Ansoft Designer Training

ANSOFT CORPORATION

Agenda

- Overview of Ansoft Designer GUI
- Using interface
 - Circuit Design
 - Building schematic
 - Analysis circuit
 - Tuning
 - Optimization
 - Statistical analysis
 - Layout basic
 - Building Hierarchy
- LNA Design
 - Input/output Matching Smith tool
 - Nonlinear analysis
 - RF 1 tone
 - DC analysis
 - RF 2 tones
 - modulation
- Load-Pull analysis
- Oscillator Analysis
 - Transient Analysis
 - Harmonic balance and Phase noise

10101010101010

- Field Solver Design basic
 - Create stack-up
 - Drawing geometry
 - Parameterized geometry
 - Analysis
 - Co-simulation
 - Use field solver simulation in circuit design
 - Tuning Field solver design
 - Planar EM Antenna Design

ANSOFT CORPORATION

Overview of Ansoft designer GUI

Ansoft Designer Overview

Ansoft Designer Windows

Project Manager Window

Right Click Pop Up Menu

Component Tab

Search Tab

Property Window

Schematic Window

Layout Editor

3D Layout Viewer

Progress Window

Message Window

Results Window

01010101010101010

Dynamic Menus

Menus change dynamically depending on which Design window is highlighted (Circuit, Planar EM or System)

0101010101010101

ANSOFT CORPORATION

Schematic/Layout Integration

Simulation Tool Integration

Design Automation Component Libraries

- Components, Materials, Symbols etc. are organized into libraries.
- Libraries are stored in Ansoft\Designer\syslib Ansoft\Designer\userlib Ansoft\Designer\PersonalLib
- Specific Libraries are "configured" for each project making the Components, Materials etc. available for use in that project.

ANSOFT CORPORATION

Ansoft Designer File Names

 Important File Extensions for Ansoft Designer:

 .adsn
 Project File
 .aclb
 Component Lib
 aflb
 Footprint Lib
 .asty
 Technology File
 .aslb
 Symbol Lib
 .asol
 Solution Data File
 .amat

Every Project created is saved on disk as an .adsn file (AnsoftDesign file)

Ansoft Designer automatically creates a File Folder named *"ProjectName.results"* to hold the results files, netlist etc. for the project.

ANSOFT CORPORATION

Exercise 1: Using The Interface

Building a Low Pass Filter

Exercice overview

- Open Designer
- Insert Circuit Design
 - Select Technology file
 - View data loaded by technology file
 - Save technology file
- Insert components
 - Move copy and paste
 - 6 Microstrip transmission lines
 - 2 smc capacitors Philips library
 - 2 grounds
 - 2 Microstrip Tees
 - 1 smc inductor toko library
 - Add ports
- Set substrate parameters
 - Rename circuit
- Define variables From component or project tree
 - Wline = 0.8mm
 - Lline = 1mm
 - Cvalue = 10 (pf)
- Add analysis setup
 - Select Linear
 - Start 0.1Ghz Stop 3Ghz Step 0.01Ghz and click Add

10101010101010

- Run
- Create Report
 - Add traces
 - Edit graph

- Create parametric Sweep
 - Step Cvalue from 2 to 12 step 2
- Create Report
 - Plot S21 (Cartesian)
 - Plot s21 (3D)
- Tune
 - Set Cvalue for tuning
 - Set I parameter for tuning (inductor)
 - Tune (real time)
- Optimization
 - Set L and CValue for optimization
 - Set parameters to optimize
 - db(s21) at 1GHz = -3 Weight 10
 - Db(s11) from .5Ghz to 1ghz <= -30 Weight=1
- Statistical Analysis
 - Define Parameters
 - Set both C and L for uniform distribution
- View results
- View Data and Histogram
- Layout

ANSOFT CORPORATION

Load Ansoft Designer

NAnsoft Designer		
Name Value Unit		
Variables		
Double Click on the Anost Designer ison		
Double-Click on the Ansolt Designer Icon		
 located on the desktop or 		
Liss Start > Programs > Apost Designer (fold		
Use Start > Programs > Anson Designer (1010	er) > Anson Designer	
4		
eady		
10101010101010101010101010101010101010		
0101010101010101010101	ANSOFT CORPO	BATION
01010101010101010		
¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰		

Insert Circuit Design

(Select Technology File)

Technology file

- A Technology File initializes a design with a set of data to avoid repeated entry of commonly used data.
- This data can consist of layers and stackup information for layout, configured libraries of components, and substrate definition(s) for circuit analysis.
- Users and foundries can customize Technology Files for their own manufacturing process and simulation models.
- A "technology" file contains stackup, substrate information and list of libraries to load.
- These information can be created, saved, copied and changed to suit the user. Designer has many standard technology files to choose from. They range from simple substrates such as single layered alumina, to complex multi-layered stackups. The user can also create their own simple or complex technology files and stackups, or modify existing ones.

View Data Loaded by Technology file

View Loaded Libraries

Save Technology File

Insert Component (Vendor Library Capacitors)

Insert Remaining Components

(Vendor Library Inductor, Transmission Lines)

Viewing Window

Copy, Paste & Move

Wiring Components

Add Ports

Component Properties

"Multiple" Component Properties

_ [8] ×

Ansoft Designer - [LPFProject - LPF - Schematic] File Edit View Project Draw Schematic Circuit Tools Window Help

▫ਫ਼ਸ਼ょゎਫ਼ਫ਼×੭੭↓₄≼≲▫蒵◙▯◐◐◙◙∜®ょ♀▫▫◲▯ሥ⊒╠і╸╸оヽ◦▫∧◎;ш%

** Խ 🎾 🍿 🕵 ? 🔀 15 🗃 🗗 18 19 🛞 🖄 🖓 -D× - IPFProject Clicking on a multiple component (either E-K LPF 占 🛅 Data by click-dragging or control-click) will FR4 C Excitations - Ports show the "common" properties of the W1=1mm Be Port1 W2=1mm Port2 W3=1mm selected components in the dockable 🏟 Analysis Continetrics LL1608_F1M properties window. Note that the Results W=1mm \8(=1mm 1.2nH + Definitions P=10mm P=10mm "Primary" selection (or the first component selected) will be in a brighter ×= Red, while the other selected components =1mm Project Components Search will be in a darker red. 0.47pF 0603477B9B200 Unit Name Value 03477898200 0.47pF SHB FB4 CoSimulator Circuit CoSimSta Lavout stackup CoSimDee 3 W=1mm P=10mr In this schematic, the selected components are 3 MS transmission lines and 1 MS TEE. Substrate is a 10nH W=wline common parameter. This allows the P=lline The user can also edit on the user to quickly change the "common" values of many components at once. schematic, modifying parameters value directly by typing on the schematic **ANSOFT** CORPORATION

101010101010101
About Vendor Components

The inductor and Capacitors are elements form the vendor library. These components have predefined properties, such

as footprints (discussed la	ter) and parameters.	- 1	,	Model List			×	
				Model	L	Tolerance	▲	
				LL1608_F1N2S	1.200nH	0.30nH		
Properties				LL1608_F1N5S	1.500nH	0.30nH		
				LL1608_F1N8S	1.800nH	0.30nH		
Parameter Values General Symbol	Property Displays			LL1608_F2N2S	2.200nH	0.30nH		
	n CTuning CSe	ensitivity	C Statistics	LL1608_F2N7S	2.700nH	0.30nH		
				LL1608_F3N3S	3.300nH	0.30nH		
Name	Value	Unit	Description	LL1608_F3N3K	3.300nH	10.00%		
Model LL1608	_F1N2S			LL1608_F3N3M	3.300nH	20.00%		
DeviceLibraryName tokol16	:08f.lib			LL1608_F3N9S	3.900nH	0.30nH		
L 1.2		nH		LL1608_F3N9K	3.900nH	10.00%		
VComp	Choose Model			LL1608_F3N9M	3.900nH	20.00%		
Status Active				LL1608_F4N7S	4.700nH	0.30nH		
				LL1608_F4N7K	4.700nH	10.00%		
	\			LL1608_F4N7M	4.700nH	20.00%		
	Clicking on this va	alue bi	rings up the	DO FENCK	5.600nH	0.30nH 10.00%		
	possible vendor m	nodels	shown on th		5.600nm	20.00%		
	right Select 10nh	for th	e inductor ar		5.000nH	5.00%		
	10nf for the capac	itanco		18 FENSK	6.800pH	10.00%		
	Topi for the capac	nance			0.000/11/	10.00%	<u>•</u>	
1					ſ	ιк [
Double click on this in	ductor							
				Οκ	Can			
to bring up this proper	ties							
dialog box	UNITATION	Contract of the	The Party States of Females	10 10 10 10 10 10 10 10 10 10 10 10 10 1				
	ANSOFT CORPORATION							
	01							

Defining Variables

Component Selection Methods

0101010101010101

ANSOFT CORPORATION

Defining Variables

Circuit Selection method

Variable Assignment

- Three different types of Variables:
 - Local Variables
 - Entered directly in parameter field
 - RM Click on Design and select Design Proper
 - Definition Parameters
 - Passed parameters for a Design
 - Entered in same manner as Local Variables
 - Project Variables
 - Global parameters selected from Project menu
 - \$ added to designate project variable

rope	erti	es								×
Paran	mete	er Defaults	Local Vari	ables	General					
•	V⊻a	alue	С <u>О</u> рі	imizati	on O Tuning	C	Sensitivity	C Statistics		
		Na	ame		Value	Unit	Description	Read-only	Hidden	
		wline		0.8		mm				
		lline		1		mm				
		cvalue		10		pF				
F	r	rop	er	tie	€S					
		<u>A</u> dd		<u>R</u> ema	3VE				Show Hidden	
								01	Cancel	

List of predifined variables

Defining Variables

Final Variable Assignment

Add Analysis Setup

Set Analysis Setup

Run Analysis

Simulation Successfully Completed

Plotting Results: Create Report

ANSOFT CORPORATION

Plotting Results: Add Traces

ANSOFT CORPORATION

010101010101010

ANSOFT CORPORATION

ANSOFT CORPORATION

Parametric Sweep

Run Analysis Csweep

Plotting Results

Click right on Results folder select create report. Click the arrow of field solution and select Cvalsweep, hit the sweep Tab. Clicking on one of the sweep variable shows the swept values, you can select all the value, one value or several value.

Use the shift and CTRL key to select multiple value.

Traces 🛛 🕹	Traces
X Y Y-axis Add Trace Add BlankTrace Replace Trace Remove Trace.	X Y Y-axis Add Trace Replace Trace Remove Trace
Design: LPF Sweeps X Y	Design: LPF Sweeps X Y
Solution: NWA1 Domain: Variables Domain: States States States Output Variables States States States States States States States Output Variables States States States States States States States States States Noise States States States States States States States States States Others Apply Done Cancel	Solution: Csweep Image: Comparison of the comparison of th
	Clicking on the name of the variable you can change the sweep order. Hit Tab Y and add S21 in DB, Click Done
⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹⁰¹	ANSOFT CORPORATION

010101010101010

ANSOFT CORPORATION

Plotting Results: 3D Plot

Tuning

0101010101010101010

Tuning

0101010101010101010

ANSOFT CORPORATION

Tuning: Real Time

Tuning: Accumulate

010101010101010

Tuning: Multiple Analysis Setup

Optimization: Define optimizable parameters

Optimization: Setup Optimization

Optimization: Select Solution

Setup Optimi Goals Varial Optimizer: F Max. No. q Cost Funq L	ization bles General Random iradient Iandom dinimax evenberg Marguardt	☐ Randomize Seed			Optimizer allows to select from the different algorithms. Select Random Select Max. No of iterations 100	4 th
Acceptable	Calculation Delete 0	Calc. Range	Condition Goal Weight Edit Cal. Range Edit Goal/Weight OK Cancel			
			Setup Optimization Goals Variables General Optimizer: Random Max. No. of Iterations: 100 Cost Function Solution Solution Calculation NWA1 NWA1 csweep Calculation		andomize Seed Calc. Range Condition Goal Weight =	
Clicking on a dropdown Analyses. Click Add	n Solution gives the dialog of all app and Select NWA1	ne user licable	Add Delete		Edit Calculation Edit Cal. Range Edit Goal/Weight	
		01010 0101010	701010101010101010 AP	NSC	FT CORPORATION	A

Optimization: Define Calculation

Setup Optimization Calculation allows to define the measurements Goals Variables General to be optimized. Optimizer: Random Randomize Seed -It could be measurements, equations or complete Max. No. of Iterations: 100 S, Y, Z matrix Cost Function Solution Calculation Calc. Range Condition Goal Weight NWA1 -SMatrix YMatrix ZMatrix Ansoft Designer lets the user create custom expressions for Add Delete Edit Calculation. Edit Cal. Range.. Edit Goal/Weight... plotting and optimizing. 0 Acceptable ΠK. Cancel Help Output Variables Output Variables Name Expression Setup Optimization Goals Variables General Optimizer: Random Randomize Seed • Max. No. of Iterations: 100 Add Name: Cost Function Expression Condition Goal Weight Solution Calculation Calc. Range - Calculation NWA1 db(s21) -Insert Quantity Into Expression Category: Quantity: Function: Click in the field and enter db(s21) Variables Output Variables (none) Design: acos \$21 \$22 acosh Standard ang ang_rad Y Parameter Parameter H Paramete asin Solution: NWA1 Add Delete Edit Calculation... Edit Cal. Range. -Edit Goal/Weight... G Parameter asinh ABCD Parameter atan Noise atan2 atanh Gain Acceptable Return Loss conjg Domain: Sweep -Cancel 0K. Help Terminations (ohms) Insert Function 50 ohms Done Set Terminations... -

Report Type:

Function

abs

ANSOFT CORPORATION

Optimization: Define Calculation Range

Setup Optimization Goals Variables Optimizer: Random Max. No. of Iterations: 100 Cost Function Solution Solution Calculation NWA1 db(s21)	Calc. Range can be single value or band width. Default is the frequency range of Analysis setup	Edit Calculation Range Edit Range Design Add F C Range Variable Range Variable Range F Single Value Variable Range F Single Value Value: IGHz Delete	
Add Delete Acceptable 0	Edit Calculation Edit Cal. Range Edit Goal/Weight OK Cancel Help	Select single Value, Value = 1GHz Click Update and Ok	

Goals Variables General Optimizer: Random Randomize Seed Max. No. of Iterations: 100 Cost Function Cost Function Solution Calc. Range Condition Solution Calc. Range Condition NWA1 db(s21) f(Single value at 1GHz) =
Optimizer: Random Randomize Seed Max. No. of Iterations: 100 Cost Function Cost Function Solution Calc. Range Condition MWA1 db(s21) F(Single value at 1GHz) =
Max. No. of Iterations: 100 Cost Function
Cost Function Solution Calculation NWA1 db(s21) F(Single value at 1GHz)
Solution Calculation Calc. Range Condition Goal Weight NWA1 db(s21) F(Single value at 1GHz) =
NWA1 db(s21) F[Single value at 1GHz) =
Add Delete Edit Calculation Edit Cal. Range Edit Goal/Weight Acceptable 0
OK Cancel Help

Optimization: Select Condition

Setup Optimization							
Goals Variables General							
Optimizer: Random	Optimizer: Random 🔽 🔽 Randomize Seed						
Max. No. of Iterations: 100	Max. No. of Iterations: 100						
Cost Function							
Solution Calculation	Calc. Range	Condition Goal Weight					
NWA1 db(s21)	F(Single value at 1GHz)						
		<= = >=					
Add Delete	Edit Calculation	dit Cal. Range Edit Goal/Weight					
Acceptable 0							
		OK Cancel Help					

Clicking on **Condition** gives the a dropdown dialog of all equalities Condition can be Equal : = Less Than or Equal: <= Greater than or Equal >=

Setup O	ptimization	
Goals	Variables General	
Optimiz	rer: Random 🔽 🗖 Randomize Seed	
Max. N	lo. of Iterations: 100	
Cost F	Function	
Solu	tion Calculation Calc. Range Condition Goal Weight	
NWA	A1 db(s21) F(Single value at 1GHz) =	
	Add Edit Calculation Edit Cal. Range Edit Goal/Wei	eight
Accepta	able 0	
	OK Cancel	Help
01010 01010	ANSOFT CORPORATIO	NC NC

Optimization Setup: Goal, Weight

Setu	up Optir	nization	J					×	Ε
Go O M	oals Var)ptimizer: 1ax. No. o	iables G Random f Iterations	eneral 	 Randomize Seed 					E
Γ	Cost Fund	tion	Calculation	Calc. Range	Condition	Goal	Weight		IN
	NWA1	db(s21)		F(Single value at 1GHz)	=	[-3]	[10]		In
	NWA1	db(s11)		F(From 100MHz to 850MHz)	<=	-15	[1]		w
	Ad		Delete	Edit Calculation	Edit Cal. Ran	ge	Edit Go	al/Weight	
	ccep(able	Ju			OK	C	ancel	Help	~

Enter -3 as the Goal and 10 as the weight Enter an additional goal to be NWA1 db(s11) F (from 100MHz to 850MHz) <= -15 (1) In this case the contribution of the s21 goal on the whole error is multiply by 10 due to weight setting.

The Goal can be defined as :

Single numerical value,

Expression (equation, sub-circuit name , S parameter file), Variable Dependent (for parametric sweep)

Weight allows to increase the contribution of a specific goal to the whole error function when multiple goals are defined

Edit Goal Val	ue/Weight	
Goal Value 🛛 🗸	Veight	
Туре:	Single Value	
	OK Cancel	Help

ANSOFT CORPORATION

Optimization Setup: Tab Variable and General

Setup Optimization Goals Variables General	
Variable Override Starting Value Unit Include Minimum Units Maximum Units L (LPF:5) 10 nH 2 nH 18 nH cvalue 10 pF 2 pF 18 pF	Hit the Variable tab. This allows to change the minimum and maximum values or to exclude one or more parameters from the optimization
Setup Optimization	
Goals Variables Ger	neral
Hit the General tab This is used to define the strategy of updating the design parameters during and after optimization	ameters' value after optimization ameters' value during optimization iterations axis scale fixed during update
	OK Cancel Help
	ANSOFT CORPORATION

Running Optimization

View Optimization Results

View Optimization Result on Graph

Set the parameters for Inductor

Set the parameters for Capacitor

Statistical Analysis: Define goals

Statistical Analysis: Define goals

Ansoft Designer - [LPFProjec	t - LPF - Schematic]	
File Edit View Project Draw	Schematic Circuit Tools Window Help つ C 小 会 S 洋 文 図 調 0 0 回 の 別 録 上 文 p 同 同 門 神 陽 認 」 o ヽ ┖ ㅁ A 0 半 M %	- 8 ×
K ⊷ 20 10 BK 28 K 3		
		<u>^</u>
	Setup Statistical Analysis Calculations Variables	
⊡ - 🌍 Optimetrics - 👰 OptimizationS - 🕼 StatisticalSeti	Maximum Iterations 50	
E-M Results	Solution Calculation Calculation Range	
XX S21_Csweep ∎	NWA1 db(s21) F(Single value at 1GHz)	
	NWA1 db(s11) F(Single value at 100MHz)	
	NWA1 db(s11) F(Single value at 450MHz)	
Project Components Search	NWA1 db(s11) F(Single value at 850MHz)	
Name Value Unit	Add Delete Edit Calculation Edit Cal. Range	
	OK Cancel Help	
	Enter statistical goals as shown above	
Param Values Variables Param Values	1 New Page	×
LPFProject (F:/Ansoft/Anso	tDesigner/Training/Training/NewFinal/)	
Number of selected items: 0		
	ANSOFT CORPORA	

Run Statistical Analysis

View Analysis Result: Data Table

🛦 Ansoft Designer - [DBS21&S1	1]							_ 2 🗙
File Edit View Project Report.	2D Circuit Tools V	Mindow Help	.		AT LA MA			- c' ×
	±2 ≤2 ⊀ ₩	24 juj 2%	1.20 14 157 1		0 🛪 🛄 72			
	🔲 Post Analysis	Display Dialo	3					
- C LPFProject*	CtatisticalCature1							
	Joransucaloetupi		<u> →</u> 🖌					
🗈 🧰 Data	Result							
Excitations	View: 🖲 Table							
Port1	C Plot							
	C (LPF:3)	C (LPF:4)	L (LPF:5)	db(s21) F(Single value at 1GHz)	db(s11) F(Single valu	ue at 100MHz) db(s11) F(Single value at 450MHz)	db(s11) F(Single value at 850MHz)	<u>^</u>
🖃 🎆 Analysis	3.3pF	3.3pF	8.2nH	-1.2315	-27.151	-17.015	-22.642	
- 🏭 NWA1	3.186448256pF	3.186448256pF	7.827550279nH	-0.94825	-27.408	-16.997	-28.032	
Csweep	3.315831477pF	3.315831477pF	8.251927244nH	-1.2766	-27.116	-17.02	-22.008	
() OptimizationS	3.471826838pF	3.471826838pF	8.763592029nH	-1.7977	-26.778	-17.097	-17.051	
👰 StatisticalSeti	3.242617573pF	3.242617573pF	8.011785638nH	-1.0796	-27.28	-17.002	-25.207	
🖃 🔯 Results	3.45130314pF	3.45130314pF	8.6962743nH	-1.7212	-26.822	-17.083	-17.597	
DBS21&S1	3.524578082pF	3.524578082pF	8.936616108nH	-2.0053	-26.667	-17.135	-15.756	
S21_Csweep	3.425774407pF	3.425774407pF	8.612540056nH	-1.6234	-26.876	-17.068	-18.313	
+ Derinitions	3.292469558pF	3.232463036pF	7 7050202020	-1.2100 n gnono	-27.168	-17.013	-22,300	
	3.10941612pE	3.109541612pE	7.575296487pH	-0.30003	-27.452	-16.330	-20.530	
	3 479471 95pF	3.479471725pE	8 788667257pH	-1.8268	-26 762	-10.333	-16.854	3
	3 35448316905	3 354483169pF	8.378704794pH	-1.3928	-27.031	-17 034	-20.579	
	3.0618717pF	30618717pF	7.418939177nH	-0.71416	-27.7	-17.007	-29.601	
	3.14665212pF	3.14655212pF	7.697018952nH	-0.86517	-27.5	-16.996	-29.799	
	3.123656423pF	3.123656123pF	7.621593066nH	-0.8208	-27.554	-16.998	-30.398	
	3.201997436pF	3.201997436, F	7.878551592nH	-0.98293	-27.373	-16.997	-27.243	
	3.353582873pF	3.353582873pF	375751823nH	-1.39	-27.033	-17.033	-20.61	
	3.470072024pF	3.470072024pF	8.757836238nH	-1.7911	-26.782	-17.095	-17.097	
	3.120787683pF	3.120787683pF	7.612183599nH	-0.81545	-27.561	-16.998	-30.439	
< >	3.306767479pF	3.306767479pF	8.222197333 oH	-1.2506	-27.136	-17.017	-22.368	
Project Components Search	3.154800562pF	3.154800562pF	7.723745842nH	0.88153	-27.481	-16.996	-29.492	
	3.54426252pF	3.54426252pF	9.001181066nH	-2.0668	-26.626	-17.151	-15.308	
	3.378653829pF	3.378653829pF	8.457984558nH	-1.4697	-26.978	-17.044	-19.762	
Name Value Unit	3.0/810/54/pF	3.0/810/54/pF	7.472192755nH	-0.74046	-27.661	-17.004	-30.105	
Name StatisticalS	3.289936522pF	3.289936522pF	8.166991791nH	-1.2035	-27.174	-17.012	-23.062	
Max Iters 50	3.281040376pF	3.281040376pF	8.137812433nH	-1.1793	-27.194	-17.01	-23.443	
Prior Para N/A	3 549397779~E	3.513676003pF	9.014744712eH	-2 1041	-27.100	-17.021	-15 218	
	3 295948668pF	3.295948668pE	8 186711631pH	-1 2202	-27.16	.17.014	-13.210	
	3.085187841pF	3.085187841pF	7.49541612nH	-0.7523	-2645	-17.003	-30.273	
	3.225145726pF	3.225145726pF	7.954477981nH	-1.0369	-27.3			
	3.226061281pF	3.226061281pF	7.957481002nH	-1.0391	-27.318	ight click on St	atistical sotup1 is	on III
						ight-click off Sta	alisticalsetupi ic	
O-Vinastina -	-				2	nd choose View	Results to see a	data
					a	nu choose view	Results to see a	uala
EPFProject (F:/Ansoft/Anso	ftDesigner/Training/Tr	aining/NewFinal/	1		ta	able or histogra	m nlot	E
		12				able of mistogra	in plot	
шт Россий								
Noduy					51/51/31/30	the state of the s		
				101010101010	110101010101			
				101nm		ANSOFT	CURPURAI	
				0.0000000000000000000000000000000000000	1010101010			

View Analysis Result: Histogram

End of Exercise 1

Layout Basics

View Layout Window

Layout Window

Connection points and wires

Align Footprint

Layout Footprint Properties

Layout Window Option

Add Layout only element

Drawing Primitives

🛦 Ansoft I)esigner - [Proj	ect2 - TestCell - Fo	botprint]
🔄 File Edi	t View Pro;	ject	Draw Footprint Too	ls Window Help
🗅 🚅 🖡	🐰 🖻 🗎	3 6	▶ Select	🔍 💟 🔍 🧶 🖑 🔛 🖪 🚥 🔫 🔞 🏭 🚍 💋 💷 EL 🛛 🔽 Half Griver (OpfaultPic
19 🖌 🖌	12		🙀 Select Handles	
			🗽 Select Edges	
Name name layer net lineWidth center width height	Value rect105 EL 0 0,0 100 50	um um um um	 ► Bin ♥ ½a ► EdgePort ↔ Handle ② Grde ☑ Roctangle ⑦ Arc ❑ Line 	
angle	0	deg	Polygon	
			A Text box	
Footprint	iject2* Definitions 	ent	Draw The p layer,	Rectangle roperties of the rectangle are Center, Width, Height, Angle

Specific Operation on Primitive

Snapping

Snap to grid: snap the shape on the grid

Boolean Operations

Import DXF and GDSII Files

Edit and Create Footprint

Fixed Footprint

Parameterized Layout Cell

Scripted Layout Cell

101010101010101

ANSOFT CORPORATION

Exercise 2: Creating A Footprint

- Create a footprint
 - Set grid
 - Define parameters
 - Draw and parameterize shape
 - Add ports
 - Save to library
- User Exercise
 - Create new circuit and insert into previously created circuit
 - Edit symbol

Create a simple Footprint

Set the Grid

Ansoft Designer - [Project2 File Edit View Project D	3 - Simple TRL - Footprint] aw Footprint Tools Window Help
□ 2 0 , □ 0 0 / 1 i i i i i i i i i i	
Project	Click on icon Grid Snap Setting Grid Gidlines Major: Major: Major: Major: Major: Gidlines Major: Maj
Ready	X: -4.3000 Y: -16.4000 Delta X: -4.3000 Delta Y: -16.4000 Distance: 16.9544 nm ▼ Angle: -104.7
	ANSOFT CORPORATION

Define the parameters

Draw Shape

Parameterized the Shape

Add Connection Ports

Save The Layout Cell to Library

Export The Layout Cell to Library

Using Footprint

User Exercise

- Using Subcircuits and Symbols
 - Inserting Subcircuits
 - Changing Symbols

Insert Another Circuit Design

Edit The Symbol and Modify It

Copy and Paste the Circuit Design

Connect the Sub-Circuit Symbol

End of Exercise

Smith Tool .avi

Create a New Circuit

Insert NPN NEC Transistor

Choice the Transistor

Add Port and Ground

Add Analysis setup

🛦 Ansoft Designer - [Lna - Sr] File Edit View Project Dra	nithTool - Schematic] w Schematic Gircuit Tools Window Help	
_ D 📽 🖬 % 🖻 🖻 😂 3 T⊀ t⊷ 24 1m (RK) 138 14	K 空 空 小 号 3 米 図 ● ● 図 ● (*) 20 ↓ 2 마 10 回 12 円 12 円 12 円 10 × 0 × 0 □ A ● ※ Ln %	
	Linear Network Analysis, Frequency Domain Analysis Setup Option Delaxit Options) Gioup Delay Bioup Delay Calculations Perturbation (S) Q1 Add Perturbation (S) Q1 Calculations Edd Sync Add Perturbation (S) Q1	
	Add Linear Network Analysis Setup. Sweep the frequency to 0.5GHz to 2GHz with a step of 0.01GHz	
Ready		
	ANSOFT CORPORATION	All

SmithTool - Polar Plot

SmithTool - Opening the Utility

SmithTool - Opening the Utility

Smith Tool					
Uisplay Matching					
Irr Impedance □ Admittance □ Polar	42 0-4 0000	Ann - 6 Commonstitut	S11(ckt=Sm		
H X G B Q VSWH Hno Ang Step Step Step Incr	13 Oct 2002	Ansoit Corporation	22:16:15 500.00MHz-		
Circles	The utili	ty contains several areas:			
Step Power Gain Gp (S-plane)	The Grid	ds area lets vou draw constan	t R. X. G. B. Q. VSWR	. and Rho	
Mapping	circles o	in the plot	,,,,,	,	
Available Gain Ga (S->L) ▼ Gain (dB) Mismatch Apply					
Marker Point Conjugate Z->Y Y->Z	The Circ	cles area lets you draw Gain, l	Noise, and Stability circ	cles.	
			the survey of the second s		
ZRef: 50.00+j0.00 G: 17.95dB	The Mapping area lets you transform the responses from the source plane				
FMIN: 0.86dB K: 0.56 Circuit: SmithTool Freq: 0.5GHz	to the lo	ad plane and vice-versa.			
	At the to	p of the dialog, there are tabs	to switch between this	s Display	
<u> </u>	portion (of the dialog and the Matching	portion We will exerc	cise both	
	areas as	s this example proceeds			
		s the example precedes.			
	At the b	ottom of the dialog is informat	ion that is calculated fr	om the device	
	S Parameters like Maximum Stable Gain minimum NF and stability				
	factor k				
	MP: 0.708 -92 0.0 1.0				
	GB: 0.348 + j0]				
	Q: 2.832				
	VSWR: 5.842				
		ANSOFT	CORPORATION		

SmithTool - Maximizing Performance

on Apply. An 14dB gain circle appears.

Now, select *Noise* and enter 1.5dB. Click *Apply* and a 1.5dB noise circle appears. In the *Start* box of section *Grids* enter 2 and click on *VSWR*.

0101010101010101

SmithTool - Checking Stability

10101010101010101

SmithTool - Drawing Aids

In the *Grids* area, click on *G*. The cursor jumps to the plot. Click on point P to draw a constant G circle through it. This circle should be approximately G = 1.60. In the *Grids* area, click on *R*. The cursor jumps to the plot. Click on point P to draw a constant R circle through it. This circle should be approximately G = 0.52.

10101010101010101

SmithTool - Matching Tab

Click on the *Matching* tab on the SmithTool dialog. The dialog changes as shown above. For the input matching circuit, we will move on the Smith chart from 50 Ohms at the center of the chart to our point P.

Click on the New Match button.

When you do this, the cursor will immediately jump to the center of the Smith chart. Without moving the mouse, click again to place the "crosshair" at 50 Ohms.

After you do this, the ten element buttons in the dialog (shown above in gray) will activate. These are the available elements for use in the matching circuit, representing both lumped and distributed components.

0101010101010101

SmithTool - Input Matching Circuit

SmithTool - Source/Load Mapping

SmithTool - Complex Conjugation

SmithTool - Output Matching Circuit

Building the Amplifier

Verifying Amplifier Performance

010101010101010

Non-Linear Analysis.avi

Exercise: LNA Design Non-Linear Analysis

Load LnaNLStart

Insert DC Source

View DC Bias

1010101010101

Run Linear Analysis

Even if we use a non linear model it is possible to run linear analysis, non linear model is linearised at the bias condition and the simulation will use the corresponding S parameters. This allow to check that the results with the non linear model are close to the one get with S parameter data file.

10101010101010101

Define RF 1 Tone Analysis

Define a Power Sweep

A Ansoft Designer - [LnaNLRF1TONE_Done - LnaCircuit - Schematic]	
File Edit View Project Draw Schematic Circuit Tools Window Help	Harmonic Balance Analysis, 1-Tone
Highlight F1 and click Edit,	
add single value of 0.9GHz.	Analysis Setup Uption [Uerault Uptions]
Click OK	No. of Harmohios
	Name Sweep/Value Offse Sync
Add/Edit Sweep	E1
Variable F1 Surses Visiting	
0.9GHz	Measurement Harmonic
C Linear step D.9 GHz Add >>	No.(Multiple of F1)
C Linear count	Stability Analysis
O Decade count	Use Solution-Path Tracing
Cotave count Delte Delte	Trace DC Power
Offset from F1 Use frequency sweep value as offset from F1 OK Cancel	
	· // · ·
Project Components Search	Kenter
Analysis Setup	Olisti Addin dhe Usernenia Delence Anchesia A Tene usinderu
	Click Add in the Harmonic Balance Analysis, 1-1 one window,
Add/Edit	sweep In the Variable field select Pin,
Disable this analysis Variable	Add a Linear step from -40dBm to 0dBm by step of 1dB,
Analysis Name HB1Tone1	
Analysis Type Hamonic Balance	
Add/Edit	Sweep X
Valaue	Pin Sweep Values
C Sing	l N-40dBm 0dBm 1dB
⊙ Line.	ar step 40 dBm V Add >>
O Line.	ar count Stop
<back next=""> Cancel Help O Dec.</back>	
О Ехро	mential count 1 dB V
Add Analysis Setup select :	
Analysis Type Harmonic Balance Mina/NonLinea	frequency sweep value as offset from F1 DK Cancel
Analysis Name HB1Tone1	
Category 1-Tone	
Click Next	
	ANSOFT CORPORATION
010101010101	

Run Harmonic Balance Analysis

Create Results: Pou/TG21 vs Pin

Create Results: DCIV curves

Create Results: Spectrum

Create Results: Wave Form

Optional Exercises: (Intermod) Digital Modulation

Add a Second RF Source to Port 1

Add Intermodulation Analysis Setup

Ansoft Designer - ILuaNLRF2TONE Dena LuaCinanie Caba	•••••#••1		
■ File Edit View Project Draw Schematic ■ File Edit View	Disable this analysis Catego Click	sis Type Harmonic Balance sis Name HB2ToneInter1 ory 2 Tones Intermodulation Next	Spectrum
Excitations Sinusoidal Sinus	Analysis Name [HB2ToneInter] Analysis Type [Harmonic Balance Category [2:Tone, Intermodulation Spectrum KB2CATEGORY [2:Tone, Intermodulation Spectrum]	▼ ▼ 2.2pF xt > Cancel Help	
Harmonic Balance Analysis, 2-Tone, Intermodulation S Analysis Setup Option Intermodulation Stability Analysis Stability Analysis Use Solution-Path Tracing Trace AC Power Highlight F2, Uncheck Offset opti add single value of 0.901GHz, CI Click Add	Sweep/Value Offset Sync hz hz hz 40dBm -2dBm 1dB	Add/Edit Sweep Variable Pin Single value Start Linear step Decade count Stop Decade count 2 dBm Exponential count 1 dB Offset from F1 Use frequency sweep value as offset from F1 Add a Linear step from -4000 2dBm for variable Pin Click ok	Sweep Values Add >> K Add >> C C Cancel Bm to OdBm by step of
	910101010101010101010101010101010101010	ANSOFT CORPOR	ATION

Create Results: Pout vs Pin

Create Results: Calculate IP3

Create Results: Intermodulation Spectrum

Digital Modulation

Digital Modulation: Modulation Source (1)

Digital Modulation: Modulation Source (1)

Digital Modulation: Analysis Setup

Ansoft Designer - Japsk - amplifier - Schematic]				
■ File Edit View Project Draw Schematic Circuit Tools Window Help	Click right on	analysis and	select add Analysis setup.	
** ** *** 0* 19 14 15 8 - 15 *** ******************************	Select type A	nalysis Type	Modulation Envelope, Category 1-To	one
The Modulation Source is	Click Next			
added to the Data Folder.		Disable (his analysis		
C SourceModulati		Analysis Name	MODENV1Tone1	
		Analysis Type	Modulation Envelope	
You can select Modulation Envelope from the Analysis	Type field.	Category	1 Tone	
Category allows you to select				
2-Tone/3-Tone Intermododulation Spectrum				
2-Tone/3-Tone. Mixer Intermododulation Spectrum				
	1			
Project Components Search				
			< Back Next > Cancel Help	
Analysis Setup Opti	tion (Default Options)]		
Set Length of Analysis to 104 2us		Name	Sweep/Value Sync	
(=1/(br*8)*1024, with 1024=nb of sample)		F1 2ghz	Pm 224Pm 1dP	
Set Time step to 0.1us (= 1/(br*8)				
this means we oversample the bit rate by 8)	e Carrier Analysis			
No. of Harmonic	:s 8 🛨			
		Add Remove	Edit Sync	
Set E1 to 2GHz	(2)		Click Finish	
define a power sweep on Pays from 0dbm to 23dbm	h by step of 1d	b		
Set the number of Harmonic to 8,		< Back	Finish Cancel Help	1
Ready				
01	Interior A Date			1 100
010101010101010	AN:		ORPORATION	L

0101010101010

Digital Modulation: Eye Diagram

Digital Modulation: IQ Spectrum

Digital Modulation: Constellation Plot

Load Pull Analysis

Overview

There are 7 essential Steps to perform load-pull analysis and review response

- 1. Define nonlinear circuit
- 2. Specify nonlinear source

Viewed in previous slides

- 3. Specify load/source pull tuner port
- 4. Specify nonlinear analysis
- 5. Specify loadpull analysis details based on selected nonlinear analysis
- 6. Analyze
- 7. Plot contours

Loadpull Analysis in Ansoft Designer

010101010101010

Enable Loadpull termination

Define Loadpull tuner characteristics

Port Definition	🐮 🖪 Loa
Port Port Port number: 2 Termination	N Iv Pa
Source Definition Source type: Power Sources: Enable Name Type Modulation Noise Edit Delete	د ۱ ۲ ۲ ۲
Load Pull Tuner and Reference Node Load Pull Tuner: LoadPullTuner1 Edit Create New Reference Node: Ground OK Cancel	, , , ,

уре:		Ideal - Re/In	n Form	
arameters]			
Property	Value	Unit	Description	
rdef	50	Ohm	Default resistance of tuner for all clusters	
xdef	0	Ohm	Default reactance of tuner for all clusters	
rdc	50	Ohm	DC resistance of tuner	
rO	0	Ohm	Resistance at baseband cluster (for multi-tone analysis)	
хO	0	Ohm	Reactance at baseband cluster	
r1	50	Ohm	Resistance at fundamental cluster	
x1	0	Ohm	Reactance at fundamental cluster	
r2	50	Ohm	Resistance at 2nd harmonic cluster	
x2	0	Ohm	Reactance at 2nd harmonic cluster	
r3	50	Ohm	Resistance at 3rd harmonic cluster	
xЗ	0	Ohm	Reactance at 3rd harmonic cluster	T

Loadpull tuner definition specifies tuner type (ideal, double stub) and default complex impedance at all specified harmonic frequencies (50ohm default). To modify edit from port dialog or double click on tuner icon in project tree.

Note: multiple tuners may be defined

Create new nonlinear analysis

alysis Setup

1. Add analysis setup

☑ Perform Analysis Nam	Analysis ve ∏NWA1	such as Harmonic Balan or HB Oscillation
Analysis Type Category	e Linear Network Analysis Linear Network Analysis Harmonic Balance Harmonic Balance Oscillator Modulation Erwelcpe Transiert Analysis Dic Analysis Dic Nyquist Analysis Loadpull Analysis	
	Analysis Setup Option (Default Options) No. of Harmonics 4 = Noise Spectrum Enable Noise Spectrum Calculations Measument Port No. Measument Port No. Measument Harmonic F1 = Stability Analysis Use Solution-Path Tracing Trace DC Power	Sweep Variables Name Sweep/Value Offs Sync F1 3.6GHz Pin LIN -20dbm 20dbm 0 ▲ Bemove Edit Note: If source variables are swept, the analysis may change the sweep order for the best convergence behavior

3. Specify swept parameters such as operating Frequencies and swept parameters such as Bias, tuning or power level (using the Add... Button)

2. Select nonlinear analysis

e

Create Loadpull analysis

Create Loadpull analysis

	Loadpull Analysis	×
1. Select loadpull tuners from pull down list (if multiple tuners are defined)	1 Tuner Sweep tuner1 Image: Sweep 2 HB Analysis to Apply HB:HB1Tone1 Image: Sweep	Variables Name Sweep/Value Sync Add no LIN 0.1 0.9 0.1 g LIN 0 340 20
2. Select HB analysis to apply (multiple analyses may be defined for a given design)	HB:HBII onel Harmonic / Harmonic Cluster to Tune	Sync
3. Specify Harmonic frequency index,For example 1=fundamental2=second harmonic (2*f)		< Back Finish Cancel
movie	MILLI LUI LUI LUI LUI LUI LUI LUI LUI LUI	

ANSOFT CORPORATION

Create Loadpull analysis

Set tuner range a. ZRho controls the magnitude of the reflection coefficient b. ZAng controls the angle of the reflection coefficient

Hint: low impedance matching networks that are common to high power amplifiers are simulated more quickly by using a directed loadpull sweep of low impedances

$\begin{bmatrix} S \end{bmatrix}$	Sweep Variables				
	Name	Sweep/Value	Sync		
	ZRho	LIN 0.1 0.9 0.1			
	ZAng	LIN 0 340 20			

Perform Loadpull analysis

1. Right mouse click on the defined loadpull analysis setup in the Analysis folder of the project tree

Circuit Name		
Analysis Status –		
Status: Analy:	ing	
Sweeps: Tone1	: 3.600000 GHz	
Pin: 1	3 dBm	
ZRho	0.9	
ZAng:	2.2e+002 Deg	
Sweep Number:	981 of 1539	
Iteration:	32	
Analysis Error:	8.344108e-006	
		- Analys

0101010101010101

2. Right mouse click on the progress bar to bring up abort/details menu, select details to view HB convergence

Analysis status window (Details)

Plotting Results (Contours)

1. Right mouse click on the Results folder to create new report

3. Select display type as smith chart (optional rectangular or polar plots also allowed)

	Create Report	×
	Target Design:	Circuit2
	Report Type:	Standard
	Display Type:	Standard Device IV Characteristics Load-Pull
	40	Cancel
ľ		

2. Select report type as Load-pull (only available after successful load-pull simulation)

Plotting Output Power Contours

Traces

1 dBm(PO2<F1>)

Other Contour Examples

Changing Contour Values

Multiple analyses (ex. HB, Transient, Phase noise) from single Circuit design

Start

Stop

10101010101010

The oscillator design aid sweeps a user specified frequency range and plots complex currents through device. Negative resistance corresponds to potential oscillation frequency.

Analysis Setup Option (Default Options) Image: Constraint of the set of the set on vergence behavior Display Oscillator Design Analysis Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120 Image: Constraint of the set on vergence behavior State 120	Harmonic Balance Oscillator Analysis, 1-Tone	
Noise Spectrum Enable Noise Spectrum Calculations Measurment Port No. 1 Measurment Harmonic F1 No.(Times of F1) Sync Stability Analysis Note: If source variables are swept, the analysis may change the sweep order for the best convergence behavior	Harmonic Balance Oscillator Analysis, 1-Tone Analysis Setup Option (Default Options) ✓ Enable Oscillator Design Analysis No. of Harmonics Oscillator Search Range Start 120 MHz ▼ Stop 250 MHz ▼	Display Oscillator Design Analyse Bun Abort Add Report to Project Tree Sweep Variables Name Sweep/Value Dffs Sync Add FNOI ESTP 100HZ 100MH Ydiode LIN 1.8V 2.4V .1V
Use Solution-Path Tracing Analysis may change the sweep order for the best convergence behavior < Back	Noise Spectrum Enable Noise Spectrum Calculations Measurment Port No. Measurment Harmonic No.(Times of F1) Stability Analysis	Edit Sync
	Use Solution-Path Tracing	analysis may change the sweep order for the best convergence behavior < Back

01010101010

Harmonic Balance Oscillator analysis provides nonlinear circuit performance

152.00

20.00

-10.00

Nonlinear Noise Analysis

101010101010101

Noise Spectrum analysis provides nonlinear circuit noise spectrum data such as phase noise and amplitude noise

Optimization of Noise Performance

Optimization of Noise Performance

101010101010101010101

Transient Analysis

Analysis Setup Option ((Default Options)		
Analysis Control	Sv	veep Variable:	s
Length of Analysis 2	us 💌	Name	
Maximum Time Step Allowed	ns 💌		
No. of sample points per 5			
maximum time step			

Transient analysis allows the Circuit designer to investigate non steady state behavior

Field Solver Design Basics (.avi File)

Exercise: Create a Planar EM Design

Insert Planar EM Design

Add Definitions Parameters

Click Right on Planar EM Design and select Design Properties.	elp ■] 6] 11] =] =] = Trace 2mil 2 <0 	efaultPlotter> 💌 PlanaEM1 🔍 💘 Z KN 🎬 슈킹 🔀 🗠 왕 이 관 🗐 🗊	L□× Lox Lox Lox Lox Lox Lox Lox Lox Lox Lox
	Add Property Name wline Value 2mm	Variable C Checkbox C O Value C Merru C	Netlist O Text O Number O Separator File Name O VPoint O Point
Zaidation Check Xaidation Check	Enter initial value into Value field. This should be a 2*cos(\$x).	number, variable, or expression. Referenced proj	ect variables should be prefixed with a '\$'. Examples: 22.4pF, \$C1,
Dosign Properties Design Properties Design Parameters Design Parameters Design Parameters Design Parameters Project Design Parameter Design Par	um, Lline=10mm, Xstub=5 ults Local Variables General O Optimization Tuning	mm, Wstub=2mm,Lstu	b=20mm
	Name Value	Unit Description	Bead-only Hidden
Model	Name FieldSolver	Crist Decompsion	
wline	2	mm	
line	10	mm	
×stub	5	mm	
Lstub	20	mm	
Peram Values Variables Ps ())	<u>E</u> emove		Show Hidden
Edit design properties			
	10101010101010101010101010101010101010		BEOBATION

G10101010101010

Draw A Simple Open Stub

Add Ports

Add setup

Ansoft Designer - [Project92 - PlanarEM1 - Layout] File Edit View Project Draw Layout PlanarEM Tools Windc	Setup 1	× Setu	որ 1
	Meshing Parameters Mesh Refinement	Me	eshing Parameters Mesh Refinement
	Initial Mesh		Refinement Parameters
Click right on Analysis folder	Eixed Mesh Erequency 50000GHz		Lambda Refinment 🔽 Edge Length Factor
and select Add Solution Setup.	Use Edge Mesh		Refine for Quality 🔽 Minimum Angle 15.0deg
- O Port1	Absolute edge length		Refine for Uniformity 🗖 Max/Mean Edge Length Ratio 2
	O Do Adaptive		
P B Add Solution Setup			
Stat Analysis Solutions	Adaptive Parameters		Poset to Suggested Values
Co-simulation Options	Maximum Number of Adaptive Passes		Hesel to Suggested values
	Adaptive Frequency: 5.0000GHz		
	Percent Refinement Per Pass: 25		
Project	Target Maximum Delta Norm 0.05		
	Mesh Display Attributes		
	Color		
	Reset to Suggested Values		
			OK Cancel
	Select Fixed Mesh with	Cancel	
	frequency = 5GHz.		
Port1	Port2		
Meshing Parameters Tak	0		_
to set meshing options ;Fix	xed Mesh, Edge Mesh, Adaptative Me	sh, Initial Me	esh Frequency.
Mesh Refinemennt tab			
More Mesning option			
Set up mesh for circuit analysis	X: -2.0000 Y: 12.0000 Delta X: -19.0000 Delta Y: 11.000	Distance: 21.954	45 mm - Angle: 149.9
	0101010101010101010 ANSC	FT CO	PORATION

Edge Meshing

Using Edge Meshing

When you define a non-adaptive solution setup, you can instruct Ansoft Designer to add narrow rectangles along the edges of the model. These rectangles efficiently capture electromagnetic effects close to the model edges, resulting in faster solution times and/or higher accuracy. When Ansoft Designer refines the fixed mesh, it determines the length of the rectangles (the longer edges, which lie parallel to the model edge) by making them smaller than a fraction of the guided wavelength at the frequency you specified. You determine the width of the rectangles by either specifying the ratio of the rectangles' length to the width, or the *edge mesh length ratio*, or by specifying the absolute width of the rectangles, or the *absolute edge length*.

To use edge meshing:

1. In the setup dialog box, click the **Meshing Parameters** tab.

2. Select **Fixed Mesh**, and then specify a frequency at which to generate the fixed mesh in the **Frequency** text box.

- 3. Select Use Edge Mesh.
- 4. Specify how the edge mesh is created by selecting one of the following:
- Edge mesh length ratio
- Absolute edge length

5. If you selected **Edge mesh length ratio**, type the ratio of the length to the width of the rectangles.

After refinement, the width of the rectangles will be nominally equal to ratio x length. The ratio value should be between 0.02 and 0.2 to prevent extremely narrow rectangles and extremely wide triangles.

6. If you selected **Absolute edge length**, type the absolute width of the rectangles, including the model units.

Setup 1	×
Meshing Parameters Mesh Refinement	
Initial Mesh	
• Eixed Mesh Erequ	ency \$0000GHz
🗖 Use Edge Mesh	
Edge mesh length ratio	0.1
C Absolute edge length	1000.0000mm
C Do Adaptive	
– Adaptivo Paramotoro	
Adaptive Parameters	10
Maximum Number of Adaptive Passe	s lio
Adaptive Frequency:	5.0000GHz
Percent Refinement Per Pass:	25
Target Maximum Delta Norm	0.05
Mesh Display Attributes	
Color	
Reset to Suggeste	ed Values
	OK Cancel

Example of Edge Meshing

Mesh Refinement

Setting Lambda Refinement

Lambda refinement is the process of refining the initial mesh based on the material-dependent wavelength. It is recommended and selected by default. To specify the size of wavelength by which Ansoft Designer will refine the mesh:

1. Under the **Mesh Refinement** tab in the solution setup dialog box, select **Lambda Refinement**.

2. Type a value in the **Edge Length Factor** text box. The ratio of the guided wavelength and the length of the longest triangle edge will be greater than or equal to the **Edge Length Factor**.

Refining for Quality

When **Refine for Quality** is selected in the setup dialog box, Ansoft Designer will produce a mesh with triangles that have approximately the same size angles. The mesh is refined until all triangle angles in the mesh are at least the **Minimum Angle** value.

To refine for quality:

1. Under **the Mesh Refinement** tab in the solution setup dialog box, select **Refine for Quality**.

2. Type a value in the Minimum Angle text box in degrees.

Refining for Uniformity

When **Refine for Uniformity** is selected in the setup dialog box, Ansoft Designer will produce a mesh with triangles that are approximately the same size. The ratio of the maximum length of any triangle edge to the average length of the triangle edges in the mesh will not be greater than **Max/Mean Edge Length Ratio** value, resulting in greater uniformity of the mesh.

To refine for uniformity:

1. Under the **Mesh Refinement** tab in the solution setup dialog box, select **Refine for Uniformity**.

2. Type a value in the Max/Mean Edge Length Ratio text box.

Example of Mesh refinement

Add Frequency Sweep

× Ansoft Designer - [Project92 - PlanarEM1 - Layout] File Edit View Project Draw Layout PlanarEM Tools Window Help B B R 8 Pa R 8 Pa R 9 PlanatEM1 Y 14 № 20 10 0 8 0 8 10 10 10 10 10 10 10 10 10 10 10 10 10	
Sweep 1 Sweep 2 Sweep 3 Sweep 3	×
Start Analysis Meth Overlay 3D Mesh Overlay Specify Frequency Sweep Single value Single value Upmanic Mesh Updates Linear step View Profile Add >> Setup 1 Image: Setup 1 Setup 5etup 1 Image: Setup 1	t reep. enter Iz Step 0.01GHz pint List to see s.
You can select multiple type sweep or single value, Discrete sweep or Interpolating Fast Sweep.	<u>*</u>
Set up frequency sweeps for Planar EM analysis X: Y: Delta X: Delta Y: Distance: mm Angle:	
91010101010101010 010101010101010 010101010101010	

View Mesh

Run Analysis

Create results: DB S11&S21

Optional Exercise: Planar EM Co-Simulation

Edit The Symbol and Modify It

101010101010101

Copy and Paste the Circuit Design

Connect the Sub-Circuit Symbol

0101010101010101

Run Analysis

Create Results: DBS21&S11

101010101

Define Lstub as Tunable

010101010101

Run Tuning

01010101010101010

Run Accumulate Sweep Tuning

ANSOFT CORPORATION

101010101010101

Optional Exercise: Planar EM Antenna Design

Configure Layout

Insert Layers

- Open the Stackup Editor in one of three ways:
 - Layout -> Layers. Select Stackup tab.
 - Click *s* icon. Select Stackup tab.
 - Click
 icon.
- Insert an infinite ground layer
 - Add Layer -> Name = "top" -> Type = "signal"
- Insert a dielectric layer
 - Add Layer -> Name = "d1" -> Type = "dielectric"
- Insert a trace layer
 - Add Layer -> Name = "bottom" -> Type = "signal"

	Name	Туре	Material	Drag Mode	Thickness	Lower Elevation	Upper Elevation	Roughness
_	Тор	signal	copper	middle align	Omm	4mm	4mm	Omm
	d1	dielectric	air		4mm	Omm	4mm	
_	bottom	signal	copper	middle align	Omm	Omm	Omm	Omm

- Change the "d1" thickness to 4 mm
- Layers can be moved by dragging and dropping the entire row..
- Material attributes can be defined by selecting the material button

Drawing the model (1)

- Change the active layer to "bottom"
 - Select the layer pull-down menu and highlight "bottom"
- Begin drawing a rectangle object in one of two ways:
 - Draw -> Primitive -> Rectangle
 - Select the <a>Imscene
- Enter the lower left-hand coordinates for the rectangle.
 - In the Status Bar, enter X=0.0, Y=0.0. Use the TAB key to move between entries and press ENTER when finished.

X: \$.0000 Y: -0.1000 Delta X: 0.7000 Delta Y: -20.0000 Distance: 20.0122 mm

- Finish drawing the rectangle
 - In the Status Bar enter Delta X = 40, Delta Y = 46.8.
 - OR, drag the upper righthand corner until Delta X:40, Delta Y:46.8
- Fit the drawing by pressing "CTRL-D", or View -> Fit Drawing

Drawing the model (2)

• We will now define a shortcut to the PIFA in order to reduce the physical dimension to a quarter of the resonant wavelength.

- Select the <a>icon
- Enter the lower left-hand coordinates for the line.
 - In the Status Bar, enter X=5, Y=46.8
 - deltaX = 30 , deltaY = 0

- Use the TAB key to move between entries and press ENTER when finished.
- Verify the following properties

	Name name	line105	Value	Unit	Description	
H	laver	Bottom				
	net					-
	lineWidth	0		mm		
	bendType	Corner				
	сарТуре	Flat				
	pt0	5,46.8		mm		
	pt1	35,46.8		mm		
					C Show Hidden	
		SOUTHWAT		OK	Annuler Air	

Drawing the model (3)

- Select the line and Copy it (CTRL+C command)
- In the layer, choose Top
- Paste the line (CTRL-V)
- Select the 2 lines by maintaining the CTRL button when you select them.
- In the menu on the left, click on Cross-Layer and Add Cross-Layer Plate

Drawing the model (4)

• Change the active layer to "Top"

- Select the layer pull-down menu and highlight "Top"
- Double Click on the line and adjust the properties

ties						×
orint Layout Displa	ays Ensemble					
Name		Value		Unit	Description	
name	line105					
layer	Тор					
net						
lineWidth	0			mm		
bendType	Corner					
сарТуре	Flat					
pt0	5,46.8			mm		
pt1	35,46.8			mm		
					□ Show Hidden	
			OK		Annuler Aid	de

Drawing the model (5)

- Begin drawing a rectangle object in one of two ways:
 - Draw -> Primitive -> Rectangle
 - Select the <a>icon.
- Enter the lower left-hand coordinates for the rectangle.
 - In the Status Bar, enter X = 5, Y = 46.8. Use the TAB key to move between entries and press ENTER when finished.

- Finish drawing the rectangle
 - In the Status Bar enter Delta X = 30, Delta Y = -36.8.
 - OR, drag the upper righthand corner until Delta X : 30, Delta Y : -36.8
- Fit the drawing by pressing "CTRL-D", or View -> Fit Drawing

Define Excitation

- Insert a hole
- Double Click on the hole and change the properties

x: [20.0000 Y:	41.3000	Delta X:	0.0000 -	Delta Y:	0.0000 -	Distance:	0.0000]
------	------------	---------	----------	----------	----------	----------	-----------	----------

- Enter the lower left-hand coordinates for the rectangle.
 - In the Status Bar, enter X = 20, Y = 41.8.
 - Use the TAB key to move between entries and press ENTER when finished.
- Click on via1 and choose Properties

3D View

- Open a 3D view
 - Select Planar EM -> 3D Viewer OR
 - Right-click on PlanarEM1 in the Project Manager and select "3D Viewer"
- Explore 3D view functionality
 - Right-click in the 3D view window
 - Many options are available here....
- Change the 3D lighting
 - View -> modify attributes -> lighting
- Change the background color
 - View -> modify attributes -> background color

Setup Analysis (1)

 Right click on the Analysis entry in the project tree and select add solution setup

⊡-@ PIFA*		
🖻 🍊 EnsembleCircuit:	Setup 1	×
🖻 🚅 Model	Meshing Parameters Mesh Refinement	
- Ports	mean temenent	1
Cavities	Fixed Mesh Frequency	2.0000GHz
⊡- ₩ Vias		,
	O Do Adaptive	
	Adaptive Parameters	
	Maximum Number of Adaptive Passes	10
Port 1	Adaptive Frequency:	5.0000GHz
👔 🖻 <u>C</u> opy	Percent Refinement Per Pass:	25
222 Add Colution Cotur		lo or
± Dr 200 Solution Setup	Target Maximum Delta Norm	0.05
J∫ ₆ Start Analysis	- Mesh Display Attributes	
Browse Solutions	Color	
Cocking View		
	Reset to Suggested Val	les
	40	Annuler Aide
Project		

• Use a fixed mesh frequency of 2GHz. You can also change the mesh display color.

Setup Analysis (2)

	Setup 1
	Meshing Parameters Mesh Refinement
	Refinement Parameters
	Lambda Refinment 🔽 Edge Length Factor 40
 Modify Mesh refinement 	Refine for Quality 🔽 Minimum Angle 15.0deg
	Refine for Uniformity Max/Mean Edge Length Ratio 2
	Reset to Suggested Values
 Visualize the mesh Op X cut Op X cut Re The copy 	OK Annuler Aide
Definit Rename Nodete	
Add Frequency	Sweep
Properties Designed If Start Analysis	
Mesh Overlay	
亚 恒当 PIFA - Mes 3D Mesh Overla Refresh Mesh D	
V Dynamic Mesh	Jpdates
 ♥ View Profile ✓ Docking View 	
*01010101010101010101010101010101010101	
01	ANSOFT CORPORATION
⁰¹ 01010101010101010 ¹⁰¹	
3D Mesh

Visualize 3D mesh

Setup Analysis (3)

- Add a sweep to the analysis in one of two ways ٠
 - Planar EM -> Add Frequency Sweep OR
 - Right-click on the "Sweep 1" branch in the ٠ Project Manager and select "Add Frequency Sweep"

- Fill in the Sweep dialogue as seen below. Enter "Update Frequencies" ٠ to add the points to the sweep table.
 - Interpolating Fast Sweep ٠
 - Fstart = 1.5GHz
 - Fstop = 2GHz
 - Number of points = 51

Setup Solution

• Right click on Sweep1 and select Start Analysis.

٠

Simulation Odds and Ends

 By Right Clicking on the progress bar during simulation, the process can be aborted, paused, or have the priority level changed.

 The simulation engines have been turned into COM/DCOM objects. This allows a simulation to be run on a remote machine, given permissions

.250000 GHz MoM Mat

Change Priority Pause

Generate Reports (1)

- View tabular S-parameters
 - Right-click on "Sweep1"
 - Select Results -> Matrix Data
- Plot Return Loss
 - Right-click on "Sweep1"
 - Select Results -> Plot Templates -> Return Loss

101010101010101

ANSOFT CORPORATION

Generate Reports (2)

01010101010101010 010101010101010

ANSOFT CORPORATION