# Difração de raios X aplicada à caracterização de bens de patrimônio cultural

Rafael Henrique Lazzari Garcia rlgarcia@ipen.br Centro do Combustível Nuclear



# Conteúdo

- Introdução
- Materiais Cristalinos
- Raios X
- Difração de raios X
- Identificação e quantificação de fases
- Método de Rietveld
- Exemplos em bens de patrimônio cultural

### Difração de raios X (DRX)

Técnica analítica que permite a obtenção de um padrão de difração de um material, a partir do espalhamento coerente de raio X por átomos organizados.





#### **Resultados obtidos por DRX**

- Identificação de fases cristalinas
- Quantificação das fases cristalinas e amorfa
- Determinação de estrutura cristalina
- Tamanho cristalito
- Microdeformação
- Tensão residual
- Textura



## Por que utilizar DRX para caracterização de materiais de patrimônio cultural?

- Caracterização precisa e de mais propriedades dos materiais.
- Interpretação dos processos de manufatura, transformação e uso desses materiais no passado humano.
- Estabelecer bases para interpretação e contextualização de materiais de patrimônio cultural que não seriam possíveis de outro modo.
- Diagnóstico do estado e processo de degradação.
- Otimização de processos de conservação desses materiais.
- A DRX é o método mais simples, barato e rápido para identificar fases cristalinas. "Não destrutivo".



## Que respostas a DRX pode trazer?

- Identificação do material (fases cristalinas ≠ composição elementar)
  - Matérias primas
  - Origem
  - Falsificação
  - Cerâmica, metal, produtos de corrosão
  - Contaminações
- Quanto de cada material numa mistura (quantificação de fases)
  - Processo de produção
  - Estado e cinética de degradação
- Propriedades de microestrutura do material
  - Processo de produção
  - Uso e finalidade
  - Estado de degradação



• Materiais cristalinos x materiais amorfos





• A grande maioria da matéria sólida é cristalina (cerâmicas, metais, polímeros, proteínas)



ceramicanorio.com







widestock.com.br



AMCP Photo

mineralman.net



Crystal structure of the Drosophila Period (dPER) dimer - esrf.eu



• Átomos de Au



Michael Green, TopoMetrix



- Sistemas cristalinos (7)
  - Reticulados de Bravais (14)
- Classe de simetria (32)
  - Grupos espaciais (230)



Table 11: Bravais lattices in three dimensions



### Grupos espaciais











• Defeitos pontuais, lineares...





Callister

• Materiais monocristalinos x policristalinos



Monocristal





Calister

Policristal



- Planos cristalinos
  - Índices de Miller
    - (100)
    - (001)
    - (110)
    - (111)
    - (<del>1</del>10)
    - (210)



#### • Planos cristalinos





(b)

FIGURE 3.25 (*a*) Reduced-sphere BCC unit cell with (110) plane. (*b*) Atomic packing of a BCC (110) plane. Corresponding atom positions from (*a*) are indicated.

(a)

 $\mathbf{x}$ 

Callister

• Planos cristalinos





(b)

**FIGURE 3.24** (*a*) Reducedsphere FCC unit cell with (110) plane. (*b*) Atomic packing of an FCC (110) plane. Corresponding atom positions from (*a*) are indicated.

Callister

THE GEOMETRY OF CRYSTALS



#### • Planos cristalinos





Furlan

| Sistema      | Translações<br>axiais | Ângulos<br>axiais                                       | d <sub>hkl</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------|-----------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cúbico       | a = b = c             | $\alpha = \beta = \gamma = 90^{\circ}$                  | $a(h^2+k^2+l^2)^{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Tetragonal   | $a = b \neq c$        | $\alpha = \beta = \gamma = 90^{\circ}$                  | $\left[\left(h^{2}/a^{2}\right)+\left(k^{2}/a^{2}\right)+\left(l^{2}/c^{2}\right)\right]^{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Ortorrômbico | $a \neq b \neq c$     | $\alpha = \beta = \gamma = 90^{\circ}$                  | $\left[\left({{{{{{h}}^{2}}/{{{a}}^{2}}}}  ight)\!+\!\left({{{{k}}^{2}}/{{{b}}^{2}}}  ight)\!+\!\left({{{{l}}^{2}}/{{{c}}^{2}}}  ight)\!\right]^{\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Hexagonal    | $a = b \neq c$        | $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$     | $\left[ \left( \frac{4}{3a^2} + \frac{h^2 + k^2 + hk}{2} + \frac{h^2}{c^2} \right) \right]^{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Romboédrico  | a = b = c             | $\alpha = \beta = \gamma \neq 90^{\circ} < 120^{\circ}$ | $a\left[\frac{\left(h^2+k^2+l^2\right)sen^2\alpha+2\left(hk+hl+kl\right)\left(\cos^2\alpha-\cos\alpha\right)}{1+2\cos^3\alpha-3\cos^2\alpha}\right]^{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Monoclínico  | $a \neq b \neq c$     | $\alpha = \gamma = 90^\circ, \beta > 90^\circ$          | $a \left[ \frac{\left( \frac{h^2}{a^2} \right) + \left( \frac{l^2}{c^2} \right) - \left( \frac{2hl}{ac} \right) \cos \beta}{sen^2 \beta} + \frac{k^2}{b^2} \right]^{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Triclínico   | $a \neq b \neq c$     | $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$         | $\begin{bmatrix} \frac{h}{a} \begin{vmatrix} h/a & \cos\gamma & \cos\beta \\ k/b & 1 & \cos\alpha \\ l/c & \cos\alpha & 1 \end{vmatrix} + \frac{k}{b} \begin{vmatrix} 1 & h/a & \cos\beta \\ \cos\gamma & k/b & \cos\alpha \\ \cos\beta & l/c & 1 \end{vmatrix} + \frac{l}{c} \begin{vmatrix} 1 & \cos\gamma & h/a \\ \cos\gamma & 1 & k/b \\ \cos\beta & \cos\alpha & l/c \end{vmatrix} = \begin{bmatrix} \frac{1}{c} \\ \frac{1}{c$ |  |

- Descobertos em 1895 por Röntgen (Nobel em 1901)
- 1896: cerca de 50 livros e 1000 artigos sobre o assunto









University of Wurzburg



University of Wurzburg





#### 1912 – Laue publica a descoberta da difração de raios X (Nobel em 1914)



Padrão de difração do sulfato de cobre. Laue, 1912



Padrão de difração do ZnS. Laue





 1913 - Bragg divulga modelo que permite compreender condições para que ocorra difração, e resolve a primeira estrutura cristalina, NaCl. (Nobel em 1915)



Célula unitária de cloreto de sódio, Bragg 1913

#### Espectro eletromagnético



• Geração de raios X



www2.rgu.ac.uk

#### Generic Energy Level Diagram







hyperphysics.phy-astr.gsu.edu



#### • Geração de raios X



Anode (cobalt target) Cooling Cooling water water in out 16116 Beryllium windows. DO NOT TOUCH X-rays 1111 HHH IIIII Vacuum 20-50 kV 1111 Electron beam potential Cooling water jacket 1111 1111 1011 1111 uu Internal electrical contacts: Housing contact at ground Filament contact at -20 to -50 kV Glass insulator

minerva.union.edu







• Geração de raios X

| Characteristics of anode materials |                       |                                                   |                                    |  |  |
|------------------------------------|-----------------------|---------------------------------------------------|------------------------------------|--|--|
| Material Wavelength Ka             |                       | Applications                                      | Fluorescence radiation from sample |  |  |
| Mo                                 | λ = 0,70930 Α         | Heavily Absorbing Samples, High Penetration Depth | Y, Sr, Rb                          |  |  |
| Cu                                 | $\lambda = 1,54056$ A | Standard Powder Analysis and HR XRD               | Co, Fe, Mn                         |  |  |
| Со                                 | $\lambda = 1,78897$ A | Ferrogenious Samples and/or Stress Analysis       | Mn, Cr, V                          |  |  |
| Fe                                 | $\lambda = 1,93604$ A | Minerals                                          | Cr, V, Ti                          |  |  |
| Cr                                 | $\lambda = 2,28970$ A | Large Lattice Constants and/or Stress Analysis    | Ti, Sc, Ca                         |  |  |

www.panalytical.com



• Espalhamento de ondas

- Núcleo não é afetado
- Quanto mais leve o elemento, menor é o espalhamento
- Gases e líquidos?



#### Callister

# **Raios X**

- Ondas
  - construtivas
  - destrutivas



# Difração de Raios X

• Lei de Bragg



Callister

### Difração de Raios X


#### Aspectos de influência no difratograma

- Composição elementar
- Fases cristalinas presentes
- Microestrutura e aspecto da amostra
- Condições instumentais
  - Geometria
  - Alinhamento
  - Fendas
  - Tubo / radiação
  - Corrente e tensão
    - · •



#### Aspectos de influência no difratograma

(considerando substâncias de mesma composição, mesmas fases cristalinas e analisadas na mesma condição instrumental)

#### • Intensidade dos picos

- Granulometria inadequada
- Orientação preferencial
- Rugosidade da superfície
- Cristalinidade e tamanho dos cristalitos
- Temperatura análise

#### Posição dos picos

- Posicionamento da amostra
- Tensão residual (parâmetro de rede)

#### • Forma e alargamento dos picos

- Cristalinidade e tamanho dos cristalitos
- Microtensão
- Temperatura análise



#### Posicionamento amostra

• Deslocamento 2teta e assimetria



## **Rugosidade superfície**

• Criação de sombras na superfície da amostra



U. S. Geological Survey Open-File Report 01-041



grasshopper3d.com



### Alargamento por tamanho de cristalito

- Em geral, maior responsável por alargamento
- Diminui intensidade e aumenta largura dos picos, de acordo com função lorentziana.





### Alargamento por tamanho de cristalito

• Não é sinônimo de baixa cristalinidade!



JA Scholl et al. Nature



Bragg Brentano THETA: THETA Setup





Scintag

• Bragg-Brentano: observação de planos paralelos à superfície



• Bragg-Brentano: observação de planos paralelos à superfície



- Bragg-Brentano: observação de planos paralelos à superfície
  - Quanto menor a aleatoriedade da orientação dos cristalitos, maior o desvio da intensidade dos planos em relação ao padrão
  - Preparação de amostra







- EBSD





Outoud

Figure 10 from S M Na and A B Flatau 2012 Smart Mater. Struct. 21 055024



#### Fine particle size specimen case



#### Fine particle size specimen case



#### Fine particle size specimen case



Rigaku

#### Fine particle size specimen case



#### When some large particle exists



Rigaku

#### When some large particle exists







## Equipamento

#### Laboratório



www.panalytical.com





www.rigaku.com

# Equipamento

Portátil







 Aumentar o tempo por passo = maior intensidade

 Diminuir o tamanho do passo = maior resolução

- Configurações típicas:
  - Identificação: passo de 0,04º graus e 2s por passo
  - Rietveld: passo de 0,02º e 10s por passo

### Efeito fendas



• Detectores lineares e de área



Rigaku



Bruker

• Detector cintilação (0D)





• Detector linear (1D)



Panalytical

#### • Detector de área (2D)



• Tubos de alta potência





GeniX3D Cu High Flux -Xenocs





Excillum liquid Ga tube

• Síncroton





### Identificação de fases

- Base de dados PDF (powder diffraction data)
- Contém mais de 300.000 materiais catalogados
- Software ajuda a determinar fases presentes de acordo com restrições fornecidas pelo usuário
- Vários picos são necessários para identificação de um material
- Fichas de diversas qualidades

| Restrictions        | ? 🔀                      | Restr                 | Restrictions     |     |         |       |       |              |                  |                   |        |       | ? 🔀      |       |         |        |       |        |        |      |    |
|---------------------|--------------------------|-----------------------|------------------|-----|---------|-------|-------|--------------|------------------|-------------------|--------|-------|----------|-------|---------|--------|-------|--------|--------|------|----|
| Materials Sub-Files | attice   Space Group   ( | Colour   Must Include | Must not Include |     | Mate    | ials  | Sub-F | iles         | Lattic           | e   S             | bace ( | Group | Colo     | ur M  | ust Ind | lude   | Mus   | st not | includ | le   |    |
|                     | o n llou                 |                       | 1                |     | Н       |       | St    | andar<br>C A | ds mu<br>It leas | ist incl<br>t one | ude -  | eele  | cted els | mente |         |        |       |        |        |      | He |
| Sub-Files           | Quality 17419            |                       |                  |     | IJ      | Be    |       |              | Only s           | electe            | d elen | ents  |          | monto |         | В      | C     | Ň      | 0      | F    | Ne |
| Inorganic           | Organic                  |                       | Na               | Mg  | Formula |       |       |              |                  |                   |        | Si    | P        | s     | а       | Ar     |       |        |        |      |    |
|                     |                          |                       |                  |     | к       | Ca    | Sc    | Ti           | V                | Cr                | Mn     | Fe    | Co N     | Cu    | Zn      | Ga     | Ge    | As     | Se     | Br   | Kr |
| Detergent           | Common Phases            | Corrosives            | Zeolites         | 1   | Rb      | Sr    | Y     | Zr           | Nb               | Mo                | Tc     | Ru    | Rh P     | A     | Cd      | In     | Sn    | Sb     | Te     | 1    | Xe |
| Forensic            | Educational              | Cements               | Superconductors  |     |         |       |       | 10.22        |                  |                   |        |       |          |       | 1       |        |       | 100    |        | 100  |    |
| Explosives          | Polymers                 | N.B.S.                | Pharmaceutical   |     | _Cs     | Ba    | La    | Hf           | Ta               | W                 | Re     | Os    | Ir Pi    | Au    | Hg      | Π      | Pb    | Bi     | Po     | At   | Rn |
| User Database       | Ceramic                  | Pigment/Dye           | ICSD Pattern     | 1   | Fr      | Ra    | Ac    | c            | e P              | r N               | d Prr  | Sn    | n Eu     | Gd    | ть      | Dy   H | -lo   | Er   T | m   Y  | ъ  ь | u  |
|                     | Clea                     | ar All                |                  |     | E       | Clear |       | ]            | h P              | all               | I Np   | Pu    | u Am     | Cm    | Bk      | Cf E   | Es    | Fm M   | N bi   | lo L | r  |
| Clea                | ar All OK                | Cancelar              | Aplicar Aji      | uda |         |       | 1     | Cle          | ar All           |                   | (      | Ж     |          | Canc  | elar    |        | Aplic | ar     | 1_     | Ąju  | da |

## Identificação de fases

| Crystallo | ographica Search-Match -     | [SearchMatch1]          |                      |                                                     |                            |                 |                                         |                                               |                | •••   |
|-----------|------------------------------|-------------------------|----------------------|-----------------------------------------------------|----------------------------|-----------------|-----------------------------------------|-----------------------------------------------|----------------|-------|
| File Edit | View Search-Match Peak L     | list Report Settings    | Tools Graph Window H | ielp                                                |                            |                 |                                         |                                               |                | _ 5   |
| ) 😂 日     | x BB 5 ? N?                  | 6 6 6 8                 | 🗠 💌 🔊 🕷 🚾            |                                                     |                            |                 |                                         |                                               |                |       |
| 🗒 Search  | Match   🗽 Peak List   🗞 Ci   | ard Retrieval   🖫 Repor | t 🛛 🖄 🛋              |                                                     | 🛱 🕂 XY                     |                 |                                         |                                               |                |       |
| Matched M | laterials                    |                         |                      |                                                     |                            |                 |                                         |                                               |                |       |
|           |                              |                         |                      |                                                     |                            |                 |                                         |                                               |                |       |
| POT INO.  | IName                        | Fomula                  | 10000                | 1                                                   |                            | 1               |                                         |                                               | : :            |       |
|           |                              |                         |                      |                                                     | ground                     | 1               | 1                                       |                                               |                |       |
|           |                              |                         |                      | i i i i i i i i i i i i i i i i i i i               |                            |                 |                                         |                                               |                |       |
|           |                              |                         | 8000                 | aaaa <mark>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</mark> | ·····                      |                 | ·····.                                  |                                               |                |       |
| 1         | =0                           | ر                       |                      |                                                     |                            |                 |                                         |                                               |                |       |
| Candidate | Materials                    | 🏠 🖾 և 🔛                 |                      |                                                     |                            |                 |                                         |                                               |                |       |
| D-K Nie   | News                         | East de                 |                      | un <mark>n</mark> ann an Sanna a' Sann              | uuuuuiuuuu                 |                 | unununun ju                             |                                               |                |       |
| POLINO.   | 5 73 Cabalt Zine Sulfide     | Zo0 975 Co0 025 S       |                      |                                                     |                            |                 |                                         |                                               |                |       |
| 75.174    | 72 Vttrium Cenium Ovide      | Y 10 Ca 90 01 95        |                      |                                                     |                            | 1               | 1                                       |                                               | :              |       |
| 75-346    | 72 Lanthanum Zimonium        | La 5 7r 5 01 75         | 4000                 |                                                     |                            |                 |                                         |                                               |                |       |
| 75-166    | 71 Dysprosium Cerium Oxi     | Dv 30 Ce 70 O1 85       |                      | 4                                                   |                            | 1               |                                         |                                               |                |       |
| 27-843    | 70 Neodymium Antimony        | Nd6 Sb2 014             |                      |                                                     |                            |                 | - B                                     | Î.                                            |                |       |
| 50-675    | 70 Cerium Antimony Oxide     | Ce Sb O3                | 2000                 | an a            | uuu <mark>nu j</mark> uuuu |                 | ter | nananan <mark>ana</mark>                      | [              |       |
| Ca 845894 | 67 Cerianite-(Ce), svn       | Ce 02                   |                      |                                                     |                            |                 |                                         | e l'É                                         |                | i l   |
| 51-231    | 67 Calcium Cerium Oxide      | Ce0.9 Ca0.1 O1.9        |                      |                                                     |                            |                 |                                         |                                               |                |       |
| 65-560    | 8 66 Copper Gallium Selenide | Ga Cu Se2               | 1200                 | 24 204 Carlonite (Callonia                          |                            | A               |                                         | <u>, , , , , , , , , , , , , , , , , , , </u> | AL DA          | AA    |
| 75-167    | 66 Dysprosium Cerium Oxi     | . Dy.40 Ce.60 O1.80     |                      | - 34-334 Censime (Ce), syn                          |                            |                 | -                                       |                                               |                |       |
| 89-843    | 6 64 Cerium Oxide            | Ce O2                   | 1000                 |                                                     |                            |                 |                                         |                                               |                |       |
| 65-297    | 75 63 Cerium Oxide           | Ce 02                   |                      |                                                     |                            | 1               |                                         |                                               |                |       |
| 4-593     | 63 Cerianite-(Ce), syn       | Ce O2                   |                      |                                                     |                            |                 |                                         |                                               |                |       |
| 43-100    | 2 62 Cerianite-(Ce), syn     | Ce 02                   | 800                  |                                                     |                            |                 |                                         |                                               |                |       |
| 75-85     | 62 Neodymium Uranium O       | . Nd U3 09.51           |                      |                                                     |                            | 1               | 1                                       |                                               |                |       |
| 75-456    | 62 Uranium Oxide             | U 02.34                 | 600                  | อออนสารการการสุดออกการการการการสาร                  | nanna þanna                | anananana (anan | amananan (a                             |                                               |                |       |
| 78-405    | 61 Europium Protactinium     | . Eu.5 Pa.5 O2          |                      | 1 1 1                                               |                            |                 | 1                                       |                                               |                |       |
| 78-250    | 0 60 Silicon                 | Si                      | 100 m                |                                                     |                            |                 |                                         |                                               |                |       |
| 75-164    | 60 Dysprosium Cerium Oxi     | . Dy.10 Ce.90 O1.95     | 400                  |                                                     |                            |                 |                                         |                                               |                |       |
| 22-130    | 8 60 Samarium Tungsten O     | Sm6 W 012               |                      |                                                     |                            |                 |                                         |                                               |                |       |
| 75-165    | 60 Dysprosium Cerium Oxi     | . Dy.20 Ce.80 O1.90     | 200                  | nand <mark>analannal</mark> annalann                | and and anna               |                 |                                         |                                               |                |       |
| 65-426    | 1 59 Thulium Sulfide         | Tm S                    | No.                  |                                                     |                            | 56 Base         | 1 .                                     | 1                                             |                |       |
| 65-458    | 6 59 Nickel Zinc Sulfide     | Ni \$33.3 Zn32.3        |                      |                                                     | 1.10                       | 1 1 2           |                                         | 1 I I                                         | 6 6            | le l  |
| 65-319    | 5 59 Beryllium Copper        | Be Cu                   | 0                    |                                                     | - nj                       | a A Aj          | • • i                                   |                                               | i <b>~ 1</b> i | **    |
| 89-215    | 7 58 Zinc Sulfide            | Zn S                    | 20                   | 40                                                  | 60                         | 80              | 100                                     | 1.                                            | 20 14          | 0 160 |
| 1 89-220  | 1 58 Zine Sulfide            | 7n S                    |                      |                                                     |                            |                 |                                         |                                               |                |       |

#### Identificação de fases



## Quantificação de fases



#### Dr. Rietveld, 1987 <sup>(3)</sup> julho de 2016



### Quantificação de fases

- 1919 A.W.Hull
  - "Every crystalline substance gives a pattern; the same substance always gives the same pattern; and in a mixture of substances each produces its pattern independently of the others".
- Parâmetros cristalográficos e até quantitativos já eram realizados por integração de picos individuais
  - Problemas com sobreposição de picos
- 1967 Rietveld divulga resultados considerando todo o difratograma, utilizando trabalho computacional



## Método de Rietveld

 Minimização das somas das diferenças do difratograma calculado e do experimental ao quadrado (mínimos quadrados)

$$M = \sum_{i} w_{i} |y_{io} - y_{ic}|^{2}$$

Residual

Μ

W

Yio

• Parâmetro a ser minimizado. Idealmente, zero.

- Contribuição do desvio padrão e background.
- Intensidade medida para cada passo de 2teta

• Intensidade calculada


$M = \sum W_i |y_{io} - y_{ic}|^2$ 

- Fator de ponderação relacionado ao desvio padrão da intensidade e background.
- Evita que pequenos picos sejam "esquecidos"
- Quanto maior o background, menor o Wi

 $(w_i)^{-1} = \sigma_i^2 = \sigma_{ip}^2 + \sigma_{ib}^2$ 

Intensidade background



 $M = \sum w_i |y_{io} - y_{ic}|^2$ 

#### • Intensidade calculada para cada fase

- Resulta dos cálculos das de todas as contribuições do modelo para a intensidade do difratograma em determinado 2teta
- Gaussinana: Microtensão / Lorentziana: Tamanho cristalito

 $y_{ic} = s \sum m_k L_k |F_k|^2 G(\Delta \theta_{ik}) + y_{ib}$ 



| F<sub>k</sub> |

$$y_{ic} = s \sum_{k} m_{k} L_{k} \left| \mathbf{F}_{k} \right|^{2} G(\Delta \theta_{ik}) + y_{ik}$$

 $M = \sum w_i |y_{io} - y_{ic}|^2$ 

• Fator de estrutura

 Depende das posições de cada átomo dentro de cada plano de índice hkl

 $F_{hkl} = \sum_{i} N_{j} f_{j} \exp\left[2\pi i \left(hx_{j} + ky_{j} + lz_{j}\right)\right] \exp\left(-B\sin^{2}\frac{\theta}{\lambda^{2}}\right)$ 

| Para cada átomo j<br>Ocupação<br>Fator de espalhamento | rede | Oscilação (temperatura)<br>Theta / lambda <sup>2</sup> |
|--------------------------------------------------------|------|--------------------------------------------------------|

- Indicadores de qualidade:
  - R<sub>wp</sub> (weighted profile) soma da diferença entre as intensidades medidas e calculadas, dividida pela soma das intensidades medidas
    - Expresso normalmente em % (\*100)
  - R<sub>e</sub> ou R<sub>exp</sub> (expected) número de observações (N) dividido pela soma das intensidades observadas

$$R_{wp} = \left[ \sum w_i (y_{io} - y_{ic})^2 / \sum w_i y_{io}^2 \right]^{1/2}$$
$$R_E = \left[ (N ) / (\sum w_i y_{io}^2) \right]^{1/2}$$



• Indicadores de qualidade:

$$R_{wp} = \left[ \sum w_i (y_{io} - y_{ic})^2 / \sum w_i y_{io}^2 \right]^{1/2}$$
$$R_E = \left[ (N ) / (\sum w_i y_{io}^2) \right]^{1/2}$$

CHI<sup>2</sup> ( $\chi^2$ ) ou GOF (goodness of fit) = Rwp / Rexp Idealmente, CHI<sup>2</sup>=1



#### Interface software aquisição

DIFFRAC.COMMANDER - User: Lab Manager - Application Type: Powder Diffraction - Instrument: MeasSry(RLGARCIA-NET3)/IPEN Inst de Pesquisas

<u>File Edit View</u> Commander <u>H</u>elp

#### 2

WIZARD DETECTOR COMMANDER START JOBS JOBLIST DA VINCI TOOLS CONFIGURATION DB MANAGEMENT RESULTS MANAGER LOG



## Conversão de arquivo experimental

- Formatos
  - RAW
  - XY
  - GSAS (ou gsa, ou dat)
- Softwares gratuitos de conversão
  - PowDLL
  - XY2GSAS
  - ConvX

## Search-Match

| Crystallographica Search-Match    | - [SearchMatch1]           |                   |                              |              |          |          |      |            |               |                                                  |
|-----------------------------------|----------------------------|-------------------|------------------------------|--------------|----------|----------|------|------------|---------------|--------------------------------------------------|
| File Edit View Search-Match Peak  | List Report Settings Tools | Graph Window Help | 5                            |              |          |          |      |            |               | _ 8                                              |
|                                   | ? @ # # 24 14 14           | 4 💊 💥 👿 🛚         |                              |              |          |          |      |            |               |                                                  |
| 🖏 Search Match 🗽 Peak List   🔷 (  | Card Retrieval   🖫 Report  |                   |                              | 鐵 🕂 xx       |          |          |      |            |               |                                                  |
| Matabad Matadala                  |                            |                   |                              |              |          |          |      |            |               |                                                  |
|                                   |                            |                   |                              |              |          |          |      |            |               |                                                  |
| Pdf No. Name                      | Fomula                     | 10000             |                              |              |          |          |      |            |               |                                                  |
|                                   |                            | 1                 | - CeO2F05-05-03v1 data - ba  | idiground    |          |          |      |            |               |                                                  |
|                                   |                            | 0                 | CeO2F05-05-03v1 peaks        |              |          |          |      |            |               |                                                  |
|                                   |                            | 8000              |                              |              |          |          |      |            |               |                                                  |
|                                   |                            |                   |                              |              |          |          |      |            |               |                                                  |
| Candidate Materials               |                            |                   |                              |              |          |          |      |            |               |                                                  |
|                                   |                            | 6000              |                              |              |          |          |      |            |               |                                                  |
| Pdf No. % Name                    | Formula                    |                   |                              |              |          |          |      | :          |               |                                                  |
| 4/-1655 /3 Lobait Zinc Suifide    | Zn0.975 Co0.025 S          |                   |                              | 42           |          |          |      |            |               |                                                  |
| 75-1/4 /2 Yttnum Cenum Oxide      | Y.10 Ce.90 01.95           | 4000              | ····•                        |              |          |          |      |            |               |                                                  |
| 75-346 /2 Lanthanum Zirconium .   | La.5 2r.5 01.75            |                   |                              |              |          |          |      |            |               |                                                  |
| 75-166 /1 Dysprosium Cenum Oxi    | Dy.30 Ce.70 01.85          |                   |                              |              |          |          | 3    |            |               |                                                  |
| 27-843 /U Neodymium Antimony .    | Nd6 Sb2 014                | 2000              |                              |              |          | <b></b>  |      |            |               |                                                  |
| 50-675 70 Cerium Antimony Oxide   | Ce Sb 03                   |                   |                              |              |          |          | 152  |            | <b>1</b>      |                                                  |
| 1 34-394 6/ Cenanite-(Ce), syn    | Ce O2                      |                   |                              |              |          |          |      |            |               |                                                  |
| S1-231 6/ Calcium Cerium Oxide    | Ce0.9 Ca0.1 O1.9           | 1200              |                              |              |          |          |      | N          | <u></u>       |                                                  |
| 65-5608 66 Copper Gallium Selenid | te GalCu Sez               |                   | - 34-394 Cerianite-(Ce), syn |              |          |          |      |            |               |                                                  |
| 75-167 66 Dysprosium Cerium Oxi   | Dy.40 Ce.50 O1.80          |                   |                              |              |          |          |      |            |               |                                                  |
| 89-8436 64 Cenum Oxide            | Ce O2                      | 1000              | ามของของรุ่มของของ           | เมษายนสุ่มหม |          |          |      | daaaaaaaaa | ากกระสุรรรรรร |                                                  |
| 65-29/5 63 Cenum Oxide            | Ce O2                      |                   |                              |              |          |          |      |            |               |                                                  |
| 4-593 63 Cenanite-(Ce), syn       | Ce O2                      | 800-              |                              |              |          |          |      |            |               |                                                  |
| 43-1002 62 Cenanite-(Ce), syn     | Ce O2                      |                   |                              |              |          |          |      |            |               |                                                  |
| 75-85 52 Neodymium Uranium O      | Nd U3 09.51                |                   |                              |              |          |          |      |            |               |                                                  |
| 75-456 62 Uranium Oxide           | 0.02.34                    | 600               |                              |              |          |          |      |            |               |                                                  |
| 78-405 61 Europium Protactinium   | Eu.5 Pa.5 O2               |                   |                              |              |          |          |      | 1          | 1             |                                                  |
| 78-2500 60 Silicon                | Si                         | 400               |                              |              |          |          |      |            |               |                                                  |
| 75-164 60 Dysprosium Cerium Oxi   | Dy. 10 Ce.90 01.95         |                   |                              |              |          |          |      |            |               | CALACTER AND |
| Z2-1308 60 Samarium Tungsten O.   | Sm6 W 012                  |                   |                              |              |          |          |      |            |               |                                                  |
| /5-165 60 Dysprosium Cerium Oxi   | Dy.20 Ce.80 O1.90          | 200               |                              |              |          |          |      |            |               |                                                  |
| 65-4261 59 Thulium Sulfide        | Im S                       |                   |                              |              | as fast  | 1 6      | 1    |            | 1             |                                                  |
| 55-4586 59 Nickel Zinc Sulfide    | Ni 533.3 Zh32.3            |                   |                              | A Ali        |          |          | ւ վե | - h        | h h           |                                                  |
| 65-3195 59 Beryllium Copper       | Be Cu                      | 0                 |                              | - nj         | <u> </u> | <u> </u> |      | j "        | , n           |                                                  |
| 89-2157 58 Zinc Sulfide           | Zn S                       | 20                | 40                           | 60           | 80       | 100      | ki i | 120        | 140           | 160                                              |
| 1 89-2201 58 Zine Sulfide         | 7n S                       |                   |                              |              |          |          |      |            |               |                                                  |

## **Busca ICDD**



## **Busca ICDD**

| Home   Contact                                           |          |                 | Welcome to | IC SDWeb. IP au | thenticated (201 | .20.17.1). Dot Lib                                                                                                                                                                |                                                              | Report   Print                                                                                    | Close   | session |  |
|----------------------------------------------------------|----------|-----------------|------------|-----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------|---------|--|
| Navigation                                               | Re       | sults: List Vie | 31 🔳       |                 |                  |                                                                                                                                                                                   |                                                              |                                                                                                   |         |         |  |
| Search & Retrie<br>Display<br>List View                  | s        | elect All Des   | elect All  | Show            | Detailed View    | Show Synoptic View                                                                                                                                                                | Export Selected D                                            | ata                                                                                               | Back to | o Query |  |
|                                                          |          | Coll. Code      | HMS        | Struct. Form.   | Struct. Type     | Title                                                                                                                                                                             | Authors                                                      | Reference                                                                                         | ₽ =     |         |  |
| Quality Filter  All Data High Quality Data Standard Data | ata only | 72155           | Fm-3m      | Ce 02           | CaF2             | Rietveld refinement of<br>the structure of CeOCI<br>formed in Pd/CeO2<br>catalyst: notes on the<br>existence of a stabilized<br>tetragonal phase of<br>La2O3 in La-Pd-O<br>system | Wolcyrz, M.;<br>Kepinski, L.                                 | Journal of Solid State<br>Chemistry (1992) 99,<br>p409-p413                                       | *       |         |  |
|                                                          |          | 156250          | Fm-3m      | Ce O2           | CaF2             | Electrical conductivity<br>and defect structure of<br>(Ce O2)-(Zn O) system                                                                                                       | Lee Sung Wook;<br>Kim Dojin; Won<br>Huijun; Chung<br>Wonyang | Electronic Materials<br>Letters (2006) 2, (1) p53-<br>p58                                         | \$      |         |  |
|                                                          |          | 165720          | F m -3 m   | Ce 02           | CaF2             | Phase transition and<br>structural disorder of<br>ceria-zirconia catalysts                                                                                                        | Wakita, T.;<br>Yashima, M.                                   | Report of research and<br>development (Japan)<br>(2008) 37, (12) p23-p32                          | \$      |         |  |
|                                                          |          | 182988          | Fm-3m      | Ce 02           | CaF2             | Atomic displacement<br>parameters of ceria<br>doped with rare-earth<br>oxide Ce0.8 R0.2 O1.9<br>(R=La, Nd, Sm, Gd, Y<br>and Yb) and correlation<br>with oxide-ion<br>conductivity | Yashima, M.;<br>Takizawa, T.                                 | Journal of Physical<br>Chemistry (2010) 114,<br>(5) p2385-p2392                                   | \$      |         |  |
|                                                          |          | 4113            | R -3 H     | Ce7 012         | Pr7012           | Neutron diffraction<br>determination of the<br>crystal structure of Ce7<br>O12                                                                                                    | Ray, S.P.; Cox,<br>D.E.                                      | Journal of Solid State<br>Chemistry (1975) 15,<br>p333-p343                                       |         |         |  |
|                                                          |          | 26865           | P 3 2 1    | Ce2 O3          | La2O3            | Die Kristallstruktur der<br>alpha-Modifikation von<br>den Sesquioxiden der<br>seitenen Erdmetalle.<br>(La2 O3, Ce2 O3, Pr2<br>O3, Nd2 O3)                                         | Zachariasen,<br>W.H.                                         | Zeitschrift fuer<br>Physikalische Chemie<br>(Leipzig) (1926) 123,<br>p134-p150                    |         |         |  |
|                                                          |          | 28709           | Fm-3m      | Ce 02           | CaF2             | Die Oxydsysteme des<br>Cers und des<br>Praseodyms                                                                                                                                 | Brauer, G.;<br>Gradinger, H.                                 | Zeitschrift fuer<br>Anorganische und<br>Allgemeine Chemie<br>(1950) (DE) (1954) 277,<br>p89-p95   |         |         |  |
|                                                          |          | 28753           | Fm-3m      | Ce 02           | CaF2             | Ueber das Ceruranblau<br>und Mischkristalle im<br>System Ce O2 U O2 -<br>U3 O8                                                                                                    | Ruedorff, W.;<br>Valet, G.                                   | Zeitschrift fuer<br>Anorganische und<br>Allgemeine Chemie<br>(1950) (DE) (1953) 271,<br>p257-p272 |         |         |  |
|                                                          |          | 29046           | F m -3 m   | Ce 02           | CaF2             | Variation in density and<br>colour of cerium oxide                                                                                                                                | Harwood, M.G.                                                | Nature (London) (1949)<br>164, p787-p787                                                          |         |         |  |
|                                                          |          | 52886           | F m -3 m   | Ce O            | NaCl             | Synthese des<br>monoxydes de cerium et                                                                                                                                            | Leger, J.M.;<br>t Yacoubi, N.;                               | Materials Research<br>Bulletin (1979) 14,                                                         |         |         |  |

## Ficha CIF Al<sub>2</sub>O<sub>3</sub>

#(C) 2014 by Fachinformationszentrum Karlsruhe. All rights reserved.

#### data\_51687-ICSD

'Lampert, G.'

#### \_database\_code\_ICSD 51687

\_audit\_creation\_date 2003-10-01 chemical name systematic 'Aluminium oxide' \_chemical\_formula\_structural 'Al2 O3' chemical formula sum 'Al2 O3' \_chemical\_name\_structure\_type Al2O3 chemical name mineral Corundum \_exptl\_crystal\_density\_diffrn 3.98 publ\_section\_title E9: The new high-resolution neutron powder diffractometer at the Berlin neutron scattering center loop\_ citation id \_citation\_journal\_full \_citation\_year \_citation\_journal\_volume \_citation\_page\_first \_citation\_page\_last citation journal id ASTM primary 'Materials Science Forum' 2001 378 288 293 **MSFOEP** loop\_ \_publ\_author\_name 'Toebbens, D.M.' 'Stuesser, N.' 'Knorr, K.' 'Mayer, H.M.'

# \_cell\_length\_a 4.7597(1) \_cell\_length\_b 4.7597(1) \_cell\_length\_c 12.9935(3) \_cell\_angle\_alpha 90 \_cell\_angle\_beta 90 \_cell\_angle\_gamma 120 \_cell\_volume 254.93 \_cell\_formula\_units\_Z 6 \_symmetry\_space\_group\_name\_H-M 'R -3 c H' \_symmetry\_Int\_Tables\_ number 167

\_refine\_ls\_R\_factor\_all 0.033 loop\_ \_symmetry\_equiv\_pos\_site\_id \_symmetry\_equiv\_pos\_as\_xyz

1'x-y, -y, -z+1/2'2 '-x, -x+y, -z+1/2' 3 'y, x, -z+1/2' 4 'x-y, x, -z' 5 'y, -x+y, -z' 6 '-x, -y, -z' 7 '-x+y, y, z+<u>1/2</u>' 8 'x, x-y, z+1/2' 9 '-y, -x, z+1/2' 10 '-x+y, -x, z' 11 '-y, x-y, z' 12 'x, y, z' 13 'x-y+2/3, -y+1/3, -z+5/6' 14 '-x+2/3, -x+y+1/3, -z+5/6' 15 'y+2/3, x+1/3, -z+5/6' 16 'x-y+2/3, x+1/3, -z+1/3' 17 'y+2/3, -x+y+1/3, -z+1/3' 18 '-x+2/3, -y+1/3, -z+1/3' 19 '-x+y+2/3, y+1/3, z+5/6' 20 'x+2/3, x-y+1/3, z+5/6' 21 '-y+2/3, -x+1/3, z+5/6' 22 '-x+y+2/3, -x+1/3, z+1/3' 23 '-y+2/3, x-y+1/3, z+1/3' 24 'x+2/3, y+1/3, z+1/3' 25 'x-y+1/3, -y+2/3, -z+1/6' 26 '-x+1/3, -x+y+2/3, -z+1/6' 27 'y+1/3, x+2/3, -z+1/6' 28 'x-y+1/3, x+2/3, -z+2/3' 29 'y+1/3, -x+y+2/3, -z+2/3' 30 '-x+1/3, -y+2/3, -z+2/3' 31 '-x+y+1/3, y+2/3, z+1/6' 32 'x+1/3, x-y+2/3, z+1/6' 33 '-y+1/3, -x+2/3, z+1/6' 34 '-x+y+1/3, -x+2/3, z+2/3' 35 '-y+1/3, x-y+2/3, z+2/3' 36 'x+1/3, y+2/3, z+2/3',,

#### loop\_

\_atom\_type\_symbol

#### \_atom\_type\_oxidation\_ number

#### Al3+ 3

#### 02- -2

loop\_ \_atom\_site\_label \_atom\_site\_type\_symbol \_atom\_site\_symmetry\_multiplici ty \_atom\_site\_Wyckoff\_symbol \_atom\_site\_fract\_x \_atom\_site\_fract\_y \_atom\_site\_fract\_z \_atom\_site\_B\_iso\_or\_equiv \_atom\_site\_occupancy \_atom\_site\_attached\_hydrogen S Al1 Al3+ 12 c 0. 0. 0.3523(1) 0.21(2) 1.0 O1 O2- 18 e 0.3065(1) 0. 0.25 0.29(1) 1.0 #End of TTdata\_51687-ICSD



## Materiais de patrimônio cultural

- Naturais
- Sintéticos
- Tratados / modificados
  - Contaminados
  - Degradados
  - Tratamentos superficiais
- Geralmente mais de uma fase presente
- Limitação de quantidade de amostra (se for possível amostrar!)
- Potencialmente bastante complexos



## Identificação de fases

- Matérias primas
- Origem
- Falsificação
- Cerâmica, metal, produtos de corrosão
- Contaminações
- DRX e Raman são as técnicas mais utilizadas pra identificação de pigmentos

#### Caso 1 - Identificação de fases

- Pintura romanesca localizada em igreja de Santa Eulàlia d'Unha (Espanha, século XII)
- Objetivo: identificar pigmentos, ligante, suporte e produtos de degradação
- Amostras de 1x1mm foram mecanicamente retiradas
- Análise de µ-DRX (spot 30x30µm) realizada em síncroton



N. Salvadó et al, applied physics A, 2008

# Seção de corte amostra CA3







#### Amostra de camada azul



#### Seção de corte amostra LL1



#### **Caso 1 - Identificação de fases**

- Conclusões
  - A presença de aerinita como pigmento sugere conexão com pinturas encontradas em pinturas romanescas encontradas à sul dos Pirineus.

Presença de oxalato de cálcio (melhora estabilidade da pintura).



#### Quantificação de fases

- Composição de misturas
- Teor de contaminantes ou fases minoritárias (>1wt.%)
- Determinar processo de produção
- Origem das matérias primas
- Detalhes do processo de manufatura
- Avaliar estado de degradação do material
- Taxa de oxidação de metais arqueológicos

• Softwares gratuitos

8000

4000

2000

|     | GSA   | S    |      |                |          |   | 7% EXPGU | I interface to | GSAS: U3SI2.   | EXP                 | •    |           |            |                 | -       |                |            |                |
|-----|-------|------|------|----------------|----------|---|----------|----------------|----------------|---------------------|------|-----------|------------|-----------------|---------|----------------|------------|----------------|
|     | 00/1  |      |      |                |          |   | File C   | ptions P       | owder Xt       | al Graph            | ns I | Results   | Calc Ma    | cro Imp         | ort/Ex  | port           |            |                |
|     | COUL  | )raf |      |                |          |   | expnar   | n exped        | it genles      | s powpr             | ef   | powplo    | t Istview  | liveplo         | t       |                |            |                |
| _   | FullF | 101  |      |                |          |   | LS Con   | trols Phas     | se Powde       | r   Scaling         | Pr   | ofile   C | onstraints | Restraints      | s   Rig | id Body   MD P | ref Orient | SH Pref Orient |
|     | N A   |      |      |                |          |   | 2.0      | Selec          | t a histogr    | am                  |      | -Hist 1   | Phase 1    | (type 4)-       |         |                | _          |                |
|     | Mau   | a    |      |                |          |   | n# typ   | e bank ang     | 7wave          | title<br>ple ID - A | n -  |           | Damping    | 0 F             | Peak o  | utoff 0.00100  | Chan       | де Туре        |
|     |       |      |      |                |          |   |          |                | o rooto o tang |                     |      | GU T      | 0.00000    | DE+00 G         | V C     | 0.334796E+01   | GW C       | 0.583707E+0    |
|     |       |      |      |                |          |   |          |                |                |                     |      | GP        | 0.00000    | DE+00 L         | xv      | 0.910459E+01   | ptec       | 0.000000E+00   |
|     |       |      |      |                |          |   |          |                |                |                     |      | trns I    | 0.00000    | DE+00 sh        |         | -0.125298E+0   | 2 stec     | 0.00000E+00    |
|     |       |      | Cebz | cycle SEQ Hist | 10       |   |          |                |                |                     |      | S/L       | 0.301100   | DE-02 H/        |         | 0.644400E-02   | eta i      | 0.750000E+00   |
|     |       |      |      |                |          |   |          |                |                | bekip               |      | 5400 F    |            | DE+00 50        | 04      | 10.00000E+00   | 5220       | J0.00000E+00   |
|     |       |      |      |                |          |   |          |                |                | × Obs               |      | 5202      | Dhase 0    | (t)(no. 4)      |         |                |            |                |
|     |       |      |      |                |          |   |          |                |                |                     |      | - HISU I  | Phase 2    | (type 4)        |         |                |            |                |
|     |       |      |      |                |          |   |          |                |                |                     |      | <b></b>   |            |                 | чеак с  |                | Chan       | ge Type        |
|     |       |      |      |                |          |   |          |                |                |                     |      |           |            | DE+00 G         |         | 0.334796E+0    |            | 0.583707E+0    |
|     |       |      |      |                |          |   |          |                |                |                     |      | trne F    |            |                 |         | 0.105204E+00   |            |                |
| 117 |       |      |      |                |          |   |          |                |                |                     |      | c/I T     | 0.30110    |                 |         | 0.120290E+0    |            | 0.00000E+00    |
| *   |       |      |      |                |          |   |          |                |                |                     |      | S400 E    |            | DE+00 <b>SO</b> |         | 0.000000E+00   |            | 0.00000E+00    |
| *   | *     |      |      |                |          |   |          |                |                |                     |      | S220 E    |            | DE+00 52        | 02      | 0.000000E+00   | 5022       | 0.000000E+0    |
| +   | 1     |      |      |                |          |   |          |                |                |                     |      | -Hist 1   | Phase 3    | (type 4)        |         | 10.0000002.000 |            | 10.0000002.00  |
|     |       |      |      |                |          |   |          |                |                |                     |      |           | Damping    |                 | eak c   | utoff 0.01000  | Chan       |                |
| 1   |       |      | Xer  |                |          |   | ž        |                |                |                     |      | GU E      |            | 0E+00 G         |         | 0.334796E+01   |            | 0.583707E+0    |
| -   |       | 1    | 11   |                | 1        |   | 11       | L              | L              |                     |      | GP T      |            | 0E+00 L         | x v     | 0 145857E+03   | B ptec     | 0.000000E+00   |
| -   | -     | _    |      | -              | <u> </u> | _ |          | _              |                |                     |      | trns [    | 0.00000    | 0E+00 sh        | nft 🗖   | -0.125298E+0   | 2 sfec     | 0.000000E+00   |
|     | 11    |      | 1.   |                |          |   |          |                | -              |                     |      |           |            |                 |         |                |            |                |
| 1   |       |      |      |                |          |   |          |                |                |                     |      |           |            |                 |         |                |            |                |
|     |       |      |      |                |          |   |          |                |                |                     |      |           |            |                 |         |                |            |                |
| 30  |       |      |      |                | 100      |   |          |                |                |                     |      |           |            |                 |         |                |            |                |

X Help

#### Caso 2 - Quantificação de fases

Objetivo: identificar composição de pigmentos para analisar degradação



## Caso 2 - Quantificação de fases



#### Caso 3 - Quantificação de fases

- Estudo de cosméticos egípcios fabricados entre 2000 e 1200AC
- Encontrados em excelente estado de conservação



P. Walter et al, Nature, 1999

#### Caso 3 - Quantificação de fases

- Identificadas as fases naturais da rocha galena triturada (PbS) e cerusita (PbCO<sub>3</sub>).
- No entanto, também foram encontradas as fases laurionita (PbOHCl) e fosgenita (Pb<sub>2</sub>Cl<sub>2</sub>CO<sub>3</sub>).
- Considerando a baixíssima ocorrência desses materiais na natureza, o estudo sugere que os pigmentos foram sintetizados artificialmente, por meio de processo químico.

| Table 1 | Table 1 Proportion of the four main mineral phases |        |           |            |            |  |  |  |  |  |  |  |
|---------|----------------------------------------------------|--------|-----------|------------|------------|--|--|--|--|--|--|--|
|         | Sample                                             | Galena | Cerussite | Phosgenite | Laurionite |  |  |  |  |  |  |  |
|         | 1                                                  | 100    |           |            |            |  |  |  |  |  |  |  |
|         | 2                                                  | 50     | 13        | 37         |            |  |  |  |  |  |  |  |
|         | 3                                                  | 28     | 48        | 24         |            |  |  |  |  |  |  |  |
|         | 4                                                  | 43     | 27        | 29         | 1          |  |  |  |  |  |  |  |
|         | 5                                                  | 12     |           | 72         | 16         |  |  |  |  |  |  |  |
|         | 6                                                  | 62     | 28        |            | 10         |  |  |  |  |  |  |  |
|         | 7                                                  | 24     | 25        | 16         | 35         |  |  |  |  |  |  |  |



# Índice de Cristalinidade (IC)

- Utilizado geralmente em materiais orgânicos como madeira, papel, fibras etc
- Quantificação da fração cristalina e amorfa da amostra
- IC = <u>fração cristalina</u> x 100 fração cristalina + fração amorfa
- Reflete mudanças na estrutura da celulose após tratamentos físicos, químicos e biológicos



JA Scholl et al. Nature



# Índice de Cristalinidade (IC)

Contribuições no difratograma:

Fração cristalina

Fração amorfa

Radiação de fundo (background)



# Índice de Cristalinidade (IC)

#### Métodos para cálculo do IC:

#### 1) Correlação entre altura de picos

- Proposto por Segal (1959)
- Baseado na diferença de intensidade entre 002 e vale entre 101 e 002
- O mais simples e mais utilizado (~64% segundo Ahvenainen, 2016)

#### 2) Ajuste de picos (peak fitting)

- Segundo método mais utilizado (~25%)
- Considera vários picos da celulose
- Variação do resultado de acordo com o intervalo 2teta utilizado

#### 3) Subtração fração amorfa

- Obtenção de difratograma da fração amorfa experimentalmente
- Preparação de várias amostras com diversas frações de amorfo
- Mais complicado e trabalhoso
- Difícil obter o material puramente amorfo e idêntico ao da amostra

#### Caso 4 – IC do papel irradiado

#### Papel contemporâneo de livro





#### Caso 4 – IC do papel irradiado



## Caso 4 – IC do papel irradiado



Conclusão: não há alteração significativa da cristalinidade dos papéis mesmo em doses altíssimas (500kGy)

#### Textura

- Textura cristalográfica é o nome dado à orientação preferencial de determinada direção de planos em um material policristalino
- Algumas propriedades são fortemente dependentes da textura
  - Mecânicas
  - Magnéticas
  - Resistência à radiação
  - Reatividade química
- Diversos processos metalúrgicos promovem textura no material



#### Policristal



## Caso 5 – Análise de textura em metais arqueológicos

- Objetivo: Determinar o processo de manufatura de machados da idade do cobre e idade do bronze
- Materiais submetidos à difração de nêutrons
  - Penetração muito maior que raios X
  - Necessita de um reator nuclear para gerar nêutrons

#### Caso 5

#### Conclusões

- A maioria dos machados da idade do cobre analisados mostram sinais de trabalho mecânico à frio e subsequente recozimento
- O trabalho mecânico era utilizado para endurecer o metal, mas para conformação após a fusão
- Algumas peças não apresentam textura evidente, o que sugere que essas peças não foram submetidas à trabalho mecânico.
- Foram identificadas peças que foram submetidas à resfriamento lento após a fusão.



G. Artioli, Applied Physics A, 2007

Obrigado pela atenção!