# DISSOCIATION EQUILIBRIA OF CRYOLITE IN NaF-AIF3

Q. Xu, Y.M. Ma and Z.X. Qiu

School of Material Science and Metallurgy, Northeastern University, Shenyang 110006, China Manuscript received 11 May 2000; in revised form 5 August 2000

The scheme of dissociation of cryolite in NaF-AlF<sub>3</sub> melts was proposed. The constants and heats of dissociation for cryolite were evaluated from experimental data. The mole fractions of each kind of ions at 1298K in NaF-AlF<sub>3</sub> melts were calculated based upon this scheme. The thermodynamic mixing function for liquid NaF and solid AlF<sub>3</sub>, and liquidus data of NaF-AlF<sub>3</sub> systems were calculated by using the above evaluated parameters. The results obtained are in good agreement with the experimental data. KEY WORDS cryolite, thermodynamic function, NaF-AlF<sub>3</sub> melt

#### 1. Introduction

The mixtures of aluminum fluoride with sodium fluoride are very important systems from the theoretical and practical point of view since the NaF-AlF<sub>3</sub> melts are used in aluminum smelting. Because of their industrial interest, the ionic structure of molten cryolite has been discussed extensively for more than seventy years. However, the scheme and the extent of the dissociation of liquid Na<sub>3</sub>AlF<sub>6</sub> are still subject to controversy.

A rapid survey shows that in spite of the several experimental techniques used, two schools appear depending on the structural interpretation of the dissociation scheme of cryolite ion. On the one hand,  $\text{Holm}^{[1,2]}$  has suggested the presence of the molecular  $\text{AlF}_3$  species in the cryolite melts. This dissociation scheme has been confirmed by numerous authors<sup>[3,4]</sup>. On the other hand, Piontelli<sup>[5]</sup> has proposed the second scheme of dissociation, *i.e.* the presence of  $\text{AlF}_4^-$  ion in the melts. This hypothesis also has been confirmed by cryoscopic measurements<sup>[6]</sup> and density data<sup>[7]</sup>, and later confirmed by Raman spectroscope measurements<sup>[8]</sup>. Dewing<sup>[9]</sup> presented a different dissociation scheme suggesting the presence of  $\text{AlF}_4^-$ ,  $\text{AlF}_5^{2-}$  and  $\text{AlF}_6^{3-}$  in the NaF-AlF<sub>3</sub> melts. This scheme was confirmed by the thermodynamic calculation of Feng<sup>[10]</sup> and the spectroscopic study by Gilbert and coworkers<sup>[11]</sup>. Mass spectroscopic and vapor pressure measurement have established the presence of Na<sub>2</sub>AlF<sub>5</sub>, NaAlF<sub>4</sub> and AlF<sub>3</sub> in the vapor phase above the NaF-AlF<sub>3</sub> melts, and these species would be existed in principle in the melts which are equilibrated with the vapor phase.

In this paper, a model of cryolite dissociation has been proposed, and the thermodynamic properties of NaF-AlF<sub>3</sub> systems are calculated in relation to the scheme of dissociation.

## 2. Basic Consideration

The Na<sub>3</sub>AlF<sub>6</sub> in the NaF-AlF<sub>3</sub> melts is completely ionized to Na<sup>+</sup> and AlF<sub>6</sub><sup>3-</sup>, and the complex ion is partly dissociated in steps, and dissociation reactions of the complex are as

following

$$AlF_6^{3-} = AlF_5^{2-} + F^- \tag{1}$$

$$AlF_5^{2-} = AlF_4^- + F^- \tag{2}$$

$$AlF_4^- = AlF_3 + F^- \tag{3}$$

In this dissociation scheme, "AlF<sub>3</sub>" is supposed to be the inner and most stable part of the distorted AlF<sub>6</sub><sup>3-</sup> complex and may be not dissociated. This hypothesis was examined by the study of Laurent Joubert<sup>[12]</sup>. The equilibrium constants (expressed in mole fraction units) and heats of dissociation reactions written as Eq.(1), Eq.(2) and Eq.(3) are  $K_1$  and  $H_1$ ,  $K_2$  and  $H_2$ , and  $H_3$ , respectively. The sublattice solution model has been used to express the NaF-AlF<sub>3</sub> melts, and the melts would be expresses by a formula  $(Na)_p(F^-, AlF_3, AlF_4^-, AlF_5^{2-}, AlF_6^{3-})_q$ , where p and q indicate the number of sites on each sublattice. The values of p and q are obtained that q = 1 and  $p = y_{F^-} + y_{AlF_4^-} + 2y_{AlF_5^{2-}} + 3y_{AlF_6^{3-}}$ , where q is the site fraction, q, the mole fraction of the ions which is indicated by the subscript within the sublattice, and

$$y_{F^{-}} + y_{AlF_{3}} + y_{AlF_{4}^{-}} + y_{AlF_{5}^{2-}} + y_{AlF_{6}^{3-}} = 1$$
 (4)

The mole fraction of Na<sup>+</sup> is equal to unity since it is only one kind of ions in its sublattice. It is assumed that the mixing of ions in each sublattice is ideal. The equilibrium constants for Eqs.(1)-(3) can be written as

$$K_1 = \frac{y_{\rm F} - y_{\rm AlF_5^{2-}}}{y_{\rm AlF_6^{3-}}} \tag{5}$$

$$K_2 = \frac{y_{\rm F} - y_{\rm AlF_4^-}}{y_{\rm AlF_6^{2-}}} \tag{6}$$

$$K_3 = \frac{y_{\mathrm{F}} - y_{\mathrm{AlF}_3}}{y_{\mathrm{AlF}_4}} \tag{7}$$

For the binary system of NaF-AlF<sub>3</sub>, the mole fractions of NaF and AlF<sub>3</sub> are expressed as  $N_{\rm NaF}$  and  $N_{\rm AlF_3}$ , respectively. The following equation can be obtained.

$$\frac{y_{\mathrm{F}^{-}} + y_{\mathrm{AlF}_{4}^{-}} + 2y_{\mathrm{AlF}_{5}^{2-}} + 3y_{\mathrm{AlF}_{6}^{3-}}}{y_{\mathrm{AlF}_{3}} + y_{\mathrm{AlF}_{4}^{2-}} + y_{\mathrm{AlF}_{5}^{2-}} + y_{\mathrm{AlF}_{6}^{3-}}} = \frac{N_{\mathrm{NaF}}}{N_{\mathrm{AlF}_{3}}} = C_{r}$$
(8)

where  $C_r$  is commonly called the cryolite ratio in the study of aluminum electrolysis. Combining Eqs.(4)–(8), we obtain the Eq.(9)

$$C_r + y_{F^-} \frac{(C_r - 1) - (C_r + 1)K_3}{K_3} + y_{F^-}^2 \frac{(C_r - 2) - C_r K_2}{K_3 K_2} + y_{F^-}^3 \frac{(C_r - 3) - (C_r - 1)K_1}{K_3 K_2 K_1} - y_{F^-}^4 \frac{C_r - 2}{K_3 K_2 K_1} = 0$$
(9)

The value of  $y_{\rm F^-}$  can be found by successive iteration for the given parameters of  $K_1$ ,  $K_2$  and  $K_3$ . Then, the values of  $y_{\rm AlF_3}$ ,  $y_{\rm AlF_4^-}$ ,  $y_{\rm AlF_5^{2-}}$  and  $y_{\rm AlF_6^{3-}}$  can be calculated.

When the equilibrium constants  $K_1$ ,  $K_2$  and  $K_3$  at temperature T are known or can be estimated, the constants  $K'_1$ ,  $K'_2$  and  $K'_3$  at a different temperature T' may be calculated from Eq.(10)

$$\ln \frac{K_i'}{K_i} = \frac{H_i}{R} (\frac{1}{T} - \frac{1}{T'}) \qquad (i = 1, 2, 3)$$
 (10)

where it is assumed that the heats of the dissociation,  $H_i$ , expressed in Eqs.(1)-(3) are independent of temperature, and R is the universal gas constant.

From the ideal assumption, the activity of NaF can be written as Eq.(11) if pure liquid NaF is selected as the reference state of activities for NaF.

$$a_{\text{NaF}} = y_{\text{Na}} + y_{\text{F}} - = y_{\text{F}} -$$
 (11)

If the pure solid AlF<sub>3</sub> is taken as the reference state of activities for AlF<sub>3</sub>, the activity of AlF<sub>3</sub> in the NaF-AlF<sub>3</sub> melt saturated with solid AlF<sub>3</sub> is a unit. If the mole fraction of AlF<sub>3</sub> in the NaF-AlF<sub>3</sub> melt saturated with solid AlF<sub>3</sub> is written as  $y_{AlF_3}^s$ , the activities of AlF<sub>3</sub> in the NaF-AlF<sub>3</sub> melts with the varying concentration of AlF<sub>3</sub> can be expressed as Eq.(12).

$$a_{\text{AIF}_3} = \frac{y_{\text{AIF}_3}}{y_{\text{AIF}_3}^{\text{s}}} \tag{12}$$

The enthalpy of the mixing of liquid NaF and solid AlF<sub>3</sub> at 1298K may be expressed as Eq.(13)

$$\Delta H = N_{\text{AlF}_3} \Delta H_{\text{m,AlF}_3}^{\circ} - \frac{N_{\text{AlF}_3} [H_3 y_{\text{AlF}_4^-} + (H_2 + H_3) y_{\text{AlF}_5^{2-}} + (H_3 + H_2 + H_1) y_{\text{AlF}_6^{3-}}]}{y_{\text{AlF}_3} + y_{\text{AlF}_4^-} + y_{\text{AlF}_5^{2-}} + y_{\text{AlF}_6^{3-}}}$$
(13)

where  $\Delta H_{\mathrm{m,AlF}_3}^{\circ}$  is the heat of fusion for solid AlF<sub>3</sub> at 1298K.

From phase diagram theory, the activity of Na<sub>3</sub>AlF<sub>6</sub> can be expressed by Eq.(14).

$$\ln a_{\text{Na}_3\text{AlF}_6} = -\frac{\Delta H_{m,hyp}^{\circ}}{R} \left(\frac{1}{T} - \frac{1}{T^{\circ}}\right) - \frac{1}{RT} \int_{T^0}^T \Delta C_p dT + \frac{1}{R} \int_{T^0}^T \frac{\Delta C_p}{T} dT$$
(14)

where  $\Delta H_{m,hyp}^{\circ}$  is the heat of fusion of pure, hypothetical, undissociated cryolite at the melting point  $T^{\circ}$ ,  $\Delta C_p$  is the heat capacity difference between pure liquid and solid Na<sub>3</sub>AlF<sub>6</sub>, and T is the absolute temperature of liquidus. Since the assumption of ideal mixing, the activity of Na<sub>3</sub>AlF<sub>6</sub> can be replaced by the mole fraction of Na<sub>3</sub>AlF<sub>6</sub>.  $\Delta H_{m,hyp}^{\circ}$  can be expressed as Eq.(15)

$$\Delta H_{m,hyp}^{\circ} = \Delta H_{m}^{\circ} - \frac{[H_{1}y_{\text{AlF}_{5}^{2-}} + (H_{1} + H_{2})y_{\text{AlF}_{4}^{-}} + (H_{3} + H_{2} + H_{1})y_{\text{AlF}_{3}}]}{y_{\text{AlF}_{3}} + y_{\text{AlF}_{4}^{-}} + y_{\text{AlF}_{5}^{2-}} + y_{\text{AlF}_{6}^{3-}}}$$
(15)

where  $\Delta H_{\mathrm{m}}^{\circ}$  is the heats of fusion of pure cryolite.

If  $a_{\text{Na}_3\text{AlF}_6}$  is known at its real melting point  $T_r$ ,  $T^{\circ}$  can be calculated by Eq.(14).

The calculation procedure is as follows: A set of parameters of  $K_1$  and  $H_1$ ,  $H_2$  and  $K_2$ , and  $K_3$  and  $H_3$  at 1298K for the reactions Eqs.(1)-(3) is evaluated from the experimental data. Then, the mole fraction of ion  $F^-$  in the NaF-AlF<sub>3</sub> melts can be calculated from Eq.(9). Substituting the values of the mole fraction of  $F^-$  to Eqs.(4)-(7), the mole

fractions of each kind of ions in the NaF-AlF<sub>3</sub> melts can be calculated out. Using Eq.(10), the constants of dissociation at a different temperature can be calculated, and the mole fractions of each kind of ions can be also calculated at the different temperature. When the mole fraction of Na<sub>3</sub>AlF<sub>6</sub> is obtained at  $T_r$  temperature, that at the temperature  $T^\circ$  is calculated by Eq.(14). The liquidus temperature and thermodynamic mixing function for NaF(l) and AlF<sub>3</sub>(s) at 1298K can be calculated too. In order to obtain the optimization of the parameters, some experimental data of NaF-AlF<sub>3</sub> are considered including the enthalpies of mixing of NaF(l) and AlF<sub>3</sub>(s)<sup>[13]</sup>, the enthalpies and temperature of fusion for Na<sub>3</sub>AlF<sub>6</sub><sup>[14]</sup>, the phase diagrams of NaF-AlF<sub>3</sub><sup>[6]</sup>, and thermodynamic properties of pure NaF<sup>[15,16]</sup>.

#### 3. Results and Discussion

All the above experimental data are used as input into the optimization program in order to find the parameters of  $K_1$  and  $H_1$ ,  $K_2$  and  $H_2$ , and  $K_3$  and  $H_3$ , which are list in Table 1. The mole fractions of each kind of ions are calculated and the results are shown in Fig.1, in which the concentration of AlF<sub>3</sub> for NaF-AlF<sub>3</sub> melts is extended to saturating level. The mole fractions of the complex ions AlF<sub>4</sub>, AlF<sub>5</sub><sup>2</sup> and AlF<sub>6</sub><sup>3</sup> are increased with increasing concentration of AlF<sub>3</sub> in NaF-AlF<sub>3</sub> systems up to the stoichiometric compositions where correspond to the maximum fraction for the each kind of complex ions.

The hypothetical melting point, and heats of pure and undissociated Na<sub>3</sub>AlF<sub>6</sub> are 1555K and 73.0kJ/mol, respectively. The melting point for pure and undissociated Na<sub>3</sub>AlF<sub>6</sub> from this work is some higher than that of other researches<sup>[6]</sup>. The reason may be that  $\Delta C_p$  was implicitly assumed to be negligible when Eq.(14) was used to calculate the hypothetical melting point in this work. The calculated and measured liquidus temperatures for NaF-AlF<sub>3</sub> are shown in Fig.2. The better fit between calculated and measured enthalpies of mixing of NaF(l) and AlF<sub>3</sub>(s) can been seen from Fig.3.

Table 1 Constants and heats of dissociation of complex ion AlF<sub>6</sub><sup>3-</sup> in NaF-AlF<sub>3</sub> at 1298K

| Dissociation reaction                     | Dissociation const.   | Dissociation heat, kJ/mol |
|-------------------------------------------|-----------------------|---------------------------|
| $AlF_6^{3-} \rightarrow AlF_5^{2-} + F^-$ | $1.56 \times 10^{-1}$ | 37.8                      |
| $AlF_5^{2-} \rightarrow AlF_4^- + F^-$    | $5.32 \times 10^{-1}$ | 48.1                      |
| $AlF_4^- {\rightarrow} AlF_3 {+} F^-$     | $4.91 \times 10^{-2}$ | 107.1                     |

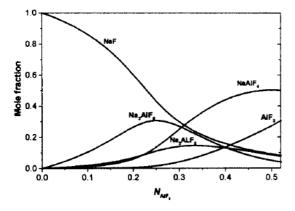



Fig.1 Distribution curves for the different species in NaF-AlF<sub>3</sub> melt vs. AlF<sub>3</sub> mole fraction at 1298K.

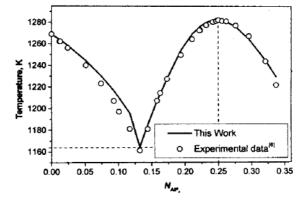
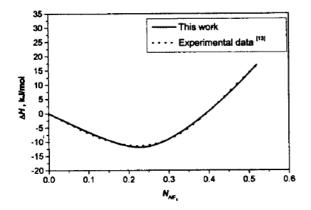




Fig.2 Calculated and experimental temperatures of primary crystallization of the system NaF- AlF<sub>3</sub>.

The activities of NaF and AlF<sub>3</sub> are calculated by using the Eq.(11) and Eq.(12) and compared with the results of Dewing<sup>[17]</sup>, as shown in Fig.4. The difference of them is related with the different scheme of dissociation used and different constants of dissociation estimated here.



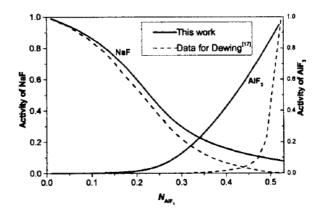



Fig.3 Calculated and experimental  $\Delta H$  curves for the mixing enthalpies of the liquid NaF and solid AlF<sub>3</sub> at 1298K.

Fig.4 Activities of NaF and AlF<sub>3</sub> at 1298K.

In this work,  $\Delta H_{\rm m,AlF_3}^{\circ}$ , the heat of fusion for solid AlF<sub>3</sub> at 1298K, is evaluated to be 108kJ/mol, which is in excellent agreement with 111.9±3.4kJ/mol, the result of Kleppa<sup>[13]</sup>. It is found that the mole fraction of complex AlF<sub>3</sub> in the NaF-AlF<sub>3</sub> melts which are saturated with solid AlF<sub>3</sub> is near to 0.29 at 1298K, as shown in Fig.1. These results can be used to calculate  $\Delta G_{\rm m,AlF_3}^{\circ}$ , the free energy of fusion of solid AlF<sub>3</sub> at 1298K, by Eq.(16).

$$\Delta G_{\rm m,AlF_3}^{\circ} = RT \ln \frac{a_{\rm AlF_3}}{y_{\rm AlF_3}} \tag{16}$$

Since the activity of AlF<sub>3</sub> is equal to unity when the melts are saturated with solid AlF<sub>3</sub>, the Eq.(16) can be written as

$$\Delta G_{\text{m,AlF}_3}^{\circ} = 8.314 \times 1298 \times \ln \frac{1}{0.29} = 13.3 \text{kJ/mol}$$
 (17)

The difference between the heat capacity of liquid and solid  $AlF_3$  is so small<sup>[18]</sup> that it can be neglected, and  $T_{m,AlF_3}$ , the melting point of solid  $AlF_3$ , can be calculated by Eq.(18).

$$\Delta G_{m,AlF_3}^{\circ} = \Delta H_{m,AlF_3}^{\circ} \left(1 - \frac{1298}{T_{m,AlF_3}}\right)$$
 (18)

 $T_{\rm m,AlF_3}$  is about 1479K, which is higher than 1263K, the result of Phillips<sup>[19]</sup>. However, some researchers<sup>[20]</sup> thought the melting point of AlF<sub>3</sub> which is 1263K would seem too low.

### 4. Conclusion

This work gives the scheme of dissociation of cryolite. There are several kinds of complex ions in the NaF-AlF<sub>3</sub> melts since the complex ion  $AlF_6^{3-}$  is dissociated into  $AlF_5^{2-}$ ,  $AlF_4^-$  and  $AlF_3$  in steps. The constant and heat of dissociating reaction for each step are

estimated from experimental data. The mole fractions of each kind of ions in the melts and thermodynamic mixing function for NaF(l) and AlF<sub>3</sub>(s), as well as the activities of NaF and AlF<sub>3</sub>, are calculated based upon the scheme of dissociation. The liquidus temperature of NaF-AlF<sub>3</sub> is calculated and agreement with experimental data.

#### REFERENCES

- 1 J.L. Holm, Inorg. Chem. 12 (1973) 2062.
- 2 J.L. Holm, High Temp. Sci. 6 (1974) 12.
- 3 W.B. Frank, J. Phys. Chem, 62 (1961) 2081.
- 4 M. Rolin, J. Four. Electr. Ind. Electrochim. 3 (1953) 83.
- 5 R. Piontelli, Chim. Ind. 22 (1940) 501.
- 6 K. Grjotheim, Det. Kgl. Norske Videnskabens Selskabs Skrifter (Trondheim, Norway, 1956, No.5).
- 7 W.B. Frank and L.M. Foster J. Phys. Chem. 64 (1960) 95.
- 8 B. Gilbert, G. Mamantov and G.M. Begum, J. Chem. Phys. 62 (1975) 950.
- 9 E.D. Dewing, Proceedings of the Fifth International Symposium on Molten Salts (The Electrochemical Society Inc., Pennington, NJ, 1986, Vol.86(1)) p.262.
- 10 N.X. Feng and H. Kvande, Nacta. Chem. Scand. A40 (1986) 622.
- 11 B. Gilbert and T. Materne, Appl. Spectrosc. 40(2) (1990) 299.
- 12 L. Joubert, G. Picard, et al., J. Electrochem. Soc. 146(6) (1999) 2180.
- 13 K.C. Hong and O.J. Kleppa, J. Phys. Chem. 82 (1978) 176.
- 14 B.J. Holm and F. Gronvold, Acta. Chem. Scand. 27A (1973) 2043.
- 15 I. Borin, O. Knacke and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Supplement, Spring-Verlag, New York, 1977).
- 16 I. Borin, and O. Knacke, Thermochemical Properties of Inorganic Substances (Spring-Verlag, New York, 1973).
- 17 E.W. Dewing, Metall. Trans. B 21B (1990) 285.
- 18 B.J. Holm, Thesis, The University of Trondheim (NTH Trondheim, Norway, 1971) p.84.
- 19 B. Phillips, C.M. Warshaw and I. Mockrin, J. Am. Ceram. Soc. 49(12) (1966) 631.
- 20 S. Scharmm, L. Rabardel, et al., CALPHAD 14(4) (1990) 631.