ADDITIONAL TABLES FOR DESIGN OF
OPTIMUM LADDER NETWORKS *

BY
LOUIS WEINBERG !

Part I **
ABSTRACT

In a preceding paper tables were presented for the design of three large classes
of ladder networks. These networks had characteristics given by Butterworth,
Tschebyscheff, and Bessel polynomials. In the present paper a number of additional
tables are presented, the tables now being classified on the basis of the parameter 7,
which is the input-to-output resistance or conductance ratio. The tables give the
element values of normalized low-pass ladders with one of the following character-
istics: maximally flat magnitude (Butterworth), equal-ripple magnitude (Tsche-
byscheff), and maximally flat time delay (Bessel polynomial). By means of frequency
transformations the networks given by the tabulated element values for the Butter-
worth and Tschebyscheff networks may be converted to give high-pass, band-pass,
and band-elimination filters. Thus the tables may be used as a handbook for the
design of these optimum networks.

INTRODUCTION

Tables for the design of three large classes of networks were pre-
sented in a preceding paper (1).2 It was shown there that by use of
these tables the engineer who knows little about the theory of modern
synthesis can synthesize useful networks. These networks had char-
acteristics given by Butterworth, Tschebyscheff, and Bessel polynomials.

In this paper the same characteristics are considered. However,
many new tables are added. In addition, the basis for classifying the
tables has been changed to one that is believed to be more useful for
most applications.

The following extensions and changes have been made:

1. The tables are no longer classified in terms of the decrement
ratio D, as they were in the preceding paper. The basis for classification
in this paper is 7, where r = R,/R; (or r = G’,/G’1), the ratio of the
input to the output resistance (or input-to-output conductance).
These tables give a much larger range of input-to-output terminations
than was available in the previously published tables.

* This paper is based on the author’s report with the same title, Technical Memorandum
No. 434, Hughes Research Laboratories, Culver City, Calif.

! Research Laboratories, Hughes Aircraft Co., Culver City, Calif.

** Part 11 will appear in this JOURNAL for August, 1957.

2 The boldface numbers in parentheses refer to the references appended to Part I of this

paper.
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2. Tables for the Tschebyscheff characteristic with -db and %-db.
ripple have been added.

3. In the preceding paper the Bessel-polynomial networks were
given only for a resistance termination at one end. In this paper the
networks are given for the same wide range of resistance ratios as are
the Butterworth and Tschebyscheff networks.

It is felt that since these tables eliminate tedious computations,
they will be of great value to engineers familiar with synthesis theory.
But the paper is directed mainly at those practical engineers who know
little about synthesis and desire a final working formula and a set of
tabulated values. It was therefore decided to make the paper as self-
contained as possible, within the space restrictions, by giving an
analytical discussion of each type of network. Though the discussion
is necessarily brief, it is believed that it is sufficient to acquaint the
reader with the characteristics of the networks whose element values
are given in the tables.

As mentioned in Sec. V, a number of different networks is possible,
each of which realizes the identical transfer function (including the
constant multiplier). The networks differ because of the different
choices for the zeros of the reflection coefficient. The tables in this
paper are based on the choice that gives maximum gain-bandwidth
product for a specified value of shunt capacitance (2), that is, all the
zeros are chosen to lie in one half-plane.

The paper is divided into five main sections. How to use the tables
of element values is discussed in the first section. The next two treat
Butterworth and Tschebyscheff networks, respectively, while the
fourth section treats the maximally flat time-delay networks obtained
by the use of Bessel polynomials. In each of these three sections
tables of the element values of the normalized low-pass ladder network
are given. In the final section it is briefly shown: (¢) how to transform
Butterworth and Tschebyscheff networks to serve high-pass, band-pass,
or band-elimination functions; () how to remove the normalization of
the element values—that is, how to change the pass band of the network
from w = 1 to the desired radian frequency, and how to raise the level
of the network; (¢) how to use duality and reciprocity to obtain sets
of new networks; and {d) how to convert the symmetrical Butterworth
and Tschebyscheff networks to unsymmetrical ones with any desired
ratio of input-to-output resistance.

1. USE OF THE TABLES OF ELEMENT VALUES

The general form of the low-pass ladder network whose element
values are given in the tables is a lossless network terminated in resist-
ance. In all the tables and in the figures the element values are in
ohms. henrys, and farads. The tabulated element values are normal-
ized in that the pass band has a cutoff radian frequency w, equal to
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unity and the network has a one-ohm resistance load, that is, in all
the tables R, = 1. Asshown in Sec. V and in the illustrative examples
the removal of these normalizations requires only simple multiplications.

Six different values of » = R,/R, (or r = G',/G’,) are included:
0,% 1 %, 1, and 1. Since R, = 1 for all the tables, the value of R,
for each table is given by the 7 of that table and thus need not be
tabulated.

The primed and the unprimed values in the tables yield dual net-
works so that a transfer impedance or a transfer admittance can be
realized. The networks for the general ladder, with a resistance
termination at both ends and with a current-source input, are shown in
Fig. 1 for » odd and in Fig. 2 for n even; n is the degree of the denomina-

| S— Lo-i Loy L2 L — Llll'l‘ L, G
Ry Ca Cn-2 s 3 n.-lI:, R, <, e g fome
o g 1" 177 . 1T° 7T : % . g T 1 J%
Fic. 1. General form of low-pass ladder network F1G. 2. General form of low-pass
with a current-source input and # odd. ladder network with a current-source

input and » even.

tor of the transfer function and is thus also equal to the number of
reactances in the ladder. The transfer function realized by these
networks is the transfer impedance Z,, = E,/I,.

For a voltage source used as the input, the dual of the above networks
can be used. The networks are shown in Figs. 3 and 4 for #» odd and

Ry kn Lp.g Ls L Ra Ln Lp-z Lz 1,
N/ T— TV~ o-A/\—fu'TfuL--- =
IE» FChar Tc': Izl Ry el ?El Tcn-l Cs ¢, Rl
o— --- o -——
F16. 3. General form of low-pass ladder F16. 4. General form of low-pass ladder
network with a voltage-source input and # network with a voltage-source input and »
odd. even.

even, respectively. The transfer function realized by these networks
is the transfer admittance Y, = I,/E;.

It is also pointed out that Thévenin’s or Norton’s theorem can be
used to effect a source conversion and thus yield new network con-
figurations. For example, Thévenin's theorem applied to R, and the
current source in Fig. 1 yields a voltage source and a series resistance.
In this way a transfer admittance or transfer voltage ratio may be
realized with a shunt capacitance branch at both ends of the coupling
network.

The primed and unprimed elements shown in Figs. 1-4 are intended
to correspond to the primed and unprimed values given in the tables.
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Thus for a specified Z», and #n odd the unprimed tabulated values yield

the network of Fig. 1, whereas for # even the primed tabulated values

yield the network of Fig. 2. When a transfer admittance Y., is re-

quired, the primed tabulated values yield the network shown in Fig. 3

for n odd, and for n even the unprimed values yield the network of Fig. 4.
The tables are divided as follows:

(a) Table I gives the element values for the Butterworth filter,
where (a) applies for r = 0, (b) forr = %, (¢) forr = %, (d) for r = §,
(e) forr = %, and (f) forr = 1.

(b) Tables II-VII apply to the Tschebyscheff filter, with the sub-
divisions being necessary to provide for the different ripple factors.
For example, Tables II and III give the element values for a -db
ripple and a %-db ripple, respectively. The alphabetical subdivisions
are the same as for the Butterworth case.

(¢) Tables VIII and IX apply to the Bessel-polynomial networks.
Table VIII gives the frequencies at which significant values of time
delay and loss occur. The variable « is the normalized frequency w/w,,
where w, = 1/ty and ¢, is the desired time delay, that is, the time delay
occurring at zero frequency. Table IX gives the element values; the
alphabetical subdivisions are the same as for the Butterworth and
Tschebyscheff cases.

As has been mentioned, the parameter 7 is equal either to the ratio
of the input to the output resistance or to the input-to-output con-
ductance ratio. A little reasoning always suffices to determine which
applies, but for convenience the practical rules are expressed explicitly
below.

(a) Except in the case of » = 0, for networks formed from the un-
primed values in the tables, 7 is equal to the resistance ratio R./R..
For networks formed from the primed values  is equal to the conductance
ratio G',/G'y (which is of course equal to R’,/R’,).

(b) For r = 0 the parameter 7 is equal to the resistance ratio for the
combinations: (1) unprimed values and = even, and (2) primed values
and 7 odd. It is equal to the conductance ratio for (1) unprimed values
and # odd, and (2) primed values and #n even. This is merely a detailed
way of stating that for » = 0, R, becomes a short for networks with a
series input, that is, those in Figs. 3 and 4, and R’, becomes an open
circust for networks with a shunt ¢nput, that is, those in Figs. 1 and 2.

Inspection of the tables for the Tschebyscheff networks shows that
for a number of tables element values are not given for # even. For
these cases the specified resistance (or conductance) ratio is too large
to be physically realizable. This occurs for:

(a) r = 1 for all ripples.

(6) r = % for 1-db, 2-db, and 3-db ripples.
(¢) » = % for 2-db and 3-db ripples.

(@) r = % for 2-db and 3-db ripples.
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With the above preliminary remarks the steps in the procedure for
using the tables follow :

1. Determine from the specifications of the problem whether a
Butterworth, Tschebyscheff, or Bessel-polynomial network is to be used.

2. Calculate the value of # that gives the required degree of the
denominator polynomial of the transfer function and consequently the
required complexity of the network. For the Tschebyscheff character-
istic it is first necessary to calculate the ripple factor e.

3. Using this value of # look up the element values in the ap-
propriate table.

4. Remove the normalizations as shown in Sec. IV. The bandwidth
is thus changed from w, = 1 to the desired cutoff value, and the load
resistance and the network level are changed to the required values.

|2, il n=I
|

0.707f~—— - ——

|
|
!
|
: 1 X
0.5 { 1.5 w
F16. 5. Sketches of the first three orders of the Butterworth
approximation to the low-pass filter.

5. If a high-pass, band-pass, or band-elimination network is desired,
convert the element values by means of the frequency transformations
of Sec. V.

In carrying out the first step, if we require a filter whose magnitude
characteristic is specified, then the Butterworth or Tschebyscheff
characteristic may be used. For the same value of %, the Tschebyscheff
filter gives a better coverage of the pass band and a faster drop-off
outside the band than any other possible transfer function that is also
a constant divided by a polynomial; its phase characteristic, however,
is more nonlinear than that of the Butterworth filter. Thus the choice
between the two will depend on the importance of the phase character-
istic. Neither of these filters gives a linear phase characteristic, that is,
a pure time delay, over a specified frequency range. For this purpose
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the Bessel polynomials are used. The filters obtained by use of the
Bessel polynomials also have a low-pass magnitude characteristic so
that they may also be used in those problems where the magnitude

characteristic is specified.

The method for calculating the value of # and, in the case of the
Tschebyscheff filter, the value of ¢, is shown in the respective sections.

TABLE 1.—Element Values (in ohms, henrys, farads) for a Normalized Butterworth Filter.
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Ly or Cy

1.4142
1.3333
1.0824
0.8944
0.7579
0.6560
0.5776
0.5155
0.4654

0.0939
0.1735
0.2032
0.2169
0.2243
0.2287
0.2314
0.2333
0.2346

0.1992
0.4180

04735

Cq or Ly

1.5000
1.5772
1.3820
1.2016
1.0550
0:9370
0.8414
0.7626

Lyor C/

0.7654
1.6180
1.9319

1.9616
1.8794
1.7820

Csor Ls’

12.2305

0.6180
1.4142
1.8019
1.9616

1.9754

L or Cg’

1.5529
1.7988
1.7287
1.6202
1.5100

0.0675
0.1700
0.2417
0.2932
0.3312

0.0913
0.2294
0.3258
0.3948
0.4454

Cror Ly

0.9225
2.3838

42683

0.7006
1.8075
26209
3.2293

0.4450
11111
1.5321
1.7820

Ls or G’

1.5607
1.8424
1.8121

0.0503
0.1325
0.1955

0.0678
0.1785
0.2630

'0.1042
0.2735
0.4021

0.3902
1.4142

Cyor Ly’

1.5628
1.8552

1.4086
3.7699

0.7143
1.9091

0.5410
1.4445

0.3685
0.9818

0.3473
0.9080

Lyg or Cyy’

1.5643

0.0198

0.0401

0.0540

0.0825

0.3129
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II. BUTTERWORTH CHARACTERISTIC (3,4,5)

The Butterworth function is used to approximate the squared
magnitude of a transfer function. For the transfer impedance it is
given by

1

| Z21(jw)|? = T o

&

This function gives an approximation to a low-pass filter characteristic;
sketches of the Butterworth approximation for the first three values of
n are shown in Fig. 5. The Butterworth function is said to have a
maximally flat magnitude characteristic.

By use of Eq. 1 the complete transfer function is given as

Zur(s) = B—% )

where H is a constant multiplier. The polynomials B, are called the
Butterworth polynomials; these polynomials have a unity coefficient
for s» and their zeros are the nth roots of unity that lie in the left half-
plane.

The element values are given in Table I; the resulting networks
realize the transfer function within a constant multiplier. To obtain
the constant multiplier we let s = 0 in the network and in the transfer
function.

An example of the use of the tables to design a Butterworth filter
is presented below.

Example 2.1. We wish to design a low-pass filter that has a resist-
ance termination at the output only. The cutoff frequency is w, = 10,000
radians/sec and the output resistance is to be 750 ohms. At a fre-
quency w = 3w, the magnitude response is to be down at least 50 db.
The input source is a cathode follower which approximates a true
voltage source.

First we determine the value of #.

1
T, = 10-3
(1 4+ w?*) |3 = 105
32n =~ 100
p=i2
2 log 3
= 5.23.

The next larger integer # = 6 must be used.



14 Louis WEINBERG [J.F. L

Since no input resistance is required, the table for r = 0 is used,
namely, Table 1(a). Since the input is a voltage source and # is even,
the network form of Fig. 4 (with R, omitted) is applicable; that is, the
unprimed element parameters are used.

Consulting the tables yields the element values

Ry =1 L, =1.553
C, = 0.2588 Cs = 1.759
L, = 0.7579 Ls = 1.553
Cy = 1.202

To obtain a load resistance of 750 ohms, we multiply R, and all L’s
and divide all C’s by 750. To change the cutoff frequency to 10,000
rad/sec every L and C must be divided by this value.

The final values are therefore

R =750 R, = 750 Lo = 2L _ 116 x 10+
Co= 2 = 345 x 10-s -
a = w.R - C
Co= =2 = 2.34 X 10-7
L, = X2 _ 568 x 10~ R
We
c. =Lt —teox 10 L =5E o 116 x 100
w.R e

and the network is shown in Fig. 6.
Ly Ly Lp
o 7
E, _l_c %c _—ILC "2 R
e c a

F16. 6. Final network achieved for Example 2.1.

3
l,_

At s = 0 the network becomes a pure resistance and therefore

H
AT B—s(()-)_ = R = 750.

Since the constant term of every B, is unity, the constant multiplier H
is 750. The transfer voltage ratio E;/E, since E; = 750 I, is given by
E, 1
E1 Bs(S).
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II. TSCHEBYSCHEFF CHARACTERISTIC (6)
The Tschebyscheff approximation to the magnitude characteristic

of a low-pass filter is given by
R SR
1+ [T (w) ¥

TABLE 11.—Element Values (in ohms, henrys, farads) for a Normalized Tschebyscheff
Filter with 75-db Ripple (e = 0.1526, € = 0.0233).

’Zn(]w)l (3)

Valueofn CrorLy LporC’ Cyorly LjorCy CsorLy LgorCq CrorLy LgorCy CyporLy LygorCy

ajr=0

1 0.1526

2 0.4215 0.7159

3 0.5158 1.0864 1.0895

4 0.5544 1.1994 1.4576 1.2453

5 0.5734 1.2490 1.5562 1.5924 1.3759

6 0.5841 1.2752 1.5999 1.6749 1.7236 1.4035

7 0.5906 1.2908 1.6236 1.7107 17987 1.7395 1.4745

8 0.5949 1.3008 1.6380 1.7302 1.8302 1.8070 1.8163 1.4660

9 0.5978 1.3076 1.6476 1.7423 1.8473 1.8343 1.8814 1.7991 1.5182 .
10 0.6000 1.3124 1.6542 1.7503 1.8579 1.8489 1.9068 1.8600 1.8585 1.4964

b)
!
3
4 10.0512 0.1866 9.8722 0.0733

5 11.1128 0.2008  12.7123 0.1602 4.8368

6 11.2235 02179  13.5071 0.2041  10.4600 0.0770

7 11.8455 0.2179  14.5445 02153  13.2359 0.1652 4.9726

8 11.6822 0.2287  14.4866 0.2312  13.9349 0.2087  10.6567 0.0783

g 12,1681 02248 15.15% 0.2297  14.9251 0.2191  13.4207 0.1672 5.0298

1 11.9040 0.2336 14.8765 0.2401 14.8149 0.2346 14,0887 0.2106  10.7462 0.0790
cr=1/4
0.7631
2 3.0912 0.1220
3 4.5446 0.2886 2.3272
4 5.0046 0.3815 5.0696 0.1559
5 5.5547 0.4037 6.4880 0.3281 2.5577
6 5.5377 0.4403 6.7916 0.4167 5.3580 0.1632
7 5.8904 0.4353 7.3489 0.4330 6.7472 0.3379 2.6256
8 5.7441 0.4601 7.2417 0.4675 7.0032 0.4258 5.4537 0.1659
9 6.0374 0.4478 7.6338 0.4594 7.5404 0.4404 6.8374 0.3419 2.6542
10 5.8435 0.4690 7.4193 0.4839 7.4072 0.4742 7.0778 0.4295 5.4970 0.1672
dr=1/3
1 0.6105
2 2.3497 0.1712
3 3.4253 0.3914 1.8216
4 3.7120 0.5161 3.8671 0.2172
5 4.1422 0.5389 4.9341 0.4442 1.9966
6 4.0823 0.5906 5.1046 0.5639 4.0826 0.2272
7 4.3777 0.5785 5.5512 0.5786 5.1294 0.4572 2.0481
8 4.2247 0.6155 5.4212 0.6284 5.2644 0.5760 4.1536 0.2308
9 4.4804 0.5942 5.7535 0.6119 5.6978 0.5885 5.1967 0.4623 2.0697
10 4.2930 0.6266 5.5455 0.6490 5.5485 0.6374 5.3199 0.5810 4.1857 0.2325
e)r =1/2
1 0.4579
2 1.5715 0.2880
3 2.2746 0.6035 1.3341
4 2.3545 0.7973 2.6600 0.3626
S 2.6921 0.8042 3.3882 0.6853 1.4572
6 2.5561 0.8962 3.3962 0.8761 2.8071 0.3785
7 2.8260 0.8560 3.7594 0.8685 3.5246 0.7050 1.4932
8 2.6324 0.9285 3.5762 0.9619 3.5095 0.8950 2.8547 0.3843
9 2.8839 0.8762 3.8788 0.9121 3.8660 0.8836 3.5703 0.7127 1.5084
10 2.6688 0.9429 3.6461 0.9887 3.6707 0.9765 3.5472 0.9027 2.8761 0.3870

-
]
—
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Here the parameter e is the ripple factor and 7', (w) is the Tschebyscheff
polynomial of order (and degree) #; T.(w) is defined by cos (# cos™! w).
The role played by € and the equal-ripple quality of the Tschebyscheff
approximation are illustrated in Fig. 7, where » = 3 and a 1-db ripple
are used.

™
»
E
N
I
1
i
b

|
1 |
| |
{
| |
! |
-1 0 | w

Fi16. 7. Low-pass filter obtained by using the Tschebyscheff
approximation with # = 3 and a 1-db ripple.

From the magnitude given by Eq. 3 the complete transfer function
can be found. It is given by

ZZI(S) = (4)

Va(s)

where H again is a constant and V, is formed from the left half-plane
zeros of the denominator of Eq. 3; V, is a polynomial of degree n with
the coefficient of s» equal to unity and with its zeros lying on an ellipse.

The element values of the ladder networks for values of € correspond-
ing to &-, I-, 3-, 1-, 2-, and 3-db ripple are presented in Tables II
through VII.

After the value of e has been calculated from a specified ripple
factor, it is necessary to determine the required value of n. Formulas
useful for this purpose are

o+ Vol =) 4 (04 Vor =)
To(w) = ©F Dt et D 5

or

Tu(w) = (©)

w—Vor — 1)+ (0~ Ve — 1)-n
5 .
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TABLE 111.—Element Values (in ohms, henrys, farads) for a Normalized Tschebyscheff
Filter with 1-db Ripple (¢ =

2
-
]
=3

0.2434
0.5566
0.6517
0.6891
0.6912
0.7173
0.7234
0.7274
0.7302
0.7322

ot
[]
—
<
(==
N
o
o
B
=33

10.0648

OOV I N R W —
[ P~
PO
SgBENsE
B OO LW N B
[ERARE PNy

117539
gr=1/4
1.2171

3.5907
5.1234
5.1282
5.8822
5.5080
6.1786
5.6503
6.2867
57179

Yr=1/3

DO IR W N
'S
2
]
=
=3

OB U0 b
IS
b
-

-
[
—

SWRNOUVEWN - OO~
—
&
=3
[ox)
=

Lyor G’

0.0755

0.2414

Cs or La’

1.2248
1.5979
1.6741
1.7271
1.7475
1.7598
1.7678
1.7733

5.5746
10.8046
13.6987
13.7315
15.2643
14.4405
15.7237
14.7148

1.7402
2.7832
3.6926
3.2941
4.0204
3.4072

3.4501

Lyor Cy

1.3003
1.6371
1.7144
1.7450
1.7612
17711
1.7776

0.2812
0.4720
0.6179
0.5783

0.6017
0.6817

Cs or Ly

1.4480
1.8105
1.8816
1.9099
1.9248
1.9338

5.8758
11.3063
14.2825
14.0925
15.6054
14.7268

0.2434, €

Lg or Cg’

14193
1.7497
1.8124
1.8365
1.8490

0.0958
0.1780
0.2250
0.2214
0.2452

1.3560
1.5000

= 0.0593).
CrorLy Lgor Gy
1.5323
1.8806 1.4647
1.9439 1.7927
1.9676 1.8505
6.1472
11.4700 0.0970
14.4391 0.1797
14.2166 0.2267
3.2774
5.8228 0.2087
7.3830 0.3643
7.0810 0.4650
2.5735
4.4023 0.2945
5.6288 0.4893
5.2808 0.6328
1.9007
2.9490 0.5161
3.8989 0.7404
3.4235 1.0085
1.4468
2.3800 1.3704

Coor Ly

1.5648
19119

6.2011
11.5438

3.3046
5.8583

2.5944
4.4285

19157
2.9666

1.4604

Lyg or Gy’

1.4864

0.0976

0.2099

0.2962

0.5190
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TABLE 1V.—Element Values (in ohms, henrys, farads) for a Normalized T'schebyscheff
Filter (3-db Ripple (e = 0.3493, & = 0.1220).

Valueofn CyorLy BEyorCy Cyorly LiorCy CsorLy LgorCy CrorLy LgorCy CyorLy Ligor Cy

»

=
-
[}
<

0.8686 1.4596 1.8675 17371 19712 1.7254 1.5982

0.8725 1.4666 1.8750 1.7508 1.9980 1.7838 1.9571 1.4379

0.8752 1.4714 1.8856 1.7591 2.0116 1.8055 2,0203 1.7571 1.6238

0.8771 1.4748 1.8905 1.7645 2.0197 1.8165 20432 1.8119 1.9816 1.4539

e
CORNONLWN=T COORINNKWN~
)
]
-
~
3

12.9745 0.2131 16, 0.2154  15.3437 0.1837 7.4478
11.2694 0.2497  14.0704 0.2556 13, 0.2422 11.8216 0.1182
13.1608 0.2167 16.4502 12230 16.4112 0.2180 15.4833 0.1852 1.5006
1 11.3804 0.2524  14.2670 0.2607  14.3247 0.2583  13.9670 0.2436  11.8832 0.1188
c)r=1/4
7466
2 3.8432 0.2145
3 5.6859 0.3308 3.7139
4 5.0293 0.4646 $.6377 0.2504
5 6.3476 0.4023 6862 0.3613 3.9411
6 85 0.5 6.6492 0.4963 5.8461 0.2576
7 6.5476 0.4187 8.2283 0.4252 7.8993 0.3683 4.0061
8 5.3972 0.5122 6.8706 0.5272 6.8027 0.5035 5.9120 0.2602
9 6.6323 0. 8.3941 0.4389 8.3940 0.4303 7.9689 0.3710 4,0331 :
10 5.4437 0.5172 6.9544 0.5364 6.9993 0.5328 6.8522 0.5064 5.9413 0.2614
dr=1/3
1 1.3972
2 2.8282 0.3109
3 4.3200 0.4405 29371
4 3.6172 0.6399 4.1985 0.3620
5 4.78% 0.5293 5.8898 0.4809 3.1130
6 3.7922 0.6851 4.8770 0.6852 4.3536 0.3722
7 4.9305 0.5495 6.2770 0.5603 6.0535 0.4901 3.1632
8 3.8560 0.6990 5.0230 0.7235 4.9937 0.6953 4.4022 0.3759
9 4.9901 0.5572 6.3947 0.5770 6.4061 0.5671 6.1064 0.4936 3.1841
10 3.8860 0.7051 5.0780 0.7348 5.1229 0.7314 5.0307 0.6993 4.4237 0.3776
e)r=1/2
1 1.0479
2 1.5132 0.6538
3 2.9431 0.6503 2.1903
4 1.8158 11328 2.4881 0.7732
5 3.2228 0.7645 4.1228 0.7116 2.3197
6 1.8786 1.1884 2.7589 1.2403 2.5976 0.7976
7 3.3055 0.7899 4.3575 0.8132 4.2419 0.7252 2.3566
8 1.9012 12053 2.8152 1.2864 2.8479 1.2628 2.6310 0.8063
9 3.3403 0.7995 4.4283 0.8341 4.4546 0.8235 4.2795 0.7304 2.3719
10 1.9117 1.2127 2.8366 1.2999 2.8964 1.3054 2.8744 1.2714 2.6456 0.8104
Nr=1
; 0.6986
2 1.5963 1.0967 1.5963
2 1.7058 1.2296 2.5408 1.2296 1.7058

17373 1.2582 2.6383  .1.3443 2.6383 1.2582 1.7373

2.7239 1.3673 2.6678 1.2690 1.7504

—
=X -1--E51

—

a

o

g

—

]

8

©

g

3

o

w

S

=3

w
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TABLE V.—Element Values (in okms, henrys, farads) for a Normalized Tschebyscheff
Filter with 1-db Ripple (e = 0.5088, & = 0.2589).

Valueofn CporLy LyorCy¥ Cyorly LeorCy¢ CsorLls LgorCe Crorly LgorCe CoorLy’ Ligor Gy’

ayr=0

1 0.5088

2 0.9110 0.9957

3 1.0118 1.3332 1.5088

4 1.0495 1.4126 1.9093 1.2817

5 1.0674 1.444) 1.9938 1.5908 1.6652

6 1.0773 1.4601 2.0270 1.6507 2.0491 1.3457 .

7 1.0832 1.4694 2.0437 1.6736 2.1192 1.6489 1.7118

8 1.0872 1.4751 2.0537 1.6850 2.1453 17021 2.0922 1.3691

9 1.0899 1.4790 2.0601 1.6918 2.1583 1.7213 2.1574 1.6707 1.7317
10 1.0918 1.4817 2.0645 1.6961 21658 1.7306 2.1803 1.7215 21111 1.3801

b)r=1/8

1 4.5796

2 7.9318 0.1286

3 12.5563 0.1657 8.8038

4 9.9024 0.2517  1L1584 0.1467

5 13.7259 0.1945  16.5650 0.1789 9.2596

6 10.3304 0.2677  12.7878 0.2668 11,5115 0.1503

7 14.0719 0.2009  17.5013 0.2045  16.9660 0.1819 9.3890

8 10.4856 02725  13.1313 0.2802  13.0465 0.2701  11.6220 0.1516

9 14.2174 0.2033  17.7827 0.2097 17.8168 0.2066  17.0949 0.1830 9.4427
10 10.5585 0.2746  13.2602 0.2842  13.3503 0.2828  13.1287 02715  11.6709 0.1522

or=1/4

1 2.5442

2 3.7779 0.3001

3 6.5048 0.3264 4.7927

4 4.5699 0.5428 5.3680 0.3406

5 7.0522 0.3776 8.6301 0.3520 5.0313

[ 4.7366 0.5716 6.0240 0.5764 5.5353 0.3486

7 7.2126 0.3888 9.0689 0.3973 8.8368 0.3577 5.0989

8 4.7966 0.5803 6.1592 0.6005 6.1501 0.5836 5.5869 0.3515

9 7.2800 0.3930 9.2001 0.4064 9.2344 0.4015 8.9024 0.3598 5.1270
10 4.8247 0.5841 6.2098 0.6076 6.2689 0.6063 6.1890 0.5864 5.6096 0.3528

d)r=1/3

1 2.0354

2 25721 0.4702

3 49893 0.4286 3.8075

4 3.0355 0.7929 3.7589 0.5347

5 5.3830 0.4915 6.6673 0.4622 3.9944

6 3.1307 0.8287 4.1451 0.8467 3.8812 0.5475

K 5.4978 0.5050 6.9839 0.5177 6.8280 0.4696 4.0473

8 3.1647 0.8395 42237 0.8764 4.2404 0.8580 3.9186 0.5520

9 5.5459 0.5101 7.0783 0.5288 7.1141 0.5232 6.8785 0.4724 40693
10 3.1806 0.8442 4.2532 0.8851 4.3088 0.8857 4.2691 0.8623 3.9349 0.5541

T

1/2

37211 0.6949 4.7448 0.6650 2.9936

3.7916 0.7118 4.9425 0.7348 4.8636 0.6757 3.0331
3.8210 0.7182 5.0013 0.7485 5.0412 0.7429 4.9004 0.6797 3.0495

—

2.1663 11115 3.0936 1.1735 3.0936 LIS 2.1666
2.1797 11192 3.1214 1.1897 3.1746 11897 3.1214 1.1192 2.1797

COBACNEWN Iy COEIONRWIO—E,
-
i
—

—
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TaBLE V1.—Element Values (in ohms, henrys, farads) for a Normalized Tschebyscheff
' Filter with 2-db Ripple (e = 0.7648, & = 0.5849).

Valieofn Cyorly LyorCy GCzorly LyorCY GCsorLly LgorCy CrorLy LgorCy Cgorly Lygor Gy

2
s
L}
o

0.7648
1.2441 0.9766

14328 13836 23551 15150 24063 14836 19379
. 23646  1.2284

14395 13911 23707 15304 24463 . 15495 24386 14959  1.9553
14806 13932 23748 15337 24538 15536 24607 15419 23794  1.2353

—

14.9900 0.1541  11.9205

8.5051 0.3093 9.9546 0.2088

15.9745 01729  19.4874 0.1646  12.4250

8.7527 0.3224  10.9256 0.3260  10.2196 0.2130

16.2581 0.1769  20.2574 0.1811  19.8989 0.1669  12.5671

8.8412 03263  11.1205 03368  11.1251 0.3295  10.3007 0.2144

16.3765 0.1784  20.4848 0.1844  20.5920 0.1828  20.0271 0.1678 12,6259

8.8824 0.3280  11.1932 0.3399  11.2954 0.3396 11,1858 0.3308  10.3363 0.2151

CORUONSWN=ET OOXPIANEWNI—
-
[ ]
—
e
)

Y

8.3859 0.3285  10.3300 03156  6.8118

8.5220 0.3354  10.7009 0.3443  10.5472 0.3199 6.8877

8.5787 0.3380  10.8103 0.3499 10.87798 0.3475  10.6142 0.3215 6.9191

—
CORNCNEWN-E OOVOENCNEWN -

r=1/3

6.1471 0.3816 5.2161
6.4974 0.4219 8.0681 0.4076 5.4294

6.5974 0.4302 8.3415  10.4425 8.2389 0.4131 5.4893
6.6391 0.4334 8.4220 0.4493 8.4834 0.4467 8.2913 0.4152 5.5141

l - - - - - - - - - - - - - - - - = - - - - - - - - = - - - -
D=, 0

3 43975 05326 3918

§  aews  osess  sE03 05698 40790

§ 36917 05941 60293 06136 59780 05776  4.1242

1§ 37187 05980 60821 06220 61370 0619 60168 05805  4.1429 .

r=]

2.8650 0.9120 3.8774 0.9537 3.8774 0.9120 2.8650
2.8790 0.9171 3.9056 0.9643 3.9597 0.9643 3.9056 0.917} 2.8790

QORI I oy
[
-
73
-
=3
o
2
-]
=
w
3
£~
-2
=]
©
b1
=3
&
[
g
=3

[
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TABLE VII.—Element Values (in ohms, henrys, farads) for a Normalized Tschebyscheff
= 0.9953).

Valueofn CjorLy

—

—

—

—

—

»

=
-
8

=1

SV@IR NP W N
—
-1
o
N
™

SOOI PN
i
1
t

dr=1/3

SO0~ U PO b
1
'
1

[=R=N--R - R PRl
t
'
1

r=1

OO IRV B W = oy
w
-
<«
—
w

Filter with 3-db Ripple (¢ = 0.9976, &

Ly or Gy

Cyor Ly

14.8205
8.2760
22,4760
8.8887
23.1920
9.0096
23.4023
9.0546

8.1669

Lyor G/

0.4917

0.5235
0.5296

Csor Ly’

15.3856

Lgor C¢'

0.3615

0.3856

0.4979
0.5282

Cror Ly

8.5581
12.3669

6.8315
9.7256

5.1335
7.1292

3.5185
4.6691

LsorCf Cyporly

1.0082
1.3380
1.3774

0.2931
0.4144

0.2839

0.3632

0.5002

0.7760

2.1970
26753

15.6097
8.5679

6.8597

5.1547

3.5339

Ljo or Cyo’

1.1032

0.2939
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The use of the tables is illustrated in the example below.
Example 3.1. Determine a ladder network that has the following
characteristics:

1. Low-pass filter with a peak-to-peak ripple in the squared mag-
nitude characteristic not exceeding 15 per cent of the maximum value.

2. A cutoff radian frequency w, = 5000 (the bandwidth being
measured at the minimum value of the ripple).

3. Resistance terminations at both ends with the load and input
resistances equal to 1000 ohms and 500 ohms, respectively.

4. The response is to be down at least 50 db at v = 4w,.

5. The network is to be driven by a current source.

We first calculate the required value of €. At a trough of the ripple
we have

1
m =1-015=0385
20
1 + 62 = T‘7“
e = 0.176.

Since this value lies between %-db and 1-db ripple we must use Table IV.
Now we calculate n. At w =4

1
1+ aT2,(4)
1+ eT2,(4) = 108

eT?,(4) = 108

T.(4) = 753.

= 10~

Now using Eq. 5, we have
(w+ Vot = 1)n+ (0 4+ Vot — 1)~
2 w=4
(0 + Vo — 1)n]|, 4 22 1506
(7.88)" = 1506
n = 3.58.

= 753

Therefore n = 4 will be more than satisfactory.
Since the specification calls for » = 1, we use Table IV(e). Since
the input is a current source the unprimed values are used. Removing

1
the normalization by multiplying all C’s by RIZ" = 5% 107 all L's by
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— = é, and the resistances by R = 1000, we obtain the final element
W,
values
1 = —6
1
ng = 0.227
1, = 0498 x 100
5x 108 °
1L = (0.155
sT T

1000 R, = 500.

The network is shown in Fig. 8.

I, —— 0.155 0.227
O a1 21 -O—
. .
500 $ 0.498%10°%  Jo.363 xi0™* €,
1000
o O

F16. 8. Network obtained in Example 3.1 (values in ohms, henrys, and farads).

(To be continued)
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