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IV. MAXIMALLY FLAT TIME DELAY: BESSEL POLYNOMIALS (7, 8, 9) i 

The preceding two sets of polynomials were used in the approxima- 
tion of a desired magnitude characteristic. However, the nonlinear 
phase characteristic of both approximations and the resulting variation 
of the time delay preclude their use where a constant time delay is a 
paramount requirement. For such time-delay filters an excellent ap- 
proximation is given by the use of B e s s d  polynomiads. This approxi- 
mation yields a maximally flat time delay along with a low-pass magni- 
tude characteristic. 

The Bessel polynomials in the variable 1/s  are defined by 

- (n + k)! 
y . (1 / s )  = ~oX = (n -- k) w. k! (2s) k" (7) 

The polynomials of interest are derived from the above as 

h.(s)  = s"y,,(1/s) 

-~- ~ aks k. 
k~O 

(8) 

The transfer function is given by 

H 
- h . ( s ) "  

(9) 

The constant H is equal to a0 for a ladder terminated in a one-ohm 
resistance, that  is, for this configuration at s = 0, Z~I(0) is unity. This 
transfer function has a maximally flat time delay. By this is meant 
that  the time delay ta is given by a function of the form 

dO to(bo -[- b~o~ ~ + b2o# -a t - . . .  2r- b,,_1¢o 2'~-~) ( 1 0 )  

ta = - d--~ = bo + bio~ ~ "a t- b2o~ 4 + ' "  + b._lo~ ~ - ~  + b.o~ 2~' 

* This paper is based on the author ' s  report with the same title, Technical Memorandum 
No. 434, Hughes Research Laboratories, Culver City, Calif. 
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where 0 is the phase of Z21(joa), and to is the zero-frequency time delay. 
It  is noted that  the first (n - 1) coefficients of the denominator are 
equal to the corresponding coefficients of the numerator.  Therefore the 
Maclaurin series for td obtained by dividing the numerator by the de- 
nominator, namely, 

dO ( b'co2~blb~co~n+2 . . . .  ) (11) 
- d - :  = to 1 + 

will have the first (n - 1) derivatives of td (considered as a function of 
c0 *) at o~ = 0 equal to zero. Thus the time delay is as flat as possible 
in the vicinity of co = 0; hence the term maximally flat time delay. 
The delay is very closely equal to to, the zero-frequency value, up to a 
certain frequency (which is an increasing function of n), and then de- 
clines smoothly for values greater than this frequency. 

To determine the value of n to use for satisfying a specific require- 
ment, it is necessary to have expressions for the magnitude and time 
delay. We give here the exact expressions in terms of Bessel functions 
of half an odd integer ;3 but most often the values of the magnitude and 
time delay for varying n given in Table VII I  suffice so that  the need 

TABLE VIII.--Significant Values of u for Time Delay and Loss Characteristic 
of a Maximally Flat Time-Delay Network. 

a) Time-DelayTable: Giving Frequencies (u) 
at which Time Delay Deviates a Specified 
Value from its Zero-Frequency Value 

u f o r l %  ufor l0% ufor20% ufor50% u f o r l / 5 0 u f o r l / 2 0 u f o r l / 1 0 u f o r l / 5  u fo r l /2  ufor l  ufor3  
n deviation deviation deviation deviation n db db db db db db db 
1 0.1O 0.34 0.50 1,00 1 0.07 0.11 0.14 0.21 0.35 0.51 1.00 
2 0.56 1.09 1.39 2.20 2 0.11 0.18 0.26 0.36 0.57 0.80 1.36 
3 1.21 1.94- 2.29 3.40 3 0.14 0.23 0.34 0.48 0.75 1.05 1.75 
4 1.93 2.84 3.31 4.60 4 0.17 0.28 0.40 0.56 0.89 1.25 2.13 
5 2.71 3.76 4.20 5.78 5 0.20 0.32 0.45 0.64 1.01 1.43 2.42 
6 3.52 4.69 5.95 6.97 6 0.22 0.36 0.50 0.71 1.12 1.58 2.70 
7 4.36 5.64 6.30 8.15 7 0.24 0.39 0.54 0.77 1.22 1 32 2.95 
8 5.22 6.59 7.30 9.33 8 0.26 0.41 0.59 0.83 1.31 1.85 3.17 
9 6.08 7.55 8.31 10,50 9 0.28 0.44 0.62 0.88 1.40 1.97 5.39 

I0 6.96 8.52 9.33 IL67 10 0.30 0.47 0.66 0.93 1.48 2.08 3.58 
11 7.85 9.49 10.34 12.84 II 0.31 0.49 0.69 0.98 1.55 2.19 3.77 

b) Loss (L = - - 2 0  log I Z~(ju) I, in db) Table: Giving 
Frequencies (u) at which Loss is a Specified Number 
of db Down from its Zero-Frequency Value 

for using 
given by 

the exact analytical form is eliminated. The time delay is 

u s ~ {J2-~-du) + J'~+t(u)} 

3 T a b l e s  f o r  t h e s e  f u n c t i o n s  a r e  g i v e n  in  " T a b l e s  o f  S p h e r i c a l  Besse l  F u n c t i o n s , "  2 vo l s . ,  

N B S ,  M a t h .  T a b l e s  P r o j e c t ,  C o l u m b i a  U n i v e r s i t y  P r e s s ,  1947 .  T h e  p a r t i c u l a r  c o m b i n a t i o n  

o f  t h e  s p h e r i c a l  Bes se l  f u n c t i o n s  t h a t  o c c u r s  in  t h e  m a g n i t u d e  a n d  p h a s e  f u n c t i o n s  is  t a b u l a t e d  

in  T a b l e  13 o f  " S c a t t e r i n g  a n d  R a d i a t i o n  f r o m  C i r c u l a r  C y l i n d e r s  a n d  S p h e r e s ,  T a b l e s  o f  

A m p l i t u d e  a n d  P h a s e  A n g l e s , "  Off ice  o f  R e s e a r c h  a n d  I n v e n t i o n s ,  U .  S.  N a v y  D e p a r t m e n t ,  

J u l y ,  1946 .  
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and the magni tude  is 

J Z . ( j u ) ]  = 
un+l 

H 

{ ~u EJ~-~-~(u) + J2,+~(u)-] } 
(13) 

The loss in db, L = - 20 log tZ21(ju)J, tends  to the Gaussian form with 
increasing n, 

10 u 2 
L = (2n - 1) In  10" (14) 

In the above formulas u is the normalized frequency variable  w/o~0 and 
J is a Bessel function. 

Use of Eq. 14 gives the 3-db bandwid th  as 

U3db ~---- ~ / ( 2 n  - -  1) In 2, (15)  

which approximat ion is good for n >_ 3. 
In Table  VI I I  are given values of u for four significant points  on the 

t ime-delay curves and seven significant points  on the loss curves. The  
element values corresponding to the values of n of 1 through 11 are 
given in Table  IX. 

Example 4.1. Design a ladder ne twork  with a de lay  of 0.1 ~ sec and 
a cons tant  loss (not greater  than 1 db) up to 2.7 mc/s .  The  ne twork  
is to be te rminated  in a load resistance of 2000 ohms and is to be driven 
by  a current  source. 

Since to = l/w0 = 0.1 sec., then w0 = 107 . For  f =  2.7 mc/s ,  
w = 5.47r X 106, and w/o~0 = 0.547r, which is approximate ly  1.7. 

Using Table  VI I I  (b) for u = 1.7, we see tha t  for n = 7 the loss is 
less than 1 db. Now b y  using Table  VI I I ( a ) ,  it is shown tha t  the  t ime 
delay for n = 7 is cons tant  a t  this frequency.  

Consul t ing Table  IX(a )  we find the element  values for n = 7; the  
unpr imed values are used since n is odd and the input  is a current  source. 
We remove the normalizat ion by  mult iplying C's by  1/Rwo = 0.5 X 
10 -1°, and L 's  by  R/wo = 2 X 10 -4, and thus  obtain  the final ne twork  
given in Fig. 9. 

Z I 6.97,,10 -5 4.5~4 i0 -5 2.11 xiO -s 

~ x|O-I! It |o-It xlo-I ~' x 10'-42 2000  I E2 

FIG. 9. Time-delay ladder obtained in Example 4.1. 



I30  LouI s  WEINBERG [J. F. I. 

T A B L E  IX.--Element Values (in ohms, henrys, farads) of a Normalized 
Maximally Flat Time-Delay Network. 

Value of n CI or L~' l.~ or C2' C3 or L3' L~ or C4' Cs or Ls' L~ or C6' C7 or L 7' Ls or C8' C9 or Lg' Li0 or Ci0' Cn or Ln' 

~ r = O  
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 

1.0000 
0.3333 1.0000 
0.1667 0.4800 0.8333 
0.1000 0.2899 0.4627 0.7101 
0.0667 0.1948 0.3103 0.4215 0.6231 
0.0476 0.1400 0.2246 0.3005 0 .3821  0.5595 
0.0357 0 .1055  0.1704 0.2288 0 .2827  0 . 3 4 8 7  0.5111 
0.0278 0.0823 0.1338 0.1806 0.2227 0.2639 0 .3212  0.4732 
0.0222 0.0660 0 .1077  0 . 1 4 6 3  0 . 1 8 1 1  0.2129 0 . 2 4 6 5  0.2986 0.4424 
0.0182 0 .0541  0.0886 0.1209 0.1549 0.1880 0 .2057  0.2209 0.2712 0.4161 
0.0152 0 .0451  0 .0741  0.1016 0.1269 0.1499 0.1708 0.1916 0.2175 0.2639 0.3955 

b) r = 1/8 
1 9.0000 
2 8.6533 0.0433 
3 7.1426 0.0615 1.3652 
4 6.0700 0.0589 2.3569 0.0127 
5 5.3229 0.0535 2.5118 0.0246 0.5401 
6 4.7803 0.0484 2.4267 0.0283 1.1309 0.00601 
7 4.3691 0.0442 2.2790 0.0288 1 .3738  0.0133 0.2881 
8 4.0462 0.0407 2.1256 0.0280 1.4536 0.0168 0.6627 0.00350 
9 3.7848 0.0378 1.9841 0.0267 1.4558 0.0184 0.8666 0.00830 0.1788 
I0 3.5682 0.0354 1.8591 0.0254 1.4215 0.0189 0.9718 0.0111 0.4348 0.00228 
II 3.3850 0.0334 1.7502 0.0240 1.3710 0.0188 1.0191 0.0128 0.6014 0.00589 0.1159 

¢) r = 1/4 
1 5.0000 
2 4.6409 0.0898 
3 3.7994 0.1258 0.6973 
4 3.2221 0.1198 1.1956 0.0258 
5 2.8247 0.1084 1 .2690  0.0498 0.2731 
6 2.5375 0.0980 1 .2231 0 . 0 5 7 1  0.5703 0.0121 
7 2.3202 0 .0893  1 .1470  0.0580 0.6915 0.0268 0.1451 
8 2.1496 0 .0823  1 .0689  0 .0563  0.7306 0.0338 0.3333 0.00704 
9 2.0114 0.0764 0;9973 0.0537 0.7310 0.0369 0.4354 0 .0167  0.0899 

lO 1.8967 0.0716 0.9342 0.0509 0.7132 0.0379 0.4878 0.0224 0.2184 0.00459 
11 1.7999 0.0676 0.8794 0.0482 0.6875 0.0377 0.5112 0.0256 0.2998 0.0115 0.0603 

d) t = 1/3 
I 
2 
3 
4 
5 
6 
7 
8 
9 
I0 
ii 

4,0000 
3.6330 0.1223 
2.9601 0.1700 0.5298 
2.5075 0.1613 0.9046 0.0347 
2.1981 0.1457 0.9577 0.0669 0.2063 
1.9750 0.1316 0.9217 0.0765 0.4300 0.0163 
1.8064 0.1199 0.8636 0.0776 0.5207 0.0358 0.1093 
1.6740 0.1104 0.8044 0.0753 0.5497 0.0453 0.2509 0.00942 
1.5667 0.1026 0.7503 0.0718 0.5496 0.0494 0.3275 0.0223 0.0676 
1.4777 0.0962 0.7027 0.0680 0.5360 0.0506 0.3668 0.0299 0.1642 0.00614 
1.4024 0.0907 0.6615 0.0644 0.5165 0.0504 0.3842 0.0342 0.2252 0.0153 0.0455 

e) r = 1/2 
I 3.0000 
2 2.6180 0.1910 
3 2.1156 0.2613 0.3618 
4 q.7893 0.2461 0.6127 0.0530 
5 1.5686 0.2217 0.6456 0,I015 0.1393 
6 1.4102 0.1999 0.6196 0.i158 0.2894 0.0246 
7 1.2904 0.1821 0.5797 0.1171 0.3497 0.0542 0.0735 
8 1.1964 0.1676 0.5395 0.1135 0.3685 0.0683 0.1684 0.0142 
9 1.1202 0.1558 0.5030 0 .1081  0.3680 0.0744 0,2195 0.0336 0.0453 

10 1.0569 0.1460 0.4710 0.1024 0.3586 0.0763 0.2456 0.0450 0.1100 0.00925 
11 1.0033 0.1377 0.4433 0.0970 0.3454. 0.0758 0.2570 0.0515 0.1503 0.0228 0.0309 

p 'r = 1 
2.O0OO 

2 1.5774 0.4226 
3 1.2550 0,5528 0.1922 
4 1.0598 0.5116 0.3181 0.1104 
5 0.9303 0.4577 0.3312 0.2090 0.0718 
6 0.8377 0.4116 0.3158 0.2364 0.1480 0.0505 
7 0.7677 0.3744 0.2944 0.2378 0.1778" 0.1104 0.0375 
8 0.7125 0.3446 0.2735 0.2297 0.1867 0.1387 0.0855 0.0289 
9 0.6678 0.3203 0.2547 0.2184 0.1859 0.1506 0 .1111  0.0682 0.0230 

10 0.6305 0.8002 0.2384 0.2066 0.1808 0,1539 0.1240 0 .0911  0.0557 0.0187 
11 0.5989 0.2834 0.2243 0.1954 0.1739 0.1528 0.1296 0.1039 0.0761 0.0465 0.0154 
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V. NORMALIZATION, DUALITY, RECIPROCITY T~ORgM;  FREQUBNCY TRANSFORMATIONS AND 
TRANSFORMATION OF SYMMETRICAL NE'rWORKS 

Normalization 

The element  values in the tables are normalized with respect to the 
load resistance R1 and the radian frequency. In other  words, the value 
of R1 is considered as one ohm and that  of the cutoff frequency (or w0 = 
1~to for the time-delay networks) is one radian per second. These fre- 
quency and impedance normalizations may be removed simply. 

Since the impedance of the three different kinds of e lements  appear- 
ing in a network is given respectively by R, Ls, and 1/Cs, we note tha t  
if the frequency is multiplied by a constant  the resistance is unaffected, 
but  tha t  to maintain the impedance of the inductance and capacitance 
invariant,  it is necessary to divide L and C by the same constant.  This  
provides the simple rule for removal of the frequency normalization : to 
raise the radian frequency oa = 1 to oa = ~0~, divide all L 's  and C's in the 
network by we. On the other hand, to raise the impedance level by a 
factor H we must  mult iply  the impedance of each type of element  by 
this factor, tha t  is, multiply every R and L in the network by H, and 
divide every C by H. Thus  we see only simple multiplications are 
involved. 

The two rules may  be combined into one operat ion:  to raise the 
radian frequency to w, and the impedance level by H, we mult iply every 
resistance by H, every inductance by H/w,, and every capacitance by 

Duality 

The dual of a ladder network may  always be realized simply. The  
impedance of every series arm is replaced by the admit tance  of a shunt  
arm, and vice versa. In simpler terms, this means tha t  every capaci- 
tance of C farads is replaced by the dual element which is an inductance 
of C henrys, every inductance of L henrys is replaced by a capacitance of 
L farads, and every resistance of R ohms becomes a conductance of R 
mhos;  if the original element is a series arm then the dual element be- 
comes a shunt  arm, whereas if the original element is a shunt  arm then 
the dual element is a series arm. For example, the dual of the network 
in (a) of Fig. 10 is given by the one in (b). 

4 3 

(o) 

I• I 2 

(b) 

FIG. 10. Ladder network and its dual (values in ohms, henrys, and farads). 
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What  are the characteristics of the dual network with respect to 
that  of a given network? The impedances (admittances) of one net- 
work (both transfer and driving-point) become admittances (imped- 
ances) of the other. Thus in Fig. 10(a) the input is a voltage source 
and the output a current so that  the transfer function is the admittance 
Y~I = I2/EI. In the dual given by Fig. 10(b) the transfer impedance 
Z'21 = E2'/I1' is the same rational function as Y21 of (a). 

It  is therefore clear that  the primed and unprimed values lead to dual 
networks. 

Reciprocity Theorem 

Often a network designed by the use of the tables does not have the 
configuration demanded in a particular problem. For example, a shunt 
capacitance may be desired at the output and a resistance at the input, 
but the network obtained has the form shown in Fig. 11 (a). By the 

I i2~ L 3 L! I I L t L 3 

(ol (bl 
FIG. 11.--Ladder network and one obtained from it by use 

of reciprocity theorem. 

use of the reciprocity theorem the network of Fig. 11 (b) with the de- 
sired configuration may be obtained. 

The reciprocity theorem states that  the transfer impedance (or 
transfer admittance) remains unchanged if the excitation and measur- 
ing instrument change places. Thus in Fig. 11 (a) we have the transfer 
impedance 

Z21 = E~ = p(s_)) (16) 
I1 q(s)' 

where the excitation is a current source I1 flowing into the input termi- 
nals and the output  is a voltage (measured by a voltmeter across R). 
Now if the current source is placed across R and the voltmeter placed 
across C4, then the conditions of the reciprocity theorem have been satis- 
fied. Thus the transfer impedance of Fig. 11 (b) is also equal to p/q. 

It is therefore clear that  by use of reciprocity a whole set of new net- 
work configurations may be obtained. 

Frequency Transformations (10) 

The tables give the element values for low-pass filters. However, 
for the Butterworth and Tschebyscheff cases corresponding character- 
istics may be obtained for the high-pass, band-pass, and band-elimination 
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filters by the use of t ransformations of the frequency variable. These 
t ransformations do not  work for the Bessel-polynomial case because the 
distortion of the frequency-variable scale makes the phase characteristic 
nonlinear as a function of the new frequency variable. 

High-Pass Filters 
A normalized low-pass filter characteristic is shown in Fig. 12(a); 

the corresponding high-pass characteristic is given in Fig. 12(b). The  

I v,,.al 
I 

Fm. 12. 

~ ~ ! 7  ..... "I~ I I" .... 

1 O~ t O~ 
(a) (b) 

Low-pass characteristic and the corresponding high-pass 
one obtained by a frequency transformation. 

lat ter  characteristic may  be obtained from the former by the use of the 
t ransformation s' = 1/s. Since by use of this t ransformation the im- 
pedance of an inductance Ls becomes the impedance L/s', the impedance 
of a capacitance 1/Cs becomes s'/C, and the value of a resistance remains 
unchanged,  a simple rule for converting a low-pass ladder network to a 
high-pass one may  be formulated. The rule is: replace every induc- 
tance of L henrys by a capacitance of 1/L farads ; replace every capaci- 
tance of C farads by an inductance of 1/C henrys;  and leave the resis- 
tances unchanged. Thus  if the network in Fig. 13(a) has a low-pass 

2 112 

c 0 (a) (b) 
FIG. 13. Low-pass network and its corresponding high-pass network. 

characteristic, then the corresponding high-pass network is given in 
Fig. 13 (b). 

Band-Pass Filters 
A low-pass filter of bandwidth coc may  be converted to a band-pass 

filter of bandwidth coc = cob - coa by use of the frequency t ransformation 

s = + co0  ( 1 7 )  
S t 
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Thus  the r ight-hand side of Eq. 17 is subst i tuted for every s in the 
transfer function. Here ~0b is the upper  frequency limit and, ~, is the 
lower frequency limit of the band, while ~0 is the center frequency of the 
band. The band limits have geometric symmet ry  about  the center 
frequency, tha t  is, ~0~b = ~02. 

However, it is not necessary to actually carry out  the functional 
transformation,  since there is a simple rule for converting the low-pass 
network to a band-pass one: for each inductance in the network of L 
henrys add a capacitance in series with it of value 1/(~00~L) farads; for 
each capacitance in the network of C farads add an inductance in par- 
allel with it of 1/(u0~C) henrys ( that  is, the added element  always reso- 
nates with the original element at the center frequency ~0); leave the 
resistances unchanged. 

The  complete process for convert ing a normalized low-pass filter to a 
desired band-pass one may  be given as the following: 

1. Determine the desired bandwidth o~c = ub - ua and the desired 
center frequency u02 = ~ac0b from the given data.  

2. Change the bandwidth  of the low-pass filter to uo. 
3. Perform the low-pass to band-pass t ransformation on the network. 
4. Remove the level normalization from the resulting band-pass 

filter. 

Example 5.1. Design an equal-ripple band-pass filter with the fol- 
lowing characteristics : 

(a) The  ripple in the pass band is 1 db. 
(b) The  center frequency is f0 = 1000 cps. 
(c) The  bandwidth  f~ measured at  1-db points is 100 cps. 
(d) At  the frequencies corresponding to three times f ,  the response 

is to be down approximately 50 db. 
(e) The network is driven by a current  source and should have a 

load resistance of 1000 ohms. 

L3 C 3 LI Ci, 

FIG. 14. Band-pass filter for Example 5.1. 

In order to design this filter it is not  necessary to find the actual  fre- 
quencies at  which the response is down 1 db and 50 db, bu t  if we wished 
to find them we could use the formulas f ,  fb = f , ( f ,  + 100) = 106 and 
fs0(fs0 -t- 300) = 108, where f ,  is the lower 1-db frequency and f60 is the 
lower 50-db frequency. 
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From Table V we find tha t  the 1-db ripple corresponds t o ,  = 0.5088. 
We now calculate n and find tha t  n = 4 yields approximately 49-db 
a t tenuat ion  at  o~ = 3. Therefore using n = 4 and the primed values of 
Table V(a), we find the element  values: 

L I ' =  1.0495 

C ~ ' =  1.4126 

L a ' =  1.9093 

C 4 ' =  1.2817 

The  bandwidth  is now changed to o~o = 27r )< 100 by dividing the 
above values by o~. The  network is then converted to the band-pass 
form and the impedance level raised to 1000 ohms. The  final network 
given in Fig. 14 has the element values (in ohms, henrys, and farads) : 

R = 1000 
L1 = 1.67 
C1 = 1.52 )< 10 -8 
L~ = 1.41 X 10 -3 
C2 = 2.25 × 10 -6 

L3 = 3.04 
C3 = 8.33 × 10 -9 
L4 = 1.15 )< 10 -3 
Ca = 2.20 × 10 -e 

Band-Elimination Filters 
The transformation from a low-pass to a band-elimination character- 

istic is given by 
$ I 

s = + (18)  

As for the band-pass filter the t ransformation can be achieved by direct 
operation on the low-pass network. The  rule follows: 

(a) Add a capacitance in parallel with each inductance in the low- 
pass ne twork;  the value of the capacitance is 1/(o~0~L), where L is the 
value of the original inductance. 

(b) Add an inductance in series with each capacitance of the net- 
work;  the value of the inductance is 1/(,002C), where C is the value of 
the original capacitance. 

(c) Since the resistances are unaffected by the transformation,  their 
values are not  changed. 

Transformation of Symmetrical Networks 
I t  has been pointed out  tha t  the But terwor th  and Tschebyscheff 

networks obtained for r = 1 and n odd are symmetrical .  This  sym- 
met ry  allows any specified resistance ratio to be obtained simply; the 
method  used transforms the symmetrical  network to an unsymmetr ical  
one with the  desired resistance ratio. 

If the  symmetrical  network is divided as shown in Fig. 15, then the 
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over-all transfer impedance is given in terms of the impedances of the 
component  networks by (11) 

Z21aZ21b 
Z21 - Z~ + Zb" (19) 

The subscripts a and b have been used to designate the networks on the 
left and right, respectively. But  because of the symmetry ,  the com- 
ponent  networks are the same and consequently Z21b = Z21a and Zb = 
Za. Now suppose it is desired to increase the resistance ratio by r. If 
the impedance level of No is multiplied by r, the desired effect will have 
been accomplished. But  this change also increases Z21, and Z,  by r. 
Because Zb = Z~, however, the Z2~ of the whole network is not  changed 

NETWORK NETWORK I 
N N 

Zo Zo 

FIG. 15, Decomposition of a symmetrical network into two network halves. 

except by a constant  multiplier. For example, if r = 10 then the 
transfer impedance before the level change is 

= ( z , , o ) ,  (20) 
2Za ' 

whereas after the change it is 

, 1 0 ( Z ~ l o )  ~ 
Z 21 ~ 11zo ' (21) 

which differs from Eq. 20 only by a constant  multiplier. 
An analogous situation of course holds for transfer admittances.  
Thus  it is possible to obtain two different networks with the same 

value of r;  one is derived from the table for the desired value of r, and 
the second, as indicated above, by means of a t ransformation of a sym- 
metrical network, the symmetrical  network being obtained from the 
table for r -- 1. For example, for the transfer impedance of a Tscheby- 
scheff network with n = 3, r = 1/2, and a 1/10-db ripple, the network 
shown in Fig. 16 is obtained from Table I I (e). However, if Table I I (f) 
is used the symmetrical  network in Fig. 17 (a) results; mult iplying the 
impedance level of the left half of this network by 1/2 yields the network 
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of Fig. 17(b), for which r is now 1/2. Inspection of the networks in 
Figs. 16 and 17(b) shows that  they differ, even though their transfer 

I ,  0.60 

o 

o c 
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Normalized Tschebyscheff network with r = 1/2, n = 3, 
and 1/10-db ripple. 

FI6. 16. 

I ,  1.15 

o , ,  ~ o I ,i +,.o, +,.o, l,,. 
0 -D 

(o) 

Z I ~ 0.86 
o 

1/24 - 2 . 0 6  1.03 I E z 

(b) 

FI6. 17. 
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Normalized Tschebyscheff network with n = 3, and 1/10-db ripple; (a) r = 1; (b) 
r --- 1/2 achieved by an impedance level change on half the network. 

impedances are identical. The reason for this is that  the tables are 
derived for a network reflection coefficient all of whose zeros lie in only 
one half-plane, whereas the network obtained by transformation of the 
symmetrical network has the zeros of its reflection coefficient alternating 
in the left and right half-planes. This phenomenon has important 
implications and is discussed elsewhere (12). 

CONCLUSION 

The design of three classes of practical networks with resistance 
terminations at both ends becomes simple by use of the tables presented 
in this paper. The tables give the element values for the normalized 
low-pass network with a Butterworth, Tschebyscheff, or Bessel-poly- 
nomial characteristic. The low-pass networks that  are realized in the 
Butterworth and Tschebyscheff cases can also be easily transformed 
to serve high-pass, band-pass, or band-elimination functions. 



~38 Louis WEINBERG [J. F. I. 

In the future tables will be presented for networks with uniform dis- 
sipation and for networks whose reflection coefficients possess zeros that 
alternate in the left and right half-planes. 
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