ADDITIONAL TABLES FOR DESIGN OF OPTIMUM
LADDER NETWORKS *

BY
LOUIS WEINBERG !

Part II**
IV. MAXIMALLY FLAT TIME DELAY: BESSEL POLYNOMIALS (7, 8, 9)*

The preceding two sets of polynomials were used in the approxima-
tion of a desired magnitude characteristicc. However, the nonlinear
phase characteristic of both approximations and the resulting variation
of the time delay preclude their use where a constant time delay is a
paramount requirement. For such time-delay filters an excellent ap-
proximation is given by the use of Bessel polynomials. This approxi-
mation yields a maximally flat time delay along with a low-pass magni-
tude characteristic.

The Bessel polynomials in the variable 1/s are defined by

e AR
2= L = G R Qo ™

The polynomials of interest are derived from the above as

ha(s) = smya(1/s)

= ‘:: ars*, (8)
k=0
The transfer function is given by
H
Zzl(S) = hn(s). (9)

The constant H is equal to @, for a ladder terminated in a one-ohm
resistance, that is, for this configuration at s = 0, Z,,(0) is unity. This
transfer function has a maximally flat time delay. By this is meant
that the time delay /; is given by a function of the form

_d_0 _ to(bo + b1w? + bowt 4 - -+ by_10?)
dw bo + biw? + bew* + - -+ b2 + by

* This paper is based on the author’s report with the same title, Technical Memorandum
No. 434, Hughes Research Laboratories, Culver City, Calif.

1 Research Laboratories, Hughes Aircraft Co., Culver City, Calif.

** Part I appeared in this JourNAL for July, 1957.

2 The boldface numbers in parentheses refer to the references appended to Part II of this
paper.
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where 8 is the phase of Z,,(jw), and {, is the zero-frequency time delay.
It is noted that the first (# — 1) coefficients of the denominator are
equal to the corresponding coefficients of the numerator. Therefore the
Maclaurin series for #; obtained by dividing the numerator by the de-
nominator, namely,

do = bn n _bﬁ n
—%—n(l—mw—kme4 ) (11)

will have the first (# — 1) derivatives of #; (considered as a function of
w?) at w = 0 equal to zero. Thus the time delay is as flat as possible
in the vicinity of w = 0; hence the term maximally flat time delay.
The delay is very closely equal to o, the zero-frequency value, up to a
certain frequency (which is an increasing function of #), and then de-
clines smoothly for values greater than this frequency.

To determine the value of # to use for satisfying a specific require-
ment, it is necessary to have expressions for the magnitude and time
delay. We give here the exact expressions in terms of Bessel functions
of half an odd integer ;* but most often the values of the magnitude and
time delay for varying # given in Table VIII suffice so that the need

TaBLe VIII.—Significant Values of u for Time Delay and Loss Characteristic
of a Maximally Flat Time-Delay Network.

a) Time- Dela%_ Table: Giving Frequencies (u) b) Loss (L=—20 log | Zx(ju}), in db) Table: Giving
at which Time Delay Deviates a Specified Frequencies (u) at which Loss is a Specified Number
Value from its Zero-Frequency Value of db Down from its Zero-Frequency Value

ufor1% ufor10% ufor20% ufor50% ufor 1/50 u for 1/20 ufor 1/10 ufor1/5 ufor1/2 wuforl ufor3
n  deviation deviation deviation deviation n db db db db db db db
1 0.10 034 0.50 1.00 1 0.07 011 0.14 021 0.35 0.5 1.00
2 0.56 1.09 139 220 2 0.11 0.18 0.26 0.36 0.57 0.80 136
3 121 194 229 340 3 0.14 0.23 0.34 048 0.75 1.05 175
4 193 284 331 4.60 4 017 0.28 0.40 0.56 0.89 125 213
5 27 3.76 4.20 5.78 5 0.20 0.32 045 0.64 101 143 242
6 3.52 4.69 595 6.97 6 022 0.36 0.50 0.71 112 158 2,70
7 4.36 5.64 6.30 8.15 7 024 0.39 0.54 0.77 122 172 2.95
8 5.22 6.59 7.30 933 8 0.26 041 0.59 0.83 131 185 317
9 6.08 7.55 8.31 10.50 9 0.28 0.4 0.62 0.88 140 197 3.39
10 6.96 852 933 1167 10 0.30 047 0.66 0.93 148 2,08 3.58
11 785. 949 10.34 12.84 11 031 049 0.69 098 1.55 219 3.77

for using the exact analytical form is eliminated. The time delay is
given by

1
fi=t|1 — (12)

(£ i@ + Pass(@})

3 Tables for these functions are given in “Tables of Spherical Bessel Functions,” 2 vols.,
NBS, Math. Tables Project, Columbia University Press, 1947. The particular combination
of the spherical Bessel functions that occurs in the magnitude and phase functions is tabulated
in Table 13 of “Scattering and Radiation from Circular Cylinders and Spheres, Tables of
Amplitude and Phase Angles,” Office of Research and Inventions, U. S. Navy Department,
July, 1946.
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and the magnitude is

|Zan(ju)| = a - (13)

w3 o [T () 4 Pas(8)]

The loss in db, L = — 20 log |Z:(ju)|, tends to the Gaussian form with
increasing #,
10 u?

L= (2n — 1) In 10° (14)

In the above formulas # is the normalized frequency variable w/w, and
J is a Bessel function.
Use of Eq. 14 gives the 3-db bandwidth as

Uy, (21 — 1) 1In 2, (15)

which approximation is good for n > 3.

In Table VIII are given values of u for four significant points on the
time-delay curves and seven significant points on the loss curves. The
element values corresponding to the values of # of 1 through 11 are
given in Table IX,

Example 4.1.  Design a ladder network with a delay of 0.1  sec and
a constant loss (not greater than 1 db) up to 2.7 mc/s. The network
is to be terminated in a load resistance of 2000 ohms and is to be driven
by a current source.

Since #, = 1/wo = 0.1 sec., then w, = 10”. For f = 2.7 mc/s,
w = 5.47 X 108, and w/w, = 0.54r, which is approximately 1.7.

Using Table VIII(d) for # = 1.7, we see that for n = 7 the loss is
less than 1 db. Now by using Table VIII(a), it is shown that the time
delay for » = 7 is constant at this frequency.

Consulting Table IX(a) we find the element values for #» = 7; the
unprimed values are used since % is odd and the input is a current source.
We remove the normalization by multiplying C’s by 1/Rw, = 0.5 X
10-%, and L’s by R/w, = 2 X 104, and thus obtain the final network
given in Fig, 9,

L, eomio™ aseno™ 2uixi0”®
o— 4 I ’U\

1 Tl 23 T S Je
I T

Fi1G. 9. Time-delay ladder obtained in Example 4.1.
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TaBLE IX.—Element Values (in ohms, henrys, farads) of a Normalized
Maximally Flat Time-Delay Network.

Value of n CrorLy LyorC Cyorly LyorCY Csorly LgorCy Cyorly Lgor Gy CyorLy Lypor Gy Cjor Ly’

ar=10
1.0000

2 0.3333 1.0000

3 0.1667  0.4800  0.8333

4 0.1000  0.2899  0.4627 0.7101

5 0.0667 0.1948  0.3103 04215  0.623)

6 0.0476 01400  0.2246  0.3005 0.3821 0.5595

7 0.0357 0.1055  0.1704 0.2288  0.2827 0.3487 0.5111

8 0.0278  0.0823 0.1338  0.1806 0.2227  0.2639 03212 0.4732

9 0.0222  0.0660  0.1077 0.1463 0.1811 0.2129 0.2465 0.2086  0.4424
10 0.0182  0.0541 0.0886  0.1209 01549 01880  0.2057 0.2209 0.2712  0.4161
11 0.0152  0.0451 0.0741 0.1016 01269 01499 0.1708 01916 0.2175  0.2639 0.3955

byr=1/8

1 9.0000

2 8.6533 0.0433

3 7.1426  0.0615 1.3652

4 6,0700  0.0589 23569  0.0127

5 53229 00535 25118 (0.0246  0.5401

6 4.7803 0.0484 24267  0.0283 1.1309  0.00601

1 4.3691 0.0442  2.2790  0.0288 13738  0.0133 0.2881

8 40462  0.0407 21256  0.0280 14536 00168  0.6627  0.00350

9 3.7848  0.0378 1.9841 0.0267 1.4558 0.0184 0.8666  0.00830 0.1788
10 3.5682  0.0354 1.8591  0.0254 1.4215 0.0189 09718  0.0111 0.4348  0.00228
1 3.3850  0.0334 17502 0.0240 1.3710  0.0188 1.0191 0.0128  0.6014 0.00589 0.1159

cr=1/4

1 5.

2 4.6409  0.0898

3 3.7994 0.1258  0.6973

4 3.2221 0.1198 1.1956  0.0258

5 28247  0.1084 12690 00498  0.2731

6 2.5375 0.0980 1.2231 0.0571 0.5703  0.0121

1 23202 0.0893 11470 0.0580  0.6915  0.0268  0.1451

8 21496  0.0823 1.0689  0.0563 07306  0.0338  0.3333  0.00704

9 20114 00764 09973 0.0537 0.7310 0.0369 04354  0.0167 0.0899
10 18967 00716 09342 0.0509 0.7132 0.0379 04878  0.0224 02184  0.00459
11 1.7999 0.0676 0.8794 0.0482 0.6875  0.0377 05112 00256 02998  0.0115 0.0603

dr=1/3

1 4.0000

2 3.6330  0.1223

3 2.9601 01700  0.5298

4 25075 01613 09046  0.0347

5 2,1981  0.1457 0.9577  0.0669  0.2063

6 19750  0.1316 0.9217 0.0765 0.4300 0.0163

7 18064 01199 0.8636 0.0776  0.5207 0.0358  0.1093

] 1.6740  0.1104  0.8044 0.0753 0.5497 0.0453 02509  0.00942

9 1.5667 01026  0.7503 0.0718 05496  0.0494 03275  0.0223 0.0676
10 14777 0.0962 0.7027 0.0680 0.5360 0.0506 0.3668 0.0299 0.1642  0.00614
11 14024  0.0907 0.6615 0.0644 0.5165 0.0504 0.3842 0.0342 0.2252 0.0153  0.0455

ejr=1/2

1 3.0000

2 2.6180  0.1910

3 21156  0.2613  0.3618

4 1.7893  0.2461 0.6127 0.0530

5 6 02217  0.6456 01015  0.1393

6 1.4102 11999 06196  0.1158  0.2894  0.0246

7 . 0.1821 0.5797 01171 0.3497 0.0542  0.0735

] 11964 01676 05395 0.1135 03685 0.0683 0.1684  0.0142

9 1.1202  0.1558  0.5030  0.1081 03680 0.0744 02195 0.0336  0.0453
10 10569 01460 04710 0.1024 03586 0.0763 0.2456  0.0450 0.1100  0.00925
11 10033 01377 0.4433 0.0970 03454 0.0758 0.2570 0.0515 0.1503  0.0228 0.0309

Nr=1

1 2.0000

2 15774  0.4226

3 1.2550 05528  0.1922

4 1.0598 05116  0.3181 0.1104

5 0.9303  0.4577 33 0.2000 00718

6 0.8377 04116 03158 02364 0.1480  0.0505

7 0.7677 0.3744 02378 01778 0.1104 0.0375

8 0.7125 0.2735 02297 0.1867 Q.1387  0.0855 0.0289

9 0.6678  0.3203 0.2547 0.2184 0.1859 0.1506 0.1111 0.0682  0.0230
10 0.6305 00; 0.2384 02066 01808 0.1539 0.1240  0.0911 0.0557 0.0187
11 0.5989 02834 0.2243 0.1954 0.1739 01528 01206 0.1039  0.0761 0.0465 0.0154
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V. NORMALIZATION, DUALITY, RECIPROCITY TEEOREM; FREQUENCY TRANSFORMATIONS AND
TRANSFORMATION OF SYMMETRICAL NETWORKS

Normalization

The element values in the tables are normalized with respect to the
load resistance R, and the radian frequency. In other words, the value
of R, is considered as one ohm and that of the cutoff frequency (or w, =
1/, for the time-delay networks) is one radian per second. These fre-
quency and impedance normalizations may be removed simply.

Since the impedance of the three different kinds of elements appear-
ing in a network is given respectively by R, Ls, and 1/Cs, we note that
if the frequency is multiplied by a constant the resistance is unaffected,
but that to maintain the impedance of the inductance and capacitance
invariant, it is necessary to divide L and C by the same constant. This
provides the simple rule for removal of the frequency normalization : to
raise the radian frequency w = 1to w = w,, divide all L's and C’s in the
network by w.. On the other hand, to raise the impedance level by a
factor H we must multiply the impedance of each type of element by
this factor, that is, multiply every R and L in the network by H, and
divide every C by H. Thus we see only simple multiplications are
involved.

The two rules may be combined into one operation: to raise the
radian frequency to w, and the impedance level by H, we multiply every
resistance by H, every inductance by H/w., and every capacitance by

1/(wcH).

Dualsty

The dual of a ladder network may always be realized simply. The
impedance of every series arm is replaced by the admittance of a shunt
arm, and vice versa. In simpler terms, this means that every capaci-
tance of C farads is replaced by the dual element which is an inductance
of C henrys, every inductance of L henrys is replaced by a capacitance of
L farads, and every resistance of R ohms becomes a conductance of R
mhos; if the original element is a series arm then the dual element be-
comes a shunt arm, whereas if the original element is a shunt arm then
the dual element is a series arm. For example, the dual of the network
in (e) of Fig. 10 is given by the one in ().

2‘ -|- -|- 110 |Eg
F T TR LT T §F

F1c. 10. Ladder network and its dual (values in ohms, henrys, and farads).
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What are the characteristics of the dual network with respect to
that of a given network? The impedances (admittances) of one net-
work (both transfer and driving-point) become admittances (imped-
ances) of the other. Thus in Fig. 10(a) the input is a voltage source
and the output a current so that the transfer function is the admittance
Vs = I,/E,. In the dual given by Fig. 10(d) the transfer impedance
Z'yy = E;'/I) is the same rational function as Y, of (a).

It is therefore clear that the primed and unprimed values lead to dual
networks.

Reciprocity Theorem

Often a network designed by the use of the tables does not have the
configuration demanded in a particular problem. For example, a shunt
capacitance may be desired at the output and a resistance at the input,
but the network obtained has the form shown in Fig. 11(a). By the

F1c. 11.—Ladder network and one obtained from it by use
of reciprocity theorem.

use of the reciprocity theorem the network of Fig. 11(b) with the de-
sired configuration may be obtained.

The reciprocity theorem states that the transfer impedance (or
transfer admittance) remains unchanged if the excitation and measur-
ing instrument change places. Thus in Fig. 11(a) we have the transfer
impedance

_ B _ ()
Zn=7 =00 (16)

where the excitation is a current source I flowing into the input termi-
nals and the output is a voltage (measured by a voltmeter across R).
Now if the current source is placed across R and the voltmeter placed
across Cy, then the conditions of the reciprocity theorem have been satis-
fied. Thus the transfer impedance of Fig. 11(b) is also equal to p/g.

It is therefore clear that by use of reciprocity a whole set of new net-
work configurations may be obtained.

Frequency Transformations (10)

The tables give the element values for low-pass filters. However,
for the Butterworth and Tschebyscheff cases corresponding character-
istics may be obtained for the high-pass, band-pass, and band-elimination
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filters by the use of transformations of the frequency variable. These
transformations do not work for the Bessel-polynomial case because the
distortion of the frequency-variable scale makes the phase characteristic
nonlinear as a function of the new frequency variable.

High-Pass Filters

A normalized low-pass filter characteristic is shown in Fig. 12(a);
the corresponding high-pass characteristic is given in Fig. 12(d). The

| vaitio |¥zytiod

-
'
'
]
1
[}
[}

B —————

1 w w
{a)

1

(b)

Fi1G. 12. Low-pass characteristic and the corresponding high-pass
one obtained by a frequency transformation.

latter characteristic may be obtained from the former by the use of the
transformation s’ = 1/s. Since by use of this transformation the im-
pedance of an inductance Ls becomes the impedance L/s’, the impedance
of a capacitance 1/Cs becomes s’/C, and the value of a resistance remains
unchanged, a simple rule for converting a low-pass ladder network to a
high-pass one may be formulated. The rule is: replace every induc-
tance of L henrys by a capacitance of 1/L farads; replace every capaci-
tance of C farads by an inductance of 1/C henrys; and leave the resis-
tances unchanged. Thus if the network in Fig. 13(a) has a low-pass

2 172

- o—
TE, 3 STEZ TE, stez

(a) (b)

Fi1c. 13. Low-pass network and its corresponding high-pass network.

characteristic, then the corresponding high-pass network is given in
Fig. 13(b).
Band-Pass Filters

A low-pass filter of bandwidth w, may be converted to a band-pass
filter of bandwidth w. = wy — w, by use of the frequency transformation

s = (s’)2 _j,_ O)()Z.

N

(17)
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Thus the right-hand side of Eq. 17 is substituted for every s in the
transfer function. Here w; is the upper frequency limit and w, is the
lower frequency limit of the band, while w, is the center frequency of the
band. The band limits have geometric symmetry about the center
frequency, that is, wsws = wol.

However, it is not necessary to actually carry out the functional
transformation, since there is a simple rule for converting the low-pass
network to a band-pass one: for each inductance in the network of L
henrys add a capacitance in series with it of value 1/(w?L) farads; for
each capacitance in the network of C farads add an inductance in par-
allel with it of 1/(w*C) henrys (that is, the added element always reso-
nates with the original element at the center frequency w,); leave the
resistances unchanged.

The complete process for converting a normalized low-pass filter to a
desired band-pass one may be given as the following:

1. Determine the desired bandwidth w, = wy — w, and the desired
center frequency w,® = w.w, from the given data.

2. Change the bandwidth of the low-pass filter to w..

3. Perform the low-pass to band-pass transformation on the network.

4. Remove the level normalization from the resulting band-pass
filter.

Example 5.1. Design an equal-ripple band-pass filter with the fol-
lowing characteristics:

(a) The ripple in the pass band is 1 db.

(b) The center frequency is fo = 1000 cps.

(¢) The bandwidth f, measured at 1-db points is 100 cps.

(d) At the frequencies corresponding to three times f. the response
is to be down approximately 50 db.

() The network is driven by a current source and should have a
load resistance of 1000 ohms.

L, c

Ly C3 )
° | N
% C, % Ly -.Ilgc2 %La R

F1c. 14. Band-pass filter for Example 5.1.

In order to design this filter it is not necessary to find the actual fre-
quencies at which the response is down 1 db and 50 db, but if we wished
to find them we could use the formulas f.fy = f.(fo + 100) = 10¢ and
Fso(fso + 300) = 10¢, where f, is the lower 1-db frequency and fs, is the
lower 50-db frequency.
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From Table V we find that the 1-db ripple corresponds to e = 0.5088.
We now calculate #» and find that » = 4 yields approximately 49-db
attenuation at w = 3. Therefore using # = 4 and the primed values of
Table V(a), we find the element values:

L,y = 1.0495 Ly = 1.9093
C.' = 1.4126 C/ = 1.2817

The bandwidth is now changed to w. = 27 X 100 by dividing the
above values by w.. The network is then converted to the band-pass
form and the impedance level raised to 1000 ohms. The final network
given in Fig. 14 has the element values (in ohms, henrys, and farads):

R = 1000 L; = 3.04

L, = 1.67 Cy = 833 X 10—
C, = 1.52 X 10-¢ L, =115 X 10—
L, =141 X 102 Cys =220 X 10-¢

Cy = 2.25 X 10-¢

Band-Elsmination Filters

The transformation from a low-pass to a band-elimination character-
istic is given by

sl

*= (5" + we®

(18)

As for the band-pass filter the transformation can be achieved by direct
operation on the low-pass network. The rule follows:

(¢) Add a capacitance in parallel with each inductance in the low-
pass network ; the value of the capacitance is 1/(wo?L), where L is the
value of the original inductance.

(6) Add an inductance in series with each capacitance of the net-
work ; the value of the inductance is 1/(w*C), where C is the value of
the original capacitance.

(¢) Since the resistances are unaffected by the transformation, their
values are not changed.

Transformation of Symmetrical Networks

It has been pointed out that the Butterworth and Tschebyscheff
networks obtained for » = 1 and # odd are symmetrical. This sym-
metry allows any specified resistance ratio to be obtained simply; the
method used transforms the symmetrical network to an unsymmetrical
one with the desired resistance ratio.

If the symmetrical network is divided as shown in Fig. 15, then the
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over-all transfer impedance is given in terms of the impedances of the
component networks by (11)

Z21a221b

Zn = Ty

(19)

The subscripts ¢ and b have been used to designate the networks on the
left and right, respectively. But because of the symmetry, the com-
ponent networks are the same and consequently Zs; = Z,1, and Z, =
Z.. Now suppose it is desired to increase the resistance ratio by r. If
the impedance level of N, is multiplied by 7, the desired effect will have
been accomplished. But this change also increases Z,;, and Z, by 7.
Because Z; = Z,, however, the Z,; of the whole network is not changed

1, —»

LOSSLESS

! NETWORK
™

LOSSLESS

!

1

|

| NETWORK |
Bk

|

[

|

F1c. 15. Decomposition of a symmetrical network into two network halves.

except by a constant multiplier. For example, if » = 10 then the
transfer impedance before the level change is

o (Z21a)2
Z2l - ZZa ’ (20)
whereas after the change it is
,_ 10(Z41.)?
Z 21 — 1120’ ’ (21)

which differs from Eq. 20 only by a constant multiplier.

An analogous situation of course holds for transfer admittances.

Thus it is possible to obtain two different networks with the same
value of 7; one is derived from the table for the desired value of 7, and
the second, as indicated above, by means of a transformation of a sym-
metrical network, the symmetrical network being obtained from the
table for r = 1. For example, for the transfer impedance of a Tscheby-
scheff network with » = 3, » = 1/2, and a 1/10-db ripple, the network
shown in Fig. 16 is obtained from Table I1(¢). However, if Table I1{f)
is used the symmetrical network in Fig. 17(a) results; multiplying the
impedance level of the left half of this network by 1/2 yields the network
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of Fig. 17(d), for which 7 is now 1/2. Inspection of the networks in
Figs. 16 and 17(b) shows that they differ, even though their transfer

ERDNETN]

OHMS, HENRYS, FARADS

F1c. 16. Normalized Tschebyscheff network with 7 = 1/2, n = 3,
and 1/10-db ripple.

1, 115
o— 1Y%\ —
% =103 :l[.|.os %lteg
- (a) 7 -
= =

1”2 -l- 2.08 J— 1.03 e,
o [ I

(b)

OHMS, HENRYS, FARADS

Frc. 17. Normalized Tschebyscheff network with # = 3, and 1/10-db ripple; (@) r = 1; (b)
r = 1/2 achieved by an impedance level change on half the network.

impedances are tdentical. The reason for this is that the tables are
derived for a network reflection coefficient all of whose zeros lie in only
one half-plane, whereas the network obtained by transformation of the
symmetrical network has the zeros of its reflection coefficient alternating
in the left and right half-planes. This phenomenon has important
implications and is discussed elsewhere (12).

CONCLUSION

The design of three classes of practical networks with resistance
terminations at both ends becomes simple by use of the tables presented
in this paper. The tables give the element values for the normalized
low-pass network with a Butterworth, Tschebyscheff, or Bessel-poly-
nomial characteristic. The low-pass networks that are realized in the
Butterworth and Tschebyscheff cases can also be easily transformed
to serve high-pass, band-pass, or band-elimination functions.
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In the future tables will be presented for networks with uniform dis-
sipation and for networks whose reflection coefficients possess zeros that
alternate in the left and right half-planes.
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