
A Comparison of the Specification Methods

M. Frappier1 and H. Habrias2

1 Université de Sherbrooke, Département de mathématiques et d’informatique,
Sherbrooke, Québec, Canada, J1K 2R1, Marc.Frappier@dmi.usherb.ca

2 Institut de Recherches en Informatique de Nantes, 3 rue Maréchal Joffre, 44041
Nantes cedex 1, France, henri.habrias@irin.univ-nantes.fr

In this chapter, our goal is to provide a qualitative comparison of the specifi-
cation methods introduced in this book. Our intention is not to rank methods in
terms of quality or productivity. It would require a much larger sample of spec-
ifications, developed within a controlled experiment, to reach valid conclusions
about quality or productivity.

We have selected a set of attributes which describe several properties of
specification methods. The definitions of these attributes are provided in the
first section. In the second section, attributes are evaluated for each method; the
results are described in a set of tables. The reader may then compare methods
by comparing the values of their attributes.

1 Attributes of Specification Methods

Table 1 enumerates the attributes and their possible values. Attributes are then
defined and illustrated with simple examples.

No. Attribute Values

1 paradigm state machine, algebra, process algebra, trace

2 formality informal, semi-formal, formal

3 graphical representation yes, no

4 object-oriented yes, no

5 concurrency yes, no

6 executability yes, no

7 usage of variables yes, no

8 non-determinism yes, no

9 logic yes, no

10 provability yes, no

11 model checking yes, no

12 event inhibition yes, no

Table 1. List of specification method attributes

1. paradigm : This attribute characterizes how the specification notation de-
scribes the system behavior. We identified four general paradigms: trace,
state machine, algebra and process algebra.

To illustrate this attribute, we have chosen a very simple system, a latch (i.e.,
a Boolean device), for which example specifications are provided. A latch has
three operations: reset, which sets the latch to zero; flip, which changes the
internal state of the latch, and valueOf , which returns the internal state of
the latch.
state machine : the specification describes a transition relation on a set of

states. Transitions are labeled by events. The transition relation may take
several forms. The set of states can be enumerated (as in an automaton)
or it can be described by a set of variables with their possible values.
Example 1 A Mealy finite state machine [6] is based on set enumera-
tion. In the example below, the symbol λ can be interpreted in a number
of ways, including that the output is a don’t-care value, a mute message,
or the absence of output.

Inputs = {reset, f lip, valueOf}
Outputs = {0, 1, λ}
States = {zero, one}
InitialState = zero
T ransitionFunction = { (zero, reset) �→ zero,

(zero, f lip) �→ one,
(zero, valueOf) �→ zero,
(one, f lip) �→ zero,
(one, reset) �→ zero,
(one, valueOf) �→ one }

OutputFunction = { (zero, reset) �→ λ,
(zero, f lip) �→ λ,
(zero, valueOf) �→ 0,
(one, f lip) �→ λ,
(one, reset) �→ λ,
(one, valueOf) �→ 1 }

Example 2 State machine based on state variables.
List of operations : reset, flip, valueOf
List of variables : s of type Boolean
Initialisation of variables : s := 0
Definition of operations

reset ∆= s := 0
flip ∆= if s = 0 then s := 1 else s := 0
valueOf ∆= return s

algebra : the specification describes a set of operations defined on a set of
types (also called sorts or carrier sets) [14]. An event is represented by
a function (also called an operation). The behavior of functions is given
by a set of equations (axioms) stating how functions are related.
Example 3 Algebraic specification of a latch.

Sorts : Latch, Nat
Signatures of functions :

zero : a constant of sort Latch

reset : a function from Latch to Latch
flip : a function from Latch to Latch
valueOf : a function from Latch to Nat
0 : a constant of sort Nat
1 : a constant of sort Nat

Axioms
for all x of sort Latch

reset(x) = zero
flip(flip(x)) = x
valueOf(zero) = 0
valueOf(flip(zero)) = 1

process algebra : it is a special kind of algebra. Its operations are applied
to elementary processes and events to describe how events may occur.
Example 4 Process algebraic specification of a latch using the CSP no-
tation [8].

List of events (alphabet) : reset, flip, valueOf , 0, 1
Definitions of processes

LATCH
∆= ZERO

ZERO
∆= (reset→ ZERO |
flip→ ONE |
valueOf → 0→ ZERO)

ONE
∆= (reset→ ZERO |
flip→ ZERO |
valueOf → 1→ ONE)

trace : the specification describes a sequence of events that the system may
engage in. Events are sometimes classified into input events (i.e., events
for the system: they are submitted by the environment to the system)
and output events (i.e., events for the environment : they are produced by
the system for the environment). A trace specification does not describe
the internal system state. It only describes the interaction between the
system and the environment.
Example 5 Some traces of the latch.

List of events : reset, flip, valueOf , 0, 1
trace 1 = 〈valueOf, 0, f lip, valueOf, 1, f lip, valueOf, 0〉
trace 2 = 〈flip, reset, f lip, f lip, valueOf, 0〉

The set of traces for the latch is infinite. A trace-based specification no-
tation provide mechanisms to completely define the set of traces.

Note that the attribute paradigm should not be confused with the semantics
of a notation. The semantics of a notation is concerned with the meaning of
specification texts. For instance, the meaning of an operation in the B no-
tation can be described using a set of axioms relating the precondition and
the postcondition of an operation. This style of semantics is called a weakest
precondition semantics [7]. Another style is to associate a mathematical ob-
ject to each specification text. For instance, the semantics of a B operation
can also be given by a pair (D,R), where D is the set of initial states for

which the operation terminates and R is the set of pairs (s, s′) such that the
operation started on s may terminate on s′.

2. formality : This attribute characterizes the syntax and the semantics of the
notation. It has three possible values.
informal : the syntax is not formally specified. Typically, the specification

is given in natural language.
semi-formal : the syntax of the notation is formally specified, but it does

not have a formal semantics.
Example 6 A data flow diagram used in SAZ [12] includes processes,
arrows, data stores and external entities. There are precise rules describ-
ing how these elements can be combined. For instance, an arrow must
have a source and a destination. The source and the destination must be
a process, a data store or an external entity. The notation does not have
a formal semantics. For instance, there are no rules to determine if two
diagrams are equivalent (aside from being syntactically identical), or if
an implementation satisfies a data flow diagram.

formal : the syntax of the notation is formally specified, and it has a formal
semantics.
Example 7 An operation in the B notation [1] has a weakest precon-
dition semantics. It is possible to determine (prove) that two operations
are equivalent, or that an implementation satisfies a specification.

3. graphical representation : This attributes determines if the notation in-
cludes a graphical representation (e.g., pictures, diagrams, graphs). It has
two possible values: yes or no.

4. object oriented : This attributes determines if the notation uses the fol-
lowing concepts : inheritance, class, polymorphism, and encapsulation [9]. It
has two possible values: yes or no.

5. concurrency : A notation allows the modeling of concurrency if a system
can be described in terms of processes which may communicate. It has two
possible values: yes or no.

Example 8 CSP allows the modeling of concurrency. The system P || Q is
made of processes P and Q.

6. executability : This attribute determines if the specification can be ex-
ecuted to simulate the system behavior. Note that specifications can be
non-deterministic. In such a case, the interpreter either computes the set
of possible outcomes and asks the users to pick one, or it picks an outcome
in a random manner. Note also that the interpreter does not need to be
efficient. This attribute has two possible values: yes or no.

7. usage of variables : This attribute determines if variables can be used
to denote values in the system. It has two possible values: yes or no. The
use of variables fosters abstraction, because it avoids the enumeration of all
possible values.

Example 9 Examples 3 and 2 use variables. CSP[8] allows variables, but
we have not used any in Example 4. A Mealy state machine (Example 5 does
not allow variables.

8. non-determinism : This attribute determines if the notation allows non-
determinism. It has two possible values.
yes : a specification may offer a choice between several outcomes for a com-

putation.
Example 10 Consider the specification of a machine that must change
a dollar for a set of coins. The specification may leave the choice of the
algorithm for the selection of the set of coins to be made at the design
stage. The specification may look like this: let C be a set of coins returned
by the machine. ∑

c∈C

valueOf(c) = 1

no : a specification is always deterministic.
9. logic : This attributes determines if the notation includes some first-order
(or higher-order) logic notation. Logic is useful to express properties in an
abstract manner. This attribute has two possible values: yes and no. Note
that a notation may not include logic, but its semantics may be defined in
some logic.

Example 11 CCS [10] does not include a logic notation. However, its se-
mantics is defined in terms of a set of inference rules expressed in a logic
notation. There is also a logic for reasoning about the equivalence of CCS
specifications, or proving properties about CCS specifications.

Example 12 B includes a logic notation; hence the value of attribute logic
for B is yes.

10. provability : This attributes determines if properties about the specification
can be proved using a formal proof system. It has two possible values: yes
and no.

Example 13 In the latch specification of example [14], one may prove that

valueOf(flip(reset(x))) = 1

11. model checking : This attributes determines if properties about the spec-
ification can be checked by enumeration of the system states. It has two
possible values: yes and no.

12. event inhibition : An event is the execution of an operation. A system
is said to allow the inhibition of events if the set of operations it offers
to the environment may be different from one point in time to another. If
several operations are offered, the environment picks one of them (external
non-determinism) and the operation is executed (i.e., the event occurs). If
two events are independent (i.e., they do not share variables), they can be
executed in parallel.

Example 14 The B notation as defined in [1] does not allow event inhibi-
tion. All operations of a B machine are always offered to (or can be invoked
by) the environment. If an operation is invoked, it may either terminate or
fail.

Example 15 A Mealy machine (see example [6]) does not allow event in-
hibition. Its transition function and its output function must be total; hence,
it always offers all its operations to the environment.

Example 16 Process algebras, action systems [3], and the extension of the
B notation as defined in [2, 5] allow event inhibition.

2 A Qualitative Description of the Methods

Tables 2, 3, and 4 provide a description of each method with respect to the
attributes defined in the previous section. Note that these tables refers to the
methods as they are described in the book; they do not consider their various
extensions.

References

1. Abrial, J.-R.: The B-Book, Cambridge University Press, 1996.
2. Abrial, J.R., Mussat, L.: Introducing Dynamic Constraints in B, in B’99: Recent

Advances in the Development and Use of the B Method, D. Bert, Ed., LNCS 1393,
Springer-Verlag, 1998, 83–128.

3. Back, R. J. R., Kurki-Suonio, R: Decentralization of process nets with central-
ized control. In 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed
Computing, Montréal, Québec, Canada, 1983, 131–142.

4. Booch., G.: Object-Oriented Analysis and Design with Applications, 2nd edition,
Benjamin-Cummings, 1994.

5. Butler, M., Waldén, M.: Distributed System Development in B, in First Conference
on the B Method, H. Habrias, Ed., Institut de Recherche en Informatique de Nantes,
Nantes, France, 1996, 155-168.

6. Cassandras C.G., Lafortune S.: Introduction to Discrete Event Systems, Kluwer
Academic Publishers, 1999,97–100

7. Dijkstra, E.W.: A Discipline of Programming, Prentice Hall, 1976.
8. Hoare, C.A.R.: Communicating Sequential Process, Prentice Hall, 1985.
9. Meyer, B.: Object-Oriented Sotware Construction, Second Edition, Prentice Hall,
1997.

10. Milner, R.: Communication and Concurrency, Prentice Hall, 1989.
11. Morgan, C.: Programming from Specifications, Prentice Hall, 1990.
12. Polack F.: SAZ: SSADM version 4 and Z in this book, M. Frappier H. Habrias

(Ed.), Springer Verlag, 1999 244–250
13. Waldén M.:Layering Distributed Algorithmes within the B Method in B’98: Recent

Advances in the Develpment and Use of the B Method,LNCS 1393, D. Bert, Ed.,
LNCS 1393, Springer-Verlag, 1998, 244–250

14. Wirsing: Algebraic Specification in Handbook of Theretical Computer Science, Vol.
B , J. van Leewen (Ed.), Elsevier, 1990,675–788

15. Yourdon, E.: Modern structured analysis, Yourdon Press, 1989.

method
name

paradigm formality graphical
represen-
tation

object-
oriented

Action
Systems

state
transition

formal no no

B state
transition

formal no no

CASL algebra formal no yes

Cleanroom &
JSD

traces &
process
algebra

formal yes no

COQ state
transition

formal no no

Estelle state
transition

formal no no

LOTOS process
algebra

formal no yes

OMT & B state
transition

formal yes yes

Petri Nets state
transition

formal yes no

Petri Nets
with Objects

state
transition

formal yes yes

SART state
transition

informal &
semi-formal

yes no

SAZ state
transition

semi-formal &
formal

yes no

SCCS process alge-
bra

formal no no

SDL state
transition

formal yes yes

UML state
transition

informal &
semi-formal

yes yes

VHDL state
transition

formal no no

Z state
transition

formal no no

Table 2. List of specification method attributes - part 1

method
name

concurrency executability usage of
variables

non-
determinism

Action
Systems

no yes yes yes

B no yes yes yes

CASL no yes yes no

Cleanroom &
JSD

no yes yes yes

COQ no yes yes yes

Estelle yes yes yes no

LOTOS yes yes yes yes

OMT & B no yes yes yes

Petri Nets yes yes no yes

Petri Nets
with Objects

yes yes yes yes

SART yes no no yes

SAZ no yes yes yes

SCCS yes yes yes yes

SDL yes yes no yes

UML yes no no no

VHDL yes yes yes no

Z no yes yes yes

Table 3. List of specification method attributes - part 2

method
name

logic provability model
checking

event inhi-
bition

Action
Systems

yes yes yes yes

B yes yes yes no

CASL yes yes yes no

Cleanroom &
JSD

yes yes yes no

COQ yes yes yes no

Estelle no no yes yes

LOTOS yes yes yes yes

OMT & B yes yes yes no

Petri Nets no yes yes no

Petri Nets
with Objects

no yes yes no

SART no no no no

SAZ yes yes yes no

SCCS yes yes yes yes

SDL yes yes yes yes

UML no no no no

VHDL no no yes no

Z yes yes yes no

Table 4. List of specification method attributes - part 3

