but the infectious species are not evenly

distributed. Sporothrix propagules usually gain entry into the warm-blooded host through minor trauma to the skin from contaminated

plant debris or through scratches or bites from felines carrying the disease, generally in the form of outbreaks. Over the last decade,

sporotrichosis has changed from a relatively obscure endemic infection to an epidemic zoonotic health problem. We evaluated the

impact of the feline host on the epidemiology, spatial distribution, prevalence and genetic diversity of human sporotrichosis. Nuclear

and mitochondrial markers revealed large structural genetic differences between S. brasiliensis and S. schenckii populations,

suggesting that the interplay of host, pathogen and environment has a structuring effect on the diversity, frequency and distribution of

Sporothrix species. Phylogenetic data support a recent habitat shift within S. brasiliensis from plant to cat that seems to have occurred

in southeastern Brazil and is responsible for its emergence. A clonal structure was found in the early expansionary phase of the cat–

human epidemic. However, the prevalent recombination structure in the plant-associated pathogen S. schenckii generates a diversity

of genotypes that did not show any significant increase in frequency as etiological agents of human infection over time. These results

suggest that closely related pathogens can follow different strategies in epidemics. Thus, species-specific types of transmission may

require distinct public health strategies for disease control.
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INTRODUCTION

The fungal genus Sporothrix, which belongs to the plant-associated

order Ophiostomatales, comprises a small group of ascomycetes,

including a few clusters of species with a remarkable ability to cause

infections in mammalian hosts. The four main pathogenic species

diverge according to their geographical distribution, ecological niche

and transmission routes. This divergence is reflected in species-spe-

cific arrays of prevalent hosts and habitats for which either plant

material or felines are the main source of infection.

Sporotrichosis is a chronic infection of the skin and subcutaneous

tissues. Benjamin Schenck first described the disease in 1898, and for

more than a century, it was attributed to a sole etiological agent:

Sporothrix schenckii. The thermodimorphic fungus grows as a mold

in nature (25–30 6C) and converts to a yeast-like phase at elevated

temperatures (35–37 6C), when propagules are traumatically intro-

duced into the warm-blooded host. Infections range from fixed loca-

lized cutaneous lesions to severe disseminated sporotrichosis.1–3

The application of molecular tools has led to the description of four

cryptic species recognized in clinical practice.4,5 The former species,

Sporothrix schenckii, now comprises S. brasiliensis (clade I), S. schenckii

sensu stricto (s. str.) (clade II), S. globosa (clade III) and S. luriei (clade VI).6,7

Pathogenicity to mammals is rarely observed outside this clade of four

species, and only a few reports of infections by S. mexicana and1

S. pallida,6,8 or by close relatives in the genus Ophiostoma, i.e., O. piceae9

and O. stenoceras,10 have appeared in the literature.

Sporotrichosis has a worldwide occurrence, but the distinct etiolo-

gical agents are not evenly distributed. Most endemic areas are located

in somewhat warmer regions.1,11,12 A high prevalence has been

reported in South Africa, India, Australia, China, Japan, the United

States and Mexico. In South America, endemic areas include Uruguay,

Peru, Colombia, Venezuela and Brazil. Sporothrix species are excep-

tional in the fungal kingdom due to their frequent occurrence in the

form of outbreaks. With fundamental differences between the sources

of outbreaks, host–environment interactions are classic determinants

of risk factors for disease acquisition and public health measures must

change accordingly.

In Brazil, isolated cases, small outbreaks and case series have been

sporadically reported. However, over the last few decades, the south-

eastern part of the country has been experiencing a very large epidemic

due to zoonotic transmission,13 with cats being the main vector

through which the disease is transmitted to humans and other ani-

mals.7,13,14 Thousands of Sporothrix infections persist for many

months in symptomatic and asymptomatic cats, leading to the trans-

mission of sporotrichosis by cat-to-cat and cat-to-human contact

patterns. The growing reservoir of infection causes continues to spread

with epidemic proportions.7 The zoonotic transmission of Sporothrix

through cats clearly differentiates Brazil from other outbreaks world-

wide, where the source and vector of infection are primarily soil and

decomposing organic matter. The predominant etiological agent in

cats is S. brasiliensis,7 which is the most virulent species in the
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complex.15,16 Its occurrence is geographically restricted to the South

and Southeast regions of Brazil.1,5,6

All species of the pathogenic cluster have been reported from

Brazil,1,7,12,17,18 where habitat shifts between species are likely to occur.

We investigated the recent, sudden emergence of sporotrichosis in South

America. To assess trends in the epidemiology and genetic diversity of

clinical isolates, we studied the Brazilian strains of Sporothrix that have

been collected over a 60-year period. For comparison, we examined a

collection of well-characterized isolates from the United States, Mexico,

Peru, Japan, China, South Africa, United Kingdom, Italy and Spain.

MATERIALS AND METHODS

Fungal strains

A total of 204 isolates originally received as S. schenckii were included

in this study. The isolates were of environmental, clinical or veterinary

origin from different geographic regions of Brazil. For comparison, 28

reference isolates from outside the Brazilian territory were used. In

addition, 75 calmodulin sequences belonging to Brazilian isolates were

collected from GenBank. The total data set comprised 307 operational

taxonomic units (Supplementary Table S1). Ethical approval was pro-

vided by Institutional Committee (UNIFESP-0244/11).

Molecular characterization

Total DNA was obtained and purified directly from 10-day-old col-

onies on slants by following the Fast DNA kit protocol (MP

Biomedicals, Vista, CA, USA).1 Polymerase chain reaction (PCR)

amplification and DNA sequencing of specific regions of the calmo-

dulin gene (CAL) and the rRNA operon6 were performed using the

degenerate primers CL1 and CL2A19 and ITS1 and ITS4,20 respect-

ively. To evaluate the genetic diversity and to assess mitochondrial

haplotype differences among the isolates, a hypervariable intergenic

region between the ATP9 and COX2 genes in the mitochondrial gen-

ome (mtDNA) was amplified and sequenced using primers 975–8038F

and 975–9194R.21

The amplified products were gel-purified with the Wizard SV Gel

and PCR Clean-Up System (Promega, Madison, WI, USA) following

the manufacturer’s instructions. The PCR products were sequenced

directly in two reactions with forward and reverse primers to increase

the quality of the sequence data (Phred o30). The sequencing reac-

tions were carried out with the BigDye Terminator v3.1 Cycle

Sequencing Kit (Applied Biosystems, Inc., Foster City, CA, USA), and

the sequencing products were determined using an ABI 3730 DNA

Analyzer 48-well capillary sequencer (Applied Biosystems, Inc., Foster

City, CA, USA). The sequences generated in both orientations were

assembled into single sequences via CAP3 implemented in BioEdit soft-

ware. Sequences were aligned with MAFFT v.7,22 and retrieved align-

ments were manually edited to avoid mispaired bases. All sequences

were deposited online at GenBank (Supplementary Table S1).

Phylogenetic inference

Genetic relationships were investigated by phylogenetic analysis using

neighbor-joining, maximum likelihood and maximum parsimony

methods. Phylogenetic trees were constructed in MEGA5.23 Evolutionary

distances were computed using the Kimura two-parameter,24 and the

robustness of branches was assessed by a bootstrap analysis of 1000

replicates.25

Haplotype network and recombination analysis

The nucleotide (p) and the haplotype (Hd) diversities26 were esti-

mated using DnaSP software version 5.10.27 Sites containing gaps

and missing data were not considered in the analysis. A haplotype

network analysis was constructed using the Median-Joining method28

and implemented into the software NETWORK 4.6.1.0 (Fluxus-

Technology). In addition, recombination possibilities were investi-

gated using the NeighborNet method,29 which leads to reticulated

relationships in the presence of recombination, as described by the

Uncorrected-P distance or by the splits decomposition method,30

both implemented in the SplitsTree v.4b06.31 Additional measures

of recombination were estimated using the PHI-test (P,0.05 demon-

strated significant evidence of recombination).

RESULTS

Based on the CAL, the data set for the molecular phylogeny of the

Sporothrix isolates comprised 307 operational taxonomic units, as

represented here by 98 specimens (Figure 1). The aligned CAL sequences

were 710 bp long, including 409 invariable characters, 225 variable par-

simony-informative sites (31.69%) and 52 singletons. The ITS sequences,

including ITS1/215.8S regions were 634 bp long; of these, 375 characters

were constant, 152 characters were variable parsimony-informative

(23.97%) and 75 were singletons (Supplementary Figure S1). The

phylogenies were concordant with high bootstrap support.

Sporothrix brasiliensis isolates were recovered from four out of five

Brazilian regions and clustered together in a monophyletic clade

(Clade I; 96/95/97) including human and animal isolates. S. schenckii

s. str. was found to be more diverse, with several well-supported clus-

ters in Brazil. The strains in clade II mostly originated from human

cases of sporotrichosis, whereas the S. brasiliensis hosts were human

(79.62%) and feline (20.37%). Very few Brazilian isolates of S. globosa

have been reported in the literature, and the low incidence of this

species is reflected in our data set. They form a well-supported clade

(100/100/100) together with European, Asian, and North American

strains of S. globosa (Figure 1).

The spatial trends in the Brazilian epidemic are shown in Figure 2.

S. brasiliensis was found to be geographically restricted to the feline

outbreak areas in the southeastern provinces of Brazil, whereas

S. schenckii s. str. was found to be broadly distributed throughout

Brazil. The Northeast and Southeast regions of the country presented

four Sporothrix species (S. brasiliensis, S. schenckii, S. globosa and

S. mexicana). Three species (S. brasiliensis, S. schenckii and S. globosa)

were detected in the Central-West region. Only two species were

detected (S. brasiliensis and S. schenckii) in the South region, whereas

the only three strains in the North region were classified as S. schenckii

(Figure 2A).

The influence of zoonotic transmission was undetected in the

North, Northeast and Central-West regions (Figure 2B).7,13,32–34

Furthermore, the incidence of the disease among humans in these

areas was lower than in the feline outbreak areas; a high incidence

was observed in the South (n546) and Southeast (n5200). These

variances in incidence are supported by differences in the prevalent

etiological agent. The high prevalence of S. brasiliensis in humans and

animals overlaps geographically.

There were no differences observed in the clinical pictures among

phylogenetic species. The 130 clinical isolates, which were genotyped

by partial CAL sequences, were scattered among four clades. Some

57.3% and 57.9% of the isolates were from fixed cutaneous lesions,

and 39.3% and 40.5% were from lymphocutaneous lesions of S. bra-

siliensis and S. schenckii, respectively (Figure 3).4,5,35 Taken together,

96.6%–98.4% of the clinical cases of human sporotrichosis in Brazil

were of the fixed cutaneous and lymphocutaneous forms, independent

of the etiological agent. In addition, 3.2% of the disseminated cases
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were S. brasiliensis, despite the lack of a severe case among the

S. schenckii isolates.

Genotyping of the Brazilian Sporothrix population was performed

using an intergenic region in the mtDNA between the ATP9 and COX2

genes.21 Positive amplification was obtained from the pathogenic spe-

cies in the clinical complex (Clades I, II, III and VI; Figure 4A) but not

in the environmental clades (Clades IV and V), regardless of positive

ITS amplification for DNA quality control (Figure 4B). All S. brasi-

liensis (n582, 100%) strains that were genotyped presented amplicons

of 1157 bp, identical to the amplicon found in the single strain (CBS

937.72) that was available for S. luriei. Sporothrix schenckii (n587) was

split into two groups: the major group (cluster 1, n566, 75.86%)

presented a single amplicon of 557 bp, whereas a smaller group (clus-

ter 2, n521, 24.13%) presented a single amplicon of 1157 bp

(Figure 4C).

The haplotype analysis of concatenated calmodulin and mtDNA

sequences (n5176) divided the isolates into 90 Hap groups

(Figure 5). A total of 30 and 54 different types were detected for

S. brasiliensis and S. schenckii s. str., respectively. The majority of

haplotypes (Hd50.98) belonged to S. schenckii, constituting a highly

diverse group (p50.011).

The major group (cluster 1; 557 bp mtDNA) of S. schenckii isolates

was retrieved from clinical cases and was related to the 1990s outbreak

that originated in Brazil and Peru. The 1157 bp mtDNA group (cluster

2; n521) dates back to the 1970s, with no significant increase in

frequency as etiological agents of human infection over time. This

group was geographically heterogeneous, as it was recovered from

areas outside Brazil, including Peru, Mexico, Japan and the United

States. The only exceptions in the 1157 bp mtDNA group are haplo-

types H50–H52 (from Mexico, the United States and Brazil), which

presented the 557 bp mtDNA amplicon but were otherwise genetically

similar; thus, they may represent a link between the two groups or are

hybrid isolates.

S. brasiliensis (Hd50.72) represents a group with a low genetic

diversity (p50.002). The dominant mtDNA genotype among S. bra-

siliensis was haplotype 1 (n542, 51.2%), accounting for the largest

proportion of human and animal cases of sporotrichosis in Brazil
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(Figure 5). The mitochondrial and nuclear data were similar, dem-

onstrating that S. brasiliensis was less diverse than S. schenckii

(Figure 6A). S. brasiliensis presented low genetic variation (i.e., a

low haplotype and nucleotide diversity) throughout the Brazilian ter-

ritory, indicating a high level of clonality, and were not geographically

restricted to the isolates recovered from the outbreaks in the hyperen-

demic area of Rio de Janeiro (Figures 6B and 6C).

NeighborNet, split decomposition and PHI-test analyses were used

to detect recombination among clinical and environmental isolates of

Sporothrix. Evidence of recombination in S. schenckii s. str. was

observed by large splits/reticulations in NeighborNet and in statistical

significance, as determined by the PHI-test (P52.72331025)

(Figure 7). The divergent genotypes of S. schenckii revealed strong

evidence of recombination inside cluster 2 (mtDNA 1157 bp,

P53.6431026), despite discrete events in cluster 1 (mtDNA 557 bp,

P50.1528), as determined using the PHI-test. The clonal expansion of

S. brasiliensis was confirmed by absent/low recombination events

(P50.9726), irrespective of geographical area.

DISCUSSION

Sporotrichosis has classically been a somewhat obscure disease

because it is unique among fungi, as it mainly occurs in the form of

outbreaks in endemic areas. However, during the last decade, vast

zoonosis has been ongoing in Brazil. The real magnitude of the epi-

demic is still difficult to establish because sporotrichosis is not an

obligatorily reported disease. Our study comprised over 200 cultures

from patients living in 14 out of 26 Brazilian states, representing the

main endemic areas and clinical forms of the disease. The southern

and southeastern parts of the country showed a very high incidence of

human cases, which is directly linked to the large epidemic of feline-

transmitted sporotrichosis.

Routine diagnostics has become urgent with the introduction of

dissimilar species with different types of clinical features and routes

of transmission (Supplementary Figure S1). A calmodulin-based

phylogeny provided sufficient molecular diversity to identify all patho-

genic Sporothrix species. The tree (Figure 1) is robust, and its topology

corresponds to that of previous studies using the CAL locus as a mar-

ker.1,4,5,7 The geographical distribution and incidence of S. schenckii s. str.

did not reach epidemic levels, and the isolates formed small but dis-

tinct genetic clusters supported by high bootstrap values. The high

genetic diversity in the clade of S. schenckii s. str. is supported by

differences in virulence levels15 and chromosomal polymorphisms.18

S. brasiliensis is by far the most prevalent species in South and

Southeast Brazil, with epidemic proportions, as was found in earlier

studies.1,4,5,7 S. brasiliensis was also detected in human hosts in the

Central-West and Northeast regions during the years 1997–2004

(Figure 2A), though with a much lower frequency and without a

detectable increase in the number of the human cases. The affected

patients in those areas did not report traveling into the endemic areas

of Rio de Janeiro or Rio Grande do Sul, and an association with

diseased cats could not be established.

When the recent outbreaks of feline sporotrichosis7,13,32–34 are plot-

ted on the areas sampled for human cases (Figure 2B), our data

strongly suggest that S. brasiliensis is dependent on its feline host for

its epidemic emergence in the South and Southeast. The sharp rise in

the number of cases in the metropolitan region of Rio de Janeiro since

199814 is likely due to successful zoonotic dispersal by cats to other cats

and humans.7 The expansion of feline sporotrichosis may have severe

implications for the emergence of S. brasiliensis in humans. The cat–

cat and cat–human transmission in the eco-epidemiology of S. brasi-

liensis is a remarkable characteristic of this pathogen.

In contrast, the classical species S. schenckii s. str. showed a more

homogeneous distribution throughout the Brazilian territory: it was

detected at low frequencies in all regions sampled. Interestingly,

S. schenckii was the prevalent species among humans in areas free of

feline sporotrichosis outbreaks (Figure 2). From an epidemiological

and ecological point of view, the low number of cases by S. schenckii s. str.

suggests that contamination occurs via the classic route, i.e., through

contact with plant material. In accordance with this hypothesis, the

main occupation of the patients in these areas is related to agricultural

practice, especially those involving soil-related activities, gardening

and small family farms (Figure 2A; S. schenckii cases including soil-

related activities in North n53 out of 3–100%; Northeast n511 out of

13–84.6%; Central-West n56 out of 6–100%; Southeast n552 out of

61–85.2%; South n516 out of 18–88.8%). In addition, these patients

live in neglected areas with poor sanitation and low access to health

services, which amplifies the disease risk.

Compared to the alternative route (i.e., via the feline host, as in

S. brasiliensis7), the classic route of infection is expected to be less

effective, leading to scattered cases of sporotrichosis in specific
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occupational patient groups. However, outbreaks are also known to

occur by the classic route. The large sapronoses reported from France,

the United States, South Africa and China36–38 indicate that highly

specific conditions must be met to promote expansion of the pathogen

in plant debris. In the alternative, feline route of transmission, deep

scratching is highly effective and a larger number of individuals are at

risk of acquiring sporotrichosis.

Diseased cats present a high burden of yeast cells in their lesions.13,14

Cat-transmitted cases are occupation independent. In addition, the

success of transmission is related to the virulence of the species

involved; S. brasiliensis has a high degree of pathogenicity in both

cat and human hosts.7,15 If cats are indeed the prime habitat for the

pathogen S. brasiliensis, the epidemic is likely to be confined to urban

areas that harbor a rich population of susceptible cat hosts.

Furthermore, the epidemic is unlikely to end spontaneously, which

poses a significant public health problem.

The remarkable situation of the emergence of the apparent primary

pathogen, S. brasiliensis, among environmental Sporothrix species has

similarities to other fungal agents with epidemic behavior, such as

Cryptococcus gattii39 or Cladophialophora carrionii,40 which have

opportunistic or environmental sister species, Cryptococcus neofor-

mans and Cladophialophora yegresii, respectively. An important cri-

terion for true pathogenicity in S. brasiliensis is fulfilled through the

fact that this dimorphic fungus does not die with the host but contam-

inates the soil adjacent to its buried host (e.g., cats) and can thus be

directly transmitted to the next cat host.7 In the zoonotic cycle of

sporotrichosis, the feline claws may be the first acquisition site of

Sporothrix propagules when digging in soil or sharpening on the bark

of a tree. Thereafter, the inoculum may be moved into the animal’s oral

cavity during licking behavior. Therefore, the two main mechanisms of

inoculation (i.e., by scratch or bite) are effective in S. brasiliensis.

Cross-species pathogen transmission is a driver of sporotrichosis

emergence in Brazil. S. brasiliensis host predilection, which results in

high severe disease in cats, is a striking difference from the epidemics

ongoing around the world and in fact has been pivotal to the success of

feline outbreaks. A low level of zoonotic transmission exists in other

areas;41–43 however, the causative agent is not S. brasiliensis. We dem-

onstrate that the spatial distribution of S. brasiliensis is limited to the

South and Southeast of Brazil. Therefore, this epidemiological pattern

is not homogeneous throughout the Brazilian territory. The frontier

expansion of the disease from local to regional appears to be depend-

ent on urban areas with high concentrations of susceptible felines. The

presence of S. brasiliensis outside Brazil may be regarded as a human

and animal threat and raise the risk of a global zoonotic emergence.

The epidemiological profile found outside Brazil is usually related to

environmental conditions that reflect distinct vector associations,

such as soil and decaying wood as well as dissimilar etiological agents,

e.g., S. globosa in Asia and Europe35 and S. schenckii s. str. in the United

States, Africa and Australia.6

Sporothrix globosa is rarely involved in sporotrichosis in Brazil, with

only four isolates identified with certainty. The species has a world-

wide distribution,4,5,35 and sporotrichosis caused by S. globosa is

highly prevalent in Asia,6 nearly always without the involvement of

feline hosts. The low genetic diversity and its global distribution sug-

gest an association with another environmental source of infection,

and its identification is relevant to therapeutic management because

the commonly used antifungals, polyenes and azoles, have poor in

vitro activity against S. globosa.44

Sporotrichosis is a polymorphic disease.45 The balance between the

different virulence factors related to the fungus,46 as well as the

amount and type of inoculum15 or the immune status of the host,2,3

may contribute to the manifestation of distinct clinical forms. Our

epidemiological data (Figure 3) show that S. brasiliensis and

S. schenckii s. str. are able to cause clinical pictures ranging from fixed

sporotrichosis with isolated nodules to lymphocutaneous sporotri-

chosis with lymphatic involvement ascending the limbs (Figure 3).

Classically, lymphocutaneous sporotrichosis is the prevalent mani-

festation among humans.45 In the Brazilian epidemic of sporotricho-

sis, we observed a slight prevalence of fixed cutaneous cases.

A small but increasing number of cases of disseminated sporotri-

chosis (3.2%) caused by S. brasiliensis was noted, but these were not

necessarily associated with immunosuppressed patients.2 We did not

find any correlation between intraspecific genotypes and clinical

forms. Our data are consistent with those published by Fernandes

et al.,46 Mesa-Arango et al.47 and Neyra et al.,48 who reported that

the determinants of clinical forms are related to the patient’s immuno-

logical system rather than to the genotype of the pathogen.

Host-association appears to have a structuring effect on Sporothrix

populations.49 We found multiple evolutionary and geographic ori-

gins in the plant-associated species S. schenckii s. str. by evidence from

the nuclear and mitochondrial genetic diversity (Figures 4 and 5). In

agreement with previous studies,7 we observed that S. brasiliensis,

isolated from cats and humans in outbreak areas, have the same geno-

type, which confirms the zoonotic transmission of the disease.

Epidemics of S. brasiliensis often involves familial cases of sporotri-

chosis, suggesting that several members of the same family become

infected by the same animal.7,50

Sexual reproduction in fungi has a high impact on infectious out-

breaks and the distribution patterns of populations. Recombination

plays a critical role in the diversification and evolution of pathogenic
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species by generating lineages with improved fitness in adverse situa-

tions.51 However, the event that lies behind the diversification of

S. schenckii s. str. and the mechanism of the emergence of S. brasiliensis

are currently unknown.

We found evidence of recombination in S. schenckii, but not in

S. brasiliensis, strongly suggesting that these sister species follow dis-

tinct pathways and strategies during epidemics. The reticulated pat-

tern of S. schenckii (Figure 7) suggests that recombination among

genotypes may have contributed to the evolution of the divergent

strains. Although large splits in networks do not necessarily imply

recombination, NeighborNet, in conjunction with the PHI-test, can

easily detect a recombination signal, as demonstrated in the present

study.

Sexual reproduction in Sporothrix is likely to occur in an envir-

onmental habitat, but the feline outbreak genotypes are prevalently

clonal, which does not necessarily imply the absence of sex but does

indicate the emergence of a successful genotype. Strictly clonally

reproducing pathogens are rare in nature. This epidemic profile is

not commonly found in fungal pathogens and, with rare exceptions,

true outbreaks occur involving healthy hosts, such as in the case of the

outbreak caused by Cryptococcus gattii in Vancouver, Canada.39,52

This epidemiological pattern of clustered cases and high incidence

in a short period of time is better known for viral53 and bacterial

pathogens;54 such events caused by fungi are very rare in humans

and are mainly limited to dermatophytes.55 The emergence of fungal

pathogens in other animals is mostly related to a recent introduction

or shift in host, as in the case of white-nose syndrome in bats caused by

Geomyces destructans,56 lethargic crab disease by Exophiala cancerae57

and the devastation of amphibian populations caused by the chytri-

diomycete Batrachochytrium dendrobatidis.58,59

A key factor behind the emergence of the S. brasiliensis epidemic is its

zoonotic transmission, which distinguishes it as an occupation-inde-

pendent disease. Our data suggest a habitat shift within S. brasiliensis

from plant to cat that appears to have occurred in southeastern Brazil. A

clonal structure was found in the early expansionary phase of the cat–

human epidemic. In contrast, the epidemic, driven by S. schenckii s. str.,

presented high heterogeneity with a variety of genotypes and diverse

virulence profiles. The S. schenckii epidemic spreads globally through

direct environmental contamination and is usually related to specific

occupational patient groups, such as those involved in soil-related activ-

ities. This study provides new insights into the spread and epidemiolo-

gical evolution of sporotrichosis, suggesting that different public health

policies and strategies would be required to control future outbreaks.
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4 Marimon R, Cano J, Gené J, Sutton DA, Kawasaki M, Guarro J. Sporothrix brasiliensis,
S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin
Microbiol 2007; 45: 3198–3206.
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