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ABSTRACT 

In a preceding paper tables were presented for the design of three large classes 
of ladder networks. These networks had characteristics given by Butterworth, 
Tschebyscheff, and Bessel polynomials. In the present paper a number of additional 
tables are presented, the tables now being classified on the basis of the parameter r, 
which is the input-to-output resistance or conductance ratio. The tables give the 
element values of normalized low-pass ladders with one of the following character- 
istics : maximally flat magnitude (Butterworth), equal-ripple magnitude (Tsche- 
byscheff), and maximally flat time delay (Bessel polynomial). By means of frequency 
transformations the networks given by the tabulated element values for the Butter- 
worth and Tschebyscheff networks may be converted to give high-pass, band-pass, 
and band-elimination filters. Thus the tables may be used as a handbook for the 
design of these optimum networks. 

INTRODUCTION 

Tables for the design of three large classes of networks were pre- 
sented in a preceding paper (I).” It was shown there that by use of 
these tables the engineer who knows little about the theory of modern 
synthesis can synthesize useful networks. These networks had char- 
acteristics given by Butterworth, Tschebyscheff, and Bessel polynomials. 

In this paper the same characteristics are considered. However, 
many new tables are added. In addition, the basis for classifying the 
tables has been changed to one that is believed to be more useful for 
most applications. 

The following extensions and changes have been made: 

1. The tables are no longer classified in terms of the decrement 
ratio D, as they were in the preceding paper. The basis for classification 
in this paper is r, where r = R./R1 (or r = G’JG’J, the ratio of the 
input to the output resistance (or input-to-output conductance). 
These tables give a much larger range of input-to-output terminations 
than was available in the previously published tables. 

* This paper is based on the author’s report with the same title, Technical Memorandum 
No. 434, Hughes Research Laboratories, Culver City, Calif. 

1 Research Laboratories, Hughes Aircraft Co., Culver City, Calif. 
** Part II will appear in this JOURNAL for August, 1957. 
* The boldface numbers in parentheses refer to the references appended to Part I of this 

paper. 
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2. Tables for the Tschebyscheff characteristic with &-db and &db. 
ripple have been added. 

3. In the preceding paper the Bessel-polynomial networks were 
given only for a resistance termination at one end. In this paper the 
networks are given for the same wide range of resistance ratios as are 
the Butterworth and Tschebyscheff networks. 

It is felt that since these tables eliminate tedious computations, 
they will be of great value to engineers familiar with synthesis theory. 
But the paper is directed mainly at those practical engineers who know 
little about synthesis and desire a final working formula and a set of 
tabulated values. It was therefore decided to make the paper as self- 
contained as possible, within the space restrictions, by giving an 
analytical discussion of each type of network. Though the discussion 
is necessarily brief, it is believed that it is sufficient to acquaint the 
reader with the characteristics of the networks whose element values 
are given in the tables. 

As mentioned in Sec. V, a number of different networks is possible, 
each of which realizes the identical transfer function (including the 
constant multiplier). The networks differ because of the different 
choices for the zeros of the reflection coefficient. The tables in this 
paper are based on the choice that gives maximum gain-bandwidth 
product for a specified value of shunt capacitance (2), that is, all the 
zeros are chosen to lie in one half-plane. 

The paper is divided into five main sections. How to use the tables 
of element values is discussed in the first section. The next two treat 
Butterworth and Tschebyscheff networks, respectively, while the 
fourth section treats the maximally flat time-delay networks obtained 
by the use of Bessel polynomials. In each of these three sections 
tables of the element values of the normalized low-pass ladder network 
are given. In the final section it is briefly shown : (a) how to transform 
Butterworth and Tschebyscheff networks to serve high-pass, band-pass, 
or band-elimination functions; (b) how to remove the normalization of 
the element values-that is, how to change the pass band of the network 
from w = 1 to the desired radian frequency, and how to raise the level 
of the network; (c) how to use duality and reciprocity to obtain sets 
of new networks; and (d) how to convert the symmetrical Butterworth 
and Tschebyscheff networks to unsymmetrical ones with any desired 
ratio of input-to-output resistance. 

I. USE OF THE TABLES OF ELEMENT VALUES 

The general form of the low-pass ladder network whose element 
values are given in the tables is a lossless network terminated in resist- 
ance. In all the tables and in the figures the eIement values are in 
ohms. henrys, and farads. The tabulated element values are normal- 
ized in that the pass band has a cutoff radian frequency W, equal to 
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unity and the network has a one-ohm resistance load, that is, in all 
the tables R1 = 1. As shown in Sec. V and in the illustrative examples 
the removal of these normalizations requires only simple multiplications. 

Six different values of I = RJR1 (or r = G’./G’r) are included: 
0, f, 4, $, 4, and 1. Since RI = 1 for all the tables, the value of R, 
for each table is given by the 7 of that table and thus need not be 
tabulated. 

The primed and the unprimed values in the tables yield dual net- 
works so that a transfer impedance or a transfer admittance can be 
realized. The networks for the general ladder, with a resistance 
termination at both ends and with a current-source input, are shown in 
Fig. 1 for n odd and in Fig. 2 for n even ; n is the degree of the denomina- 

I’ ~q-$?g--g$-~R ,.,, Et “r*--*“,*, 
FIG. 1. General form of low-pass ladder network FIG. 2. General form of low-pass 

with a current-source input and 1z odd. ladder network with a current-source 
input and n even. 

tor of the transfer function and is thus also equal to the number of 
reactances in the ladder. The transfer function realized by these 
networks is the transfer impedance ZZ1 = Ez/ll. 

For a voltage source used as the input, the dual of the above networks 
can be used. The networks are shown in Figs. 3 and 4 for n odd and 

FIG. 3. General form of low-pass ladder FIG. 4. General form of low-pass ladder 
network with a voltage-source input and n network with a voltage-source input and n 
odd. even. 

even, respectively. The transfer function realized by these networks 
is the transfer admittance Yz, = Iz/El. 

It is also pointed out that Thevenin’s or Norton’s theorem can be 
used to effect a source conversion and thus yield new network con- 
figurations. For example, Thevenin’s theorem applied to R, and the 
current source in Fig. 1 yields a voltage source and a series resistance. 
In this way a transfer admittance or transfer voltage ratio may be 
realized with a shunt capacitance branch at both ends of the coupling 
network. 

The primed and unprimed elements shown in Figs. 14 are intended 
to correspond to the primed and unprimed values given in the tables. 
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Thus for a specified Zzl and n odd the unprimed tabulated values yield 
the network of Fig. 1, whereas for n even the primed tabulated values 
yield the network of Fig. 2. When a transfer admittance Ytl is re- 
quired, the primed tabulated values yield the network shown in Fig. 3 
for n odd, and for n even the unprimed values yield the network of Fig. 4. 

The tables are divided as follows: 

(a) Table I gives the element values for the Butterworth filter, 
where (a) applies for r = 0, (b) for r = +, (c) for r = a, (d) for r = Q, 
(e) for r = 3, and (f) for r = 1. 

(b) Tables II-VII apply to the Tschebyscheff filter, with the sub- 
divisions being necessary to provide for the different ripple factors. 
For example, Tables I I and III give the element values for a +db 
ripple and a a-db ripple, respectively. The alphabetical subdivisions 
are the same as for the Butter-worth case. 

(c) Tables VIII and IX apply to the Bessel-polynomial networks. 
Table VIII gives the frequencies at which significant values of time 
delay and loss occur. The variable u is the normalized frequency W/W,, 
where o. = l/to and to is the desired time delay, that is, the time delay 
occurring at zero frequency. Table IX gives the element values; the 
alphabetical subdivisions are the same as for the Butter-worth and 
Tschebyscheff cases. 

As has been mentioned, the parameter r is equal either to the ratio 
of the input to the output resistance or to the input-to-output con- 
ductance ratio. A little reasoning always suffices to determine which 
applies, but for convenience the practical rules are expressed explicitly 
below. 

(a) Except in the case of r = 0, for networks formed from the un- 
primed values in the tables, r is equal to the resistance ratio R,/R1. 
For networks formed from the primed values r is equal to the conductance 
ratio G’./Gfl (which is of course equal to R’JR’,). 

(b) For r = 0 the parameter r is equal to the resistance ratio for the 
combinations: (1) unprimed values and n even, and (2) primed values 
and n odd. It is equal to the conoktunce ratio for (1) unprimed values 
and n odd, and (2) primed values and n even. This is merely a detailed 
way of stating that for r = 0, R, becomes a short for networks with a 
series +ut, that is, those in Figs. 3 and 4, and R’, becomes an open 
circuit for networks with a shunt input, that is, those in Figs. 1 and 2. 

Inspection of the tables for the Tschebyscheff networks shows that 
for a number of tables element values are not given for n even. For 
these cases the specified resistance (or conductance) ratio is too large 
to be physically realizable. This occurs for: 

(a) r = 1 for all ripples. 
(b) r = 3 for l-db, 2-db, and 3-db ripples. 
(c) r = + for 2-db and 3-db ripples. 
(d) r = 2 for 2-db and 3-db ripples. 
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With the above preliminary remarks the steps in the procedure for 
using the tables follow: 

1. Determine from the specifications of the problem whether a 
Butterworth, Tschebyscheff, or Bessel-polynomial network is to be used. 

2. Calculate the value of n that gives the required degree of the 
denominator polynomial of the transfer function and consequently the 
required complexity of the network. For the Tschebyscheff character- 
istic it is first necessary to calculate the ripple factor c. 

3. Using this value of n look up the element values in the ap- 
propriate table. 

4. Remove the normalizations as shown in Sec. IV. The bandwidth 
is thus changed from wc = 1 to the desired cutoff value, and the load 
resistance and the network level are changed to the required values. 

FIG. 5. Sketches of the first three orders of the Butterworth 
approximation to the low-pass filter. 

5. If a high-pass, band-pass, or band-elimination network is desired, 
convert the element values by means of the frequency transformations 
of Sec. V. 

In carrying out the first step, if we require a filter whose magnitude 
characteristic is specified, then the Butterworth or Tschebyscheff 
characteristic may be used. For the same value of n, the Tschebyscheff 
filter gives a better coverage of the pass band and a faster drop-off 
outside the band than any other possible transfer function that is also 
a constant divided by a polynomial; its phase characteristic, however, 
is more nonlinear than that of the Butterworth filter. Thus the choice 
between the two will depend on the importance of the phase character- 
istic. Neither of these filters gives a linear phase characteristic, that is, 
a pure time delay, over a specified frequency range. For this purpose 
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the Bessel polynomials are used. The filters obtained by use of the 
Bessel polynomials also have a low-pass magnitude characteristic so 
that they may also be used in those problems where the magnitude 
characteristic is specified. 

The method for calculating the value of n and, in the case of the 
Tschebyscheff filter, the value of E, is shown in the respective sections. 

TABLE I.-Element Values (in ohms, henrys, farads) for a Normalized Butterworth Filter. 

Value al ” c, or L,’ 

“1” = O 1 .oooo 
3” 0.7071 

0.5OOil 
4 0.3827 
6” 0.2588 0.3090 

7 0.2225 
a 0.1951 

lo’ Z:E 

!’ r = l’8 9.oGQO 

i 11.9764 12.4442 
i 12.6076 12.5685 

6 12.6190 
i 12.6199 

1: :2”:::: 12.6064 

E’ r = 1’4 5.0000 
2 6.2741 
3 6.3870 
4 6.3840 

: Et 

;: ::ii;: 

1: 6.2941 6.2825 

:’ r = 1’3 4.OOoO 

i 4.8284 4.8473 
4 4.8105 

2 4.7743 4.7446 
7 4.7206 

t i:::: 
10 4.6120 

e) I = l/2 

: YEi 
3 3.2612 

: 3.1868 3.1331 
6 3.0938 

i 3.0640 3.0408 

1: 3.0223 3.0072 

f) I = 1 

: ::iE 
3 1.0000 

4 
2 

FiEt 
0:5176 

i 0.3902 0.4450 

1: 0.3473 0.3129 

Lf or C*’ c, or Ls 

1.4142 
1.3333 
1.0824 
0.8944 
0.7579 
0.6560 
0.5776 
0.5155 
0.4654 

1.5000 
1.5772 
1.3820 
1.2016 
1.0550 
0.9370 

E&Z 

0.0939 
0.1735 
0.2032 
0.2169 

:::5; 
0.2314 
0.2333 
0.2346 

4.1674 
8.92% 

11.3305 
12.6794 
13.5040 
14.0417 
14.4102 
14.6730 

EE 2.1699 
0.4180 4.6024 
0.4435 5.8036 
0.4567 6.4673 
0.4641 6.8671 
0.4687 7.1244 
0.4716 1.2984 
0.4735 7.4209 

0.2761 

i:::;: 
0.5997 
0.6156 
0.6244 
0.6295 
0.6326 
0.6346 

::;::: 
4.4239 
4.9155 
5.2085 

55:Zi 
5.607 1 

0.4483 
0.7189 
0.8826 
0.9237 
0.9423 
0.9513 
0.9558 
0.9579 
0.9588 

1.1811 
2.4524 
3.0510 

EZ 
3.6678 
3.74’(6 
3.7924 

1.4142 

::Ei 
1.6180 

::;K 
1.1111 
l.COOO 
0.9080 

1.0000 
1.8478 
2smO 
1.9319 
1.8019 
1.6629 
1.5321 
1.4142 

L, or C,’ 

1.5307 
1.6944 
1.5529 
1.3972 
1.2588 
1.1408 
1.0406 

0.0493 

“o:::!! 
0.1778 
0.1940 
0.2053 
0.2135 

0.1018 
0.2350 
0.3130 
0.3618 
0.3940 
0.4162 
0.4321 

0.1386 
0.3186 
0.4233 
0.4882 
0.5308 
0.5601 
0.5809 

0.2175 
0.4955 
0.6542 
0.7512 
0.8139 
0.8565 
0.8864 

0.7654 
1.6180 
1.9319 

::E 
1.8794 
1.7820 

CJ or Lg’ 

1.5451 
1.7593 
1.6588 
1.5283 
1.4037 
1.2921 

2.5343 

GE 
10.2279 
11.3856 
12.2305 

1.2992 
3.1601 

“;:E 
5.7720 
6.1916 

0.9912 
2.4042 

:;Fi 
4:3702 
4.6833 

0.6857 
1.6531 
2.2726 
2.6863 
2.9734 
3.1795 

0.6180 

::iZ 
1.%16 
2.0000 
1.9754 

Ls or c, 

1.5529 
1.7988 
1.7287 
1.6202 
1.5100 

0.0675 
0.1700 
0.2417 
0.2932 
0.3312 

0.0913 
0.2294 
0.3258 
0.3948 
0.4454 

:::::i 
0.5003 
0.6046 
0.6808 

0.5176 

::Ei 
1.8794 
1.9754 

c, or L,’ 

1.5576 
1.8246 
1.7772 
1.6869 

1.8121 
4.6929 

EE 

0.9225 
2.3838 
3.4607 
4.2683 

0.7006 
1.8075 
2.6209 
3.2293 

0.4799 
1.2341 
1.7846 
2.1943 

0.4450 
1.1111 
1.5321 
1.7820 

L* or Cg’ 

1.5607 
1.8424 
1.8121 

0.0248 
0.0653 
0.0965 

0.0503 

:::;:: 

0.1042 
0.2735 
0.4021 

0.3902 

::Ei 

co or Lp’ 

1.5628 
1.8552 

1.4086 
3.7699 

0.5410 
1.4445 

0.3685 
0.9818 

0.3473 
0.9080 

L. 01 CM 

1.5643 

0.0198 

0.0401 

0.0540 

0.0825 

0.3129 
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II. BUTTERWORTH CHARACTERISTIC (3,4,5) 

The Butterworth function is used to approximate the squared 
magnitude of a transfer function. For the transfer impedance it is 
given by 

(1) 

This function gives an approximation to a low-pass filter characteristic; 
sketches of the Butterworth approximation for the first three values of 
n are shown in Fig. 5. The Butterworth function is said to have a 
maximally fiat magnitude characteristic. 

By use of Eq. 1 the complete transfer function is given as 

H 
Z,,(s) = __ B.(s)’ 

where H is a constant multiplier. The polynomials B, are called the 
Butterworth polynomials ; these polynomials have a unity coefficient 
for sn and their zeros are the nth roots of unity that lie in the left half- 
plane. 

The element values are given in Table I; the resulting networks 
realize the transfer function within a constant multiplier. To obtain 
the constant multiplier we let s = 0 in the network and in the transfer 
function. 

An example of the use of the tables to design a Butterworth filter 
is presented below. 

Example 2.1. We wish to design a low-pass filter that has a resist- 
ance termination at the output only. The cutoff frequency is wc = 10,000 
radians/set and the output resistance is to be 750 ohms. At a fre- 
quency w = 3w, the magnitude response is to be down at least 50 db. 
The input source is a cathode follower which approximates a true 
voltage source. 

First we determine the value of n. 

1 
1 + 02n w=3 

= 10-S 

(1 + c+) ( w=3 = 105 

32” &X IO5 

1 5 
n = 2 log 3 

= 5.23. 

The next larger integer n = 6 must be used. 



I4 LOUIS WEINBERG [J. F. I. 

Since no input resistance is required, the table for r = 0 is used, 
namely, Table I (a). Since the input is a voltage source and n is even, 
the network form of Fig. 4 (with R, omitted) is applicable; that is, the 
unprimed element parameters are used. 

Consulting the tables yields the element values 

RI = 1 Lb = 1.553 
c1 = 0.2588 cg = 1.759 
Lz = 0.7579 Lg = 1.553 
CB = 1.202 

To obtain a load resistance of 750 ohms, we multiply RI and all L’s 
and divide all C’s by 750. To change the cutoff frequency to 10,000 
rad/sec every L and C must be divided by this value. 

The final values are therefore 

R = 750 RI = 750 RL &z--z 1.16 x 10-l 

c, = 2 = 3.45 x 10-g 
ml? 

5 
C, = 

2 E 
= 2.34 X lo-’ 

Lo = = 5.68 X 1O-2 

C, = 2 = 1.60 x 10-r 
c 

Lf = % = 1.16 X 10-l 

and the network is shown in Fig. 6. 

FIG. 6. Final network achieved for Example 2.1. 

At s = 0 the network becomes a pure resistance and therefore 

Z2lld = & = R = 750. 

Since the constant term of every B, is unity, the constant multiplier H 
is 750. The transfer voltage ratio E2/E1, since Ez = 750 r2, is given by 

E2 1 _=- 
E1 &J(S)’ 
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III. TSCHEBYSCHEFF CEUUCTERISTIC (6) 

The Tschebyscheff approximation to the magnitude characteristic 
of a low-pass filter is given by 

1 
I-W+) 1 2 = 1 + [&-&J)]2’ (3) 

TABLE II.-Element Values (in ohms, henrys, farads) for a Normalized Tschebyscheff 
Filter with A-db Ripple (e = 0.1526, 9 = 0.0233). 

Value of ” c, or L,’ 

a) * = 0 
1 0.1526 
2 0.4215 

4 0.5158 0.5544 
2 0.5841 0.5734 

: 0.59% 0.5949 

1: EZ 

b) r = l/8 
1 1.3736 
3” 8.9466 5.9892 

5” 10.0512 
11.112a 

6 11.2235 
;: 11.8455 

It: 
:EE 
11:wo 

c) r = l/4 

: 0.7631 3.0912 

: 4.5446 5.0046 

2 5.5547 5.5377 

: 5.8904 5.7441 

1: 6.0374 5.8435 

d) r = l/3 

:. 0.6105 2.3497 
: 3.7120 3.4253 

.z 4.1422 4.0823 

;: 4.3777 4.2247 

1: 4.4804 4.2930 

e) r = l/2 
1 0.4579 
3” 2.2746 1.5715 

: 2.3545 2.6921 
6 2.5561 

: ::E 

lo” ;:ZE 

nr=1 
1 0.3052 

: i.0316 

: i.1-68 
6 
7 i.181; 

: ;.195; 
10 --- 

L* o* q 

0.7159 
1.0864 
1.1994 
1.2490 
1.2752 
1.2908 
1.3008 
1.3076 
1.3124 

0.0567 
0.1403 
0.1866 
0.2008 
0.2179 
0.2179 
0.2287 
0.2248 
0.2336 

0.1220 
0.2886 
0.3815 
0.4037 
0.4403 
0.4353 
0.4601 
0.4478 
0.4690 

0.1712 
0.3914 
0.5161 
0.5389 
0.5906 
0.5785 
0.6155 
0.5942 
0.6266 

0.2880 
0.6035 
0.7973 
0.8042 
0.8962 
0.8560 

::8”::; 
0.9429 

i.1474 

;.3712 

i.4228 

i.4426 
- _ _ 

cs or LJ’ L, or C,’ 

::fE 1.2453 
1.5562 1.5924 
1.5999 1.6749 
1.6236 1.7107 
1.6380 1.7302 
1.6476 1.7423 
1.6542 1.7503 

4.3787 
9.8722 

12.7123 
13.5071 
14.5445 
14.4866 

:::;:ZZ 

0.0733 
0.1602 
0.2041 
0.2153 
0.2312 
0.2297 
0.2401 

2.3272 
5.06% 
6.4880 
6.7916 
7.3489 
7.2417 

ES! 

0.1559 
0.3281 
0.4167 

GE! 
0.4594 
0.4839 

1.8216 
3.8671 
4.9341 
5.1046 
5.5512 
5.4212 
5.7535 
5.5455 

0.2172 
0.4442 
0.5639 

::5::: 
0.6119 
0.6490 

1.3341 
2.6600 
3.3682 
3.3962 
3.7594 
3.5762 

::KZ 

0.3626 
0.6853 

::Z3: 
0.9619 
0.9121 
0.9887 

1.0316 

i.9750 

z.096; 

;.1346 
- _ _ 

i.3712 

i.5;3; 

i.6i6Y 
_ _ _ 

c5 or L$’ 

1.3759 
1.7236 
1.7987 
1.8302 
1.8473 
1.8579 

4.8368 
10.46m 
13.2359 
13.9349 
14.9251 
14.8149 

2.5577 
5.3580 
6.7472 
7.0032 
7.5404 
7.4072 

1.4372 
2.8071 
3.5246 

Z:EZ 
3.6707 

1.1468 

2.0%; 

-2.2054 
- - _ 

LI or Ce’ 

1.4035 
1.7395 
1.8070 
1.8343 
1.8489 

0.0770 
0.1652 
0.2087 
0.2191 
0.23% 

0.1632 
0.3379 
0.4258 
0.4404 
0.4742 

0.2272 
0.4572 
0.5760 
0.5885 
0.6374 

0.3785 
0.7050 
0.8950 
0.8836 
0.9765 

i.4228 

-i&7 
- - _ 

c, or 4 

1.4745 
1.8163 
1.8814 
1.9068 

4.9726 

:EZ 
14.OR87 

2.6256 
5.4537 

E8” 

2.0481 
4.1536 
5.1967 
5.3199 

1.4932 
2.8547 
3.5703 
3.5472 

1.1812 

-2.1346 
- - _ 

i:%g 

0.0783 
0.1672 
0.2106 

0.1659 
0.3419 
0.4295 

ZE 
0:5r310 

0.3843 
0.7127 
0.9027 

1.4426 
_ _ _ 

1.5182 
1.8585 

5.0298 
10.7462 

1.5084 
2.8761 

1.1957 
___ 

i.4964 

0.0790 

0.1672 

0.2325 

0.3870 

--_ 
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Here the parameter E is the ripple factor and T,(w) is the Tschebyscheff 
polynomial of order (and degree) n ; T,(w) is defined by cos (n cos-1 CO). 
The role played by E and the equal-ripple quality of the Tschebyscheff 
approximation are illustrated in Fig. 7, where n = 3 and a 1-db ripple 
are used. 

I i 

I I 
I 

-I 0 I w 

FIG. 7. Low-pass filter obtained by using the Tschebyscheff 
approximation with n = 3 and a l-db ripple. 

From the magnitude given by Eq. 3 the complete transfer function 
can be found. It is given by 

H 
ZZl(S) = v,(s)9 

where H again is a constant and V, is formed from the left half-plane 
zeros of the denominator of Eq. 3 ; Vn is a polynomial of degree n with 
the coefficient of sn equal to unity and with its zeros lying on an ellipse. 

The element values of the ladder networks for values of E correspond- 
ing to A-, a-, $-, l-, 2-, and 3-db ripple are presented in Tables II 
through VII. 

After the value of E has been calculated from a specified ripple 
factor, it is necessary to determine the required value of n. Formulas 
useful for this purpose are 

T,(w) = 
(w + LJJZ - 11% + (w + 4zTp-n 

2 (5) 

or 

T,(o) = (w - 
_)n + (w - _)--n 

2 (6) 
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TARLE III.-Element Values (in ohms, henrys, farads) for a Normalized Tschebyscheff 
Filter with i-db Ripple (C = 0.2434, c2 = 0.0593). 

Value of n c, cl1 L,' 

a) r = 0 
1 0.2434 
2 0.5566 
3 0.6517 
4 0.6891 
: 0.7173 0.6912 

;i 0.7234 0.7274 

1: 0.7302 0.7322 

b\ I = l/8 

4 ~2.1908 7.0446 
3 10.0648 
4 10.4126 

i 11.7227 11.2734 
7 12.3557 

t 11.5987 12.5942 
10 11.7539 

cl I = l/4 
1’ 1.2171 

i 3.5907 5.1234 
4 5.1282 

2 5.8822 5.5080 

i 6.1786 5.6503 

1: 6.2867 5.7179 

d) r = l/3 

: ;:Z 
3 3.8716 
4 3.7640 
2 4.0210 4.4034 

i 4.6162 4.1167 

1: 4.6917 4.1620 

e) r = l/2 
1 0.7303 
2 1.7288 
3 2.5965 
4 2.2aa4 

2 2.8983 2.4162 

i 3.0294 2.4631 

1: 3.0724 2.4852 

f) I = 1 
: 0.4868 

3 i.3034 
4 

f!t 
i.3824 

7 i.4468 

i --- 1.4604 
10 --- 

L* or C*’ cs or L1’ 

0.8499 
1.2198 
1.3215 
1.3538 
1.3868 
1.3999 
I.4083 
1.4140 
1.4180 

1.2248 
1.5979 
1.6741 
1.7271 
1.7475 
1.7598 
1.7678 
1.7733 

0.0755 
0.1562 
0.2051 
0.2052 
0.2298 

::::;I: 
0.2228 
0.2414 

5.5746 

:!:86E 
13.7315 
15.2643 

::::Z$ 
14.7148 

0.1647 

GE 
0.4097 
0.4669 
0.4322 

::‘E 
0.4880 

2.9867 
5.4989 
7.0092 
6.3423 
7.7470 
7.1583 
7.9582 
7.2798 

Ei 
0.5729 
0.5439 
0.6299 
0.5713 
0.6480 
0.5822 
0.6561 

2.3508 
4.1610 
5.3427 

55:~~~ 
5.3173 
6.0240 
5.4002 

0.4104 
0.6465 
0.9039 
0.8007 
0.9771 
0.8341 
mOoo 
0.8478 
1.0100 

1.7402 
2.7832 
3.6926 
3.2941 
4.0204 
3.4072 
4.1088 
3.4501 

;.I463 1.3034 
_ _ - --_ 
1.3264 2.2091 

;.3;6; 2.3476 

i.3704 2.3800 
_ _ _ _ - _ 

L, or Cp’ 

I.3003 
1.6371 
1.7144 
1.7450 
1.7612 
1.7711 
1.7776 

0.0922 
0.1726 
0.2211 
0.2183 
0.2423 
0.2287 
0.2489 

0.1990 
0.3509 
0.4540 
0.4354 
0.4930 
0.4543 
0.5050 

0.2812 
0.4720 

“0:::;: 
0.6668 
0.6017 
0.6817 

“0::::; 
0.9837 
0.85% 
1.0463 

~:E~ 

_ - - 
1.3264 

;.4&9 

i.s-HIi 
_ - _ 

cs or Lgl 

1.4480 
1.8105 
1.8816 
1.9099 
1.9248 
1.9338 

5.8758 
11.3063 

:::tE 
15.6054 
14.7268 

:.::3278 
7:3060 

;:Ez 
7.3032 

2.45% 
4.3438 
5.5708 
5.2361 
6.0086 
5.4294 

1.8152 
2.9094 
3.8585 
3.3925 
4.1199 
3.4927 

1.3824 

2.3476 

2.4414 
_ - - 

CT o* LI’ 

1.4193 
1.7497 
1.8124 
1.8365 
1.8490 

1.5323 
1.8806 
1.9439 
1.9676 

0.0958 
0.1780 
0.2250 
0.2214 
0.2452 

6.1472 
11.4700 
14.4391 
14.2166 

0.2062 
0.3611 
0.4618 
0.4415 
0.4989 

3.2774 
5.8228 
7.3830 
7.0810 

“o:::i 2.5735 
0.6285 4.4023 
0.5864 5.6288 
0.6749 5.2808 

0.5100 
0.7340 
1.0015 
0.8670 
1.0606 

1.9007 
2.9490 
3.8989 
3.4235 

i.356; 1.4468 

i.5000 2.3800 
- - - - - - 

L* or C,’ co or Lp 

1.4647 
1.7927 
1.8505 

1.5648 
1.9119 

KG 6.2011 
0.2267 11.5438 

0.2087 
0.3643 
0.4650 

3.3046 
5.8583 

0.2945 
0.4893 
0.6328 

2.5944 
4.4285 

1.9157 
2.9666 

Y.3704 
--- 

1.4604 
- _ _ 

1.4864 

0.0976 

0.2099 

0.2%2 

0.5190 

--_ 
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TABLE IV.-Element Values (in ohms, henrys, farads) for a Normalized Tschebyscheff 
Filter (i-db Ripple (E = 0.3493. e2 = O.fZZO). 

value of n c, or LI’ 

a)?-0 
1 0.3493 

3” z;;:: 
: 0.8529 0:8352 

: 0:8725 :E 

2 t8877:: . 

b) r = l/8 
1’ 3.1438 
2 7.6905 

3 
: 

KE 
12:5367 

! :;:Z.t 
! 13.1608 11.2694 

10 11.3804 

c) I - l/4 
1 1.7466 
3” 3.8432 

4 ;z 
2 65:g347& 

7 

! 
2% 
6.6323 

10 5.4437 

d) r - l/3 
: 2.8282 1.3972 

3 
4 $6”G 
5 4:78% 
: 3.7922 

! 
$:E 
4.9901 

10 3.8860 

01-l 
:: 0.6986 

3 i.5963 

: --- 1.7058 
6 
: i.7373 

1: i.lSG _-_ 

c, or C,’ 

!%f 
1:3916 
1.4291 
1.4483 
1.45% 
1.4666 
1.4714 
1.4748 

0.0965 
0.1646 
0.2234 
0.2039 

Z’: 

:z 
Ok24 

EEl 
ok399 
0.5293 
0.6851 

:El 
0:5572 
0.7051 

c: or r, 

1.3465 
1.7279 
1.8142 

:zE 
1:8750 

::Zt 

6.81% 
11.2532 
14.9223 

:tEfl 
14:0704 

:f:Z 

2.9371 
4.1985 
5.8898 
4.8770 

::ZE 

;:EZ 

2.1903 
2.4881 

t::: 
413575 

ZE 
2:8366 

1.5963 

i.5408 

i.6383 

;.6678 

L, or C,’ 

1.3138 

EE 
1:7371 

!E 
1:7645 

0.1135 
0.1801 

EE 
0:2556 

::ZE 

0.2504 
0.3613 

GE 
0:5272 
0.4389 
0.5364 

kEE 
0.6852 
0.5603 
0.7235 
0.5770 
0.7348 

::::; 
1:2403 
0.8132 
1.2864 
0.8341 
1.2999 

i.22y6 

i.3443 

i.367; _ - _ 

es or Ls’ 

7.3211 

:E; 
13:8641 
16.4112 
14.3247 

.3.1130 
4.3536 

ZE 
6:4061 
5.1229 

2.3197 
2.5976 

z:9 
414546 
2.8964 

1.7058 

i.6383 

2.7239 

“d:z 
0:2422 
0.2180 
0.2583 

0.3722 
0.4901 

EE 
0:7314 

E;G 
1:2628 
0.8235 
1.3054 

i.258; 

i.3673 

c, or r, 

1.5982 
1.9571 

EE 

7.4478 
11.8216 
15.4833 
13.9670 

4.0061 

?‘Z! 
6:8522 

ZE 
6:1064 
5.0307 

2.3566 

::tZ: 
2.8744 

1.7373 

2.6678 _ - - 

L* or c, co or L#’ 

x; 
1:8119 

SE 
0:2436 

7.5006 
11.8832 

0.2602 

8:Z 
4.0331 
5.9413 

3.1841 
4.4237 

2.3719 
2.6456 

i.2& 
-_- 

1.7504 -_- 

LM or GO 

1.4539 

0.1188 

0.2614 

0.3776 

0.8104 

___ 
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TABLE V.-Element Values (in ohms, henrys, farads) for a Normalized Tschebyscheff 
Filter with I-db Rifiple (e = 0.5088. 3 = 0.2589). 

Value of n c, or L, 

a1r-O 

:: 
0.5088 
0.9110 

: 
1.0118 
1.0495 

: 
1.0674 
1.0773 

7 1.0832 

: 
1.0872 
1.0899 

10 1.0918 

b) r = l/8 
1 

2 
::E 

12.5563 
4 9.9024 

2 
13.7259 
10.3304 

: 
14.0719 
10.4856 

1: 
14.2174 
10.5585 

c) I = l/4 

f 
2.5442 
3.7779 

: :::g: 

: 
7.0522 
4.7366 

: 
7.2126 
4.7966 

1: 
7.2800 
4.8247 

?r=1’3 2.0354 

3” 
2.5721 
4.9893 

5” EEi 

! 
3:1307 

!z 
EZ 
5.5459 

10 3.1806 

e) r = l/2 

:: 
1.5265 

3 3.4774 

: 3.721; 

! 3.7916 
8 

3.8&d 
1: --_ 

P=l 1.0177 

3” --- 2.0236 
4 

2 
;.1349 

8’ 
;.1-MS 

2.1797 1; ___ 

L, or C;’ c, or L,’ 

!:E 1.5088 
1.4126 1.9093 
1.4441 1.9938 
1.4601 2.0270 
1.4694 2.0437 
1.4751 2.0537 
1.4790 2.0601 
1.4817 2.0645 

0.1286 
0.1657 
0.2517 
0.1943 
0.2677 

::E 
0.2033 
0.2746 

8.8038 

:zz 
12.7878 
17.5013 
13.1313 
17.7827 
13.2602 

0.3001 
0.3264 
0.5428 

::E! 
0.3888 
0.5803 
0.3930 
0.5841 

4.7927 
5.3680 
8.6301 
6.0240 
9.0689 

“9::::: 
6.2098 

0.4702 
0.4286 
0.7929 
0.4915 
0.8287 
0.5050 
0.8395 
0.5101 
0.8442 

3.8075 
3.7589 
6.6673 
4.1451 
6.9839 
4.2237 
7.0783 
4.2532 

0.6153 

0.694; 

0.7118 

0.718; 
_ _ _ 

2.8540 
_-_ 
4.7440 
__- 
4.9425 

S.OG 
___ 

0.994; 

Gni 

i.111; 

i.119; 
-__ 

2.0236 

;.cGG 

;.o93a 

3.1214 
_ _ _ 

L, or C“ 

1.2817 
1.5908 
1.6507 
1.6736 
1.6850 
1.6918 
1.6961 

0.1447 

::;3: 
0.2045 
0.2802 
0.2097 
0.2842 

“o:z 

oO:Z 
0.6005 
0.4064 
0.6076 

0.5347 
0.4622 
0.8467 
0.5177 
0.8764 
0.5288 
0.8851 

0.6650 

0.7348 

0.748; 
___ 

i.091; 

i.173; 

i.iG -__ 

c, or Ls’ 

1.6652 
2.0491 
2.1192 
2.1453 
2.1583 
2.1658 

9.2596 
11.5115 
16.9MO 
13.0465 

E:E 

3.9944 
3.8812 
6.8280 
4.2404 
7.1141 
4.3088 

2.9936 

&36 

;.OG 
-_- 

2.1349 

i.0936 

3.1746 
___ 

1.3457 
1.6489 
1.7021 
1.7213 
1.7306 

0.1503 
0.1819 
0.2701 
0.2066 
0.2828 

0.3486 
0.3577 

“o:E 
0.6063 

0.5475 
0.4696 
0.8580 
0.5232 
0.8857 

0.675; 

;.7;2; 
- _ _ 

i.111; 

i.lS97 
_-- 

c, or L1 

l.ill8 
2.0922 
2.1574 
2.1803 

9.3890 
11.6220 
17.0949 
13.1287 

5.0989 
5.5869 
8.9024 
6.1890 

4.0473 

::EZ 
4.2691 

3.0331 
__- 
4.9004 
__- 

2.1666 

3.1214 
--_ 

co or LB’ 

1.3691 
1.6707 
1.7215 

1.7317 
2.1111 

0.1516 
0.1830 
0.2715 

9.4427 
11.6709 

0.3515 
0.3598 
0.5864 

5.1270 
5.60% 

0.6797 3.0495 
_-_ -_- 

i.1192 
_-_ 

2.1797 
- _ - 

1.3801 

0.1522 

0.3528 

0.5541 

___ 

_-- 
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TABLE VI .-Element Values (in ohms, henrys, farads) for a Normalized Tschebyscheff 
Filter with Z-db Ripple Ce = 0.7648, 3 = 0.5849). 

a) * - 0 

i%i 
1:3553 

5” 
1.3%2 

t 

9” 
10 1.4416 

b) r - l/8 

: 6.8830 7.2895 

: tE 
: lp& 

;I 
1;;&5;; 

1; 16.3765 8.8824 

c) r - l/4 
: 3.8239 

3 i.9106 

t 8.3859 

! 8.5220 

t 8.518; 
10 --- 

d) I - l/3 
2 3.0591 

3 6G7i 

: a.a7; 
6 
: 6.597; 

1; 6.6391 _-_ 

0) * = l/2 
1 2.2943 

; --- 4.3975 

: 4.626; 

‘: ;.a&; 

t ;.7ie7 
10 --- 

!-)r-1 

:. 
1.5296 

: 
;.7loi 

5 i.8310 
li --_ 
i 2.8650 
8 

;.ai9i 
1; ___ 

CJ or Lx’ 

0.9766 
1.2740 
1.3389 
1.3610 
1.3765 
1.3836 
1.3881 
1.3911 
1.3932 

1.7717 
2.2169 

;:;:t! 
2.3551 
2.3645 
2.3707 
2.3748 

0.1875 
0.1541 
0.3093 
0.1729 
0.3224 
0.1769 
0.3263 
0.1784 
0.3280 

?Ez 
19h74 
10.9256 
20.2574 
11.1205 
20.4848 
11.1932 

0.295; 6.5423 

0.328; 10.3300 

0.3354 10.7~zQ9 

0.3380 1o.ao; 
_ _ - _ - - 

0.3816 

0.4219 

0.4302 

0.4334 
_ _ - 

5.2161 

iG81 

i.34li 

8.4220 
_-- 

;.5i26 3.9184 

0.583; i.G.0; 

0.594; 6.0293 

0.5-G 6.082; 
- _ - _ _ _ 

0.832’1 2.7107 

0.898; 3.782; 

i.9iZi 3.877; 

0.917; i&J56 
__- _-_ 

L, or C,’ cs or Ls’ 

1.1727 
1.4468 
1.4974 
1.5159 
1.5251 

f:E7 

1.9004 
2.3304 
2.4063 
2.4332 
2.4463 
2.4538 

0.2088 
0.1646 
0.3260 
0.1811 
0.3368 

:::fZ 

0.3156 

0.3443 

0.3499 
_ - _ 

6.8118 

10.5472 

1o.n9i 
_ _ - 

0.4076 

0.4425 

0.4493 
- - _ 

5.4294 

8.2389 

8.4834 
_ _ _ 

0.5698 4.0790 

0.61136 i.9780 

0.61226 6.1370 
___ __- 

0.898; 

0.953i 

0.964; 
___ 

2.8310 

3.8774 

i.959; 
_-- 

Lo or C,’ 

1.2137 

::E: 
1.5495 
1.5536 

0.3199 

0.3475 
_ - _ 

0.413; 

0.4467 _ - _ 

0.5176 

0.6195 
- - _ 

0.9120 

O.&i 
- _ _ 

c, or Li’ 

1.9379 
2.3646 
2.4386 

.2.46O7 

12.5671 
10.3007 
20.0271 
11.1858 

6.8877 

10.6i4Z 
- _ _ 

5.4893 

8.2913 
- _ - 

4.1242 

6.0168 
- - _ 

2.8650 

3.9056 
_ _ - 

Ls 0, Cs’ 

1.2284 
1.4959 
1.5419 

0.2144 

8:Z 

0.321; 
_ _ - 

0.415; 
_ - - 

0.5-w; 
_ - - 

_ - - 
0.9171 
- - - 

cc or Lo’ 

1.9553 
2.3794 

6.9191 
--_ 

5.5141 
_ - _ 

4.1429 
_-- 

2.87% 
__- 

LlO 01 Go’ 

1.2353 

0.2151 
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TABLE VII.-Element Values (in ohms, henrys, farads) for a Normuli~ed Tschebyschgff 
Filter with 3-db Ripple (e = 0.9976, ~2 = 0.9953). 

Value Of” C, or L,’ 

a) I = 0 

:: 0.9976 
1.55% 

3 4 :~~~~ 
6” 1:7522 1:7409 

; 1.7591 1.7638 

1: 1.7670 1.7692 

b) r = l/E 

1 8.9787 

: 
6.1219 

17.4070 

c) r = l/4 

1 4.9881 

: 9.3059 
4 
5 9.7676 
6 - _ - 
i 9.8986 
II - _ - 
J 9.9530 
10 --- 

d) r = l/3 

1 3.9905 

t ;.2-w3 
4 

: ___ 
;.a37; 

; 
7.7352 

G.7760 
1; ___ 

e) r = l/2 

1 2.9929 

; ;.,1, 
4 
5 Ti.5259 
6 

;: __- 
;.5i2; 

1; ___ 
5.6197 

f)r==l 
: 1.9953 

2 3.3-s _ _ - 
2 3.4813 

7 ;.5ia5 

; 3.5339 
10 --- 

Lr 01 C,’ cs o* 4’ 

0.9109 
1.1739 
1.2292 
1.2501 
1.2606 
1.2666 
1.2701 
1.2726 
1.2744 

2.0302 
2.5272 
2.6227 
2.6678 
2.6750 
2.6852 

;:3:: 

0.25% 
0.1392 
0.3884 
Q.1530 
0.4011 
0.1559 
0.4048 
0.1569 
0.4061 

0.262; a.1669 

0.2866 12.057; 

0.291; 1;.4ilT 

0.293; 1;.5is; 
- _ _ _ _ _ 

0.335i 

0.3652 

0.3712 

0.373; 
_ _ _ 

6.5207 

Glos 

9.7463 

;.a243 
- _._ 

0.4618 

0.4993 

0.5069 

0.5-G 
_ - - 

4.8991 

6.9460 

$56 

;&a; 
_ _ _ 

_ - - 
0.7117 

0.7619 

0.772; 

0.7760 
_ _ _ 

3.3487 

4.537; 

;.6390 
_ _ _ 
4.6691 
- - _ 

L, or C“ cs or L,’ 

1.0578 
1.3015 
1.3455 
1.3614 
1.369il 
1.3733 
1.3761 

21491 
2.6309 
2.7141 
2.7436 
2.7577 
2.7655 

0.2861 
0.1481 
o/ma7 
0.1600 
0.4190 
0.1623 
0.4219 

‘EE 
22.9195 

9.0452 

“9:::: 

a.4724 
_-- 

12.2946 

1&S&; 
_ _ _ 

a.357; 6.7635 

0.3822 GG 

0.3870 9.9043 
_ _ _ _ _ - 

0.491; 

o&3; 

0.5296 
_ - - 

5.0821 

;.&a; 

<.2-z 
_ - - 

0.7619 

0.8038 

0.8118 
_ _ _ 

3.4813 
_ - _ 
4.6390 
_ _ _ 
4.7270 
_ - _ 

::E2 
1.3687 
1.3827 
1.3693 

2.1827 

1E 
2.7683 

0.2913 
0.1499 
0.4128 
0.1614 
0.4223 

0.2&G a.5581 

;.3024 lG69 
_ _ _ _ _ - 

0.361; 

0.3856 
_ - - 

6.8315 

9.7256 
_ _ _ 

0.4979 
_ - _ 
OS282 
- - r 

5.1335 

;.1292 
_ - _ 

;.7;22 

0.8118 
_ _ _ 

3.5185 
- - _ 
4.6691 
_ _ _ 

1.0982 

SE 

0.2931 

?l::TZ 

0.2&9 
- - _ 

0.3632 
- - _ 

0.5-30; 
- _ _ 

0.7;60 

15.6097 
a.5679 

a.5935 
- - _ 

6.8597 
_ - _ 

5.1547 
- - _ 

3.5339 

1.1032 

0.2939 

mm_ 
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The use of the 
Example 3.1. 

characteristics : 

LOUIS WEINBERG [J. F. I. 

tables is illustrated in the example below. 
Determine a ladder network that has the following 

1. Low-pass filter with a peak-to-peak ripple in the squared mag- 
nitude characteristic not exceeding 15 per cent of the maximum value. 

2. A cutoff radian frequency wc = 5000 (the bandwidth being 
measured at the minimum value of the ripple). 

3. Resistance terminations at both ends with the load and input 
resistances equal to 1000 ohms and 500 ohms, respectively. 

4. The response is to be down at least 50 db at o = 4w,. 
5. The network is to be driven by a current source. 

We first calculate the required value of e2. At a trough of the ripple 
we have 

1 
1 + E2Tn2(1) 

= 1 - 0.15 = 0.85 

E2 = 0.176. 

Since this value lies between 4-db and 1-db ripple we must use Table IV. 
Now we calculate rz. At w = 4 

1 
1 + H%(4) = 1o-6 

1 + e2Pn(4) = 106 

e2P,(4) g 105 

T’,(4) = 753. 

Now using Eq. 5, we have 

(w + GzY)n + (w + &F-X)-. 
2 

= 753 
w-4 

(w + 21W2-l)+_4 s 1506 

(7.88)n = 1506 

n = 3.58. 

Therefore n = 4 will be more than satisfactory. 
Since the specification calls for r = +, we use Table IV(e). Since 

the input is a current source the unprimed values are used. Removing 

the normalization by multiplying all C’s by & = 5 x’ 1o6, all L’s by 
c 
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R 1 -=- and the resistances by R = 1000, we obtain the final element 
4 5’ 
values 

5 x’ = 106 Cl 0.363 x 10-G 

3 Lz = 0.227 

1 c 
5 x 106 

3 = 0.498 x 10-C 

; Lq = 0.155 

1000 R, = 500. 

The network is shown in Fig. 8. 

1, - 0.155 0.227 

0 

500 Ez 

1000 

0 h ” 
FIG. 8. Network obtained in Example 3.1 (values in ohms, henrys, and farads). 

(To be continued) 
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