Food composition is fundamental to the cross-cutting initiative on biodiversity for food and nutrition

Barbara Burlingame a,*, Ruth Charrondiere a, Beatrice Mouille b

A R T I C L E I N F O

Article history:
Received 30 March 2009
Received in revised form 28 May 2009
Accepted 28 May 2009

Keywords:
Food composition databases
Data compilation
Food database management
Cultivar influence on nutrient intake
Varieties, cultivars, landraces
Biodiversity
Nutrition
Agriculture
Cross-cutting initiative on biodiversity for food and nutrition
Bioversity International
FAO
Convention on Biological Diversity (CBD)
Food composition

A B S T R A C T

The usefulness of food composition data at the level of the genetic resource (i.e. taxonomic level below species) is becoming increasingly acknowledged. Recent research has provided data to confirm the micronutrient superiority of some lesser-known cultivars and wild varieties over other, more extensively utilized cultivars. Sweet potato cultivars have been shown to differ in their carotenoid content by two orders of magnitude or more; protein content of rice varieties can range from 5 to 13%; provitamin-A carotenoid content of bananas can be less than 1 mcg/100 g for some cultivars to as high as 8500 mcg/100 g for other cultivars. Intake of one variety rather than another can be the difference between micronutrient deficiency and micronutrient adequacy. These data are important for the sectors of health, agriculture, trade and the environment. The importance of nutrition is now recognized by the Convention on Biological Diversity (CBD) and the Commission on Genetic Resources for Food and Agriculture. At the request of the CBD, FAO is leading the “Cross-cutting initiative on biodiversity for food and nutrition,” in collaboration with Bioversity International, and developing or improving compositional databases will form a significant part of the initiative. Once the data are prepared and compiled, they can be used in practically every domain of nutrition: nutrition education, community nutrition, nutrition interventions, food emergencies, nutritional labelling, food consumption surveys, to name but a few. These data should be “mainstreamed” into national and regional food composition databases giving recognition and importance to cultivars, varieties and breeds as foods in their own right.

© 2009 Elsevier Inc. All rights reserved.

Contents

1. Introduction .. 361
2. Differences in nutrient values for the same species and application of results .. 362
 2.1. Rice .. 362
 2.2. Root and tuber crops .. 362
 2.3. Fruits—mango and bananas ... 363
3. Food biodiversity as an ecosystem service .. 363
4. Conclusions .. 363
References .. 364

1. Introduction

Over 7000 plant species have been cultivated for food, yet it is estimated that 90% of the world’s dietary energy supply is obtained from only 30 species (FAO, 1997). Thousands of species, and many more varieties, fall into a category defined as underutilized or neglected crops. These crops are marginalized by both agriculture and nutrition researchers (Global Forum for Underutilized Species, 2009). Economics and production or trade volumes are among the driving forces for monoculture agriculture. In food composition work, most protocols for sampling, analyzing and compiling data use composite food samples, masking the nutrient variability inherent within and among species.

Many factors are known to affect the nutrient content of foods, including climate (Rodriguez-Amaya et al., 2008), geography and geochemistry (Nordbotten et al., 2000; Nikkarinen and Mertanen, 2000; Nikkarinen and Mertanen, 2000).
2004; Wall, 2006), agricultural practices such as fertilizer use (Mercadante and Rodriguez-Amaya, 1991), stage of maturity (Rio Segade et al., 2008) the growth period (Huang et al., 2007; Rodriguez-Amaya et al., 2008) and variation due to differences in nutrient composition of foods below the level of species, i.e. subspecies, variety, cultivar or breed (Toledo and Burlingame, 2006a). In the past, generic food composition data were considered sufficient for most purposes and were regarded as high-quality data when they represented “year-round, nation-wide means” (Greenfield and Southgate, 2003). This approach intentionally obscured variations in composition that might have been systematic and notable. More recently, the importance of differentiating foods at the level of species and below has been documented through compositional research (Toledo and Burlingame, 2006b).

Although important for all food composition work, using quality control materials and reporting the results are vital for work related to biodiversity, so that variability due to methodology may be separated from biological variability. And even more importantly, the minimum number of independent samples analyzed should be greater than in other food composition projects in order to separate differences among varieties versus inherent differences within varieties.

From the nutrition perspective, a myriad of different food species, and varieties within species, are consumed in traditional diets, providing energy and nutrients, and thus contributing to food and nutrition security (Toledo and Burlingame, 2006a). Due to the lack of professional attention to biodiversity and underutilized foods, large gaps exist in our knowledge of the composition and the dietary contribution of these foods to human nutrition. This has been an area neglected, or regarded as unimportant, by compilers of food composition databases and investigators involved in designing and executing food consumption surveys (Burlingame, 2004). Therefore, the real and potential contribution of these foods to nutrition and health improvements cannot be judged. Data on nutrients, bioactive non-nutrients and antinutrients are lacking for many food species (Kuhnlein, 2003; Rodriguez-Amaya et al., 2008), and are even fewer for varieties, cultivar, and breeds within species. On the dietary consumption side, there are often errors in accurately recording generic foods consumed, especially of fruits, fish, vegetable and other non-staples (Pomerleau et al., 2003), and considerable lack of attention to the identification of below-species level (Kennedy and Burlingame, 2003).

Data on the nutrient content of foods at the level of the genetic resource are important for the sectors of health, agriculture, trade and the environment. In agriculture, information on cultivar-specific composition can be used in breeding programs to enhance the nutrient content of more commonly used varieties of the same species, eliminating the need for transgenic modifications and their associated difficulties (Ramessar et al., 2009). In trade, absence of cultivar-specific food composition data can constitute a technical barrier to trade, as most potential export markets for unique species and cultivars require or encourage nutrient composition data for labels and point-of-purchase materials. And for the environment sector, knowledge of nutrients and other bioactive components helps to reassess the value of neglected varieties, encouraging their sustainable use (Toledo and Burlingame, 2006a; CBD, 2004).

The Expert Consultation on Nutrition Indicators for Biodiversity held in October 2007 (FAO, 2008) developed a food composition indicator for biodiversity and nutrition to measure the progress that has been made in availability of compositional data on biodiversity by counting the number of foods with a sufficiently detailed description (mostly below-species level: subspecies, variety, cultivar, and breed) and with at least one value for a nutrient or other bioactive component. The indicator will be based on well-documented literature, including national, regional or international food composition databases and scientific literature. A regular reporting on the progress will be carried out through the INFOODS (2008) Regional Data Centre Coordinators, FAO and others. Another expert consultation meeting is planned for 2009 to develop a food consumption indicator for biodiversity and nutrition.

All these compositional data-related activities, along with dissemination in many forms and mainstreaming in the health, agriculture and environments sectors, form a substantial part of the cross-cutting initiative on biodiversity for food and nutrition.

2. Differences in nutrient values for the same species and application of results

The compositional differences among varieties or cultivars can be very significant for macronutrients, micronutrients and bioactive non-nutrients. Table 1 shows some selected foods and components demonstrating the range of nutrient values. It is generally thought that macronutrients vary only insignificantly within the same species (Greenfield and Southgate, 2003, p. 74). However, data show that this is not always the case. Among rice varieties, protein content can vary from 5.6% to 14.6%, representing a highly significant difference, not only just statistically, but also nutritionally. For many crops within the same species micronutrient contents of different varieties can have much wider ranges. Varietal differences in beta-carotene can vary by three orders of magnitude or more. For example, some banana varieties provide less than 1 mcg/100 g of beta-carotene, while others can provide as much as 8500 mcg/100 g. These differences in nutrients among cultivars have a major impact on nutrient intake estimations, to the extent that intake of one variety versus another can be the difference between micronutrient deficiency and micronutrient adequacy. For this reason, the cross-cutting initiative is addressing both composition and consumption.

2.1. Rice

The International Rice Commission (IRC) has recognized differences in the composition of rice varieties and their contributions to nutrient intakes. During the last two sessions of the IRC, the following was reported (FAO, 2002; Kennedy et al., 2003):

- Wild species and intraspecies biodiversity play key roles in global food security.
- Different varieties demonstrate statistically different nutrient contents.
- Acquiring nutrient data on existing biodiversity needs to be a prerequisite for decision-making in GMO work.
- Nutrient content should be included among criteria in cultivar promotion.

2.2. Root and tuber crops

Although a wide range of tuber crops are grown worldwide, only five species account for the majority of the total world production: potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatas), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma, Xanthosoma spp.) (O’Hair and Maynard, 2003; Maynard and O’Hair, 2003). Root and tuber crops are staple foods in many countries and are considered a good and inexpensive source of energy and carbohydrate in the diets. Recent studies on varieties of cassava, sweet potato and yam show that there are great differences in nutrient content within species, and that some varieties can provide a substantial contribution to...
nutritional requirements, not only for energy but also for protein and micronutrients (see Table 1). It should be noted that antinutrients, e.g. cyanogenic compounds in cassava, also vary considerably among varieties within the same species (Hidayat et al., 2000).

For the sweet potato (Ipomoea batatas), nutrient content can vary greatly depending on the cultivar (see Table 1). As an example, orange-fleshed sweet potatoes are exceptional sources of provitamin A and play a significant role in preventing vitamin A deficiency (Van Jaarsveld et al., 2005, 2006; Kidmose et al., 2007). Huang et al. (1999) reported Pacific Island sweet potato varietal differences in alpha- and beta-carotene of nearly two orders of magnitude. This same report showed that the low-carotene sweet potatoes were much more likely to be promoted to farmers by the agriculture extension workers, rather than the high carotene varieties, mainly for their greater yield and better disease resistance.

2.3. Fruits—mango and bananas

Sixty-nine Mangifera species and several hundred cultivars have been identified, most of which belong to the species Mangifera indica (Rao and Bhag, 2002). Colour gives evidence of the nutritionally significant differences in beta-carotene content of different varieties. However, food composition tables and databases generally show only one or a few entries for mango; e.g. the Indian food composition table (Gopalan et al., 1982) reports only “Ripe Mango” while nearly one thousand local varieties have been characterized.

An important initiative has been undertaken by researchers in Micronesia to document the carotenoid composition of traditional banana species and varieties. Eighty were found to have beta-carotene levels greater than 525 mcg/100 g edible portion, which is 25 times the beta-carotene level reported for varieties analyzed in the United States and England. One variety contains more than 8000 mcg/100 g. Were this underutilized food resource to be used, it could supply much of the daily vitamin A requirements for children and adults (Engberger et al., 2003a) in the four island states of the Federated States of Micronesia where vitamin A deficiency persists as a significant problem (Centers for Disease Control and Prevention, 2001).

3. Food biodiversity as an ecosystem service

The types and amounts of food produced in rice-based aquatic ecosystems (other than rice itself) are generally underestimated, undervalued or not recorded in official statistics. They include finfish, shellfish, other aquatic animals, and leafy green vegetables. These organisms supply nutrients to the diet that are limited or absent in rice, such as calcium, iron, zinc, vitamin A, high-quality protein and amino acids, fatty acids and other nutrients.

Recent studies in Cambodia, China, Laos and Vietnam provided information and data on aquatic biodiversity and the contribution these resources make to rural livelihoods, food security and nutrition. These studies have documented the presence of 145 finfish species, 11 crustaceans, 15 molluscs, 13 reptiles, 11 amphibians, 11 insects and 37 plants collected from the rice fields and utilized by rural people during one season (Halwart and Bartley, 2005). A recent consumption study in Laos (FAO/LARRREC, 2007) has been undertaken in an attempt to create a suitable methodology to collect data on fish catch and consumption; it showed that rice fields are the source of about two-thirds of all aquatic organisms consumed by rural households. The official Lao Government data state that the annual fish consumption per person is about 25 kg/cap/year, while this study showed an annual fish consumption of nearly 50 kg/cap/year and of other aquatic organisms of nearly 100 kg/cap/year. However, compositional data of these fish species and other aquatic organisms are limited or absent altogether. Thus, the nutritional importance of biodiversity from rice-based ecosystems cannot as yet be properly assessed (Halwart, 2006).

In many parts of the world, with efforts to intensify agricultural production, and because of other ecosystem pressures, diversity is decreasing dramatically and eliminating essential sources of food and nutrients for rural people.

4. Conclusions

From the viewpoint of the environment sector, the ultimate goal of the cross-cutting initiative is the conservation and sustainable use of biodiversity. From the viewpoint of the nutrition
sector (both health and agriculture), the ultimate goal of the initiative is food and nutrition security. In combination, the synergies of different sectors can and should lead to healthier populations and healthier ecosystems.

Food composition activities continue to improve the evidence base, which in turn gives value to ecosystems, the food species they contain, and the within-species diversity. In food- and nutrition-insecure populations, intake of one variety rather than another can be the difference between micronutrient deficiency and micro-nutrient adequacy. Still more effort and resources are needed to analyze, compile and disseminate data on the nutrient composition of wild, underutilized, and under-appreciated food biodiversity. The availability of these data will assist countries to promote local species and varieties and to value and maintain the ecosystems that produce them. This is the essence of the cross-cutting initiative on biodiversity for food and nutrition.

References

