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Preface

Th e second edition of this text—like the fi rst edition—seeks to present all the 
material required for a course in physical chemistry for students of the life sci-
ences, including biology and biochemistry. To that end we have provided the 
foundations and biological applications of thermodynamics, kinetics, quantum 
theory, and molecular spectroscopy. 

Th e text is characterized by a variety of pedagogical devices, most of them 
directed toward helping with the mathematics that must remain an intrinsic part 
of physical chemistry. One such new device is the Mathematical toolkit, a boxed 
section that—as we explain in more detail in the ‘About the book’ section below—
reviews concepts of mathematics just where they are needed in the text.

Another device that we continue to invoke is A note on good practice. We con-
sider that physical chemistry is kept as simple as possible when people use terms 
accurately and consistently. Our Notes emphasize how a particular term should 
and should not be used (by and large, according to IUPAC conventions). Finally, 
new to this edition, each chapter ends with a Checklist of key concepts and a 
Checklist of key equations, which together summarize the material just presented. 
Th e latter is annotated in many places with short comments on the applicability of 
each equation.

Elements of biology and biochemistry continue to be incorporated in the text’s 
narrative in a number of ways. First, each numbered section begins with a state-
ment that places the concepts of physical chemistry about to be explored in the 
context of their importance to biology. Second, the narrative itself shows students 
how physical chemistry gives quantitative insight into biology and biochemistry. 
To achieve this goal, we make generous use of A brief illustration sections (by 
which we mean quick numerical exercises) and Worked examples, which feature 
more complex calculations than do the illustrations. Th ird, a unique feature of the 
text is the use of Case studies to develop more fully the application of physical 
chemistry to a specifi c biological or biomedical problem, such as the action of 
ATP, pharmacokinetics, the unique role of carbon in biochemistry, and the bio-
chemistry of nitric oxide. Finally, the new In the laboratory sections highlight 
selected experimental techniques in modern biochemistry and biomedicine, such 
as diff erential scanning calorimetry, gel electrophoresis, electron microscopy, and 
magnetic resonance imaging.

All the illustrations (nearly 500 of them) have been redrawn and are now in full 
color. Another innovation in this edition is the Atlas of structures, in the Resource 
section at the end of the book. Many biochemically important structures are 
referred to a number of times in the text, and we judged it appropriate and conve-
nient to collect them all in one place. Th e Resource section also includes data used 
in a variety of places in the text.
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Numerous features in this text are designed to help you learn physical chemistry 
and its applications to biology, biochemistry, and medicine. One of the problems 
that makes the subject so daunting is the sheer amount of information. To help 
with that problem, we have introduced several devices for organizing the mater-
ial in your mind: see Organizing the information. We appreciate that mathematics 
is oft en troublesome, and therefore have included several devices for helping you 
with this enormously important aspect of physical chemistry: see Mathematics 
support. Problem solving, especially, ‘where do I start?’, is oft en a problem, and we 
have done our best to help you fi nd your way over the fi rst hurdle: see Problem 
solving. Finally, the web is an extraordinary resource, but you need to know where 
to go for a particular piece of information; we have tried to point you in the right 
direction: see Using the Web. Th e following paragraphs explain the features in 
more detail.

Organizing the information

Equation and concept tags Th e most signifi cant equations and concepts—
and which we urge you to make a particular eff ort to remember—are fl agged with 
an annotation, as shown here.

Checklist of key concepts Here we collect together the major concepts that 
we have introduced in the chapter. You might like to check off  the box that 
precedes each entry when you feel that you are confi dent about the topic.

Checklist of key equations Th is is a collection of the most important 
equations introduced in the chapter.

Case studies We incorporate general concepts of biology and biochemistry 
throughout the text, but in some cases it is useful to focus on a specifi c problem in 
some detail. A Case study contains some background information about a bio-
logical process, such as the action of adenosine triphosphate or the metabolism 
of drugs, and may be followed by a series of calculations that give quantitative 
insight into the phenomena.

About the book
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In the laboratory Here we describe some of the modern techniques of biology, 
biochemistry, and medicine. In many cases, you will use these techniques in 
laboratory courses, so we focus not on the operation of instruments but on the 
physical principles that make the instruments perform a specifi c task.

Notes good practice Science is a precise activity, and using its language 
accurately can help you to understand the concepts. We have used this feature 
to help you to use the language and procedures of science in conformity to 
international practice and to avoid common mistakes.

Justifi cations On fi rst reading you might need the ‘bottom line’ rather than a 
detailed development of a mathematical expression. However, once you have 
collected your thoughts, you might want to go back to see how a particular 
expression was obtained. Th e Justifi cations let you adjust the level of detail that 
you require to your current needs. However, don’t forget that the development of 
results is an essential part of physical chemistry, and should not be ignored.

Further information In some cases, we have judged that a derivation is too 
long, too detailed, or too diff erent in level for it to be included in the text. In these 
cases, you will fi nd the derivation at the end of the chapter.

Mathematics support

A brief comment A topic oft en needs to draw on a mathematical procedure or 
a concept of physics; a brief comment is a quick reminder of the procedure or 
concept.

Mathematical toolkit It is oft en the case that you need a more full-bodied 
account of a mathematical concept, either because it is important to understand 
the procedure more fully or because you need to use a series of tools to develop an 
equation. Th e Mathematical toolkit sections are located in the chapters, primarily 
where they are fi rst needed. 

Problem solving

Brief illustrations A Brief illustration (don’t confuse this with a diagram!) is a 
short example of how to use an equation that has just been introduced in the text. 
In particular, we show how to use data and how to manipulate units correctly.  

Examples An Example is a much more structured form of Brief illustration, 
oft en involving a more elaborate procedure. Every Example has a Strategy section 
to suggest how you might set up the problem (you might prefer another way: 
setting up problems is a highly personal business). Th en we provide the worked-
out Answer. 
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Self-tests Every Example has a Self-test, with the answer provided, so that you 
can check whether you have understood the procedure. Th ere are also free-
standing Self-tests where we thought it a good idea to provide a question for you 
to check your understanding. Th ink of Self-tests as in-chapter Exercises designed 
to help you to monitor your progress.

Discussion questions Th e end-of-chapter material starts with a short set of 
questions that are intended to encourage you to think about the material you have 
encountered and to view it in a broader context than is obtained by solving 
numerical problems.  

Exercises Th e real core of testing your progress is the collection of end-of-
chapter Exercises. We have provided a wide variety at a range of levels.

Projects Longer and more involved exercises are presented as Projects at the 
end of each chapter. In many cases, the projects encourage you to make 
connections between concepts discussed in more than one chapter, either by 
performing calculations or by pointing you to the original literature.

Media and supplements

W. H. Freeman has developed an extensive package of electronic resources and 
printed supplements to accompany the second edition of Physical Chemistry for 
the Life Sciences.

The Book Companion Website

Th e Book Companion Website provides teaching and learning resources to aug-
ment the printed book. It is free of charge, and contains additional material for 
download, much of which can be incorporated into a virtual learning environ-
ment. Th e Book Companion Website can be accessed by visiting

www.whfreeman.com/pchemls2e/

Note that instructor resources are available only to registered adopters of the 
textbook. To register simply visit www.whfreeman.com/pchemls2e/ and follow 
the appropriate links. You will be given the opportunity to select your own 
username and password, which will be activated once your adoption has been 
verifi ed.

For Students

Living Graphs A living graph can be used to explore how a property changes as 
a variety of parameters are changed. To encourage the use of this resources 
(and the more extensive Explorations in Physical Chemistry 2.0; below), we have 
included a suggested interactivity to many of the illustrations in the text, iconed 
in the book.
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Animated Molecules A visual representation of each molecule found through-
out the text is also available on the Companion Website, courtesy of ChemSpider, 
the popular online search engine that aggregates chemical structures and their 
associated information from all over the web into a single searchable repository. 
You’ll also fi nd 2D and 3D representations, as well as information on each struc-
tures’ inherent properties, identifi ers, and references. For more information on 
ChemSpider, visit www.chemspider.com.

For Instructors

Textbook Images Almost all of the fi gures, tables, and images from the text are 
available for download in both .JPEG and PowerPoint® format. Th ese can be use 
for lectures without charge, but not for commercial purposes without specifi c 
permission.

Other supplements

Explorations in Physical Chemistry 2.0

Valerie Walters, Julio de Paula, and Peter Atkins
www.whfreeman.com/explorations
ISBN: 0-7167-8586-2

Explorations in Physical Chemistry 2.0 consists of interactive Mathcad® worksheets, 
interactive Excel® workbooks, and stimulating exercises, designed to motivate 
students to simulate physical, chemical, and biochemical phenomena with their 
personal computers. Students can manipulate over 75 graphics, alter simulation 
parameters, and solve equations, to gain deeper insight into physical chemistry. 
It covers:

• Th ermodynamics, including applications to biological processes.
• Quantum chemistry, including interactive three-dimensional renderings of 

atomic and molecular orbitals.
• Atomic and molecular spectroscopy, including tutorials on Fourier-

transform techniques in modern spectroscopy.
• Properties of materials, including metals, polymers, and biological 

macromolecules.
• Chemical kinetics and dynamics, including enzyme catalysis, oscillating 

reactions, and polymerization reactions.

Explorations of Physical Chemistry 2.0 is available exclusively online.

Physical Chemistry for the Life Sciences Coursesmart eBook

www.coursesmart.com

An electronic version of the book is available for purchase from CourseSmart. 
CourseSmart eBooks are an economically alternative to printed textbooks (40% 
less) that are convenient, easy to use, and better for the environment. Each 
CourseSmart eBook reproduces the printed book exactly, page-for-page, and 
includes all the same text and images. CourseSmart eBooks can be purchased as 
either an online eBook, which is viewable from any Internet-connected computer 
with a standard Web browser, or as a downloadable eBook, which can be installed 
on any one computer and then viewed without an Internet connection. For more 
information, visit www.coursesmart.com
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Solutions Manual for Physical Chemistry for the Life Sciences, 
Second Edition

Charles Trapp, University of Louisville, and Marshall Cady, Indiana
University Southeast. ISBN: 1-4292-3125-4

Th e Solutions Manual contains complete solutions to the end-of-chapter exer-
cises, discussion questions, and projects from each chapter in the textbook. Th ese 
worked-out-solutions will guide you through each step and help you refi ne your 
problem-solving skills.



 Chemistry is the science of matter and the changes it can undergo. Physical 
chemistry is the branch of chemistry that establishes and develops the principles 
of the subject in terms of the underlying concepts of physics and the language of 
mathematics. Its concepts are used to explain and interpret observations on the 
physical and chemical properties of matter.

Th is text develops the principles of physical chemistry and their applications to 
the study of the life sciences, particularly biochemistry and medicine. Th e result-
ing combination of the concepts of physics, chemistry, and biology into an intri-
cate mosaic leads to a unique and exciting understanding of the processes 
responsible for life.

The structure of physical chemistry

Like all scientists, physical chemists build descriptions of nature on a foundation 
of careful and systematic inquiry. 

(a) The organization of science
Th e observations that physical chemistry organizes and explains are summarized 
by scientifi c laws. A law is a summary of experience. Th us, we encounter the laws 
of thermodynamics, which are summaries of observations on the transformations 
of energy. Laws are oft en expressed mathematically, as in the perfect gas law (or 
ideal gas law; see Section F.2), pV = nRT. Th is law is an approximate description of 
the physical properties of gases (with p the pressure, V the volume, n the amount, 
R a universal constant, and T the temperature). We also encounter the laws of 
quantum mechanics, which summarize observations on the behavior of indi-
vidual particles, such as molecules, atoms, and subatomic particles.

Th e fi rst step in accounting for a law is to propose a hypothesis, which is essen-
tially a guess at an explanation of the law in terms of more fundamental concepts. 
Dalton’s atomic hypothesis, which was proposed to account for the laws of chem-
ical composition and changes accompanying reactions, is an example. When a 
hypothesis has become established, perhaps as a result of the success of further 
experiments it has inspired or by a more elaborate formulation (oft en in terms 
of mathematics) that puts it into the context of broader aspects of science, it is 
promoted to the status of a theory. Among the theories we encounter are the 
theories of chemical equilibrium, atomic structure, and the rates of reactions.

A characteristic of physical chemistry, like other branches of science, is that to 
develop theories, it adopts models of the system it is seeking to describe. A model is 
a simplifi ed version of the system that focuses on the essentials of the problem. 
Once a successful model has been constructed and tested against known observa-
tions and any experiments the model inspires, it can be made more sophisticated 
and incorporate some of the complications that the original model ignored. 

Prolog
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Th us, models provide the initial framework for discussions, and reality is progres-
sively captured rather like a building is completed, decorated, and furnished. One 
example is the nuclear model of an atom, and in particular a hydrogen atom, which 
is used as a basis for the discussion of the structures of all atoms. In the initial model, 
the interactions between electrons are ignored; to elaborate the model, repulsions 
between the electrons are taken into account progressively more accurately. 

(b) The organization of our presentation
Th e text begins with an investigation of thermodynamics, the study of the trans-
formations of energy, and the relations between the bulk properties of matter. 
Th ermodynamics is summarized by a number of laws that allow us to account for 
the natural direction of physical and chemical change. Its principal relevance to 
biology is its application to the study of the deployment of energy by organisms. 

We then turn to chemical kinetics, the study of the rates of chemical reactions. 
We shall establish how the rates of reactions can be determined and how experi-
mental data give insight into the molecular processes by which chemical reactions 
occur. To understand the molecular mechanism of change, we also explore how 
molecules move, either in free fl ight in gases or by diff usion through liquids. 
Chemical kinetics is a crucial aspect of the study of organisms because the array 
of reactions that contribute to life form an intricate network of processes occur-
ring at diff erent rates under the control of enzymes. 

Next, we develop the principles of quantum theory and use them to describe 
the structures of atoms and molecules, including the macromolecules found 
in biological cells. Quantum theory is important to the life sciences because 
the structures of its complex molecules and the migration of electrons cannot be 
understood except in its terms. We extend these theories of structure to solids, 
principally because that most revealing of all structural techniques, X-ray diff rac-
tion, depends on the availability and features of crystalline samples.

Finally, we explore the information about biological structure and function 
that can be obtained from spectroscopy, the study of interactions between mole-
cules and electromagnetic radiation. Th e spectroscopic techniques available for 
the investigation of structure, which includes shape, size, and the distribution of 
electrons in ground and excited states, make use of most of the electromagnetic 
spectrum. We conclude with an account of perhaps the most important of all 
spectroscopies, nuclear magnetic resonance (NMR).

Applications of physical chemistry to biology 
and medicine

Here we discuss some of the important problems in biology and medicine being 
tackled with the tools of physical chemistry. We shall see that physical chemists 
contribute importantly not only to fundamental questions, such as the unravel-
ling of intricate relationships between the structure of a biological molecule and its 
function, but also to the application of biochemistry to new technologies. 

(a) Techniques for the study of biological systems 
Many of the techniques now employed by biochemists were fi rst conceived by 
physicists and then developed by physical chemists for studies of small molecules 
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and chemical reactions before they were applied to the investigation of complex 
biological systems. Here we mention a few examples of physical techniques that 
are used routinely for the analysis of the structure and function of biological 
molecules. 

X-ray diff raction and nuclear magnetic resonance (NMR) spectroscopy are 
two very important tools commonly used for the determination of the three-
dimensional arrangement of atoms in biological assemblies. An example of 
the power of the X-ray diff raction technique is the recent determination of the 
three-dimensional structure of the ribosome, a complex of protein and ribonu-
cleic acid with a molar mass exceeding 2 × 106 g mol−1 that is responsible for the 
synthesis of proteins from individual amino acids in the cell. Th is work led to 
the 2009 Nobel Prize in Chemistry, awarded to Venkatraman Ramakrishnan, 
Th omas Steitz, and Ada Yonath. Nuclear magnetic resonance spectroscopy has 
also advanced steadily through the years and now entire organisms may be 
studied through magnetic resonance imaging (MRI), a technique used widely 
in the diagnosis of disease. Th roughout the text we shall describe many tools for 
the structural characterization of biological molecules. 

Advances in biotechnology are also linked strongly to the development of phys-
ical techniques. Th e ongoing eff ort to characterize the entire genetic material, 
or genome, of organisms as simple as bacteria and as complex as Homo sapiens 
will lead to important new insights into the molecular mechanisms of disease, 
primarily through the discovery of previously unknown proteins encoded by the 
deoxyribonucleic acid (DNA) in genes. However, decoding genomic DNA will 
not always lead to accurate predictions of the amino acids present in biologically 
active proteins. Many proteins undergo chemical modifi cation, such as cleavage 
into smaller proteins, aft er being synthesized in the ribosome. Moreover, it is 
known that one piece of DNA may encode more than one active protein. It 
follows that it is also important to describe the proteome, the full complement 
of functional proteins of an organism, by characterizing the proteins directly aft er 
they have been synthesized and processed in the cell. 

Th e procedures of genomics and proteomics, the analysis of the genome and 
proteome, of complex organisms are time-consuming because of the very large 
number of molecules that must be characterized. For example, the human genome 
contains about 20 000 to 25 000 protein-encoding genes and the number of active 
proteins is likely to be much larger. Success in the characterization of the genome 
and proteome of any organism will depend on the deployment of very rapid tech-
niques for the determination of the order in which molecular building blocks are 
linked covalently in DNA and proteins. An important tool is gel electrophoresis, 
in which molecules are separated on a gel slab in the presence of an applied elec-
trical fi eld. It is believed that mass spectrometry, a technique for the accurate 
determination of molecular masses, will be of great signifi cance in proteomic 
analysis. We discuss the principles and applications of gel electrophoresis and 
mass spectrometry in Chapters 8 and 11, respectively. 

(b) Protein folding 
Proteins consist of fl exible chains of amino acids. However, for a protein to func-
tion correctly, it must have a well-defi ned conformation. Although the amino 
acid sequence of a protein contains the necessary information to create the active 
conformation of the protein from a newly synthesized chain, the prediction of 
the conformation from the sequence, the so-called protein folding problem, 
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is extraordinarily diffi  cult and is still the focus of much research. Solving the 
problem of how a protein fi nds its functional conformation will also help us to 
understand why some proteins fold improperly under certain circumstances. 
Misfolded proteins are thought to be involved in a number of diseases, such as 
cystic fi brosis, Alzheimer’s disease, and ‘mad cow’ disease (variant Creutzfeldt–
Jakob disease, v-CJD). 

To appreciate the complexity of the mechanism of protein folding, consider a 
small protein consisting of a single chain of 100 amino acids in a well-defi ned 
sequence. Statistical arguments lead to the conclusion that the polymer can exist 
in about 1049 distinct conformations, with the correct conformation correspond-
ing to a minimum in the energy of interaction between diff erent parts of the 
chain and the energy of interaction between the chain and surrounding solvent 
molecules. In the absence of a mechanism that streamlines the search for the 
interactions in a properly folded chain, the correct conformation can be attained 
only by sampling every one of the possibilities. If we allow each conformation to 
be sampled for 10−20 s, a duration far shorter than that observed for the comple-
tion of even the fastest of chemical reactions, it could take more than 1021 years, 
which is much longer than the age of the Universe, for the proper fold to be found. 
However, it is known that proteins can fold into functional conformations in 
less than 1 s. 

Th e preceding arguments form the basis for Levinthal’s paradox and lead to a 
view of protein folding as a complex problem in thermodynamics and chemical 
kinetics: how does a protein minimize the energies of all possible molecular inter-
actions with itself and its environment in such a relatively short period of time? 
It is no surprise that physical chemists are important contributors to the solution 
of the protein-folding problem. 

We discuss the details of protein folding in Chapters 8 and 11. For now, it 
is suffi  cient to outline the ways in which the tools of physical chemistry can 
be applied to the problem. Computational techniques that employ both classical 
and quantum theories of matter provide important insights into molecular inter-
actions and can lead to reasonable predictions of the functional conformation 
of a protein. For example, in a molecular mechanics simulation, mathematical 
expressions from classical physics are used to determine the structure correspond-
ing to the minimum in the energy of molecular interactions within the chain 
at the absolute zero of temperature. Such calculations are usually followed by 
molecular dynamics simulations, in which the molecule is set in motion by heat-
ing it to a specifi ed temperature. Th e possible trajectories of all atoms under the 
infl uence of intermolecular interactions are then calculated by consideration 
of Newton’s equations of motion. Th ese trajectories correspond to the confor-
mations that the molecule can sample at the temperature of the simulation. 
Calculations based on quantum theory are more diffi  cult and time-consuming, 
but theoretical chemists are making progress toward merging classical and 
quantum views of protein folding. 

As is usually the case in physical chemistry, theoretical studies inform experi-
mental studies and vice versa. Many of the sophisticated experimental techniques 
in chemical kinetics to be discussed in Chapter 6 continue to yield details of the 
mechanism of protein folding. For example, the available data indicate that, in 
a number of proteins, a signifi cant portion of the folding process occurs in less 
than 1 ms (10−3 s). Among the fastest events is the formation of helical and sheet-
like structures from a fully unfolded chain. Slower events include the formation of 
contacts between helical segments in a large protein. 



 PROLOG   xxv

(c) Rational drug design 
Th e search for molecules with unique biological activity represents a signifi cant 
portion of the overall eff ort expended by pharmaceutical and academic laborato-
ries to synthesize new drugs for the treatment of disease. One approach consists 
of extracting naturally occurring compounds from a large number of organisms 
and testing their medicinal properties. For example, the drug paclitaxel (sold 
under the tradename Taxol), a compound found in the bark of the Pacifi c yew 
tree, has been found to be eff ective in the treatment of ovarian cancer. An alter-
native approach to the discovery of drugs is rational drug design, which begins 
with the identifi cation of molecular characteristics of a disease-causing agent—a 
microbe, a virus, or a tumor—and proceeds with the synthesis and testing of new 
compounds to react specifi cally with it. Scores of scientists are involved in rational 
drug design, as the successful identifi cation of a powerful drug requires the com-
bined eff orts of microbiologists, biochemists, computational chemists, synthetic 
chemists, pharmacologists, and physicians. 

Many of the targets of rational drug design are enzymes, proteins, or nucleic 
acids that act as biological catalysts. Th e ideal target is either an enzyme of the 
host organism that is working abnormally as a result of the disease or an enzyme 
unique to the disease-causing agent and foreign to the host organism. Because 
enzyme-catalyzed reactions are prone to inhibition by molecules that interfere with 
the formation of product, the usual strategy is to design drugs that are specifi c 
inhibitors of specifi c target enzymes. For example, an important part of the treat-
ment of acquired immune defi ciency syndrome (AIDS) involves the steady admin-
istration of a specially designed protease inhibitor. Th e drug inhibits an enzyme 
that is key to the formation of the protein envelope surrounding the genetic mate-
rial of the human immunodefi ciency virus (HIV). Without a properly formed 
envelope, HIV cannot replicate in the host organism. 

Th e concepts of physical chemistry play important roles in rational drug design. 
First, the techniques for structure determination described throughout the text 
are essential for the identifi cation of structural features of drug candidates that 
will interact specifi cally with a chosen molecular target. Second, the principles of 
chemical kinetics discussed in Chapters 6 and 7 govern several key phenomena that 
must be optimized, such as the effi  ciency of enzyme inhibition and the rates of 
drug uptake by, distribution in, and release from the host organism. Finally, and 
perhaps most importantly, the computational techniques discussed in Chapters 
10 and 11 are used extensively in the prediction of the structure and reactivity of 
drug molecules. In rational drug design, computational chemists are oft en asked 
to predict the structural features that lead to an effi  cient drug by considering the 
nature of a receptor site in the target. Th en synthetic chemists make the proposed 
molecules, which are in turn tested by biochemists and pharmacologists for 
effi  ciency. Th e process is oft en iterative, with experimental results feeding back 
into additional calculations, which in turn generate new proposals for effi  cient 
drugs, and so on. Computational chemists continue to work very closely with 
experimental chemists to develop better theoretical tools with improved predictive 
power. 

(d) Biological energy conversion 
Th e unraveling of the mechanisms by which energy fl ows through biological 
cells has occupied the minds of biologists, chemists, and physicists for many 
decades. As a result, we now have a very good molecular picture of the physical 
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and chemical events of such complex processes as oxygenic photosynthesis and 
carbohydrate metabolism: 

6 CO2(g) + 6 H2O(l) 
 oxygenic

photosynthesisffffgbcccc
carbohydrate 
metabolism

 C6H12O6(s) + 6 O2(g)

where C6H12O6 denotes the carbohydrate glucose. In general terms, oxygenic 
photosynthesis uses solar energy to transfer electrons from water to carbon diox-
ide. In the process, high-energy molecules (carbohydrates, such as glucose) are 
synthesized in the cell. Animals feed on the carbohydrates derived from photosyn-
thesis. During carbohydrate metabolism, the O2 released by photosynthesis as a 
waste product is used to oxidize carbohydrates to CO2. Th is oxidation drives bio-
logical processes, such as biosynthesis, muscle contraction, cell division, and 
nerve conduction. Hence, the sustenance of much of life on Earth depends on a 
tightly regulated carbon–oxygen cycle that is driven by solar energy. 

We shall encounter photosynthesis and carbohydrate metabolism throughout 
the text. As we shall see in Chapter 12, the harvesting of solar energy during 
photosynthesis occurs very rapidly and effi  ciently. Within about 100–200 ps 
(1 ps = 10−12 s) of the initial light absorption event, more than 90 per cent of the 
energy is trapped within the cell and is available to drive the electron transfer 
reactions that lead to the formation of carbohydrates and O2. Sophisticated 
spectroscopic techniques pioneered by physical chemists for the study of chemical 
reactions are being used to track the fast events that follow the absorption of solar 
energy.

Th e electron transfer processes of photosynthesis and carbohydrate meta-
bolism drive the fl ow of protons across the membranes of specialized cellular 
compartments. Th e chemiosmotic theory, discussed in Chapter 5, describes how 
the energy stored in a proton gradient across a membrane can be used to synthesize 
adenosine triphosphate (ATP), a mobile energy carrier. Intimate knowledge of 
thermodynamics and chemical kinetics is required to understand the details of 
the theory and the experiments that eventually verifi ed it. 

Th e structures of nearly all the proteins associated with photosynthesis and 
carbohydrate metabolism have been characterized by X-ray diff raction or NMR 
techniques. Together, the structural data and the mechanistic models aff ord a nearly 
complete description of the relations between structure and function in biological 
energy conversion systems. Th is knowledge is now being used to design and synthe-
size molecular assemblies that can mimic oxygenic photosynthesis. Th e goal is to 
construct devices that trap solar energy in products of light-induced electron 
transfer reactions. One example is light-induced water splitting: 

H2O(l)  lightfg 12 O2(g) + H2(g) 

Th e hydrogen gas produced in this manner can be used as a fuel in a variety of 
other devices. Th e preceding is an example of how a careful study of the physical 
chemistry of biological systems can yield not only surprising insights but also 
new technologies.
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We begin by reviewing material fundamental to the whole of physical chemistry and its 
application to biology, but which should be familiar from introductory courses. Matter 
and energy are the principal focus of our discussion.

F.1 Atoms, ions, and molecules
Atoms, ions, and molecules are the currency of discourse in the whole of 
chemistry and of biochemistry in particular. Th ese concepts will be familiar from 
introductory chemistry and need little review here. However, it is important to 
keep in mind the following points.

Atoms are characterized by their atomic number, Z, the number of protons in 
the nucleus. According to the nuclear model of an atom, a nucleus of charge Ze 
and containing most of the mass of the atom is surrounded by Z electrons, each 
of charge −e. Isotopes are atoms of the same atomic number but diff erent mass 
number (or nucleon number), A, the total number of protons and neutrons in 
the nucleus. Th e loss of electrons results in cations (such as Na+ and Ca2+) and the 
gain of electrons results in anions (such as Cl− and O2−). When atoms are arranged 
in the order of increasing atomic number their properties show periodicities that 
are summarized by the periodic table with its familiar groups and periods (see 
inside the back cover).

(a) Bonding and nonbonding interactions

Th ere are three types of interaction that result in atoms bonding together into 
more elaborate structures. Ionic bonds arise from the electrostatic attraction 
between cations and anions and give rise to typically hard, brittle arrays known as 
‘ionic solids’. Covalent bonds are due to the sharing of electrons and are respon-
sible for the existence of discrete molecules, such as H2O and elaborate proteins. 
Metallic bonds arise when atoms are able to pool one or more of their electrons 
into a common sea and give rise to metals with their characteristic lustre and 
electrical conductivity.

Covalent bonding is of the greatest importance in biology as it is responsible 
for the stabilities of the frameworks of organic molecules, such as DNA and pro-
teins. However, there are interactions between regions of molecules that although 
much weaker than covalent bonding play a very important role in determining 
their shapes, and in biology molecular shape is closely allied with function. One 
such interaction is the hydrogen bond, A–H···B, where A and B are one of the 
atoms N, O, or F. Although only about 10 per cent as strong as a covalent bond, 
hydrogen bonding plays a major role in determining the shape of a biological 
macromolecule. Moreover, because it is quite weak, it permits the changes of 
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shape that allow an enzyme or nucleic acid to function. Weaker still are non-
bonding interactions, commonly called van der Waals interactions, which are 
attractions between groups of atoms in diff erent regions of a macromolecule 
or between diff erent molecules. Th ese forces also contribute to the shapes of 
molecules and the interactions between them, as we shall see.

Th e connectivity of a molecule, the pattern of covalent bonds it forms, is com-
monly represented by a Lewis structure, in which bonds are shown by lines, with 
two lines for double bonds (two shared electron pairs) and three lines for triple 
bonds (three shared pairs). Lone pairs, electron pairs not involved directly in 
bonding are also shown in Lewis structures, such as that for water (1) and acetic 
acid (2). Structural formulas of organic molecules are essentially Lewis structures 
without the explicit display of lone pairs. Th e rules for writing Lewis structures 
(such as the ‘octet rule’ relating to the number of electrons around each atom) 
should be familiar from introductory chemistry courses. A crucially important 
aspect of a double bond between two atoms, such as that in ethene (3) and on a 
more extensive scale in the visual pigment retinal (4), is that it confers torsional 
rigidity (resistance to twisting) in the region of the bond. 

Lewis structures of all but the simplest molecules do not show the shape of the 
molecule. A collection of rules known as valence-shell electron repulsion theory 
(VSEPR theory), in which regions of electron density (attached atoms and lone 
pairs) are supposed to adopt positions that minimize their repulsions, is oft en 
a helpful guide to the local shape at an atom, such as the tetrahedral arrangement 
of single bonds around a carbon atom. Th is theory should also be familiar from 
introductory chemistry courses.

(b) Structural and functional units 

Biochemistry eff ectively elaborates the concept of atoms by recognizing that 
characteristic groups of molecules can be regarded as building blocks from 
which the elaborate structures characteristic of organisms are constructed. Th ese 
building blocks include the amino acids from which proteins are built as poly-
peptides, the bases that decorate the DNA double helix and constitute the genetic 
code, and carbohydrate molecules, such as glucose, that link together to form 
polysaccharides. 

It will already be familiar from introductory courses that proteins, which are 
either structural or biochemically active molecules, are polypeptides formed 
from diff erent a-amino acids of general form NH2CHRCOOH (5) strung together 
by the peptide link, –CONH– (6). Each monomer unit in the chain is referred to 
as a peptide residue. About 20 amino acids occur naturally and diff er in the nature 
of the group R. Th ese fundamental building blocks are illustrated in the Atlas of 
structures, Section A, in the Resource section at the end of the text.

Nucleic acids, which primarily store and transmit genetic information, are 
polynucleotides in which base–sugar–phosphate units are connected by phos-
phodiester bonds built from phosphate–ester links like that shown in (7). In 
DNA the sugar is b-d-2-deoxyribose (as shown in 8) and the bases are adenine 
(A), cytosine (C), guanine (G), and thymine (T); see the Atlas of structures, 
Section B. In RNA the sugar is b-d-ribose and uracil (U) replaces thymine. 

Polysaccharides are polymers of simple carbohydrates, such as glucose (9), 
linked together by C–O–C groups. Th ey perform a variety of structural and 
functional roles in the cell, including energy storage and the mediation of inter-
actions between cells (including those involved in immunological response). See 
the Atlas of structures, Section S.



 F.1 ATOMS, IONS, AND MOLECULES   3

Th ird among the major structural units are the lipids, which are long-chain 
hydrocarbons, typically in the range C14–C24, with a variety of polar head groups 
at one end of the chain, such as –CH2CH2N(CH3)3

+ and –COOH. Th e basic 
structural element of a cell membrane is a phospholipid, in which one or more 
hydrocarbon chains are attached to a phosphate group (see the Atlas of structures, 
Section L). Phospholipids form a membrane by stacking together to form a 
lipid bilayer, about 5 nm across (Fig. F.1), leaving the polar groups exposed to the 
aqueous environment on either side of the membrane.

(c) Levels of structure

Th e concept of the ‘structure’ of a biological macromolecule takes on diff erent 
meanings for the diff erent levels at which we think about the spatial arrangement 
of the polypeptide chain:

• Th e primary structure of a macromolecule is the sequence in which the units 
are linked in the polymer (Fig. F.2a). 

• Th e secondary structure of a macromolecule is the (oft en local) spatial 
arrangement of the chain. 

Examples of secondary structure motifs are random coils and ordered structures, 
such as helices and sheets, held together primarily by hydrogen bonds (Fig. F.2b). 
Th e secondary structure of DNA arises primarily from the winding of two poly-
nucleotide chains around each other to form a double helix (Fig. F.3) held 

Fig. F.1 Th e long hydrocarbon 
chains of a phospholipid can 
stack together to form a bilayer 
structure with the polar groups 
(represented by the spheres) 
exposed to the aqueous 
environment.

Fig. F.2 Th e structural hierarchy of a biological macromolecule, in this case a protein, and a simplifi ed representation in terms of 
cylinders. (a) Th e primary structure, the sequence of amino acid residues; (b) the local secondary structure (in this case a helix); 
(c) the tertiary structure: several helical segments connected by short random coils pack together; (d) the quaternary structure: 
several subunits with specifi c structures pack together.
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together by hydrogen bonds involving A–T and C–G base pairs that lie parallel 
to each other and perpendicular to the major axis of the helix.

• Th e tertiary structure is the overall three-dimensional structure of a 
macromolecule. 

Th e hypothetical protein shown in Fig. F.2c has helical regions connected by short 
random-coil sections. Th e helices interact to form a compact tertiary structure. 

• Th e quaternary structure of a macromolecule is the manner in which large 
molecules are formed by the aggregation of others. 

Figure F.2d shows how several molecular subunits, each with a specifi c tertiary 
structure, aggregate together.

F.2 Bulk matter
Atoms, ions, and molecules cohere to form bulk matter. Th e broadest classifi ca-
tion of the resulting materials is as gas, liquid, or solid. Th e term ‘state’ has many 
diff erent meanings in chemistry, and it is important to keep them all in mind. 
Here we review the terms ‘state of matter’ and ‘physical state’.

(a) States of matter

At a ‘macroscopic’ (observational) level, we distinguish the three states of matter 
by noting the behavior of a substance enclosed in a rigid container:

A gas is a fl uid form of matter that fi lls the container it occupies.
A liquid is a fl uid form of matter that possesses a well-defi ned surface and (in 
a gravitational fi eld) fi lls the lower part of the container it occupies.
A solid retains its shape regardless of the shape of the container it occupies.

One of the roles of physical chemistry is to establish the link between the 
properties of bulk matter and the behavior of the particles of which it is com-
posed. As we work through this text, we shall gradually establish and elaborate 
the following models for the states of matter at a ‘microscopic’ (atomic) level:

Fig. F.3 Th e DNA double helix, in 
which two polynucleotide chains 
are linked together by hydrogen 
bonds between adenine (A) and 
thymine (T), and between 
cytosine (C) and guanine (G).

  Mathematical toolkit F.1 Quantities and units

Th e result of a measurement is a physical quantity that 
is reported as a numerical multiple of a unit:

physical quantity = numerical value × unit 

It follows that units are treated like algebraic quantities 
and may be multiplied, divided, and canceled. Th us, the 
expression (physical quantity)/unit is the numerical 
value (a dimensionless quantity) of the measurement 
in the specifi ed units. For instance, the mass m of an 
object could be reported as m = 2.5 kg or m/kg = 2.5. 
See Resource section 2 for a list of units.

Units may be modifi ed by a prefi x that denotes a factor 
of a power of 10. Among the most common prefi xes 

are those listed in Table 3 of Resource section 2. 
Examples of the use of these prefi xes are: 

1 nm = 10−9 m 
1 ps = 10−12 s
1 mmol = 10−6 mol

Powers of units apply to the prefi x as well as the 
unit they modify. For example, 1 cm3 = 1 (cm)3 and 
(10−2 m)3 = 10−6 m3. But note that 1 cm3 does not mean 
1 c(m3). When carrying out numerical calculations, 
it is usually safest to write out the numerical value of 
an observable as powers of 10.
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A gas is composed of widely separated particles in continuous rapid, disordered 
motion. A particle travels several (oft en many) diameters before colliding with 
another particle. For most of the time the particles are so far apart that they 
interact with each other only very weakly.
A liquid consists of particles that are in contact but are able to move past one 
another in a restricted manner. Th e particles are in a continuous state of motion 
but travel only a fraction of a diameter before bumping into a neighbor. Th e 
overriding image is one of movement but with molecules jostling one another.
A solid consists of particles that are in contact and unable to move past one 
another. Although the particles oscillate around an average location, they are 
essentially trapped in their initial positions and typically lie in ordered arrays.

Th e main diff erence between the three states of matter is the freedom of the 
particles to move past one another. If the average separation of the particles is 
large, there is hardly any restriction on their motion, and the substance is a gas. If 
the particles interact so strongly with one another that they are locked together 
rigidly, then the substance is a solid. If the particles have an intermediate mobility 
between these extremes, then the substance is a liquid. We can understand the 
melting of a solid and the vaporization of a liquid in terms of the progressive 
increase in the liberty of the particles as a sample is heated and the particles 
become able to move more freely.

(b) Physical state

By physical state (or just ‘state’) is meant a specifi c condition of a sample of matter 
that is described in terms of its physical form (gas, liquid, or solid) and the 
volume, pressure, temperature, and amount of substance present. (Th e precise 
meanings of these terms are described below.) So, 1 kg of hydrogen gas in a con-
tainer of volume 10 dm3 at a specifi ed pressure and temperature is in a particular 
state. Th e same mass of gas in a container of volume 5 dm3 is in a diff erent state. 
Two samples of a given substance are in the same state if they are the same state of 
matter (that is, are both present as gas, liquid, or solid) and if they have the same 
mass, volume, pressure, and temperature. 

To report the physical state of a sample we need to specify a number of proper-
ties in terms of their appropriate units. Th e manipulation of units, which almost 
always will be from the International System of units (SI, from the French Système 
International d’Unités) described in the Resource section, is explained in 
Mathematical toolkit F.1. Th ese properties and their units include the following:

• Mass, m, is a measure of the quantity of matter a sample contains. Unit: 
1 kg.

Th us, 2 kg of lead contains twice as much matter as 1 kg of lead and indeed 
twice as much matter as 1 kg of anything. For typical laboratory-sized samples it 
is usually more convenient to use a smaller unit and to express mass in grams (g), 
where 1 kg = 103 g.

• Volume, V, is a measure of the space a sample occupies. Unit: 1 m3.

For volume we write V = 100 cm3 if the sample occupies 100 cm3 of space. Units 
used to express volume include cubic meters (m3), cubic decimeters (dm3), liters 
(L), and milliliters (mL). Th e liter is not an SI unit, but is exactly equal to 1 dm3.

• Amount of substance, n, is a measure of the number of specifi ed entities a 
sample contains. Unit: 1 mol.

A note on good practice 
Physical quantities are 
denoted by italic, and 
sometimes Greek, letters 
(as in m for mass or r for mass 
density). Units are denoted 
by Roman letters (as in m 
for meter).
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Th e amount is expressed in moles (mol), where 1 mole is defi ned as the same 
number of specifi ed entities as there are atoms in exactly 12 g of carbon-12. 
In practice, the amount of substance is related to the number of entities, N, by 
n = N/NA, where NA is Avogadro’s constant (NA = 6.022 × 1023 mol−1). Note that 
NA is a constant with units, not a pure number.

To convert from an amount to an actual number, N, of entities we write

N = nNA Relation between 
amount and number  

(F.1)

To express a known mass of matter as an amount we use the molar mass, M, of the 
entities:

n = m
M

 Relation between 
mass and amount  

(F.2)

Th e molar mass, M, is the mass of a sample of an element or compound divided by 
the amount of atoms, molecules, or formula units it contains:

M = m
n

 Definition of 
molar mass  

(F.3)

Th e atomic weight of an element is the numerical value of the molar mass of the 
atoms it contains, the molecular weight of a molecular compound is the numerical 
value of the molar mass of its molecules, and the formula weight of an ionic com-
pound is the molar mass of a specifi ed formula unit of the compound. In each 
case ‘numerical value’ means M/(g mol−1).

• Pressure, p, is the force a sample is subjected to divided by the area to which 
that force is applied. Unit: 1 Pa. 

Because force (see later) is measured in newtons (1 N = 1 kg m s−2), pressure 
is reported in newtons per square meter, or pascals (1 Pa = 1 N m−2). Th e 
atmosphere (atm) is commonly used as a unit of pressure, but is not an SI unit. 
To convert between atmospheres and pascals use 1 atm = 101.325 kPa exactly. 
See Table F.1.

If an object is immersed in a gas, it experiences a pressure over its entire surface 
because molecules collide with it from all directions and exert a force during 
every collision. We are incessantly battered by molecules of gas in the atmosphere 
and experience this battering as ‘atmospheric pressure’. Th e pressure is greatest at 
sea level because the density of air, and hence the number of colliding molecules, 
is greatest there. Th e pressure of the atmosphere at sea level is about 100 kPa. 
When a gas is confi ned to a cylinder fi tted with a movable piston, the position of 
the piston adjusts until the pressure of the gas inside the cylinder is equal to that 
exerted by the atmosphere. When the pressures on either side of the piston are the 
same, we say that the two regions on either side are in mechanical equilibrium 
(Fig. F.4).

• Temperature, T, is the property of an object that determines in which direc-
tion energy will fl ow when it is in contact with another object: energy fl ows 
from higher temperature to lower temperature. Unit: 1 K. 

When the two bodies have the same temperature, there is no net fl ow of energy 
between them. In that case we say that the bodies are in thermal equilibrium 
(Fig. F.5). Th e symbol T is used to denote the thermodynamic temperature, 
which is an absolute scale with T = 0 as the lowest point. Temperatures above 

A note on good practice 
Th e unit mole should never be 
used without specifying the 
entities. Th us we speak of 
1 mol H if we mean 1 mol of 
hydrogen atoms, and 1 mol 
H2 if we mean 1 mol of H2 
molecules (the latter 
corresponds to 2 mol H).

  

A note on good practice 
Th e names of units derived 
from names of people are 
lowercase (as in newton and 
pascal), but their symbols are 
uppercase (as in N and Pa).

 

A brief comment
We shall see later (in Section 
F.3b) that temperature 
determines how molecules 
populate the energy levels 
available to them. Related 
to this interpretation is the 
fact that for molecules in a gas, 
the temperature determines 
their mean or average speed 
(caverage ∝ (T/M)1/2). 

Table F.1 Pressure units and 
conversion factors*

pascal, Pa 1 Pa = 1 N m−2

bar 1 bar = 105 Pa 
atmosphere, 
atm

1 atm  = 101.325 kPa 
= 1.013 25 bar 

torr, Torr† 760 Torr = 1 atm 
1 Torr = 133.32 Pa 

*Values in bold are exact.
†Th e name of the unit is torr; its symbol 
is Torr.
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T = 0 are then most commonly expressed by using the Kelvin scale, in which the 
gradations of temperature are called kelvin (K). Th e Kelvin scale is defi ned by set-
ting the triple point of water (the temperature at which ice, liquid water, and water 
vapour are in mutual equilibrium) at exactly 273.16 K. Th e freezing point of water 
(the melting point of ice) at 1 atm is then found experimentally to lie 0.01 K below 
the triple point, so the freezing point of water is approximately 273.15 K. Th e 
Kelvin scale is unsuitable for everyday measurements of temperature, and it is 
common to use the Celsius scale, which is defi ned in terms of the Kelvin scale as

q/°C = T/K − 273.15 Relation between Kelvin 
and Celsius scales  

(F.4)

(Th e 273.15 is exact in this defi nition.) Th us, the freezing point of water is 0°C and 
its boiling point (at 1 atm) is found to be 100°C. Note that in this text T invariably 
denotes the thermodynamic (absolute) temperature and that temperatures on the 
Celsius scale are denoted q (theta). 

Fig. F.4 A system is in mechanical equilibrium 
with its surroundings if it is separated from 
them by a movable wall and the external 
pressure is equal to the pressure of the gas 
in the system.

Fig. F.5 Th e temperatures of two objects act as a signpost showing 
the direction in which energy will fl ow as heat through a 
thermally conducting wall: (a) heat always fl ows from high 
temperature to low temperature. (b) When the two objects have 
the same temperature, although there is still energy transfer in 
both directions, there is no net fl ow of energy.

Self-test F.1 Use eqn F.4 to express body temperature, 37°C, in kelvins.
Answer: 310 K

Temperature is an example of an intensive property, a property that is inde-
pendent of the size of the sample. A property that does depend on the size (‘extent’) 
of the sample is called an extensive property. More formally, if we think of a sam-
ple as being divided into portions (‘subsystems’), then the value of an extensive 
property is the sum of the contribution from each of the subsystems. For instance, 
the mass of a 10 mg sample of a protein is the sum of the masses of the 10 portions, 
each of 1 mg, into which it can be imagined as being divided. Th e value of an 
intensive property is the same for each of the subsystems and of the overall system 
itself. For instance, the temperature of a uniform 100 cm3 fl ask of water is the 
same as that of each of the 10 regions, each of volume 10 cm3, into which it can 
be regarded as being divided. Mass, volume, and amount of substance are all 

A note on good practice 
We refer to absolute zero as 
T = 0, not T = 0 K. Th ere are 
other ‘absolute’ scales of 
temperature, all of which set 
their lowest value at zero. 
Insofar as it is possible, all 
expressions in science should 
be independent of the units 
being employed, and in this 
case the lowest attainable 
temperature is T = 0 
regardless of which absolute 
scale we are using. On the 
other hand, we write q = 0°C 
not q = 0 because the Celsius 
scale has an arbitrarily defi ned 
zero point.
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extensive properties. Temperature and pressure are intensive properties. Molar 
mass is intensive because the size-dependence of m and n cancel in the ratio m/n. 
All molar properties, Xm = X/n, where X is an extensive property, are intensive for 
the same reason. Mass density, r = m/V, is also intensive.

(c) Equations of state

Although the state of any sample of substance can be specifi ed by giving the 
values of its volume, the pressure, the temperature, and the amount of substance, 
a remarkable experimental fact is that these four quantities are not independent 
of one another. For instance, we cannot arbitrarily choose to have a sample of 
5.5 mmol H2O in a volume of 100 cm3 at 100 kPa and 500 K: it is found experimen-
tally that that state simply does not exist. If we select the amount, the volume, 
and the temperature, then we fi nd that we have to accept a particular pressure 
(in this case, close to 230 kPa). Th e same is true of all substances, but the pressure 
in general will be diff erent for each one. Th is experimental generalization is 
summarized by saying the substance obeys an equation of state, an equation of 
the form

p = f(n,V,T) A general equation 
of state  

(F.5)

Th is expression tells us that the pressure is some function of amount, volume, 
and temperature, and that if we know those three variables, then the pressure can 
have only one value.

Th e equations of state of most substances are not known, so in general we 
cannot write down an explicit expression for the pressure in terms of the other 
variables. However, certain equations of state are known. In particular, the equa-
tion of state of a low-pressure gas is known and proves to be very simple and very 
useful:

p = nRT
V

 Perfect gas 
equation of state  

(F.6)

where R is the gas constant R = 8.314 J K−1 mol−1 (for values of R in other and 
sometimes more convenient units see Table F.2). Although the properties of gases 
might seem to be of little direct relevance to biochemistry, this equation is used to 
describe the behavior of gases taking part in a variety of biologically important 
processes (such as respiration), the properties of the gaseous environment 
we inhabit (the atmosphere), and as a starting point for the discussion of the 
properties of species in aqueous environments (such as the cell).

Th e perfect gas equation of state—more briefl y, the ‘perfect gas law’—is so-
called because it is an idealization of the equations of state that gases actually 
obey. Specifi cally, it is found that all gases obey the equation ever more closely as 
the pressure is reduced toward zero. Th at is, eqn F.6 is an example of a limiting 
law, a law that becomes increasingly valid as the pressure is reduced and is obeyed 
exactly at the limit of zero pressure.

A hypothetical substance that obeys eqn F.6 at all pressures is called a perfect 
gas.1 From what has just been said, an actual gas, which is termed a real gas, 
behaves more and more like a perfect gas as its pressure is reduced toward zero. 
In practice, normal atmospheric pressure at sea level (p ≈ 100 kPa) is already 
low enough for most real gases to behave almost perfectly and, unless stated 

Table F.2 Th e gas constant in 
various units

R = 8.314 47 J K−1 mol−1

8.314 47 kPa dm3 K−1 mol−1

8.205 74 × 10−2 atm dm3 K−1 mol−1

62.364 Torr dm3 K−1 mol−1

1.987 21 cal K−1 mol−1

1 Th e term ‘ideal gas’ is also widely used.
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otherwise, we shall always assume in this text that the gases we encounter behave 
like a perfect gas. Th e reason why a real gas behaves diff erently from a perfect 
gas can be traced to the attractions and repulsions that exist between actual 
molecules and that are absent in a perfect gas (Chapter 11).

A brief illustration

Consider the calculation of the pressure in kilopascals exerted by 1.25 g of 
nitrogen gas in a fl ask of volume 250 mL (0.250 dm3) at 20°C. Th e amount 
of N2 molecules (of molar mass M = 28.02 g mol −1) present is

n = m
M

 = 1.25 g
28.02 g mol−1

 = 1.25
28.02

 mol 

Th e temperature of the sample is T/K = 20 + 273.15. Th erefore, from p = 
nRT/V,

 n R T = 293 K
 1442443  144424443  14243
p = (1.25/28.02) mol × (8.3145 kPa dm3 K−1 mol−1) × (20 + 273.15 K)

0.250 dm3
 

 1 2 3

 V = 250 mL

 = 435 kPa

where we have used more convenient units for the constant R. Note how 
all units (except kPa in this instance) cancel like ordinary numbers (see 
Mathematical toolkit F.1).

Self-test F.2 Calculate the pressure exerted by 1.22 g of carbon dioxide 
confi ned to a fl ask of volume 500 mL at 37°C.

Answer: 143 kPa

A note on good practice 
It is best to postpone the 
actual numerical calculation 
to the last possible stage and 
carry it out in a single step. 
Th is procedure avoids 
rounding errors.

 

Th e molar volume, Vm, is the volume a substance (not just a gas) occupies per 
mole of molecules. It is calculated by dividing the volume of the sample by the 
amount of molecules it contains:

Vm = V
n

  Definition of 
molar volume  

(F.7)

Th e perfect gas law can be used to calculate the molar volume of a perfect gas at 
any temperature and pressure. When we combine eqns F.6 and F.7, we get

Vm = V
n

 = nRT
np

 = RT
p

 Molar volume of 
a perfect gas  

(F.8)

Th is expression lets us calculate the molar volume of any gas (provided it is 
behaving perfectly) from its pressure and its temperature. It also shows that, for a 
given temperature and pressure, provided they are behaving perfectly, all gases 
have the same molar volume. 

Chemists have found it convenient to report much of their data at a particular 
set of standard conditions, as summarized in Table F.3. Th e ‘standard state’ of a 
substance (at a specifi ed temperature, not necessarily 298 K) is discussed further 
in Section 1.7. Th e condition SATP for the discussion of gases is now favored over 
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the earlier STP on account on the shift  of emphasis from 1 atm to 1 bar in the 
specifi cation of standard states.

A mixture of perfect gases, such as to a good approximation the atmosphere, 
behaves like a single perfect gas. According to Dalton’s law, the total pressure of 
such a mixture is the sum of the partial pressures of the constituents, the pressure 
to which each gas would give rise if it occupied the container alone:

p = pA + pB + · · · Dalton’s law
 

(F.9)

Each partial pressure, pJ, can be calculated from the perfect gas law in the form 
pJ = nJRT/V.

F.3 Energy
A property that will continue to occur in just about every chapter of the following 
text is ‘energy’. Indeed, we begin the text with a discussion of the deployment of 
energy in living organisms. Energy, E, is the capacity to do work. Work is the 
process of moving against an opposing force. A fully wound spring can do more 
work than a half-wound spring (that is, it can raise a weight through a greater 
height or move a greater weight through a given height). A hot object has the 
potential for doing more work than the same object when it is cool and therefore 
has a higher energy.

In his formulation of classical mechanics Isaac Newton focused on the role of 
force, F, an agent that changes the state of motion of a body. His mechanics was 
built on three laws, the second of which relates the acceleration, a, the rate of 
change of velocity, of a body of mass m to the strength of the force it experiences:

F = ma Newton’s second law
 

(F.10)

Table F.3 A summary of standard conditions

Name Conditions Comment

Standard pressure, p3 p3 = 1 bar 1 bar is exact
Standard ambient temperature 
and pressure  (SATP)

25°C (more precisely, 
298.15 K) and 1 bar

At SATP, Vm = 24.79 dm3 mol−1 
for a perfect gas

Standard temperature and 
pressure (STP)

0°C and 1 atm At STP, Vm = 22.41 dm3 mol−1 
for a perfect gas

Standard state Pure substance at 1 bar Temperature to be specifi ed. 
See Section 1.7.

A brief illustration

A stationary ball of mass 150 g is hit by a bat, and in 0.20 s reaches a speed of 
80 km h−1 (8.0 × 104 m/3600 s = 22 m s−1) before being slowed down by air 
resistance. Th e initial acceleration of the ball is (22 m s−1)/(0.20 s) = 110 m s−2. 
Th e force exerted by the bat on the ball is therefore

F = (0.150 kg) × (110 m s−2) = 16.5 kg m s−2 = 16.5 N

We have expressed the result in newtons, with 1 N = 1 kg m s−2.
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Force, like acceleration, is actually a ‘vector’ quantity, a quantity with direction as 
well as magnitude, but in most instances in this text we need consider only its 
magnitude. 

Th e magnitude of the work done in moving against a constant opposing force, 
w, is the product of the distance moved, d, and the strength of the force:

w = Fd Definition of work
 

(F.11)

A brief illustration

A bird of mass 50 g fl ies from the ground to a branch 10 m above. Th e force of 
gravity on an object of mass m close to the surface of the Earth is mg, where g 
is the ‘acceleration of free fall’: g = 9.81 m s−2. Th erefore, the work it has to do 
against gravity is

w = mgd = (0.050 kg) × (9.81 m s−2) × (10 m) = 4.9 kg m2 s−2

We would report this value as 4.9 J, where J =  1 kg m2 s−2.

As implied in the brief illustration, the SI unit of energy is the joule (J), named 
aft er the nineteenth-century scientist James Joule, who helped to establish the 
concept of energy (see Chapter 1). It is defi ned as 1 J = 1 N m = 1 kg m2 s−2. A joule 
is quite a small unit, and in chemistry we oft en deal with energies of the order of 
kilojoules (1 kJ = 103 J).

(a) Varieties of energy

We need to distinguish the energies possessed by matter and due to radiation. Th e 
kinetic energy, Ek, is the energy of a body due to its motion. For a body of mass m 
moving at a speed v,

Ek = 12mv2 Definition of 
kinetic energy  

(F.12)

Th at is, a heavy object moving at the same speed as a light object has a higher 
kinetic energy, and doubling the speed of any object increases its kinetic energy 
by a factor of 4. A ball of mass 1 kg traveling at 1 m s−1 has a kinetic energy of 
0.5 J.

Th e potential energy, Ep (and commonly V), of a body is the energy it pos-
sesses due to its position. Th e precise dependence on position depends on the 
type of force acting on the body. An important type of potential energy is the 
Coulombic potential energy of interaction between two electric charges Q1 and 
Q2 separated by a distance r:

Ep = Q1Q2

4pε0r
 Coulombic potential 

energy  
(F.13)

Th e fundamental constant ε0 is called the vacuum permittivity; its value (and 
those of other fundamental constants) is given inside the front cover. With the 
charges in coulombs (C) and the distance in meters, the energy is obtained in 
joules. Equation F.13 is based on the convention of taking the potential energy to 
be zero when the charges are infi nitely apart. Th e Coulombic potential energy will 
inform our discussion of a range of topics, from atomic structure to the nature of 
interactions that give rise to levels of structure in biological assemblies.
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A mass m close to the surface of the Earth has a potential energy that is propor-
tional to its height above the ground, h:

Ep = mgh Gravitational potential 
energy  

(F.14)

Th e constant g = 9.81 m s−2 is called the acceleration of free fall. It depends 
on the location on the Earth’s surface, but the variation is quite small. In this case, 
the arbitrary zero of potential energy is taken as being at the surface of the Earth 
(at h = 0).

Fig. F.6 An electromagnetic wave 
is characterized by its amplitude, 
A, wavelength, l, and frequency, 
n; the frequency is related to the 
wavelength by n = c/l.

A brief illustration

Th e potential energy of the 50-g bird mentioned in the preceding brief illustra-
tion is higher by 4.9 J when it is on the branch than when it is on the ground. 
Th e potential energy of this book (of mass about 1 kg) is higher by about 10 J 
when it is on a table 1 m above the fl oor than when it is on the fl oor.

Th e total energy, E, of a material body is the sum of its kinetic and potential 
energies: 

E = Ek + Ep Total energy  (F.15)

Provided no external forces are acting on the body, its total energy is constant. 
Th is remark is elevated to a central statement of classical physics known as the 
law of the conservation of energy. Potential and kinetic energy may be freely 
interchanged, for instance a falling ball loses potential energy but gains kinetic 
energy as it accelerates, but its total energy remains constant provided the body is 
isolated from external infl uences, such as air resistance.

Energy may also be present even in the absence of matter in the form of elec-
tromagnetic radiation, a wave of electric and magnetic fi elds traveling through 
a vacuum at the ‘speed of light’, c = 2.998 × 108 m s−1. Th e wave is characterized by 
its amplitude, frequency, and wavelength. Th e amplitude of the wave is the max-
imum displacement, and the perceived intensity of the wave is proportional to 
the square of the amplitude. Th e frequency, n (nu), is a measure of the rate at 
which the fi eld goes through a complete cycle of orientations. Th e SI unit of fre-
quency is 1 hertz (1 Hz), which corresponds to one cycle per second: 1 Hz = 1 s−1. 
Th e wavelength, l (lambda), is the distance between neighboring peaks of the 
wave (Fig. F.6). Th e frequency and wavelength are related by  

ln = c Relation between frequency 
and wavelength  

(F.16)

Th at is, high frequencies correspond to short wavelengths, and vice versa. Th is 
expression also applies to sound waves, with c interpreted as the speed of sound.

Th e electromagnetic spectrum runs—as far as we know—over all frequencies. 
Each range of frequencies is classifi ed as shown in Fig. F.7. Th e boundaries 
between each region are only approximate. Th e visible region of the spectrum, 
the region to which our eyes are sensitive, occupies a very narrow band between 
400 and 700 nm. As we shall see in later chapters, each region of the spectrum 
excites, or is excited by, diff erent types of nuclear, atomic, or molecular transition. 
For instance, electronic excitations, where electrons are redistributed into 
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diff erent regions of the molecule, are stimulated by or give rise to visible and 
ultraviolet radiation. Because the separation between energy levels is dictated by 
the arrangement of atoms in a molecule, measuring the frequencies of transitions 
facilitates the study of molecular structure and reactivity. Ultraviolet radiation 
can also cause such extreme electron redistributions that bonds are broken.

We need to be aware that electromagnetic energy is delivered in packets known 
as photons. Th e energy of a photon of electromagnetic radiation is related to the 
frequency of the radiation by 

E = hn Energy of  a photon  (F.17)

where h is a fundamental constant known as Planck’s constant (h = 6.626 × 
10−34 J s). In terms of photons, an intense ray of light consists of numerous 
photons, each of the same energy and each moving at the speed c. Th e higher the 
frequency of the radiation, the greater is the energy carried by each photon. 
Photons of visible light are suffi  ciently energetic to stimulate the processes 
of vision; photons of ultraviolet radiation are so energetic that they can destroy 
tissue.

A brief illustration

Th e energy of a photon of 350 nm ultraviolet radiation is

E = hc
l

 = (6.626 × 10−34 J s) × (2.998 × 108 m s−1)
3.50 × 10−7 m

 = 5.68 × 10−19 J

corresponding to 0.568 aJ. To know the energy per mole of photons, which 
helps us to assess the chemical potency of the radiation, we multiply by 
Avogadro’s constant:

E = hcNA

l
 = (6.626 × 10−34 J s) × (2.998 × 108 m s−1) × (6.022 × 1023 mol−1)

3.50 × 10−7 m
 

 = 342 kJ mol−1

 

Fig. F.7 Th e regions of the 
electromagnetic spectrum and 
some of the spectroscopic 
techniques that make use of 
them.

A note on good practice It is 
best to carry out a numerical 
calculation in one step or at 
least to avoid rounding at an 
intermediate stage.

  

(b) The Boltzmann distribution

One of the most important expressions in science, the ‘Boltzmann distribution’, 
helps to elucidate the concept of temperature as well as underlying virtually all the 
bulk properties and reactions of matter and their variation with temperature. 
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  Mathematical toolkit F.2 Exponential functions

In preparation for the large number of occurrences of 
exponential functions throughout the text, it will be 
useful to know the shape of exponential functions. 
Here we deal with two types, e−ax and e−ax2. An expo-
nential function of the form e−ax starts off  at 1 when 
x = 0 and decays toward zero, which it reaches as x 
approaches infi nity (see the illustration). Th is function 
approaches zero more rapidly as a increases. Th e 
Boltzmann distribution is an example of an exponen-
tial function. Th e function e−ax2 is called a Gaussian 

function. It also starts off  at 1 when x = 0 and decays 
to zero as x increases, however, its decay is initially 
slower but then plunges down more rapidly than e−ax. 
Gaussian functions will appear several times through 
the text. Th e illustration also shows the behavior of the 
two functions for negative values of x. Th e exponential 
function e−ax rises rapidly to infi nity, but the Gaussian 
function falls back to zero and traces out a bell-shaped 
curve.

Th e exponential function, e−x, and the bell-shaped Gaussian function, e−x2. Note that both are equal to 1 at x = 0, but the 
exponential function rises to infi nity as x → −∞.

It should be familiar from introductory courses, and will be explained in detail 
later in the text, that atoms and molecules can possess only discrete amounts of 
energy. For instance, an electron in a hydrogen atom can possess only the energies 
2.17 aJ, 0.54 aJ, 0.24 aJ, . . . (where 1 aJ, 1 attojoule = 10−18 J) below that of a widely 
separated proton and electron, and a C–H bond in a molecule can vibrate only 
with the energies 0.029 aJ, 0.086 aJ, 0.144 aJ, . . . Intermediate values of the energy 
are simply not allowed. Th e precise values of the allowed energies depend on the 
details of molecular structure, but it is generally the case that electronic energy 
levels are most widely spaced, then the energies of molecular vibration, and then 
the energies with which molecules rotate (Fig. F.8). Th e energies of translational 
motion are so close together even on an atomic scale (for instance, of the order of 
10−44 J for a CO2 molecule in a region 10 cm wide) that they may be treated as 
continuous.

Th e apparently random motion that molecules undergo at T > 0 is called ther-
mal motion. Th e energy associated with this motion is the energy of thermal 
motion, but is commonly called simply thermal energy. A useful rule of thumb is 
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that the order of magnitude of the energy that a molecule possesses as a result of 
its thermal motion is kT, where k = 1.381 × 10−23 J K−1 is a fundamental constant 
called Boltzmann’s constant. Th e gas constant R is simply the ‘molar’ form of 
Boltzmann’s constant:

R = NAk Relation between the gas constant 
and Boltzmann’s constant  

(F.18)

Th ermal motion ensures that molecules will be found spread over the energy 
levels available to them such that their mean energy is of order kT. Th e population 
of each energy level depends on the temperature, and a very important result is 
that in a system at a temperature T, the ratio of populations N2 and N1 in states 
with energies E1 and E2 is given by the Boltzmann distribution, one form of 
which is

N2

N1
 = e−(E2−E1)/kT The Boltzmann 

distribution  
(F.19a)

Th is form of the distribution applies when the Ei are actual energies (in joules, 
for instance); when the Ei are molar quantities (in joules or kilojoules per mole, 
for instance), we use

N2

N1
 = e−(E2−E1)/RT (F.19b)

with R in place of k. We see that the greater the energy separation E2 − E1, the 
smaller the ratio of populations. Alternatively, for a given separation, the ratio 
becomes smaller as the temperature is lowered. In other words, as the tempera-
ture is lowered, more and more molecules are found in their lowest energy levels 
and fewer are found in high energy levels. Th e temperature, we see, is the single 
parameter we need in order to state the relative populations of energy levels.

A brief illustration

Suppose that two conformations of neighboring peptide groups in a polypep-
tide diff er in energy by 7.5 kJ mol−1, with conformation A higher in energy 
than conformation B. At body temperature (37°C, corresponding to 310 K) 
the ratio of populations of the two conformations is 
 NA

NB
 = e−(7500 J mol−1)/(8.3145 J K−1 mol−1×310 K) = 0.054

Th at is, conformation B is about 18 times more abundant than conform-
ation A.
 

Fig. F.8 Th e energy level 
separations (in joules) typical 
of four types of motion.

Th e importance of the Boltzmann distribution will become apparent as the 
following chapters unfold. We shall see that it accounts for the stability of matter, 
for very few molecules are found in highly excited states at ordinary tempera-
tures, but it allows for the possibility of reaction, as some molecules will be found 
with suffi  cient energy to react, and the proportion that can react increases as the 
temperature is raised. Already we are beginning to see why chemical reactions 
proceed more quickly as the temperature is raised.
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We can obtain insight into the molecular origins of temperature by using the 
simple but powerful kinetic model of gases (also called the ‘kinetic molecular 
theory,’ KMT, of gases), which is based on a model of a gas that we mentioned 
earlier, in which the molecules are in ceaseless random motion, do not interact 
with one another except during collisions, and are much smaller than the average 
distance traveled between collisions (Fig. F.9). Diff erent speeds correspond to 
diff erent energies, so the Boltzmann formula can be used to predict the pro-
portions of molecules having a specifi c speed at a particular temperature. Th e 
expression giving the fraction of molecules that have a particular speed is called 
the Maxwell distribution (sometimes the Maxwell–Boltzmann distribution) and 
has the features summarized in Figs F.10 and F.11. Th e Maxwell distribution, 
which is discussed more fully in Further information 7.1, can be used to show 
that the mean speed, C, of the molecules depends on the temperature T and their 
molar mass M as

C = AC
8RT
pM

D
F

1/2

 Mean speed according to 
the Maxwell distribution  

(F.20)

Th us, the mean or average speed is high for light molecules at high temperatures. 
Th e distribution itself gives more information. For instance, the tail towards high 
speeds is longer at high temperatures than at low, which indicates that at high 
temperatures more molecules in a sample have speeds much higher than average.

Fig. F.11 Th e Maxwell distribution of speeds also 
depends on the molar mass of the molecules. 
Molecules of low molar mass have a broad 
spread of speeds, and a signifi cant fraction may 
be found traveling much faster than the mean 
speed. Th e distribution is much narrower for 
heavy molecules, and most of them travel with 
speeds close to the mean value (denoted by the 
locations of the vertical dotted lines).

Fig. F.9 Th e model used for 
discussing the molecular basis 
of the physical properties of 
a perfect gas. Th e pointlike 
molecules move randomly with 
a wide range of speeds and in 
random directions, both of which 
change when they collide with 
the walls or with other molecules.

Fig. F.10 Th e Maxwell distribution 
of speeds and its variation with 
the temperature. Note the 
broadening of the distribution 
and the shift  of the mean speed 
(denoted by the locations of the 
vertical dotted lines) to higher 
values as the temperature is 
increased.



 CHECKLIST OF KEY EQUATIONS   17

Checklist of key concepts

 1. In the nuclear model, an atom of atomic number Z 
consists of a nucleus of charge +Ze surrounded by 
Z electrons each of charge −e. 

 2. Proteins, nucleic acids, and polysaccharides are long 
molecular chains with diff erent levels of three-
dimensional structure. 

 3. Cell membranes are formed by the stacking of lipid 
molecules into a bilayer structure. 

 4. Th e states of matter are gas, liquid, and solid.
 5. An equation of state is an equation relating pressure, 

volume, temperature, and amount of a substance.
 6. Th e perfect gas equation of state is a limiting law 

applicable as p → 0.
 7. Energy is the capacity to do work.
 8. Work is done when a body is moved against an 

opposing force.
 9. Th e contributions to the energy of matter are the 

kinetic energy (the energy due to motion) and 
the potential energy (the energy due to position).

 10. Th e total energy of an isolated system is conserved, 
but kinetic and potential energy may be interchanged.

 11. Electromagnetic radiation is characterized by its 
amplitude, frequency, and wavelength.

 12. Electromagnetic radiation consists of photons, 
packets of energy of magnitude hn and traveling 
at the speed of light.

 13. Th e Boltzmann distribution gives the relative 
numbers of molecules in the energy levels available 
to them. 

 14. Th e mean speed of molecules is proportional to 
the square root of the (absolute) temperature and 
inversely proportional to the square root of the 
molar mass.

 15. Th e properties of the Maxwell distribution of speeds 
are summarized in Figs F.10 and F.11.

Checklist of key equations

Property or process Equation Comment

Relation between number and amount N = nNA NA is Avogadro’s constant
Molar quantity Xm = X/n Molar mass is denoted M
Temperature conversion q/°C = T/K − 273.15 273.15 is exact
Equation of state p = nRT/V Perfect (ideal) gas
Molar volume Vm = RT/p Perfect (ideal) gas
Dalton’s law p = pA + pB + · · · Perfect (ideal) gas
Newton’s second law F = ma

w = Fd
Ek = 12mv2

Ep = Q1Q2/4pε0r
Ep = mgh

Work F is the opposing force
Kinetic energy
Coulomb potential energy Charges in a vacuum
Gravitational potential energy Close to surface of the Earth
Relation between wavelength and frequency ln = c c is speed of propagation (e.g. speed of light)
Energy of a photon E = hn h is Planck’s constant
Boltzmann distribution N2/N1 = e−(E2−E1)/kT k is Boltzmann’s constant, R = NAk
Mean speed of molecules C = (8RT/pM)1/2 Perfect (ideal) gas
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Discussion questions

F.1 Distinguish between ionic bonds, covalent bonds, hydrogen 
bonds, and van der Waals interactions. 

F.2 Distinguish between polypeptides, polynucleotides, and 
polysaccharides. 

F.3 Describe the main structural features of a lipid bilayer. 

F.4 Distinguish between primary, secondary, tertiary, and quaternary 
levels of structure in biological macromolecules. 

F.5 Explain the diff erences between gases, liquids, and solids at 
macroscopic and microscopic levels.

F.6 Defi ne the terms force, work, energy, kinetic energy, potential 
energy, and the energy of thermal motion. 

F.7 Distinguish between mechanical and thermal equilibrium.

F.8 Describe the main features of electromagnetic radiation and the 
electromagnetic spectrum. 

F.9 Use the Boltzmann distribution to provide a molecular 
interpretation of temperature. 

Exercises

Treat all gases as perfect unless instructed otherwise.

F.10 You will see Lewis structures throughout the text. Using your 
knowledge of introductory chemistry, draw the Lewis structures of 
(a) SO3

2−, (b) XeF4, (c) P4, (d) O3, (e) ClF3
+, and (f) N3

−. 

F.11 Using your knowledge of VSEPR theory from introductory 
chemistry, predict the shapes of (a) PCl3, (b) PCl5, (c) XeF2, (d) XeF4, 
(e) H2O2, (f) FSO3

−, (g) KrF2, and (h) PCl4
+. 

F.12 Express (a) 110 kPa in torr, (b) 0.997 bar in atmospheres, 
(c) 2.15 × 104 Pa in atmospheres, and (d) 723 Torr in pascals.

F.13 Given that the Celsius and Fahrenheit temperature scales are 
related by qCelsius/°C = 59(qFahrenheit/°F − 32), what is the temperature 
of absolute zero (T = 0) on the Fahrenheit scale?

F.14 Imagine that Pluto is inhabited and that its scientists use a 
temperature scale in which the freezing point of liquid nitrogen is 0°P 
(degrees Plutonium) and its boiling point is 100°P. Th e inhabitants 
of Earth report these temperatures as −209.9°C and −195.8°C, 
respectively. What is the relation between temperatures on (a) the 
Plutonium and Kelvin scales, and (b) the Plutonium and Fahrenheit 
scales?

F.15 Much to everyone’s surprise, nitrogen monoxide (nitric oxide, 
NO) has been found to act as a neurotransmitter. To prepare to study 
its eff ect, a sample was collected in a container of volume 250.0 cm3. 
At 19.5°C its pressure is found to be 24.5 kPa. What amount (in moles) 
of NO has been collected?

F.16 Th e eff ect of high pressure on organisms, including humans, is 
studied to gain information about deep-sea diving and anesthesia. 
A sample of air occupies 1.00 dm3 at 25°C and 1.00 atm. What 
pressure is needed to compress it to 100 cm3 at this temperature?

F.17 You are warned not to dispose of pressurized cans by throwing 
them onto a fi re. Th e gas in an aerosol container exerts a pressure of 
125 kPa at 18°C. Th e container is thrown on a fi re, and its temperature 
rises to 700°C. What is the pressure at this temperature?

F.18 Until we fi nd an economical way of extracting oxygen from 
seawater or lunar rocks, we have to carry it with us to inhospitable 
places and do so in compressed form in tanks. A sample of oxygen 

at 101 kPa is compressed at constant temperature from 7.20 dm3 to 
4.21 dm3. Calculate the fi nal pressure of the gas.

F.19 Hot-air balloons gain their lift  from the lowering of density 
of air that occurs when the air in the envelope is heated. To what 
temperature should you heat a sample of air, initially at 340 K, to 
increase its volume by 14 per cent?

F.20 At sea level, where the pressure was 104 kPa and the temperature 
21.1°C, a certain mass of air occupied 2.0 m3. To what volume will the 
region expand when it has risen to an altitude where the pressure and 
temperature are (a) 52 kPa, −5.0°C and (b) 880 Pa, −52.0°C?

F.21 A diving bell has an air space of 3.0 m3 when on the deck of a 
boat. What is the volume of the air space when the bell has been 
lowered to a depth of 50 m? Take the mean density of seawater to be 
1.025 g cm−3 and assume that the temperature is the same as on the 
surface.

F.22 Calculate the work that a person of mass 65 kg must do to climb 
between two fl oors of a building separated by 3.5 m.

F.23 What is the kinetic energy of a tennis ball of mass 58 g served at 
30 m s−1?

F.24 A car of mass 1.5 t (1 t = 103 kg) traveling at 50 km h−1 must be 
brought to a stop. How much kinetic energy must be dissipated?

F.25 Consider a region of the atmosphere of volume 25 dm3, which 
at 20°C contains about 1.0 mol of molecules. Take the average molar 
mass of the molecules as 29 g mol−1 and their average speed as about 
400 m s−1. Estimate the energy stored as molecular kinetic energy in 
this volume of air.

F.26 Calculate the minimum energy that a bird of mass 25 g must 
expend in order to reach a height of 50 m.

F.27 Th e potential energy of a charge Q1 in the presence of another 
charge Q2 can be expressed in terms of the Coulomb potential, f (phi):

V = Q1f  f = Q2

4pe0r
  

Th e units of potential are joules per coulomb, J C−1, so when f is 
multiplied by a charge in coulombs, the result is in joules. Th e 
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combination joules per coulomb occurs widely and is called a volt (V), 
with 1 V = 1 J C−1. Calculate the Coulomb potential due to the nuclei 
at a point in a LiH molecule located 200 pm from the Li nucleus and 
150 pm from the H nucleus. Hint: Use Q = +Ze, where Z is the atomic 
number and e is the elementary charge. 

F.28 Plot the Coulomb potential (see Exercise F.27) due to the nuclei 
at a point in a Na+Cl− ion pair located on a line half-way between the 
nuclei (the internuclear separation is 283 pm) as the point approaches 
from infi nity and ends at the mid point between the nuclei. 

F.29 What is the wavelength of the radiation used by an FM radio 
transmitter broadcasting at 92.0 MHz? 

F.30 What is the energy of (a) a single photon and (b) 1.00 mol of 
photons of wavelength 670 nm? 

F.31 Suppose that a macromolecule can exist either as a random coil 
or fully stretched out, with the latter conformation 2.4 kJ mol−1 higher 
in energy. What is the ratio of the two conformations at 20°C? 

F.32 An electron spin can adopt either of two orientations in a 
magnetic fi eld, and its energies are ±mBB, where mB = 9.274 × 10−24 J T−1 
is the Bohr magneton and B is the intensity of the magnetic fi eld, 
oft en reported in teslas (1 T = 1 kg s−2 A−1). Calculate the relative 
populations of the spin states at (a) 4.0 K and (b) 298 K, when 
B = 1.0 T. 

F.33 Th e composition of planetary atmospheres is determined in part 
by the speeds of the molecules of the constituent gases because the 
faster-moving molecules can reach escape velocity and leave the 
planet. Calculate the mean speed of (a) He atoms and (b) CH4 
molecules at (i) 77 K, (ii) 298 K, and (iii) 1000 K.

Project

F.34 You will now explore the gravitational potential energy in some 
detail, with an eye toward discovering the origin of the value of the 
constant g, the acceleration of free fall, and the magnitude of the 
gravitational force experienced by all organisms on the Earth.

(a) Th e gravitational potential energy of a body of mass m at a 
distance r from the center of the Earth is −GmmE/r, where mE is the 
mass of the Earth and G is the gravitational constant (see inside front 
cover). Consider the diff erence in potential energy of the body when it 
is moved from the surface of the Earth (radius rE) to a height h above 
the surface, with h << rE, and fi nd an expression for the acceleration of 
free fall, g, in terms of the mass and radius of the Earth. Hint: Use the 
approximation (1 + h/rE)−1 ≈ 1 − h/rE. (See Mathematical toolkit 3.2 for 
more information on series expansions and the approximations that 
can be made by using expansions.)

(b) You need to assess the fuel needed to send the robot explorer 
Spirit, which has a mass of 185 kg, to Mars. What was the energy 
needed to raise the vehicle itself from the surface of the Earth to a 
distant point where the Earth’s gravitational fi eld was eff ectively zero? 
Th e mean radius of the Earth is 6371 km and its average mass density 
is 5.5170 g cm−3. Hint: Use the full expression for the gravitational 
potential energy in part (a).

(c) Given the expression for the gravitational potential energy in 
part (a), (i) what is the gravitational force on an object of mass m at a 
distance r from the center of the Earth? (ii) What is the gravitational 
force that you are currently experiencing? For data on the Earth, see 
part (b).



This page intentionally left blank 



PART 1 Biochemical
Thermodynamics

The branch of physical chemistry known as thermodynamics is 

concerned with the study of the transformations of energy. That 

concern might seem remote from chemistry, let alone biology. Indeed, 

thermodynamics was originally formulated by physicists and engineers 

interested in the efficiency of steam engines. However, thermodynamics 

has proved to be of immense importance in both chemistry and biology. 

Not only does it deal with the energy output of chemical reactions but it 

also helps to answer questions that lie right at the heart of biochemistry, 

such as how energy flows in biological cells and how large molecules 

assemble into complex structures like the cell.
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Classical thermodynamics, the thermodynamics developed during the nineteenth 
century, stands aloof from any models of the internal constitution of matter: we could 
develop and use thermodynamics without ever mentioning atoms and molecules. 
However, the subject is greatly enriched by acknowledging that atoms and molecules 
do exist and interpreting thermodynamic properties and relations in terms of them. 
Wherever it is appropriate, we shall cross back and forth between thermodynamics, 
which provides useful relations between observable properties of bulk matter, and the 
properties of atoms and molecules, which are ultimately responsible for these bulk 
properties.

Throughout the text we shall pay special attention to bioenergetics, the deployment 
of energy in living organisms. We shall initiate discussions of thermodynamics with the 
perfect gas as a model system. Although a perfect gas may seem far removed from 
biology, its properties are crucial to the formulation of thermodynamics of systems in 
aqueous environments, such as biological cells. First, it is quite simple to formulate the 
thermodynamic properties of a perfect gas. Then—and this is the crucially important 
point—because a perfect gas is a good approximation to a vapor and a vapor may be 
in equilibrium with a liquid, the thermodynamic properties of a perfect gas are mirrored 
(in a manner we shall describe) in the thermodynamic properties of the liquid. In other 
words, we shall see that a description of the gases (or ‘vapors’) that hover above a 
solution opens a window onto the description of physical and chemical transforma-
tions occurring in the solution itself.

Once we become equipped with the formalism to describe chemical reactions 
in solution, it will be easy to apply the concepts of thermodynamics to the complex 
environment of a biological cell. That is, we need to make a modest investment in the 
study of systems that may seem removed from our concerns so that, in the end, we 
can collect sizable dividends that will enrich our understanding of energy trapping and 
utilization in biological cells.

The conservation of energy
Almost every argument and explanation in chemistry boils down to a consider-
ation of some aspect of a single property: the energy. Energy determines what 
molecules can form, what reactions can occur, how fast they can occur, and (with 
a refi nement in our conception of energy) in which direction a reaction has a 
tendency to occur.

As we saw in Fundamentals:

energy is the capacity to do work
work is the process of moving against an opposing force

The First Law 1
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Th ese defi nitions imply that a raised weight has more energy than one of the same 
mass resting on the ground because the former has a greater capacity to do work: 
it can do work as it falls to the level of the lower weight. Th e defi nition also implies 
that a gas at a high temperature has more energy than the same gas at a low tem-
perature: the hot gas has a higher pressure and can do more work in driving out a 
piston. In biology, we encounter many examples of the relation between energy 
and work. As a muscle contracts and relaxes, energy stored in its protein fi bers is 
released as the work of walking, lift ing a weight, and so on. In biological cells, 
nutrients, ions, and electrons are constantly moving across membranes and from 
one cellular compartment to another. Th e synthesis of biological molecules and 
cell division are also manifestations of work at the molecular level. Th e energy 
that produces all this work in our bodies comes from food.

People struggled for centuries to create energy from nothing, for they believed 
that if they could create energy, then they could produce work (and wealth) end-
lessly. However, without exception, despite strenuous eff orts, many of which 
degenerated into deceit, they failed. As a result of their failed eff orts, we have 
come to recognize that energy can be neither created nor destroyed but merely 
converted from one form into another or moved from place to place. Th is ‘law of 
the conservation of energy’ is of great importance in chemistry. Most chemical 
reactions—including the majority of those taking place in biological cells— 
release energy or absorb it as they occur; so according to the law of the conserva-
tion of energy, we can be confi dent that all such changes—including the vast 
collection of physical and chemical changes we call life—must result only in the 
conversion of energy from one form to another or its transfer from place to place, 
not its creation or annihilation.

1.1 Systems and surroundings
We need to understand the unique and precise vocabulary of thermodynamics before 
applying it to the study of bioenergetics.

In thermodynamics, a system is the part of the world in which we have a special 
interest. Th e surroundings are where we make our observations (Fig. 1.1). Th e 
surroundings, which can be modeled as a large water bath, remain at constant 
temperature regardless of how much energy fl ows into or out of them. Th ey are so 
huge that they also have either constant volume or constant pressure regardless of 
any changes that take place to the system. Th us, even though the system might 
expand, the surroundings remain eff ectively the same size.

We need to distinguish three types of system (Fig. 1.2):

An open system can exchange both energy and matter with its surroundings.
A closed system is a system that can exchange energy but not matter with its 
surroundings.
An isolated system is a system that can exchange neither matter nor energy 
with its surroundings.

An example of an open system is a fl ask that is not stoppered and to which various 
substances can be added. A biological cell is an open system because nutrients 
and waste can pass through the cell wall. You and I are open systems: we ingest, 
respire, perspire, and excrete. An example of a closed system is a stoppered fl ask: 
energy can be exchanged with the contents of the fl ask because the walls may be 
able to conduct heat. An example of an isolated system is a sealed fl ask that is 
thermally, mechanically, and electrically insulated from its surroundings.

Fig. 1.1 Th e sample is the system of 
interest; the rest of the world is its 
surroundings. Th e surroundings 
are where observations are made 
on the system. Th ey can oft en be 
modeled by a large water bath. 
Th e universe consists of the 
system and its surroundings.

Fig. 1.2 A system is open if it can 
exchange energy and matter with 
its surroundings, closed if it can 
exchange energy but not matter, 
and isolated if it can exchange 
neither energy nor matter.
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1.2 Work and heat
Organisms can be regarded as systems that exchange energy with their 
surroundings, and we need to understand how those transfers take place.

Energy can be exchanged between a closed system and its surroundings by doing 
work or by the process called ‘heating’. A system does work when it causes motion 
against an opposing force. We can identify when a system does work by noting 
whether the process can be used to change the height of a weight somewhere in 
the surroundings. Heating is the process of transferring energy as a result of a 
temperature diff erence between the systems and its surroundings. To avoid a lot 
of awkward language, it is common to say that ‘energy is transferred as work’ 
when the system does work and ‘energy is transferred as heat’ when the system 
heats its surroundings (or vice versa). However, we should always remember that 
‘work’ and ‘heat’ are modes of transfer of energy, not forms of energy.

(a) Exothermic and endothermic processes

Walls that permit heating as a mode of transfer of energy are called diathermic 
(Fig. 1.3). A metal container is diathermic and so is our skin or any biological 
membrane. Walls that do not permit heating even though there is a diff erence 
in temperature are called adiabatic.1 Th e double walls of a vacuum fl ask are 
adiabatic to a good approximation.

A process in a system that transfers energy as heat to the surroundings (we 
commonly say ‘releases heat into the surroundings’) is called exothermic. A pro-
cess in a system that absorbs energy as heat from the surroundings (we commonly 
say ‘absorbs heat from the surroundings’) is called endothermic. All combustions 
are exothermic. Th e reactions leading to the oxidative breakdown of nutrients in 
organisms are also exothermic. Th ese reactions include oxidation of the carbo-
hydrate glucose (C6H12O6, Atlas S4) and of the fat tristearin (C57H110O6):

C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(l)
2 C57H110O6(s) + 163 O2(g) → 114 CO2(g) + 110 H2O(l)

Endothermic reactions are much less common. Th e endothermic dissolution of 
ammonium nitrate in water is the basis of the instant cold packs that are included 
in some fi rst-aid kits. Th ey consist of a plastic envelope containing water dyed 
blue (for psychological reasons) and a small tube of ammonium nitrate, which is 
broken when the pack is to be used.

As an example of these terms, consider a chemical reaction that is a net pro-
ducer of gas, such as the combustion of urea, (NH2)2CO, to yield carbon dioxide, 
water, and nitrogen:

(NH2)2CO(s) + 32 O2(g) → CO2(g) + 2 H2O(l) + N2(g)

Suppose fi rst that the reaction takes place inside a cylinder with diathermic walls 
and fi tted with a movable piston, then the gas produced drives out the piston and 
raises a weight in the surroundings (Fig. 1.4). In this case, energy has migrated 
to the surroundings as a result of the system doing work because a weight has 
been raised in the surroundings: that weight can now do more work, so it pos-
sesses more energy. Because the reaction is exothermic and walls are diathermic, 
some energy also migrates into the surroundings as heat. We can detect that 
transfer of energy by immersing the reaction vessel in an ice bath and noting how 

Fig. 1.3 (a) A diathermic wall 
permits the passage of energy as 
heat; (b) an adiabatic wall does 
not, even if there is a temperature 
diff erence across the wall.

Fig. 1.4 When urea reacts with 
oxygen, the gases produced 
(carbon dioxide and nitrogen) 
must push back the surrounding 
atmosphere (represented by the 
weight resting on the piston) 
and hence must do work on its 
surroundings. Th is is an example 
of energy leaving a system as 
work.1 Th e word is derived from the Greek words for ‘not passing through’.
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much ice melts. Alternatively, we could let the same reaction take place in a 
diathermic vessel with a piston locked in position. No work is done because no 
weight is raised. However, because it is found that more ice melts than in the fi rst 
experiment, we can conclude that more energy has migrated to the surroundings 
as heat.

(b) The molecular interpretation of work and heat

Th e clue to the molecular nature of work comes from thinking about the motion 
of a weight in terms of its component atoms. When a weight is raised, all its atoms 
move in the same direction. Th is observation suggests that work is the transfer of 
energy that achieves or utilizes uniform motion in the surroundings (Fig. 1.5). 
Whenever we think of work, we can always think of it in terms of uniform motion 
of some kind. Electrical work, for instance, corresponds to electrons being pushed 
in the same direction through a circuit. Mechanical work corresponds to atoms 
being pushed in the same direction against an opposing force.

Now consider the molecular nature of heating. When energy is transferred as 
heat to the surroundings, the atoms and molecules oscillate more rapidly around 
their positions or move from place to place more vigorously. Th e key point is that 
the motion stimulated by the arrival of energy from the system as heat is random, 
not uniform as in the case of doing work. Th is observation suggests that heat is the 
mode of transfer of energy that achieves or utilizes random motion in the surround-
ings (Fig. 1.6). A fuel burning, for example, generates random molecular motion 
in its vicinity.

An interesting historical point is that the molecular diff erence between work 
and heat correlates with the chronological order of their application. Th e release 
of energy when a fi re burns is a relatively unsophisticated procedure because the 
energy emerges in a disordered fashion from the burning fuel. It was developed—
stumbled upon—early in the history of civilization. Th e generation of work by a 
burning fuel, in contrast, relies on a carefully controlled transfer of energy so that 
vast numbers of molecules move in unison. Apart from Nature’s achievement of 
work through the evolution of muscles, the large-scale transfer of energy by doing 
work was achieved thousands of years later than the liberation of energy by heat-
ing, for it had to await the development of the steam engine.

(c) The molecular interpretation of temperature

We are now also in a position to understand the molecular basis of temperature (a 
concept fi rst introduced in Fundamentals F.3). To do so, we consider an isolated 
system composed of N molecules. Although the total energy is constant at E, it is 
not possible to be defi nite about how that energy is shared between the molecules. 
Collisions result in the ceaseless redistribution of energy not only between the 
molecules but also among their diff erent modes of motion (translation, rotation, 
and vibration). Th e closest we can come to a description of the distribution of 
energy is to report the population of a state, the average number of molecules that 
occupy it, and to say that on average there are Ni molecules in a state of energy εi. 
Th e populations of the states remain almost constant, but the precise identities of 
the molecules in each state may change at every collision.

Any individual molecule may exist in states with energies ε0, ε1, . . . . At any 
instant there are N0 molecules in the state with energy ε0 (the ‘ground state’), 
N1 with ε1 (the ‘fi rst excited state’), and so on. Th e specifi cation of the set of 
populations N0, N1, . . . in the form {N0,N1, . . .} is a statement of the ‘instantaneous 
confi guration’ of the system. Th e instantaneous confi guration fl uctuates with 

Fig. 1.5 Work is the transfer of 
energy that causes or utilizes 
uniform motion of atoms in the 
surroundings. For example, when 
a weight is raised, all the atoms 
of the weight (shown magnifi ed) 
move in unison in the same 
direction.

Fig. 1.6 Heat is the transfer of 
energy that causes or utilizes 
random motion in the 
surroundings. When energy 
leaves the system (the green 
region), it generates random 
motion in the surroundings 
(shown magnifi ed).
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time because the populations change. We can picture a large number of diff erent 
instantaneous confi gurations of 100 molecules. One confi guration, for example, 
might be {98,0,2, . . .}, corresponding to every molecule except two being in the 
ground state. Another of the same total energy might be {96,1,1,1,1, . . .}, in which 
four molecules occupy the fi rst four excited states. Th e latter confi guration is 
intrinsically more likely to be found than the former because it can be achieved in 
more ways: {98,0,2, . . .} can be achieved in 4950 diff erent ways but {96,1,1,1,1, . . .} 
can be achieved in 94 109 400 diff erent ways, which is over 19 000 times more 
ways. (Th ese numbers are obtained by counting how many ways there are of 
selecting molecules at random from 100.) If, as a result of molecular jostling, 
the system were to fl uctuate between the confi gurations {98,0,2, . . .} and 
{96,1,1,1,1, . . .}, it would almost always be found in the second, more likely, con-
fi guration. In other words, a system free to switch between the two confi gurations 
would show properties characteristic almost exclusively of the second confi gura-
tion. It should be easy to believe that there may be other confi gurations that have 
a much greater likelihood of occurring than both.

When the statistics of the distributions are analyzed, with energy distributed 
purely at random subject to its total being fi xed at a certain value E, one con-
fi guration can be obtained in so many ways that it overwhelms all the rest in 
importance to such an extent that the system will almost always be found in it. 
Th e properties of the system will therefore be characteristic of that particular 
dominating confi guration. Th e ratio of populations that correspond to this domin-
ating confi guration turns out to be given by the Boltzmann distribution, which 
we introduced and illustrated in Fundamentals F.3:

N2

N1
 = e−(E2−E1)/kT = e−DE/kT The Boltzmann distribution  (1.1)

where k is Boltzmann’s constant (k = 1.381 × 10−23 J K−1). We now see that the 
Boltzmann distribution, which is one of the most important concepts in the whole 
of physical chemistry, specifi es the most probable distribution of molecules over 
their available energy levels subject only to the requirement that the total energy 
has a certain value. We also see that the temperature is a parameter that character-
izes that distribution. A low temperature implies that only low-energy states are 
occupied; a high temperature indicates that high-energy states are also occupied. 
Zero temperature (T = 0) indicates that only the ground state is occupied. Infi nite 
temperature (T = ∞) indicates that all available states are equally occupied. We 
can now begin to see that molecules are stable at low temperature because they 
occupy only low energy states; as the temperature is increased, they occupy more 
states of high energy and as a result can undergo reaction or, in the case of macro-
molecules, lose their secondary and higher levels of structure.

Case study 1.1 Energy conversion in organisms

Figure 1.7 outlines the main processes of metabolism, the collection of 
chemical reactions that trap, store, and utilize energy in biological cells. Most 
chemical reactions taking place in biological cells are either endothermic or 
exothermic, and cellular processes can continue only as long as there is a steady 
supply of energy to the cell. Furthermore, as we shall see in Section 1.6, only 
the conversion of the supplied energy from one form to another or its transfer 
from place to place is possible.
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Th e primary source of energy that sustains the bulk of plant and animal life on 
Earth is the Sun.2 We saw in the Prologue that energy from solar radiation is 
ultimately stored during photosynthesis in the form of organic molecules, 
such as carbohydrates, fats, and proteins, that are subsequently oxidized to 
meet the energy demands of organisms. Catabolism is the collection of reac-
tions associated with the oxidation of nutrients in the cell and may be regarded 
as highly controlled reactions, with the energy liberated as work rather than as 
heat. Th us, even though the free combustion of a carbohydrate or fat to carbon 
dioxide and water is highly exothermic, in cells the equivalent oxidation is 
highly controlled and much of the energy is expended as useful work. Th e net 
outcome is the conversion of energy from controlled oxidation of nutrients to 
energy for doing work in the cell, including the transport of ions and neutral 
molecules (such as nutrients) across cell membranes, the physical motion of 
the organism (for example through the contraction of muscles), and anabol-
ism, the biosynthesis of small and large molecules. Th e biosynthesis of DNA 
may be regarded as an anabolic process in which energy is converted ultimately 
to useful information, the genome of the organism.

Figure 1.7 also shows how organisms distribute the energy stored in a variety 
of ways. Because energy is extracted from organic compounds by oxidation, 
the initial energy carriers are reduced species, species that have gained elec-
trons, such as NADH, the reduced form of nicotinamide adenine dinucleotide 
(NAD+, Atlas N4). Light-induced electron transfer in photosynthesis also 
leads to the formation of reduced species, such as NADPH from NADP+ (Atlas 
N5), the phosphorylated derivative of NAD+. Th e details of the reactions lead-
ing to the production of NADH and NADPH are discussed in Chapter 5. 
Oxidation–reduction reactions (‘redox reactions’) transfer energy out of 
NADH and other reduced species, storing it in the mobile carrier adenosine 
triphosphate, ATP (Atlas N3), and in ion gradients across membranes. As we 
shall see in Chapter 4, the essence of ATP’s action is the loss of its terminal 
phosphate group in an energy-releasing reaction. Ion gradients arise from 
the movement of charged species across a membrane and we shall see in 
Chapter 5 how they store energy that can be used to drive biochemical pro-
cesses and the synthesis of ATP.

Fig. 1.7 Diagram demonstrating 
the fl ow of energy in living 
organisms. Arrows point in the 
direction in which energy fl ows. 
We focus only on the most 
common processes and do not 
include less ubiquitous ones, such 
as bioluminescence. (Adapted 
from D.A. Harris, Bioenergetics 
at a glance, Blackwell Science, 
Oxford (1995).)

2 Some ecosystems near volcanic vents in the dark depths of the oceans do not use sunlight as their 
primary source of energy.
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Living organisms are not perfectly effi  cient machines, for not all the energy 
available from the Sun and oxidation of organic compounds is used to perform 
work as some is lost as heat. Th e dissipation of energy as heat is advantageous 
because it can be used to control the organism’s temperature. However, energy 
is eventually transferred as heat to the surroundings. In Chapter 2 we shall 
explore the origin of the incomplete conversion of energy supplied by heating 
into energy that can be used to do work, a feature that turns out to be common 
to all energy conversion processes.
 

1.3 The measurement of work
In bioenergetics, the most useful outcome of the breakdown of nutrients during 
metabolism is work, so we need to know how work is measured.

We saw in Section F.3 that if the force is the gravitational attraction of the Earth on 
a mass m, then the force opposing raising the mass vertically is mg, where g is the 
acceleration of free fall (9.81 m s−2). Th erefore, the work needed to raise the mass 
through a height h on the surface of the Earth is

work = mgh Work of raising a weight  (1.2)

It follows that we have a simple way of measuring the work done by or on a sys-
tem: we measure the height through which a weight is raised or lowered in the 
surroundings and then use eqn 1.2.

A note on good practice 
Whenever possible, fi nd a 
relevant derived unit that 
corresponds to the collection 
of base units in a result. We 
used 1 kg m2 s−2 = 1 J, hence 
verifying that the answer has 
units of energy.

 

A brief illustration

Nutrients in the soil are absorbed by the root system of a tree and then rise to 
reach the leaves through a complex vascular system in its trunk and branches. 
From eqn 1.2, the work required to raise 10 g of liquid water (corresponding to 
a volume of about 10 mL) through the trunk of a 20-m tree from its roots to its 
topmost leaves is

work = (1.0 × 10−2 kg) × (9.81 m s−2) × (20 m) = 2.0 kg m2 s−2 = 2.0 J

It should be easy for you to show that this quantity of work is equivalent to the 
work of raising a book like this one (of mass about 1.0 kg) through a vertical 
distance of 20 cm (0.20 m).

(a) Sign conventions

So far, we have referred only to the magnitude of the work done; now we need 
to consider its sign. When a system does work, such as by raising a weight in the 
surroundings or forcing the movement of an ion across a biological membrane, 
the energy transferred as work, w, is reported as a negative quantity. For instance, 
if a system raises a weight in the surroundings and in the process does 100 J 
of work (that is, 100 J of energy leaves the system by doing work), then we write 
w = −100 J. When work is done on the system—for example, when we stretch a 
muscle from its relaxed position—w is reported as a positive quantity. We write 
w = +100 J to signify that 100 J of work has been done on the system (that is, 100 J 
of energy has been transferred to the system by doing work). Th e sign convention 
is easy to follow if we think of changes to the energy of the system: its energy 
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decreases (w is negative) if energy leaves it as work and its energy increases (w is 
positive) if energy enters it as work (Fig. 1.8).

(b) Expansion work

To see how energy fl ow as work can be determined experimentally, we deal fi rst 
with expansion work, the work done when a system expands against an opposing 
pressure. In bioenergetics we are not generally concerned with expansion work, 
which can occur as a result of gas-producing or gas-consuming chemical reac-
tions, but rather with the work of making and moving molecules in the cell, mus-
cle contraction, or cell division. However, even though we might not be explicitly 
interested in it, expansion work is done in any chemical reaction that involves 
gases, such as the oxidation of fuels and photosynthesis, and for a proper analysis 
of energy resources it must be taken into account. We shall see that that can be 
done automatically in the following section, which will build on the material 
developed here.

Consider the combustion of urea illustrated in Fig. 1.4 as an example of a 
reaction in which expansion work is done in the process of making room for 
the gaseous products, carbon dioxide and nitrogen in this case. We show in the 
following Justifi cation that when a system expands through a volume DV against a 
constant external pressure pex, the work done is

w = −pexDV Work of expansion against 
a constant pressure

 (1.3)

Justification 1.1 Expansion work

To calculate the work done when a system expands from an initial volume Vi to 
a fi nal volume Vf, a change DV = Vf − Vi , we consider a piston of area A moving 
out through a distance h (Fig. 1.9). Th ere need not be an actual piston: we can 
think of the piston as representing the boundary between the expanding gas 
and the surrounding atmosphere. However, there may be an actual piston, such 
as when the expansion takes place inside an internal combustion engine.

Th e force opposing the expansion is the constant external pressure pex 
multiplied by the area of the piston (because force is pressure times area; 
Fundamentals F.2). Th e work done is therefore

work done by the system = distance (h) × opposing force (pexA)
 = h × pexA = pex × (hA) = pex × DV

Th e last equality follows from the fact that hA is the volume of the cylinder 
swept out by the piston as the gas expands, so we can write hA = DV. Th at is, for 
expansion work,

work done by the system = pexDV

Now consider the sign. A system does work and thereby loses energy (that is, 
w is negative) when it expands (when DV is positive). Th erefore, we need a 
negative sign in the equation to ensure that w is negative when DV is positive, 
so we obtain eqn 1.3.
 

According to eqn 1.3, the external pressure determines how much work a 
system does when it expands through a given volume: the greater the external 
pressure, the greater the opposing force and the greater the work that a system does. 

Fig. 1.8 Th e sign convention in 
thermodynamics: w and q are 
positive if energy enters the 
system (as work and heat, 
respectively) but negative if 
energy leaves the system.

Fig. 1.9 When a piston of area A 
moves out through a distance h, 
it sweeps out a volume DV = Ah. 
Th e external pressure pex opposes 
the expansion with a force pexA.
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When the external pressure is zero, w = 0. In this case, the system does no work as 
it expands because it has nothing to push against. Expansion against zero external 
pressure is called free expansion.

(c) Maximum work

Equation 1.3 can be used to show us how to get the least expansion work from 
a system: we just reduce the external pressure—which provides the opposing 
force—to zero. But how can we achieve the greatest work for a given change in 
volume? According to eqn 1.3, the system does maximum work when the exter-
nal pressure has its maximum value. Th e force opposing the expansion is then the 
greatest and the system must exert most eff ort to push the piston out. However, 
that external pressure cannot be greater than the pressure, p, of the gas inside the 
system, for otherwise the external pressure would compress the gas instead of allow-
ing it to expand. Th erefore, maximum work is obtained when the external pressure 
is only infi nitesimally less than the pressure of the gas in the system. In eff ect, the two 
pressures must be adjusted to be the same at all stages of the expansion: the external 
pressure must be progressively reduced so that it remains only infi nitesimally lower 
than the pressure of the gas at each stage. As we remarked in Fundamentals F.2, 
this balance of pressures corresponds to a state of mechanical equilibrium. Th ere-
fore, we can conclude that a system that remains in mechanical equilibrium with its 
surroundings at all stages of the expansion does maximum expansion work.

Th ere is another way of expressing this condition. Because the external pres-
sure is infi nitesimally less than the pressure of the gas at some stage of the expan-
sion, the piston moves out. However, suppose we increased the external pressure 
so that at that stage of the expansion it became infi nitesimally greater than the 
pressure of the gas; now the piston moves in. Th at is, when a system is in a state of 

Self-test 1.1 Calculate the work done by a system in which a reaction results 
in the formation of 1.0 mol CO2(g) at 25°C and 100 kPa. (Hint: Th e increase in 
volume will be 25 dm3 under these conditions if the gas is treated as perfect; 
use the relation 1 Pa m3 = 1 J.)

Answer: w = −2.5 kJ

A brief illustration

Exhalation of air during breathing requires work because air must be pushed 
out from the lungs against atmospheric pressure. Consider the work of exhal-
ing 0.50 dm3 (5.0 × 10−4 m3) of air, a typical value for a healthy adult, through 
a tube into the bottom of the apparatus shown in Fig. 1.9 and against an 
atmospheric pressure of 1.00 atm (101 kPa). Th e exhaled air lift s the piston 
so the change in volume is DV = 5.0 × 10−4 m3 and the external pressure is 
pex = 101 kPa. From eqn 1.3 the work of exhaling is

w = −pexDV = −(1.01 × 105 Pa) × (5.0 × 10−4 m3) = −51 Pa m3 = −51 J

where we have used the relation 1 Pa m3 = 1 J. Th at value (51 J) might not seem 
much, but you should use eqn 1.2 to show that −51 J is approximately the same 
as the work of lift ing seven books like this one (a total of 7.0 kg) from the 
ground to the top of a standard desk (a vertical distance of 0.75 m).

A note on good practice 
Always keep track of signs 
by considering whether 
stored energy has left  the 
system as work (w is then 
negative) or has entered it 
(w is then positive).
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mechanical equilibrium, an infi nitesimal change in the pressure results in opposite 
directions of change. A change that can be reversed by an infi nitesimal change in a 
variable—in this case, the pressure—is said to be reversible. In everyday life 
‘reversible’ means a process that can be reversed; in thermodynamics it has a 
stronger meaning—it means that a process can be reversed by an infi nitesimal 
modifi cation in some variable (such as the pressure).

We can summarize this discussion in the following remarks:

1) A system does maximum expansion work when the external pressure is 
equal to that of the system at every stage of the expansion (pex = p).

2) A system does maximum expansion work when it is in mechanical equilib-
rium with its surroundings at every stage of the expansion.

3) Maximum expansion work is achieved in a reversible change.

All three statements are equivalent, but they refl ect diff erent degrees of sophisti-
cation in the way the point is expressed. Th e last statement is particularly 
important in our discussion of bioenergetics, especially when we consider how 
the reactions of catabolism drive anabolic processes. Th e arguments we have 
developed lead to the conclusion that maximum work (whether it is expansion 
work or some other type of work) is done if the cellular process is reversible.

1.4 The measurement of heat
A thermodynamic assessment of energy output during metabolic processes requires 
knowledge of ways to measure the energy transferred as heat.

We use the same sign convention for energy transferred by heating, q, as we do for 
work. Th us, we write q = −100 J if 100 J of energy leaves the system by heating its 
surroundings, so reducing the energy of the system, and q = +100 J if 100 J of 
energy enters the system when it is heated by the surroundings.

In certain cases, we can relate the value of q to the change in volume of a system 
and so can calculate, for instance, the fl ow of energy as heat into the system when 
a gas expands. Th e simplest case is that of a perfect gas undergoing isothermal 
expansion. Because the expansion is isothermal, the temperature of the gas is the 
same at the end of the expansion as it was initially, therefore the mean speed of the 
molecules of the gas is the same before and aft er the expansion. Th at implies in 
turn that the total kinetic energy of the molecules is the same. But for a perfect 
gas, the only contribution to the energy is the kinetic energy of the molecules, so 
we have to conclude that the total energy of the gas is the same before and aft er the 
expansion. Energy has left  the system as work, therefore a compensating amount 
of energy must have entered the system as heat. We can therefore write

q = −w Isothermal expansion 
of a perfect gas

 (1.4)

A brief illustration

If we fi nd that w = −100 J for a particular expansion (meaning that 100 J has 
left  the system as a result of the system doing work), then we can conclude that 
q = +100 J (that is, 100 J must enter as heat). For free expansion, w = 0, so we 
conclude that q = 0 too: there is no infl ux of energy as heat when a perfect 
gas expands against zero pressure.
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(a) Heat capacity

When a substance is heated, its temperature typically rises.3 However, the change 
in temperature, DT, depends on the ‘heat capacity’ of the substance. Th e heat 
capacity, C, is defi ned as

C = q
DT

 Definition of the 
heat capacity  

(1.5a)

where the temperature change may be expressed in kelvins (DT) or degrees Celsius 
(Dq); because the size of a kelvin is the same as that of a degree Celsius, the same 
numerical value is obtained but with the units joules per kelvin (J K−1) and joules 
per degree Celsius (J °C−1), respectively. It follows that we have a simple way of 
measuring the energy absorbed or released by a system as heat: we measure a 
temperature change and then use the appropriate value of the heat capacity and 
eqn 1.5a rearranged into

q = CDT (1.5b)

A brief illustration

If the heat capacity of a beaker of water is 0.50 kJ K−1 and we observe a 
temperature rise of 4.0 K, then we can infer that the heat transferred to the 
water is

q = (0.50 kJ K−1) × (4.0 K) = +2.0 kJ
 

Heat capacities occur in many places in the following sections and chapters, and 
we need to be aware of their properties and how their values are reported. First, 
we note that the heat capacity is an extensive property: 2 kg of iron has twice the 
heat capacity of 1 kg of iron, so twice as much heat is required to change its tem-
perature to the same extent. It is more convenient to report the heat capacity of a 
substance as an intensive property. We therefore use either the specifi c heat 
capacity, Cs, the heat capacity divided by the mass of the sample (Cs = C/m, 
in joules per kelvin per gram, J K−1 g−1), or the molar heat capacity, Cm, the 
heat capacity divided by the amount of substance (Cm = C/n, in joules per kelvin 
per mole, J K−1 mol−1). In common usage, the specifi c heat capacity is oft en called 
simply the specifi c heat.

For reasons that will be explained shortly, the heat capacity of a substance 
depends on whether the sample is maintained at constant volume (like a gas in a 
sealed vessel) as it is heated or whether the sample is maintained at constant pres-
sure (like water in an open container) and free to change its volume. Th e latter 
is a more common arrangement, and the values given in Table 1.1 are for the 
heat capacity at constant pressure, Cp. Th e heat capacity at constant volume is 
denoted CV.

3 We say ‘typically’ because the temperature does not always rise. Th e temperature of boiling water, 
for instance, remains unchanged as it is heated (see Chapter 3).

A brief illustration

Th e high heat capacity of water is ecologically advantageous because it stabil-
izes the temperatures of lakes and oceans: a large quantity of energy must be 

Table 1.1 Heat capacities of 
selected substances*

Substance Molar heat 
capacity, Cp,m/
(J K−1 mol−1)

Air  29
Benzene, C6H6(l) 136.1
Ethanol, C2H5OH(l) 111.46
Glycine, 
CH2(NH2)COOH(s)

 99.2

Oxalic acid, 
(COOH)2(s)

117

Urea, CO(NH2)2(s)  93.14
Water, H2O(s)  37
    H2O(l)  75.29
    H2O(g)  33.58

*For additional values, see the Resource 
section. 
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lost or gained before there is a signifi cant change in temperature. Th e molar 
heat capacity of liquid water at constant pressure, Cp,m, is 75 J K−1 mol−1. It 
follows that the increase in temperature of 100 g of water (5.55 mol H2O) 
when 1.0 kJ of energy is supplied by heating a sample free to expand is 
approximately

DT = q
Cp

 = q
nCp,m

 =  1.0 × 103 J
(5.55 mol) × (75 J K−1 mol−1)

 = +2.4 K

 

(b) The molecular interpretation of heat capacity

Th e molecular reason why diff erent substances have diff erent molar heat capa-
cities can be traced to diff erences in the separations of their energy levels. As 
remarked in Fundamentals F.3, molecules can exist with only certain energies. 
When the available energy levels are close together, a given quantity of energy 
arriving as heat can be accommodated with little adjustment of the populations 
and hence with little modifi cation of the temperature that occurs in the Boltzmann 
distribution and specifi es the distribution of populations. Th e relative insensitiv-
ity of temperature to the arrival of energy corresponds to a high heat capacity 
(Fig. 1.10). When the energy levels are widely separated, the arriving energy must 
be accommodated by making use of the high energy levels with a consequent 
greater ‘reach’ of the Boltzmann distribution and hence a greater modifi cation of 
the temperature. Th at is, widely spaced energy levels correlate with a low heat 
capacity. Th e translational energy levels of molecules in a gas are very close 
together, and all monatomic gases have similar molar heat capacities. Th e separa-
tion of the vibrational energies of atoms bound together in solids depends on the 
stiff ness of the bonds between them and on the masses of the atoms. As we shall 
see in Sections 9.6 and 12.3, the stronger the bond and the lighter the atoms in a 
bond, the larger is the separation between vibrational energy levels. As a result, 
solids show a wide range of molar heat capacities. Biological macromolecules 
have large numbers of atoms and can vibrate in many diff erent ways. Many of 
these ways correspond to the collective motion of many atoms, so the vibrational 
energies are spaced closely. Hence, heat capacities of biological macromolecules 
may be large.

Water, as so oft en, is anomalous. It is a small, rigid molecule but has a high heat 
capacity. Once again, the anomaly can be traced to hydrogen bonds in the liquid. 
Th ese bonds link many molecules together into clusters that vibrate in numerous 
ways. Consequently, the vibrational energies are close together, and the heat 
capacity of water is larger than expected for a substance consisting of small 
molecules interacting weakly.

Internal energy and enthalpy

Heat and work are equivalent ways of transferring energy into or out of a system 
in the sense that once the energy is inside, it is stored simply as ‘energy’, regardless 
of how the energy was supplied, as work or as heat, it can be released in either 
form. Th e experimental evidence for this equivalence of heat and work goes all 
the way back to the experiments done by James Joule in the nineteenth century, 
who in eff ect showed that the same rise in temperature of a sample of water is 
brought about by transferring a given quantity of energy either as heat or as work.

Fig. 1.10 Th e heat capacity depends 
on the availability of levels as 
explained in the text. In each case 
the blue line is the distribution at 
low temperature and the red line 
that at higher temperature.
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1.5 The internal energy
To understand how biological processes can store and release energy, we need to be 
familiar with a very important law that relates work and heat to changes in the energy 
of all the constituents of a system.

We need some way of keeping track of the energy changes in a system. Th is is 
the job of the property called the internal energy, U, of the system, the sum of all 
the kinetic and potential contributions to the energy of all the atoms, ions, and 
molecules in the system. Th e internal energy is the grand total energy of the 
system with a value that depends on the temperature and, in general, the pressure. 
It is an extensive property because 2 kg of iron at a given temperature and pres-
sure, for instance, has twice the internal energy of 1 kg of iron under the same 
conditions. Th e molar internal energy, Um = U/n, the internal energy per mole of 
atoms or molecules, is an intensive property.

(a) Changes in internal energy

In practice, we do not know and cannot measure the absolute value of the total 
energy of a sample because it includes the kinetic and potential energies of all the 
electrons and all the components of the atomic nuclei. Nevertheless, there is no 
problem with dealing with the changes in internal energy, DU, because we can 
determine those changes by monitoring the energy supplied or lost as heat or as 
work. All practical applications of thermodynamics deal with DU, not with U 
itself. A change in internal energy is written

DU = w + q Change in internal energy 
in terms of heat and work  

(1.6)

where w is the energy transferred to the system by doing work and q is the energy 
transferred to it by heating. Th e internal energy is an accounting device, like a 
country’s gold reserves, which are used for monitoring transactions with the out-
side world (the surroundings) involving either currency (heat or work).

We have seen that a feature of a perfect gas is that for any isothermal expansion 
the total energy of the sample remains the same and that q = −w. Th at is, any 
energy lost as work is restored by an infl ux of energy as heat. We can express this 
property in terms of the internal energy, for it implies that the internal energy 
remains constant when a perfect gas expands isothermally: from eqn 1.6 we 
can write

DU = 0 Change of internal energy during 
isothermal expansion of a perfect gas  

(1.7)

In other words, the internal energy of a sample of perfect gas at a given temperature 
is independent of the volume it occupies. We can understand this independence by 
realizing that when a perfect gas expands isothermally, the only feature that 
changes is the average distance between the molecules; their average speed and 
therefore total kinetic energy remains the same. However, as there are no inter-
molecular interactions, the total energy is independent of the average separation, 
so the internal energy is unchanged by expansion.

Th e defi nition of DU in terms of w and q points to a very simple method for 
measuring the change in internal energy of a system when a reaction takes place. 
We have seen already that the work done by a system when it pushes against a fi xed 
external pressure is proportional to the change in volume. Th erefore, if we carry 
out a reaction in a container of constant volume, the system can do no expansion 
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work and provided it can do no other kind of work (so-called non-expansion 
work, such as electrical work), we can set w = 0. Th en eqn 1.6 simplifi es to

 
DU = qV Constant volume, no 

non-expansion work  
(1.8)

Th e subscript V signifi es that the volume of the system is constant. An example of 
a system that can be approximated as a constant-volume container is an individual 
biological cell.

Example 1.1 Calculating the change in internal energy

Nutritionists are interested in the use of energy by the human body, and we can 
consider our own body as a thermodynamic ‘system’. Suppose in the course of 
an experiment you do 622 kJ of work on an exercise bicycle and lose 82 kJ 
of energy as heat. What is the change in your internal energy? Disregard any 
matter loss by perspiration.

Strategy Th is example is an exercise in keeping track of signs correctly. When 
energy is lost from the system, w or q is negative. When energy is gained by the 
system, w or q is positive.

Solution To take note of the signs, we write w = −622 kJ (622 kJ is lost by doing 
work) and q = −82 kJ (82 kJ is lost by heating the surroundings). Th en eqn 1.6 
gives us

DU = w + q = (−622 kJ) + (−82 kJ) = −704 kJ

We see that your internal energy falls by 704 kJ. Later, that energy will be 
restored by eating.

We can use eqn 1.8 to obtain more insight into the heat capacity of a substance. 
Th e defi nition of heat capacity is given in eqn 1.5 (C = q/DT). At constant volume, 
q may be replaced by the change in internal energy of the substance, so

CV = DU
DT

 Definition of the constant-
volume heat capacity  

(1.9a)

Th e expression on the right is the slope of the graph of internal energy plotted 
against temperature, with the volume of the system held constant, so CV tells us 
how the internal energy of a constant-volume system varies with temperature. If, 
as is generally the case, the graph of internal energy against temperature is not a 
straight line, we interpret CV as the slope of the tangent to the curve at the tem-
perature of interest (Fig. 1.11). Th at is, the constant-volume heat capacity is the 
derivative of the function U with respect to the variable T at a specifi ed volume 
(see Mathematical toolkit 1.1):

Fig. 1.11 Th e constant-volume 
heat capacity is the slope of a 
curve showing how the internal 
energy varies with temperature. 
Th e slope, and therefore the heat 
capacity, may be diff erent at 
diff erent temperatures.

Self-test 1.2 An electric battery is charged by supplying 250 kJ of energy to 
it as electrical work (by driving an electric current through it), but in the pro-
cess it loses 25 kJ of energy as heat to the surroundings. What is the change in 
internal energy of the battery?

Answer: +225 kJ

A note on good practice 
Always attach the correct 
signs: use a positive sign when 
there is a fl ow of energy into 
the system and a negative sign 
when there is a fl ow of energy 
out of the system. Also, the 
quantity DU always carries 
a sign explicitly, even if it 
is positive: we never write 
DU = 20 kJ, for instance, but 
always +20 kJ.
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CV = dU

dT
 Definition of the constant-

volume heat capacity  
(1.9b)

(b) The internal energy as a state function

An important characteristic of the internal energy is that it is a state function, a 
physical property that depends only on the present state of the system and is inde-
pendent of the path by which that state was reached. If we were to change the 
temperature of the system, then change the pressure, then adjust the temperature 
and pressure back to their original values, the internal energy would return to its 
original value too. A state function is very much like altitude: each point on the 
surface of the Earth can be specifi ed by quoting its latitude and longitude, and (on 
land areas, at least) there is a unique property, the altitude, that has a fi xed value at 
that point. In thermodynamics, the role of latitude and longitude is played by the 
pressure and temperature (and any other variables needed to specify the state of 
the system), and the internal energy plays the role of the altitude, with a single, 
fi xed value for each state of the system.

Th e fact that U is a state function implies that a change, DU, in the internal 
energy between two states of a system, is independent of the path between them 
(Fig. 1.13). Once again, the altitude is a helpful analogy. If we climb a mountain 
between two fi xed points, we make the same change in altitude regardless of the 
path we take between the two points. Likewise, if we compress a sample of gas 
until it reaches a certain pressure and then cool it to a certain temperature, the 
change in internal energy has a particular value. If, on the other hand, we changed 
the temperature and then the pressure but ensured that the two fi nal values were 
the same as in the fi rst experiment, then the overall change in internal energy 
would be exactly the same as before. Th is path independence of the value of DU is 
of the greatest importance in chemistry and for the study of bioenergetics, as we 
shall soon see.

  Mathematical toolkit 1.1 Differentiation

Consider a function f with values f(x) and f(x + dx) at 
x and x + dx, respectively. Th e slope of this function 
at x is obtained by letting dx become zero, which we 
write as lim

dx→0
. In this limit, the d is replaced by a d, and 

we write

Slope at x = df
dx

 = lim
dx→0  

f(x + dx) − f(x)
dx

To work out the slope of any function, we develop 
the expression on the right: this process is called dif-
ferentiation. Th e slope is called the derivative of the 
function. Examples of derivatives include:

dxn

dx
 = nxn−1  deax

dx
 = aeax  d ln ax

dx
 = a

x

Most of the functions encountered in chemistry can be 
diff erentiated by using the following rules:

Rule 1. For two functions f and g:

d
dx

( f + g) = df
dx

 + dg
dx

Rule 2 (the product rule). For two functions f and g:

 d
dx  

fg = f dg
dx

 + g df
dx

Rule 3 (the quotient rule). For two functions f and g:

d
dx

 f
g

 = 1
g

 df
dx

 − f
g2

 dg
dx

Rule 4 (the chain rule). For a function f = f(g), where 
g = g(x),

df
dx

 = df
dg

 dg
dx

In the last rule, f(g) is a ‘function of a function’, as in 
ln(1 + x2).

A brief comment
More precisely, the constant-
volume heat capacity is the 
partial deriVatiVe of the 
function U with respect to 
the variable T, denoted as

CV = 
A
C

∂U
∂T

D
F

V

with the symbol ∂ replacing 
the symbol d, and the subscript 
V denoting that the variable V 
is held constant. Generally, a 
partial derivative of a function 
of more than one variable is 
the slope of the function with 
respect to one of the variables, 
all the other variables being 
held constant (Fig. 1.12). 
For more detail about partial 
derivatives, see Mathematical 
toolkit 8.1.
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(c) The First Law of thermodynamics

Suppose we now consider an isolated system. Because an isolated system can nei-
ther do work nor heat the surroundings, it follows that its internal energy cannot 
change. Th at is,

Th e internal energy of an isolated system is constant. The First Law

Th is statement is the First Law of thermodynamics. It is closely related to the law 
of conservation of energy but allows for transaction of energy by heating as well 
as by doing work. Unlike thermodynamics, mechanics does not deal with the 
concept of heat.

Th e experimental evidence for the First Law is the impossibility of making a 
‘perpetual motion machine’, a device for producing work without consuming fuel. 
As we have already remarked, try as people might, they have never succeeded. 
No device has ever been made that creates internal energy to replace the energy 
drawn off  as work. We cannot extract energy as work, leave the system isolated for 
some time, and hope that when we return the internal energy will have become 
restored to its original value. Th e same is true of organisms: energy required for 
the sustenance of life must be supplied continually in the form of food as work of 
motion, metabolism, and catabolism is done by the organism.

1.6 The enthalpy
Most biological processes take place in vessels that are open to the atmosphere and 
subjected to constant pressure and not maintained at constant volume, so we need 
to learn how to treat quantitatively the energy exchanges that take place at constant 
pressure.

In general, when a change takes place in a system open to the atmosphere, the 
volume of the system changes. For example, the thermal decomposition of 
1.0 mol CaCO3(s) at 1 bar results in an increase in volume of 89 dm3 at 800°C on 
account of the carbon dioxide gas produced. To create this large volume for the 
carbon dioxide to occupy, the surrounding atmosphere must be pushed back. 
Th at is, the system must perform expansion work. Th erefore, although a certain 
quantity of heat may be supplied to bring about the endothermic decomposition, 
the increase in internal energy of the system is not equal to the energy supplied as 
heat because some energy has been used to do work of expansion (Fig. 1.14). In 
other words, because the volume has increased, some of the heat supplied to the 
system has leaked back into the surroundings as work.

Another example is the oxidation of a fat, such as tristearin, to carbon dioxide 
in the body. Th e overall reaction is

2 C57H110O6(s) + 163 O2(g) → 114 CO2(g) + 110 H2O(l)

In this exothermic reaction there is a net decrease in volume equivalent to the 
elimination of (163 − 114) mol = 49 mol of gas molecules for every 2 mol of 
tristearin molecules that reacts. Th e decrease in volume at 25°C is about 600 cm3 
for the consumption of 1 g of fat. Because the volume of the system decreases, the 
atmosphere does work on the system as the reaction proceeds. Th at is, energy is 
transferred to the system as it contracts.4 For this reaction, the decrease in the 
internal energy of the system is less than the energy released as heat because some 
energy has been restored by doing work.

Fig. 1.12 Th e internal energy of a 
system varies with volume and 
temperature, perhaps as shown 
here by the surface. Th e variation 
of the internal energy with 
temperature at one particular 
constant volume is illustrated by 
the curve drawn parallel to T. Th e 
slope of this curve at any point is 
the partial derivative (∂U/∂T)V.

Fig. 1.13 Th e curved sheet shows 
how a property (for example, 
the altitude) changes as two 
variables (for example, latitude 
and longitude) are changed. 
Th e altitude is a state property 
because it depends only on the 
current state of the system. Th e 
change in the value of a state 
property is independent of the 
path between the two states. 
For example, the diff erence in 
altitude between the initial and 
fi nal states shown in the diagram 
is the same whatever path (as 
depicted by the red and white 
lines) is used to travel between 
them.

4 In eff ect, a weight has been lowered in the surroundings, so the surroundings can do less work 
aft er the reaction has occurred. Some of their energy has been transferred into the system.
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(a) The definition of enthalpy

We can avoid the complication of having to take into account the work of expan-
sion by introducing a new property that will be at the centre of our attention 
throughout the rest of the chapter and will recur throughout the book. Th e 
enthalpy, H, of a system is defi ned as

H = U + pV Definition of 
the enthalpy

 (1.10)

Th at is, the enthalpy diff ers from the internal energy by the addition of the prod-
uct of the pressure, p, and the volume, V, of the system. Th is expression applies to 
any system or individual substance: don’t be misled by the pV term into thinking 
that eqn 1.10 applies only to a perfect gas. A change in enthalpy (the only quantity 
we can measure in practice) arises from a change in the internal energy and a 
change in the product pV:

DH = DU + D(pV) (1.11a)

where D(pV) = pfVf − piVi. If the change takes place at constant pressure p, the 
second term on the right simplifi es to

D(pV) = pVf − pVi = p(Vf − Vi) = pDV

and we can write

DH = DU + pDV Enthalpy change at 
constant pressure  

(1.11b)

We shall oft en make use of this important relation for processes occurring at 
constant pressure, such as chemical reactions taking place in containers open to 
the atmosphere.

Enthalpy is an extensive property. Th e molar enthalpy, Hm = H/n, of a sub-
stance, an intensive property, diff ers from the molar internal energy by an amount 
proportional to the molar volume, Vm, of the substance:

Hm = Um + pVm Definition of the 
molar enthalpy  

(1.12a)

Th is relation is valid for all substances. For a perfect gas we can go on to write 
pVm = RT and obtain

Hm = Um + RT Molar enthalpy 
of a perfect gas  

(1.12b)

At 25°C, RT = 2.5 kJ mol−1, so the molar enthalpy of a perfect gas diff ers from 
its molar internal energy by 2.5 kJ mol−1. Because the molar volume of a solid or 
liquid is typically about 1000 times less than that of a gas, we can also conclude 
that the molar enthalpy of a solid or liquid is only about 2.5 J mol−1 (note: joules, 
not kilojoules) more than its molar internal energy, so the numerical diff erence is 
negligible. However, the conceptual importance is considerable, as we shall see.

(b) Changes in enthalpy

Although the enthalpy and internal energy of a sample may have similar values, 
the introduction of the enthalpy has very important consequences in thermo-
dynamics. First, notice that because H is defi ned in terms of state functions (U, p, 
and V), the enthalpy is a state function. Th e implication is that the change in 
enthalpy, H, when a system changes from one state to another is independent of 

Fig. 1.14 Th e change in internal 
energy of a system that is free to 
expand or contract is not equal to 
the energy supplied by heating 
because some energy may escape 
back into the surroundings as 
work. However, the change in 
enthalpy of the system under 
these conditions is equal to the 
energy supplied by heating.
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the path between the two states. Second, we show in the following Justifi cation 
that the change in enthalpy of a system can be identifi ed with the heat transferred 
to it at constant pressure:

DH = qp Enthalpy change at constant 
pressure, no non-expansion work  

(1.13)

with the subscript p signifying that the pressure is held constant. Th erefore, by 
imposing the constraint of constant pressure, we have identifi ed an observable 
quantity (the energy transferred as heat) with a change in a state function, the 
enthalpy. Dealing with state functions greatly extends the power of thermo-
dynamic arguments, because we don’t have to worry about how we get from one 
state to another: all that matters is the initial and fi nal states. For the particular 
case of the combustion of tristearin mentioned at the beginning of the section, 
in which 90 kJ of energy is released as heat at constant pressure, we would write 
DH = −90 kJ regardless of how much expansion work is done.

Justification 1.2 Heat transfers at constant pressure

Th is Justifi cation fulfi ls our promise that the calculation of expansion work can 
be done silently and automatically in the background and need not be done 
explicitly.

Consider a system open to the atmosphere, so that its pressure p is constant and 
equal to the external pressure pex. From eqn 1.11 we can write

DH = DU + pDV = DU + pexDV

However, we know that the change in internal energy is given by eqn 1.6 
(DU = w + q) with w = −pexDV (provided the system does no other kind of 
work). When we substitute that expression into this one we obtain

DH = (−pexDV + q) + pexDV = q

which is eqn 1.13.
 

An endothermic reaction (q > 0) taking place at constant pressure results in 
an increase in enthalpy (DH > 0) because energy enters the system as heat. On 
the other hand, an exothermic process (q < 0) taking place at constant pressure 
corresponds to a decrease in enthalpy (DH < 0) because energy leaves the system 
as heat. In summary:

 exothermic process endothermic process
 DH < 0 DH > 0

Because all combustion reactions, including the controlled ‘combustions’ that 
contribute to respiration, are exothermic, they are accompanied by a decrease 
in enthalpy. Th ese relations are consistent with the name enthalpy, which is 
derived from the Greek words meaning ‘heat inside’: the ‘heat inside’ the system 
is increased if the process is endothermic and absorbs energy as heat from the 
surroundings; it is decreased if the process is exothermic and releases energy as 
heat into the surroundings.5

5 But heat does not actually ‘exist’ inside: only energy exists in a system; heat is a means of recover-
ing that energy or increasing it. Heat is energy in transit, not a form in which energy is stored.
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(c) The temperature dependence of the enthalpy

We have seen that the internal energy of a system rises as the temperature is 
increased. Th e same is true of the enthalpy, which also rises when the temperature 
is increased (Fig. 1.15). For example, the enthalpy of 100 g of water is greater at 
80°C than at 20°C. We can measure the change by monitoring the energy that we 
must supply as heat to raise the temperature through 60°C when the sample is 
open to the atmosphere (or subjected to some other constant pressure); it is found 
that DH ≈ +25 kJ in this instance.

Just as we saw that the constant-volume heat capacity tells us about the 
temperature-dependence of the internal energy at constant volume, so the 
constant-pressure heat capacity tells us how the enthalpy of a system changes as 
its temperature is raised at constant pressure. To derive the relation, we combine 
the defi nition of heat capacity in eqn 1.5 (C = q/DT) with eqn 1.13 and obtain

Cp = DH
DT

 Definition of constant-
pressure heat capacity  

(1.14a)

Th at is, the constant-pressure heat capacity is the slope of a plot of enthalpy against 
temperature of a system kept at constant pressure. Because the plot might not be a 
straight line, in general we interpret Cp as the slope of the tangent to the curve at 
the temperature of interest (Fig. 1.16, Table 1.1). Th at is, the constant-pressure 
heat capacity is the derivative of the function H with respect to the variable T at a 
specifi ed pressure or

Cp = dH
dT

 (1.14b)

Fig. 1.15 Th e enthalpy of a system 
increases as its temperature is 
raised. Note that the enthalpy is 
always greater than the internal 
energy of the system and that 
the diff erence increases with 
temperature.

A brief comment
Again more precisely the 
constant-pressure heat 
capacity is the partial 
deriVatiVe of the function H 
with respect to the variable T, 
denoted as

Cp = 
A
C

∂H
∂T

D
F

p

and calculated by holding the 
variable p constant.

Th e diff erence between Cp,m and CV,m is signifi cant for gases (for oxygen, 
CV,m = 20.8 J K−1 mol−1 and Cp,m = 29.1 J K−1 mol−1), which undergo large changes 
of volume when heated, but is negligible for most solids and liquids. For a perfect 
gas, you are invited to show in Exercise 1.19 that

Cp,m − CV,m = R Difference between the molar 
heat capacities of a perfect gas  

(1.15)

Th e molar heat capacity of a substance at constant pressure is always greater than 
the molar heat capacity at constant volume. Th e reason is that when a system is 

A brief illustration

Provided the heat capacity is constant over the range of temperatures of 
interest, we can write eqn 1.14a as DH = CpDT. Th is relation means that when 
the temperature of 100 g of water (5.55 mol H2O) is raised from 20°C to 80°C 
(so DT = +60 K) at constant pressure, the enthalpy of the sample changes by

DH = CpDT = nCp,mDT = (5.55 mol) × (75.29 J K−1 mol−1) × (60 K) = +25 kJ

Th e greater the temperature rise, the greater the change in enthalpy and there-
fore the greater the heating that is required to bring it about. Note that this 
calculation is only approximate because the heat capacity depends on the 
temperature and we have used an average value for the temperature range of 
interest.
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free to expand, some of the energy supplied as heat is free to escape back into the 
surroundings as work. Th erefore, the rise in temperature at constant pressure is 
not as great as at constant volume (when no expansion work can be done), and 
the heat capacity is correspondingly greater.

Fig. 1.16 Th e heat capacity at 
constant pressure is the slope 
of the curve showing how the 
enthalpy varies with temperature; 
the heat capacity at constant 
volume is the corresponding 
slope of the internal energy 
curve. Note that the heat capacity 
varies with temperature (in 
general) and that Cp is greater 
than CV.

A brief comment
Electrical charge is measured 
in coulombs, C. Th e motion of 
charge gives rise to an electric 
current, I, measured in 
coulombs per second, or 
amperes, A, where 1 A = 1 C s−1. 
If a constant current I fl ows 
through a potential diff erence 
V (measured in volts, V), the 
total energy supplied in an 
interval t is IV t. Because 
1 A V s = 1 (C s−1) V s = 
1 C V = 1 J, the energy is 
obtained in joules with the 
current in amperes, the 
potential diff erence in volts, 
and the time in seconds.

A brief illustration

If we pass a current of 10.0 A from a 12 V supply for 300 s, then from eqn 1.17 
the energy supplied as heat is

q = (10.0 A) × (12 V) × (300 s) = 3.6 × 104 A V s = 36 kJ

because 1 A V s = 1 J. If the observed rise in temperature is 5.5 K, then the 
calorimeter constant is C = (36 kJ)/(5.5 K) = 6.5 kJ K−1.

Alternatively, C may be determined by using a reaction of known heat output, 
such as the combustion of benzoic acid (C6H5COOH), for which the heat out-
put is 3227 kJ per mole of C6H5COOH consumed. With C known, it is simple 
to interpret an observed temperature rise as a release of energy as heat.

(a) Bomb calorimeters

Th e most common device for measuring DU is an adiabatic bomb calorimeter 
(Fig. 1.17). Th e process under study is initiated inside a constant-volume con-
tainer, the ‘bomb’. Th e bomb is immersed in a stirred water bath, and the whole 
device is the calorimeter. Th e calorimeter is also immersed in an outer water 
bath. Th e water in the calorimeter and of the outer bath are both monitored 
and adjusted to the same temperature. Th is arrangement ensures that there is 
no net loss of heat from the calorimeter to the surroundings (the bath) and 
hence that the calorimeter is adiabatic.

Th e change in temperature, DT, of the calorimeter is proportional to the 
energy that the process releases or absorbs as heat. Th erefore, by measuring 
DT we can determine qV and hence fi nd DU. Th e conversion of DT to qV is best 
achieved by calibrating the calorimeter using a process of known energy output 
and determining the calorimeter constant, the constant C in the relation

q = CDT Calorimeter constant  (1.16)

Th e calorimeter constant may be measured electrically by passing a constant 
current, I, from a source of known potential diff erence, V, through a heater for a 
known period of time, t, for then

q = IV t (1.17)

6 Th e word calorimeter comes from ‘calor’, the Latin word for heat.

In the laboratory 1.1 Calorimetry

Calorimetry is the study of heat transfer during physical and chemical pro-
cesses. A calorimeter6 is a device for measuring energy transferred as heat. 
Here we explore three common types of calorimeters used in investigations of 
nutrients, fuels, and biological processes.
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Bomb calorimetry is used in nutritional studies to determine the total energy 
content of a nutrient, also called its gross energy (G.E.) content. Th e results 
may be expressed in a number of units, but common in nutritional studies is 
the large calorie or nutritional calorie (abbreviation: Cal), which is defi ned as 
1 Cal = 4.184 kJ exactly. Th e large calorie is the unit of energy used colloquially 
and on labels on packages of food products. Th is unit is distinct from the 
calorie (abbreviation: cal), or ‘small calorie’, still encountered in the scientifi c 
literature, 1 cal = 4.184 J exactly. It follows that 1 Cal = 1 kcal.

Fig. 1.17 A constant-volume 
adiabatic bomb calorimeter. Th e 
‘bomb’ is the central vessel, which 
is strong enough to withstand 
high pressures. Th e calorimeter 
(for which the heat capacity 
must be known) is the entire 
assembly shown here. To ensure 
adiabaticity, the calorimeter is 
immersed in a water bath with 
a temperature continuously 
adjusted to that of the calorimeter 
at each stage of the combustion.

A note on good practice 
As well as keeping the 
numerical evaluation to the 
fi nal stage (or at least not 
rounding intermediate values 
obtained with a calculator), 
show the units at each stage 
of the calculation.
 

Self-test 1.3 In an experiment to measure the heat released by the combus-
tion of a sample of fuel, the compound was burned in an oxygen atmosphere 
inside a calorimeter and the temperature rose by 2.78°C. When a current of 
1.12 A from an 11.5 V source fl owed through a heater in the same calorimeter 
for 162 s, the temperature rose by 5.11°C. What is the heat released by the com-
bustion reaction?

Answer: 1.1 kJ

Example 1.2 Calibrating a calorimeter and measuring the energy content of 
a nutrient

In an experiment to measure the heat released by the combustion of a sample 
of nutrient, the compound was burned in a calorimeter and the temperature 
rose by 3.22°C. When a current of 1.23 A from a 12.0 V source fl owed through 
a heater in the same calorimeter for 156 s, the temperature rose by 4.47°C. 
What is the energy content of the nutrient, taken as the heat released by the 
combustion reaction?

Strategy We calculate the heat supplied electrically by using eqn 1.17 and 
1 A V s = 1 J. Th en we use the observed rise in temperature to fi nd the heat 
capacity of the calorimeter. Finally, we use this heat capacity to convert the 
temperature rise observed for the combustion into a heat output by writing 
q = CDT (or q = CDq if the temperature is given on the Celsius scale).

Solution Th e heat supplied during the calibration step is

q = IV t = (1.23 A) × (12.0 V) × (156 s) 
 = 1.23 × 12.0 × 156 A V s 
 = 1.23 × 12.0 × 156 J

Th is product works out as 2.30 kJ, but to avoid rounding errors we save the 
numerical work to the fi nal stage. Th e heat capacity of the calorimeter is

C = q
Dq

 = 1.23 × 12.0 × 156 J
4.47°C

 = 1.23 × 12.0 × 156
4.47

 J °C−1

Th e numerical value of C is 515 J °C−1, but we don’t evaluate it yet in the actual 
calculation. Th e heat output of the combustion is therefore

q = CDq = AC
1.23 × 12.0 × 156

4.47
 J °C−1D

F  × 3.22°C = 1.66 kJ 

 = 0.397 Cal
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(b) Isobaric calorimeters

An enthalpy change can be measured calorimetrically by monitoring the tem-
perature change that accompanies a physical or chemical change occurring at 
constant pressure. A calorimeter for studying processes at constant pressure is 
called an isobaric calorimeter. A simple example is a thermally insulated 
vessel open to the atmosphere: the heat released in the reaction is monitored 
by measuring the change in temperature of the contents. For a combustion 
reaction an adiabatic fl ame calorimeter may be used to measure DT when a 
given amount of substance burns in a supply of oxygen (Fig. 1.18). Th e relative 
effi  ciencies of fuels may be evaluated by this method (see Section 1.9).

(c) Differential scanning calorimeters

A diff erential scanning calorimeter (DSC) is more sophisticated than the 
calorimeters discussed so far. Th e term ‘diff erential’ refers to the fact that 
the behavior of the sample is compared to that of a reference material that 
does not undergo a physical or chemical change during the analysis. Th e term 
‘scanning’ refers to the fact that the temperatures of the sample and reference 
material are increased, or scanned, systematically during the analysis.
A DSC consists of two small compartments that are heated electrically at 
a constant rate (Fig. 1.19). Th e temperature, T, at time t during a linear scan is 
T = T0 + at, where T0 is the initial temperature and a is the temperature scan 
rate (in kelvins per second, K s−1). A computer controls the electrical power 
output in order to maintain the same temperature in the sample and reference 
compartments throughout the analysis.
Th e temperature of the sample changes signifi cantly relative to that of the refer-
ence material if a chemical or physical process that involves heating occurs in the 
sample during the scan. To maintain the same temperature in both compart-
ments, excess energy is transferred as heat to the sample during the process. For 
example, an endothermic process lowers the temperature of the sample relative 
to that of the reference and, as a result, the sample must be supplied with more 
energy (as heat) than the reference in order to maintain equal temperatures.
If no physical or chemical change occurs in the sample at temperature T, we 
can use eqn 1.5 to write qp = CpDT, where DT = T − T0 = at and we have assumed 
that Cp is independent of temperature. If an endothermic process occurs in the 
sample, we have to supply additional ‘excess’ energy by heating, qp,ex, to achieve 
the same change in temperature of the sample and can express this excess 
energy in terms of an additional contribution to the heat capacity, Cp,ex, by 
writing qp,ex = Cp,exDT. It follows that

Cp,ex = qp,ex

DT
 = qp,ex

at
 = Pex

a
 

where Pex = qp,ex/t is the excess electrical power necessary to equalize the 
temperature of the sample and reference compartments.
A DSC trace, which is called a thermogram, consists of a plot of Pex or Cp,ex 
against T (Fig. 1.20). Broad peaks in the thermogram indicate processes 
requiring the transfer of energy by heating. We show in the following 
Justifi cation that the enthalpy change of the process is

DH = �
T2

T1

 Cp,ex dT (1.18)

Fig. 1.18 An adiabatic fl ame 
calorimeter, an example of an 
isobaric calorimeter, consists of 
this component immersed in a 
stirred water bath. Combustion 
occurs as a known amount of 
reactant is passed through to 
fuel the fl ame and the rise of 
temperature is monitored.

Fig. 1.19 A diff erential scanning 
calorimeter. Th e sample and a 
reference material are heated 
in separate but identical 
compartments. Th e output is the 
diff erence in power needed to 
maintain the compartments at 
equal temperatures as the 
temperature rises.

A brief comment
Th e rate of change of energy is 
the power, expressed as joules 
per second, or watts, W: 1 W = 
1 J s−1. Because 1 J = 1 A V s, in 
terms of electrical units 1 W = 
1 A V. We write the electrical 
power, P, as P = (energy 
supplied)/t = IV t/t = IV .
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Th at is, the enthalpy change is the area under the curve of Cp,ex against T 
between the temperatures at which the process begins and ends.

Justification 1.3 The enthalpy change of a process from DSC data

To calculate an enthalpy change from a thermogram, we begin by rewriting 
eqn 1.14b as

dH = Cp,exdT

We proceed by integrating both sides of this expression from an initial tem-
perature T1 and initial enthalpy H1 to a fi nal temperature T2 and enthalpy H2.

�
H2

H1

 dH = �
T2

T1

 Cp,exdT

Now we use the integral 2dx = x + constant to write

�
H2

H1

 dH = H2 − H1 = DH

It follows that

DH = �
T2

T1

 Cp,exdT

which is eqn 1.18.
 

To appreciate the utility of a DSC in biochemical investigations, we consider 
an important type of transformation that occurs in biological macromolecules, 
such as proteins and nucleic acids, and aggregates, such as biological mem-
branes. Such large systems adopt complex three-dimensional structures as 
a result of intra- and inter-molecular interactions (Fundamentals F.1 and 
Chapter 11). Denaturation, the disruption of these interactions, can be 
achieved by adding chemical agents (such as urea, acids, or bases) or by chang-
ing the temperature, in which case the process is called thermal denaturation. 
Cooking is an example of thermal denaturation. For example, when eggs are 
cooked, the protein albumin is denatured irreversibly.

Diff erential scanning calorimetry is a powerful technique for the study of 
denaturation of biological macromolecules. Every biopolymer has a character-
istic temperature, the melting temperature, Tm, at which the three-dimensional 
structure unravels and biological function is lost. For example, the thermo-
gram shown in Fig. 1.20 indicates that the widely distributed protein ubiquitin 
retains its native structure up to about 45°C and ‘melts’ into a denatured state 
at higher temperatures. Th e area under the curve represents the heat absorbed 
in this process and can be identifi ed with the enthalpy change. Th e thermo-
gram also reveals the formation of new intermolecular interactions in the 
denatured form. Th e increase in heat capacity accompanying the native → 
denatured transition refl ects the change from a more compact native con-
formation to one in which the more exposed amino acid side chains in the 
denatured form have more extensive interactions with the surrounding water 
molecules. Diff erential scanning calorimetry is a convenient method for such 
studies because it requires small samples, with masses as low as 0.5 mg.

A brief comment
Infi nitesimally small 
quantities may be treated 
like any other quantity in 
algebraic manipulations, so 
the expression dy/dx = a may 
be rewritten as dy = adx, 
dx/dy = a−1, and so on.

Fig. 1.20 A thermogram for the 
protein ubiquitin. Th e protein 
retains its native structure 
(shown as a green ribbon 
diagram) up to about 45°C 
and then undergoes an 
endothermic conformational 
change. (Adapted from B. 
Chowdhry and S. LeHarne, 
J. Chem. Educ. 74, 236 (1997).)
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Physical and chemical change

We shall focus on the use of the enthalpy as a useful book-keeping property 
for tracing the fl ow of energy as heat during physical processes and chemical 
reactions at constant pressure. Th e discussion will lead naturally to a quantitative 
treatment of the factors that optimize the suitability of fuels, including ‘biological 
fuels’, the foods we ingest to meet the energy requirements of daily life.

1.7 Enthalpy changes accompanying physical processes
To begin to understand the complex structural changes that biological 
macromolecules undergo when heated or cooled, we need to understand 
how simpler physical changes occur.

To describe changes quantitatively, we need to keep track of the numerical value 
of a thermodynamic property with varying conditions, such as the states of the 
substances involved, the pressure, and the temperature. To simplify the calcula-
tions, chemists have found it convenient to report their data for a set of standard 
conditions at the temperature of their choice:

Th e standard state of a substance is the pure substance at 
exactly 1 bar.7 

Definition of 
standard state

We denote the standard state value of a property by the superscript 3 on the sym-
bol for the property, as in H 3

m for the standard molar enthalpy of a substance and 
p3 for the standard pressure of 1 bar. For example, the standard state of hydrogen 
gas is the pure gas at 1 bar and the standard state of solid calcium carbonate is the 
pure solid at 1 bar, with either the calcite or aragonite form specifi ed. Th e physical 
state needs to be specifi ed because we can speak of the standard states of the solid, 
liquid, and vapor forms of water, for instance, which are the pure solid, the pure 
liquid, and the pure vapor, respectively, at 1 bar in each case. Th e standard states 
of solutions, which are never ‘pure’, need to be treated diff erently (Section 3.8).

In older texts you might come across a standard state defi ned for 1 atm 
(101.325 kPa) in place of 1 bar. Th at is the old convention. In most cases, data for 
1 atm diff er only a little from data for 1 bar. You might also come across standard 
states defi ned as referring to 298.15 K. Th at is incorrect: temperature is not a part of 
the defi nition of standard state, and standard states may refer to any temperature 
(but it should be specifi ed). Th us, it is possible to speak of the standard state of 
water vapor at 100 K, 273.15 K, or any other temperature. It is conventional, how-
ever, for data to be reported at the so-called conventional temperature of 298.15 K 
(25.00°C), and from now on, unless specifi ed otherwise, all data will be for that 
temperature. For simplicity, we shall oft en refer to 298.15 K as ‘25°C’. Finally, a 
standard state need not be a stable state and need not be realizable in practice. 
Th us, the standard state of water vapor at 25°C is the vapor at 1 bar, but water vapor 
at that temperature and pressure would immediately condense to liquid water.

(a) Phase transitions

A phase is a specifi c state of matter that is uniform throughout in composition 
and physical state. Th e liquid and vapor states of water are two of its phases. Th e 
term ‘phase’ is more specifi c than ‘state of matter’ because a substance may exist 
in more than one solid form, each one of which is a solid phase. Th ere are at least 

7 Remember that 1 bar = 105 Pa exactly. 
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12 forms of ice. No substance has more than one gaseous phase, so ‘gas phase’ and 
‘gaseous state’ are eff ectively synonyms. Th e only substance that exists in more 
than one liquid phase is helium, although some evidence suggests that water 
might also have two liquid phases.

Th e conversion of one phase of a substance to another phase is called a phase 
transition. Th us, vaporization (liquid → gas) is a phase transition, as is a transi-
tion between solid phases (such as aragonite → calcite in geological processes). 
With a few exceptions, phase transitions are accompanied by a change of enthalpy, 
for the rearrangement of atoms or molecules usually requires or releases energy.

(b) Enthalpies of vaporization, fusion, and sublimation

Th e vaporization of a liquid, such as the conversion of liquid water to water vapor 
when a pool of water evaporates at 20°C or a kettle boils at 100°C, is an endother-
mic process (DH > 0) because heating is required to bring about the change. At a 
molecular level, molecules are being driven apart from the grip they exert on one 
another, and this process requires energy. One of the body’s strategies for main-
taining its temperature at about 37°C is to use the endothermic character of the 
vaporization of water because the evaporation8 of perspiration requires energy 
and withdraws it from the skin.

Th e energy that must be supplied as heat at constant pressure per mole of 
molecules that are vaporized under standard conditions (that is, pure liquid at 
1 bar changing to pure vapor at 1 bar) is called the standard enthalpy of vaporiza-
tion of the liquid and is denoted DvapH 3 (Table 1.2). For example, 44 kJ of heat is 
required to vaporize 1 mol H2O(l) at 1 bar and 25°C, so DvapH 3 = +44 kJ mol−1.

Alternatively, we can report the same information by writing the thermochem-
ical equation9

H2O(l) → H2O(g)  DH 3 = +44 kJ

A note on good practice 
Th e attachment of the 
subscript vap to the D is the 
modern convention; however, 
the older convention in which 
the subscript is attached to the 
H, as in DHvap, is still widely 
used. All enthalpies of 
vaporization are positive, 
so the sign is not normally 
written explicitly in tables 
of data.
 

8 Evaporation is virtually synonymous with vaporization but commonly denotes vaporization to 
dryness.

9 Unless otherwise stated, all data in this text are for 298.15 K.

Table 1.2 Standard enthalpies of transition at the transition temperature*

Substance Freezing 
point, Tfus/K

DfusH9/
(kJ mol−1)

Boiling 
point, Tb/K

DvapH9/
(kJ mol−1)

Ammonia, NH3 195.3  5.65 239.7 23.4
Argon, Ar  83.8  1.2  87.3  6.5
Benzene, C6H6 278.7  9.87 353.3 30.8
Ethanol, C2H5OH 158.7  4.60 351.5 43.5
Helium, He  3.5  0.02  4.22  0.08
Hydrogen peroxide, H2O2 272.7 12.50 423.4 51.6
Mercury, Hg 234.3  2.292 629.7 59.30
Methane, CH4  90.7  0.94 111.7  8.2
Methanol, CH3OH 175.5  3.16 337.2 35.3
Propanone, CH3COCH3 177.8  5.72 329.4 29.1
Water, H2O 273.15  6.01 373.2 40.7

44.02 at 25°C
45.07 at 0°C

*For values at 298.15 K, use the information in the Resource section.
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A thermochemical equation shows the standard enthalpy change (including 
the sign) that accompanies the conversion of an amount of reactant equal to its 
stoichiometric coeffi  cient in the accompanying chemical equation (in this 
case, 1 mol H2O). If the stoichiometric coeffi  cients in the chemical equation 
are multiplied through by 2, then the thermochemical equation would be 
written

2 H2O(l) → 2 H2O(g)  DH 3 = +88 kJ

Th is equation signifi es that 88 kJ of heat is required to vaporize 2 mol H2O(l) at 
1 bar and (recalling our convention) at 298.15 K.

Th ere are some striking diff erences in standard enthalpies of vaporization: 
although the value for water is 44 kJ mol−1, that for methane, CH4, at its boiling 
point is only 8 kJ mol−1. Even allowing for the fact that vaporization is taking place 
at diff erent temperatures, the diff erence between the enthalpies of vaporization 
signifi es that water molecules are held together in the bulk liquid much more 
tightly than methane molecules are in liquid methane. As should be recalled from 
introductory courses, the interaction responsible for the low volatility of water is 
the hydrogen bonding between neighboring H2O molecules. Th e high enthalpy 
of vaporization of water has profound ecological consequences, for it is partly 
responsible for the survival of the oceans and the generally low humidity of the 
atmosphere. If only a small amount of heat had to be supplied to vaporize the 
oceans, the atmosphere would be much more heavily saturated with water vapor 
than is in fact the case.

Another common phase transition is fusion, or melting, as when ice melts to 
water. Th e change in molar enthalpy that accompanies fusion under standard 
conditions (pure solid at 1 bar changing to pure liquid at 1 bar) is called the stand-
ard enthalpy of fusion, DfusH 3. Its value for water at 0°C is +6.01 kJ mol−1. As for 
enthalpies of vaporization, all enthalpies of fusion are positive, and the sign is not 
written explicitly in tables. Notice that the enthalpy of fusion of water is much less 
than its enthalpy of vaporization. In vaporization the molecules become com-
pletely separated from each other, whereas in melting the molecules are merely 
loosened without separating completely (Fig. 1.21).

Th e reverse of vaporization is condensation and the reverse of fusion (melting) 
is freezing. Th e molar enthalpy changes are, respectively, the negative of the 
enthalpies of vaporization and fusion because the energy that is supplied (dur-
ing heating) to vaporize or melt the substance is released when it condenses or 

Fig. 1.21 When a solid (a) melts 
to a liquid (b), the molecules 
separate from one another only 
slightly, the intermolecular 
interactions are reduced only 
slightly, and there is only a small 
change in enthalpy. When 
a liquid vaporizes (c), the 
molecules are separated by 
a considerable distance, the 
intermolecular forces are reduced 
almost to zero, and the change in 
enthalpy is much greater.
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freezes.10 It is always the case that the enthalpy change of a reverse transition is 
the negative of the enthalpy change of the forward transition (under the same 
conditions of temperature and pressure):

H2O(s) → H2O(l)  DH 3 = +6.01 kJ

H2O(l) → H2O(s)  DH 3 = −6.01 kJ

and in general

DforwardH3 = −DreverseH3 (1.19)

Th is relation follows from the fact that H is a state property, so it must return 
to the same value if a forward change is followed by the reverse of that change 
(Fig. 1.22). Th e high standard enthalpy of vaporization of water (+44 kJ mol−1), 
signifying a strongly endothermic process, implies that the condensation of water 
(−44 kJ mol−1) is a strongly exothermic process. Th at exothermicity is the origin 
of the ability of steam to scald severely because the energy is passed on to the skin.

Th e direct conversion of a solid to a vapor is called sublimation. Th e reverse 
process is called vapor deposition. Sublimation can be observed on a cold, frosty 
morning, when frost vanishes as vapor without fi rst melting. Th e frost itself 
forms by vapor deposition from cold, damp air. Th e vaporization of solid carbon 
dioxide (‘dry ice’) is another example of sublimation. Th e standard molar enthalpy 
change accompanying sublimation is called the standard enthalpy of sublim-
ation, DsubH3. Because enthalpy is a state property, the same change in enthalpy 
must be obtained both in the direct conversion of solid to vapor and in the indirect 
conversion, in which the solid fi rst melts to the liquid and then that liquid vapor-
izes (Fig. 1.23):

DsubH 3 = D fusH 3 + DvapH 3 (1.20)

Th is result is an example of a more general statement that will prove useful time 
and again during our study of thermochemistry:

Th e enthalpy change of an overall process is the sum of the enthalpy changes 
for the steps (observed or hypothetical) into which it may be divided.

Fig. 1.22 An implication of the 
First Law is that the enthalpy 
change accompanying a reverse 
process is the negative of the 
enthalpy change for the forward 
process.

Fig. 1.23 Th e enthalpy of 
sublimation at a given 
temperature is the sum of the 
enthalpies of fusion and 
vaporization at that temperature. 
Another implication of the First 
Law is that the enthalpy change of 
an overall process is the sum of 
the enthalpy changes for the 
possibly hypothetical steps into 
which it may be divided.A brief illustration

To use eqn 1.20 correctly, the two enthalpies that are added together must be 
for the same temperature, so to get the enthalpy of sublimation of water at 0°C, 
we must add together the enthalpies of fusion (6.01 kJ mol−1) and vaporization 
(45.07 kJ mol−1) for this temperature. Adding together enthalpies of transition 
for diff erent temperatures gives a meaningless result. It follows that

DsubH3 = DfusH3 + DvapH3 = 6.01 kJ mol−1 + 45.07 kJ mol−1 = 51.08 kJ mol−1

1.8 Bond enthalpy
To understand bioenergetics at a molecular level we need to account for the flow of 
energy during chemical reactions as individual chemical bonds are broken and made.

A note on good practice 
Molar quantities are expressed 
as a quantity per mole (as in 
kilojoules per mole, kJ mol−1). 
Distinguish them from the 
magnitude of a property for 
1 mol of substance, which is 
expressed as the quantity 
itself (as in kilojoules, kJ). 
All enthalpies of transition, 
denoted DtrsH, are molar 
quantities.
 

10 Th is relation is the origin of the obsolescent terms ‘latent heat’ of vaporization and fusion for 
what are now termed the enthalpy of vaporization and fusion.
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Th e thermochemical equation for the dissociation, or breaking, of a chemical 
bond can be written with the hydroxyl radical OH(g) as an example:

HO(g) → H(g) + O(g)  DH 3 = +428 kJ

Th e corresponding standard molar enthalpy change is called the bond enthalpy, 
so we would report the H–O bond enthalpy as 428 kJ mol−1. All bond enthalpies 
are positive, so bond dissociation is an endothermic process.

Some bond enthalpies are given in Table 1.3. Note that the bond in molecular 
nitrogen, N2, is very strong, at 945 kJ mol−1, which helps to account for the chem-
ical inertness of nitrogen and its ability to dilute the oxygen in the atmosphere 
without reacting with it. In contrast, the bond in molecular fl uorine, F2, is rela-
tively weak, at 155 kJ mol−1; the weakness of this bond contributes to the high 
reactivity of elemental fl uorine. However, bond enthalpies alone do not account 
for reactivity because, although the bond in molecular iodine is even weaker, I2 is 
less reactive than F2, and the bond in CO is stronger than the bond in N2, but CO 
forms many carbonyl compounds, such as Ni(CO)4. Th e types and strengths of 
the bonds that the elements can make to other elements when a new substance is 
formed from reactants are additional factors.

A complication when dealing with bond enthalpies is that their values depend 
on the molecule in which the two linked atoms occur. For instance, the total stand-
ard enthalpy change for the atomization (the complete dissociation into atoms) 
of water:

H2O(g) → 2 H(g) + O(g)  DH 3 = +927 kJ

is not twice the O–H bond enthalpy in H2O even though two O–H bonds are 
dissociated. Th ere are in fact two diff erent dissociation steps. In the fi rst step, 
an O–H bond is broken in an H2O molecule:

H2O(g) → HO(g) + H(g)  DH 3 = +492 kJ

In the second step, the O–H bond is broken in an OH radical:

HO(g) → H(g) + O(g)  DH 3 = +428 kJ

A brief comment
Recall that a radical is a very 
reactive species containing one 
or more unpaired electrons. To 
emphasize the presence of an 
unpaired electron in a radical, 
it is common to use a dot (·) 
when writing the chemical 
formula. For example, the 
chemical formula of the 
hydroxyl radical may be 
written as ·OH. Hydroxyl 
radicals and other reactive 
species containing oxygen can 
be produced in organisms as 
undesirable by-products of 
electron transfer reactions and 
have been implicated in the 
development of cardiovascular 
disease, cancer, stroke, 
infl ammatory disease, and 
other conditions.

Table 1.3 Selected bond enthalpies, H(A–B)/(kJ mol−1)

Diatomic molecules
H–H 436 O=O  497 F–F 155 H–F 565

N≡N  945 Cl–Cl 242 H–Cl 431
O–H  428 Br–Br 193 H–Br 366
C≡O 1074 I–I 151 H–I 299

Polyatomic molecules
H–CH3 435 H–NH2  431 H–OH 492
H–C6H5 469 O2N–NO2   57 HO–OH 213
H3C–CH3 368 O=CO  531 HO–CH3 377

H2C=CH2 699 Cl–CH3 352

HC≡CH 962 Br–CH3 293
I–CH3 234
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Th e sum of the two steps is the atomization of the molecule. As can be seen from 
this example, the O–H bonds in H2O and HO have similar but not identical bond 
enthalpies.

Although accurate calculations must use bond enthalpies for the molecule in 
question and its successive fragments, when such data are not available, there is 
no choice but to make estimates by using mean bond enthalpies, DHB, which are 
the averages of bond enthalpies over a related series of compounds (Table 1.4). 
For example, the mean HO bond enthalpy, DHB(H–O) = 463 kJ mol−1, is the mean 
of the O–H bond enthalpies in H2O and several other similar compounds, includ-
ing methanol, CH3OH.

Example 1.3 Using mean bond enthalpies

Use information from the Resource section and bond enthalpy data from 
Tables 1.3 and 1.4 to estimate the standard enthalpy change for the reaction

2 H2O2(l) → 2 H2O(l) + O2(g)

in which liquid hydrogen peroxide decomposes into O2 and water at 25°C. 
In the aqueous environment of biological cells, hydrogen peroxide—a very 
reactive species—is formed as a result of some processes involving O2. 
Th e enzyme catalase helps rid organisms of toxic hydrogen peroxide by 
accelerating its decomposition. Th e enthalpy of vaporization of H2O2(l) at 
298 K is 51.5 kJ mol−1.

Strategy In calculations of this kind, the procedure is to break the overall process 
down into a sequence of steps such that their sum is the chemical equation required. 

Table 1.4 Mean bond enthalpies, DHB/(kJ mol−1)*

H C N O F Cl Br I S P Si

H 436
C 412 348 (1)

612 (2)
838 (3)
518 (a)†

N 388 305 (1) 163 (1)
613 (2) 409 (2)
890 (3) 945 (3)

O 463 360 (1) 157 146 (1)
743 (2) 497 (2)

F 565 484 270 185 155
Cl 431 338 200 203 254 242
Br 366 276 219 193
I 299 238 210 178 151
S 338 259 496 250 212 264
P 322 200
Si 318 374 466 226

*Values are for single bonds except where otherwise stated (in parentheses).
†(a) Denotes aromatic.
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Always ensure, when using bond enthalpies, that all the species are in the gas 
phase. Th at may mean including the appropriate enthalpies of vaporization or 
sublimation. One approach is to atomize all the reactants and then to build the 
products from the atoms so produced. When explicit bond enthalpies are 
available (that is, data are given in the tables available), use them; otherwise, 
use mean bond enthalpies to obtain estimates.

Solution Th e following steps are required:

 DH9/kJ
Vaporization of 2 mol H2O2(l), 2 H2O2(l) → 2 H2O2(g) 2 × (+51.5)
Dissociation of 4 mol O–H bonds 4 × (+463)
Dissociation of 2 mol O–O bonds in HO–OH 2 × (+213)
Overall, so far: 2 H2O2(l) → 4 H(g) + 4 O(g) +2381

We have used the mean bond enthalpy value from Table 1.4 for the O–H 
bond and the exact bond enthalpy value for the O–O bond in HO–OH from 
Table 1.3. In the second step, four O–H bonds and one O=O bond are formed. 
Th e standard enthalpy change for bond formation (the reverse of dissociation) 
is the negative of the bond enthalpy. We can use exact values for the enthalpy of 
the O–H bond in H2O(g) and for the O=O bond in O2(g):

 DH9/kJ
Formation of 4 mol O–H bonds 4 × (−492)
Formation of 1 mol O2 −497
Overall, in this step: 4 O(g) + 4 H(g) → 2 H2O(g) + O2(g) −2465

Th e fi nal stage of the reaction is the condensation of 2 mol H2O(g)

2 H2O(g) → 2 H2O(l)  DH3 = 2 × (−44 kJ) = −88 kJ

Th e sum of the enthalpy changes is

DH3 = (+2381 kJ) + (−2465 kJ) + (−88 kJ) = −172 kJ

Th e experimental value is −196 kJ.

Self-test 1.4 Estimate the enthalpy change for the reaction between 1 mol 
C2H5OH as liquid ethanol, a fuel made by fermenting corn, and O2(g) to 
yield CO2(g) and H2O(l) under standard conditions by using the bond 
enthalpies, mean bond enthalpies, and the appropriate standard enthalpies of 
vaporization.

Answer: −1305 kJ; the experimental value is −1368 kJ

1.9 Thermochemical properties of fuels
We need to understand the molecular origins of the energy content of biological fuels, 
the carbohydrates, fats, and proteins.

We saw in Case study 1.1 that photosynthesis and the oxidation of organic 
molecules are the most important processes that supply energy to organisms. 
In this section we begin our quantitative study of biological energy conversion 
by assessing the thermochemical properties of fuels.
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Th e consumption of a fuel in a furnace or an engine is the result of a combus-
tion. An example is the combustion of methane in a natural gas fl ame:

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)  DH3 = −890 kJ

Th e standard enthalpy of combustion, DcH3, is the standard change in 
enthalpy per mole of combustible molecules. In this example, we would write 
DcH 3(CH4, g) = −890 kJ mol−1. Some typical values are given in Table 1.5. Note 
that DcH 3 is a molar quantity and is obtained from the value of DH3 by dividing by 
the amount of organic reactant consumed (in this case, by 1 mol CH4).

According to the discussion in Sections 1.5 and 1.6, and the relation DU = qV, 
the energy transferred as heat at constant volume is equal to the change in inter-
nal energy, DU, not DH. To convert from DU to DH, we need to note that the molar 
enthalpy of a substance is related to its molar internal energy by Hm = Um + pVm 
(eqn 1.12a). For condensed phases, pVm is so small that it may be ignored. For 
example, the molar volume of liquid water is 18 cm3 mol−1, and at 1.0 bar

pVm = (1.0 × 105 Pa) × (18 × 10−6 m3 mol−1) = 1.8 Pa m3 mol−1 = 1.8 J mol−1

However, the molar volume of a gas, and therefore the value of pVm, is about 
1000 times greater and cannot be ignored. For gases treated as perfect, pVm may 
be replaced by RT. Th erefore, if in the chemical equation the diff erence (products 
– reactants) in the stoichiometric coeffi  cients of gas phase species is Dngas, we 
can write

DcH = DcU + DngasRT (1.21)

Note that ngas (where n is nu) is a dimensionless number.

Table 1.5 Standard enthalpies of combustion

Substance DcH9/(kJ mol−1)

Carbon, C(s, graphite)  −394
Carbon monoxide, CO(g)  −283
Citric acid, C6H8O7(s) −1985
Ethanol, C2H5OH(l) −1368
Glucose, C6H12O6(s) −2808
Glycine, CH2(NH2)COOH(s)  −969
Hydrogen, H2(g)  −286
iso-Octane,* C8H18(l) −5461
Methane, CH4(g)  −890
Methanol, CH3OH(l)  −726
Methylbenzene, C6H5CH3(l) −3910
Octane, C8H18(l) −5471
Propane, C3H8(g) −2220
Pyruvic acid, CH3(CO)COOH(l)  −950
Sucrose, C12H22O11(s) −5645
Urea, CO(NH2)2(s)  −632

*2,2,4-Trimethylpentane.
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We shall see in Chapter 2 that the best assessment of the ability of a compound 
to act as a fuel to drive many of the processes occurring in the body makes use of 
the ‘Gibbs energy’. However, a useful guide to the resources provided by a fuel, 
and the only one that matters when energy transferred as heat is being considered, 
is the enthalpy, particularly the enthalpy of combustion. Th e thermochemical 
properties of fuels and foods are commonly discussed in terms of their specifi c 
enthalpy, the magnitude of the enthalpy of combustion divided by the mass of the 
sample (typically in kilojoules per gram) or the enthalpy density, the magnitude 
of the enthalpy of combustion divided by the volume of the sample (typically in 
kilojoules per cubic decimeter). If the standard enthalpy of combustion is DcH 3 
and the molar mass of the compound is M, then the specifi c enthalpy is DcH 3/M. 
Similarly, the enthalpy density is DcH 3/Vm, where Vm is the molar volume of the 
material.

Table 1.6 lists the specifi c enthalpies and enthalpy densities of several fuels. Th e 
most suitable fuels are those with high specifi c enthalpies, as the advantage of a 
high molar enthalpy of combustion may be eliminated if a large mass of fuel is to 
be transported. We see that H2 gas compares very well with more traditional fuels 
such as methane (natural gas), octane (gasoline), and methanol. Furthermore, the 
combustion of H2 gas does not generate CO2 gas, a pollutant implicated in the 
mechanism of global warming. As a result, H2 gas has been proposed as an effi  -
cient, clean alternative to fossil fuels, such as natural gas and petroleum. However, 
we also see that H2 gas has a very low enthalpy density, which arises from the fact 

A brief illustration

Th e energy released at constant volume as heat by the combustion of the amino 
acid glycine is −969.6 kJ mol−1 at 298.15 K, so DcU = −969.6 kJ mol−1. From the 
chemical equation

NH2CH2COOH(s) + 94 O2(g) → 2 CO2(g) + 52 H2O(l) + 12 N2(g)

we fi nd that Dngas = (2 + 12 ) − 94 = 14 . Th erefore,

DcH = DcU + 14 RT 
 = −969.6 kJ mol−1 + 14 × (8.3145 × 10−3 kJ K−1 mol−1) × (298.15 K)
 = −969.6 kJ mol−1 + 0.62 kJ mol−1 = −969.0 kJ mol−1

Table 1.6 Th ermochemical properties of some fuels

Fuel Combustion equation DcH9/(kJ mol−1) Specifi c enthalpy/
(kJ g−1)

Enthalpy density*/
(kJ dm−3)

Hydrogen 2 H2(g) + O2(g) → 2 H2O(l)  −286 142 13
Methane CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)  −890  55 40
iso-Octane† 2 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(l) −5461  48  3.3 × 104

Methanol 2 CH3OH(l) + 3 O2(g) → 2 CO2(g) + 4 H2O(l)  −726  23  1.8 × 104

*At atmospheric pressures and room temperature.
†2,2,4-Trimethylpentane.
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that hydrogen is a very light gas. So, the advantage of a high specifi c enthalpy is 
undermined by the large volume of fuel to be transported and stored. Strategies 
are being developed to solve the storage problem. For example, the small H2 mol-
ecules can travel through holes in the crystalline lattice of a sample of metal, such 
as titanium, where they bind as metal hydrides. In this way it is possible to increase 
the eff ective density of hydrogen atoms to a value that is higher than that of liquid 
H2. Th en the fuel can be released on demand by heating the metal.

We now assess the factors that optimize the enthalpy of combustion of carbon-
based fuels, with an eye toward understanding such biological fuels as carbo-
hydrates, fats, and proteins. Th e combustion of 1 mol CH4(g) releases 890 kJ of 
energy as heat per mole of C atoms:

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)  DH3 = −890 kJ

Now consider the combustion of 1 mol CH3OH(g):

CH3OH(g) + 32 O2(g) → CO2(g) + 2 H2O(l)  DH3 = −765 kJ

Th is reaction is also exothermic, but now only 765 kJ of energy is released as heat 
per mole of C atoms. Much of the observed change in energy output between the 
reactions can be explained by noting that the replacement of a C–H bond by a 
C–O bond renders the carbon in methanol more oxidized than the carbon in 
methane, so it is reasonable to expect that less energy is released to complete the 
oxidation of carbon in methanol to CO2. In general, the presence of partially oxi-
dized C atoms (that is, carbon atoms bonded to oxygen atoms) in a material makes 
it a less suitable fuel than a similar material containing less oxidized C atoms.

Another factor that determines the enthalpy of combustion is the number of 
carbon atoms in hydrocarbon compounds. For example, whereas the enthalpy of 
combustion of methane is −890 kJ mol−1, that of iso-octane (C8H18, 2,2,4-trimethyl-
pentane (1), a typical component of gasoline) is −5461 kJ mol−1 (Table 1.6). Th e 
much larger value for iso-octane is a consequence of each molecule having eight 
C atoms to contribute to the formation of carbon dioxide, whereas methane has 
only one.

A brief comment
Th e concept of oxidation 
numbers, familiar from 
introductory chemistry, 
clarifi es the point made in this 
paragraph. Th e formation 
of CO2 from CH4 involves 
an increase in the oxidation 
number—that is, an oxidation
—of carbon from −4 in CH4 to 
+4 in CO2. By contrast, the 
carbon atom in CH3OH has an 
oxidation number of −2 and is 
in a higher oxidation state than 
the carbon in methane.

Case study 1.2 Biological fuels

A typical 18- to 20-year-old man requires a daily energy input of about 12 MJ 
(1 MJ = 106 J) or about 2870 Cal; a woman of the same age needs about 9 MJ or 
about 2150 Cal. If the entire consumption were in the form of glucose, which 
has a specifi c enthalpy of 16 kJ g−1, meeting energy needs would require the 
consumption of 750 g of glucose by a man and 560 g by a woman. In fact, the 
complex carbohydrates more commonly found in our diets have slightly 
higher specifi c enthalpies (17 kJ g−1 = 4 Cal g−1) than glucose itself, so a carbo-
hydrate diet is slightly less daunting than a pure glucose diet, as well as being 
more appropriate in the form of fi bre, the indigestible cellulose that helps move 
digestion products through the intestine.

Th e specifi c enthalpy of fats, which are long-chain esters such as tristearin (2), 
is much greater than that of carbohydrates, at around 38 kJ g−1 (9 Cal g−1), 
slightly less than the value for the hydrocarbon oils used as fuel (48 kJ g−1 = 
11 Cal g−1). Th e reason for this diff erence lies in the fact that many of the 
carbon atoms in carbohydrates are bonded to oxygen atoms and are already 
partially oxidized, whereas most of the carbon atoms in fats are bonded to 
hydrogen and other carbon atoms and hence have lower oxidation numbers. 
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As we have seen, the presence of partially oxidized carbons lowers the energy 
output of a fuel. Fats are commonly used as an energy store, to be used only 
when the more readily accessible carbohydrates have fallen into short supply. 
In Arctic species, the stored fat also acts as a layer of insulation; in desert 
species (such as the camel), the fat is also a source of water, one of its oxidation 
products.

Proteins are also used as a source of energy, but their components, the amino 
acids, are also used to construct other proteins. When proteins are oxidized 
(to urea, CO(NH2)2), the equivalent specifi c enthalpy is comparable to that of 
carbohydrates (about 17 kJ g−1 = 4 Cal g−1).
 

11 Alarmingly, this single meal corresponds to about 33 per cent or 44 per cent of the daily energy 
requirements of a young man or woman, respectively.

12 Th e data for this brief illustration are from C.H. Snyder, Th e extraordinary chemistry of ordinary 
things, Wiley (2002).

A brief illustration

A lunch consisting of a hamburger (about 350 Cal), potato chips (1 serving = 
108 Cal), and a milk shake (about 502 Cal) would sum to about 960 Cal.11,12 By 
contrast, a lighter lunch of halibut (about 205 Cal for a 14-lb serving), a raw car-
rot (about 42 Cal), a large apple (101 Cal), and a glass of orange juice (about 
120 Cal) would net only 468 Cal. Th e intake from these meals can be compared 
to the rates at which a 70-kg person can expend energy, depending on the 
nature of the activity:

Level of activity Rate of energy expenditure/(Cal min–1)
Light (walking slowly) 2.5–5.0
Moderate (walking fast) 5.0–7.5
Heavy (running) 7.5–12.0

It follows that it would be necessary to walk slowly for about 3 to 6 hours (or 
run for 1 to 2 hours) to expend the energy taken in by eating the 960-Cal ham-
burger meal. Even though reading this textbook also requires energy, it would 
take about 16 hours for the hamburger meal to be ‘burned off ’ by so sedentary 
an activity.
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1.10 The combination of reaction enthalpies
To make progress in our study of bioenergetics, we need to develop methods for 
predicting the reaction enthalpies of complex biochemical reactions.

It is oft en the case that a reaction enthalpy is needed but is not available in tables 
of data. Now the fact that enthalpy is a state function comes in handy, because it 
implies that we can construct the required reaction enthalpy from the reaction 
enthalpies of known reactions. We have already seen a primitive example when 
we calculated the enthalpy of sublimation from the sum of the enthalpies of fusion 
and vaporization. Th e only diff erence is that we now apply the technique to a 
sequence of chemical reactions. Th e procedure is summarized by Hess’s law, 
which in its modern form is:

Th e standard enthalpy of a reaction is the sum of the standard enthalpies of the 
reactions into which the overall reaction may be divided.

Although the procedure is given the status of a law, it hardly deserves the title 
because it is nothing more than a consequence of enthalpy being a state function, 
which implies that an overall enthalpy change can be expressed as a sum of 
enthalpy changes for each step in an indirect path. Th e individual steps need not 
be actual reactions that can be carried out in the laboratory—they may be entirely 
hypothetical reactions, the only requirement being that their equations should 
balance. Each step must correspond to the same temperature.

A brief illustration

From the enthalpy of vaporization (DvapH3 = 44 kJ mol−1 at 298 K), molar 
mass (M = 18 g mol−1), and mass density ( r = 1.0 g cm−3, corresponding to 
1.0 × 103 g dm−3) of water, the energy removed as heat through evaporation 
per liter (cubic decimeter) of water perspired is

q = rDvapH3

M
 = (1.0 × 103 g dm−3) × (44 kJ mol−1)

18 g mol−1
 = 2.4 × 103 kJ dm−3 

 = 2.4 MJ dm−3

When vigorous exercise promotes sweating (through the infl uence of heat 
selectors on the hypothalamus), 1 to 2 dm3 of perspired water can be produced 
per hour, corresponding to a loss of energy of approximately 2.4 to 4.8 MJ h−1.

We have already remarked that not all the energy released by the oxidation of 
foods is used to perform work. Th e energy that is also released as heat needs to 
be discarded in order to maintain body temperature within its typical range of 
35.6 to 37.8°C. A variety of mechanisms contribute to this aspect of homeostasis, 
the ability of an organism to counteract environmental changes with physiolo-
gical responses. Th e general uniformity of temperature throughout the body is 
maintained largely by the fl ow of blood. When energy needs to be dissipated 
rapidly by heating, warm blood is allowed to fl ow through the capillaries of the 
skin, so producing fl ushing. Radiation is one means of heating the surroundings; 
another is evaporation and the energy demands of the enthalpy of vaporization 
of water.
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Self-test 1.5 Calculate the standard enthalpy of the fermentation C6H12O6(s) 
→ 2 C2H5OH(l) + 2 CO2(g) from the standard enthalpies of combustion of 
glucose and ethanol (Table 1.5).

Answer: −72 kJ

1.11 Standard enthalpies of formation
We need to simplify even further the process of predicting reaction enthalpies of 
biochemical reactions.

Th e standard reaction enthalpy, DrH 3, is the diff erence between the standard 
molar enthalpies of the reactants and the products, with each term weighted by 
the stoichiometric coeffi  cient, n (nu), in the chemical equation

DrH 3 = ∑ nH m
3(products) − ∑ nH m

3(reactants) 
Definition of 
the standard 
reaction enthalpy  

(1.22)

where ∑ (uppercase sigma) denotes a sum. Because the Hm
3 are molar quantities 

and the stoichiometric coeffi  cients are pure numbers, the units of DrH3 are 

Example 1.4 Using Hess’s law

In biological cells that have a plentiful supply of O2, glucose is oxidized com-
pletely to CO2 and H2O (Section 1.9 and Case study 1.2). Muscle cells may be 
deprived of O2 during vigorous exercise and, in that case, one molecule of 
glucose is converted to two molecules of lactic acid (Atlas C2) by the process 
of glycolysis (Case study 4.3). Given the thermochemical equations for the 
combustions of glucose and lactic acid:

C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(l)  DH3 = −2808 kJ
CH3CH(OH)COOH(s) + 3 O2(g) → 3 CO2(g) + 3 H2O(l)  DH3 = −1344 kJ

calculate the standard enthalpy for glycolysis:

C6H12O6(s) → 2 CH3CH(OH)COOH(s)

Is there a biological advantage of complete oxidation of glucose compared with 
glycolysis? Explain your answer.

Strategy We need to add or subtract the thermochemical equations so as to 
reproduce the thermochemical equation for the reaction required.

Solution We obtain the thermochemical equation for glycolysis from the 
following sum:

 DH9/kJ
C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(l) −2808
6 CO2(g) + 6 H2O(l) → 2 CH3CH(OH)COOH(s) + 6 O2(g) 2 × (+1344 kJ)
Overall: C6H12O6(s) → 2 CH3CH(OH)COOH(s) −120

It follows that the standard enthalpy for the conversion of glucose to lactic acid 
during glycolysis is −120 kJ mol−1, a mere 4 per cent of the enthalpy of combus-
tion of glucose. Th erefore, full oxidation of glucose is metabolically more 
useful than glycolysis because in the former process more energy becomes 
available for performing work.
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kilojoules per mole. Th e standard reaction enthalpy is the change in enthalpy of 
the system when the reactants in their standard states (pure, 1 bar) are completely 
converted into products in their standard states (pure, 1 bar), with the change 
expressed in kilojoules per mole of reaction as written.

Th e problem with eqn 1.22 is that we have no way of knowing the absolute 
enthalpies of the substances. To avoid this problem, we can imagine the reaction 
as taking place by an indirect route, in which the reactants are fi rst broken down 
into the elements and then the products are formed from the elements (Fig. 1.24). 
Specifi cally, the standard enthalpy of formation, DfH 3, of a substance is the stand-
ard enthalpy (per mole of the substance) for its formation from its elements in 
their reference states. Th e reference state of an element is its most stable form 
under the prevailing conditions (Table 1.7). Don’t confuse ‘reference state’ with 
‘standard state’: the reference state of carbon at 25°C is graphite (not diamond); 
the standard state of carbon is any specifi ed phase of the element at 1 bar. For 
example, the standard enthalpy of formation of liquid water (at 25°C, as always in 
this text) is obtained from the thermochemical equation

H2(g) + 12 O2(g) → H2O(l)  DH 3 = −286 kJ

and is DfH 3(H2O, l) = −286 kJ mol−1. Note that enthalpies of formation are molar 
quantities, so to go from DH 3 in a thermochemical equation to DfH 3 for that 
substance, divide by the amount of substance formed (in this instance, by 
1 mol H2O).

With the introduction of standard enthalpies of formation, we can write

DrH 3 = ∑ nDfH 3(products) − ∑ nDfH 3(reactants) 
Calculation of 
standard reaction 
enthalpies  

(1.23)

Th e fi rst term on the right is the enthalpy of formation of all the products from 
their elements; the second term on the right is the enthalpy of formation of all the 
reactants from their elements. Th e fact that the enthalpy is a state function means 
that a reaction enthalpy calculated in this way is identical to the value that would 
be calculated from eqn 1.22 if absolute enthalpies were available.

Th e values of some standard enthalpies of formation at 25°C are given in 
Table 1.8, and a longer list is given in the Resource section. Th e standard enthalpies 
of formation of elements in their reference states are zero by defi nition (because 
their formation is the null reaction: element → element). Note, however, that the 
standard enthalpy of formation of an element in a state other than its reference 
state is not zero:

C(s, graphite) → C(s, diamond)  DH 3 = +1.895 kJ

Th erefore, although DfH 3(C, graphite) = 0, DfH 3(C, diamond) = +1.895 kJ mol−1.

Table 1.7 Reference states of some 
elements at 298.15 K

Element Reference state

Arsenic Gray arsenic
Bromine Liquid, Br2(l)
Carbon Graphite
Hydrogen Gas, H2(g)
Iodine Solid, I2(s)
Mercury Liquid
Nitrogen Gas, N2(g)
Oxygen Gas, O2(g)
Phosphorus White phosphorus, 

P4(s)
Sulfur Rhombic sulfur, S8(s)

Fig. 1.24 An enthalpy of reaction 
may be expressed as the 
diff erence between the enthalpies 
of formation of the products and 
the reactants.

Example 1.5 Using standard enthalpies of formation

Glucose and fructose (Atlas S3) are simple carbohydrates with the molecular 
formula C6H12O6. Sucrose (Atlas S5), or table sugar, is a complex carbohydrate 
with molecular formula C12H22O11 that consists of a glucose unit covalently 
linked to a fructose unit (a water molecule is released as a result of the reaction 
between glucose and fructose to form sucrose). Estimate the standard enthalpy 
of combustion of sucrose from the standard enthalpies of formation of the 
reactants and products.
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A note on good practice 
Th e standard enthalpy of 
formation of an element in its 
reference state (oxygen gas in 
this example) is written 0, not 
0 kJ mol−1, because it is zero 
whatever units we happen to 
be using.

 

Table 1.8 Standard enthalpies of formation at 298.15 K*

Substance DfH9/(kJ mol−1) Substance DfH9/(kJ mol−1)

Inorganic compounds Organic compounds
Ammonia, NH3(g)  −46.11 Adenine, C5H5N5(s)   +96.9
Carbon monoxide, CO(g) −110.53 Alanine, CH3CH(NH2)COOH(s)  −604.0
Carbon dioxide, CO2(g) −393.51 Benzene, C6H6(l)   +49.0
Hydrogen sulfi de, H2S(g)  −20.63 Butanoic acid, CH3(CH2)2COOH(l)  −533.8
Nitrogen dioxide, NO2(g)  +33.18 Ethane, C2H6(g)   −84.68
Nitrogen monoxide, NO(g)  +90.25 Ethanoic acid, CH3COOH(l)  −484.3
Sodium chloride, NaCl(s) −411.15 Ethanol, C2H5OH(l)  −277.69
Water, H2O(l) −285.83 a-d-Glucose, C6H12O6(s) −1268
    H2O(g) −241.82 Guanine, C5H5N5O(s)  −183.9

Glycine, CH2(NH2)COOH(s)  −528.5
N-Glycylglycine, C4H8N2O3(s)  −747.7
Hexadecanoic acid, CH3(CH2)14COOH(s)  −891.5
Leucine, (CH3)2CHCH2CH(NH2)COOH(s)  −637.4
Methane, CH4(g)   −74.81
Methanol, CH3OH(l)  −238.86
Sucrose, C12H22O11(s) −2222
Th ymine, C5H6N2O2(s)  −462.8
Urea, (NH2)2CO(s)  −333.1

*A longer list is given in the Resource section.

Strategy We write the chemical equation, identify the stoichiometric numbers 
of the reactants and products, and then use eqn 1.23. Note that the expression 
has the form ‘products – reactants’. Numerical values of standard enthalpies of 
formation are given in the Resource section. Th e standard enthalpy of combus-
tion is the enthalpy change per mole of substance, so we need to interpret the 
enthalpy change accordingly.

Solution Th e chemical equation is

C12H22O11(s) + 12 O2(g) → 12 CO2(g) + 11 H2O(l)

It follows that

DrH3 = {12DfH3(CO2,g) + 11DfH3(H2O,l)}  
  − {DfH3(C12H22O11,g) + 12DfH3(O2,g)}
 = {12 × (−393.51 kJ mol−1) + 11 × (−285.83 kJ mol−1)} 
  − {(−2222 kJ mol−1) + 0}
 = −5644 kJ mol−1

Inspection of the chemical equation shows that, in this instance, the ‘per mole’ 
is per mole of sucrose, which is exactly what we need for an enthalpy of com-
bustion. It follows that the estimate for the standard enthalpy of combustion of 
sucrose is −5644 kJ mol−1. Th e experimental value is −5645 kJ mol−1.
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Th e reference states of the elements defi ne a thermochemical ‘sea level’, and 
enthalpies of formation can be regarded as thermochemical ‘altitudes’ above or 
below sea level (Fig. 1.25). Compounds that have negative standard enthalpies of 
formation (such as water) are classifi ed as exothermic compounds, for they lie at 
a lower enthalpy than their component elements (they lie below thermochemical 
sea level). Compounds that have positive standard enthalpies of formation (such 
as carbon disulfi de) are classifi ed as endothermic compounds and possess a 
higher enthalpy than their component elements (they lie above sea level).

1.12 Enthalpies of formation and computational chemistry
Table 1.4 is useful for many calculations, but its data cannot be used to estimate 
the diff erences between the standard enthalpies of formation of conformational 
isomers. For example, we would obtain the same enthalpy of formation for the 
equatorial and axial conformers of methylcyclohexane (3 and 4, respectively) if 
we were to use mean bond enthalpies. However, it has been observed experimen-
tally that these conformers have diff erent standard enthalpies of formation due to 
the steric repulsions in the axial conformer, which raise its energy relative to that 
of the equatorial conformer.

Computational chemistry is becoming the technique of choice for estimating 
standard enthalpies of formation of molecules with complex three-dimensional 
structures. Commercial soft ware packages use the principles developed in 
Chapter 10 to calculate the standard enthalpy of formation of a conformer drawn 
on a computer screen. Th e diff erence between calculated standard enthalpies of 
formation of two conformers is then an estimate of the conformational energy 
diff erence. In the case of methylcyclohexane, the calculated conformational 
energy diff erence ranges from 5.9 to 7.9 kJ mol−1, with the equatorial conformer 
having a lower standard enthalpy of formation than the axial conformer. Th ese 
estimates compare favorably with the experimental value of 7.5 kJ mol−1. However, 
good agreement between calculated and experimental values is relatively rare. 
Computational methods almost always predict correctly which conformer is 
more stable but do not always predict the correct magnitude of the conforma-
tional energy diff erence.

Th e computational approach also makes it possible to gain insight into the 
eff ect of solvation on the enthalpy of formation without conducting experiments. 
A calculation performed in the absence of solvent molecules estimates the prop-
erties of the molecule of interest in the gas phase. Computational methods are 
available that allow for the inclusion of several solvent molecules around a solute 
molecule, thereby taking into account the eff ect of molecular interactions with 
the solvent on the enthalpy of formation of the solute. Again, the numerical results 
are only estimates, and the primary purpose of the calculation is to predict 
whether interactions with the solvent increase or decrease the enthalpy of forma-
tion. As an example, consider the amino acid glycine, which can exist in a neutral 
(5) or zwitterionic (6) form, in which the amino group is protonated and the 

Fig. 1.25 Th e enthalpy of 
formation acts as a kind of 
thermochemical ‘altitude’ of a 
compound with respect to the 
‘sea level’ defi ned by the elements 
from which it is made. 
Endothermic compounds have 
positive enthalpies of formation; 
exothermic compounds have 
negative energies of formation.

Self-test 1.6 Use standard enthalpies of formation to calculate the enthalpy 
of combustion of solid glycine to CO2(g), H2O(l), and N2(g).

Answer: −973 kJ mol−1, in agreement with the experimental value 
(see the Resource section)
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carboxyl group is deprotonated. It is possible to show computationally that in the 
gas phase the neutral form has a lower enthalpy of formation than the zwitteri-
onic form. However, in water the opposite is true because of strong interactions 
between the polar solvent and the charges in the zwitterion.

1.13 The variation of reaction enthalpy with temperature
We need to know how to predict the reaction enthalpy of a biochemical reaction at 
one temperature from its value at other temperatures.

Suppose we want to know the enthalpy of a particular reaction at body tem-
perature, 37°C, but have data available for 25°C, or suppose we want to know 
whether the oxidation of glucose is more exothermic when it takes place inside an 
Arctic fi sh that inhabits water at 0°C than when it takes place at mammalian body 
temperatures. In precise work, every attempt would be made to measure the 
reaction enthalpy at the temperature of interest, but it is useful to have a rapid way 
of estimating the sign and even a moderately reliable numerical value.

Figure 1.26 illustrates the technique. As we have seen, the enthalpy of a sub-
stance increases with temperature; therefore the total enthalpy of the reactants 
and the total enthalpy of the products increase, as shown in the illustration. 
Provided the two total enthalpy increases are diff erent, the standard reaction 
enthalpy (their diff erence) will change as the temperature is changed. Th e change 
in the enthalpy of a substance depends on the slope of the graph and therefore on 
the constant-pressure heat capacities of the substances (recall Fig. 1.16). We can 
therefore expect the temperature dependence of the reaction enthalpy to be 
related to the diff erence in heat capacities of the products and the reactants. 
We show in the following Justifi cation that this is indeed the case and that, when 
the heat capacities do not vary with temperature, the standard reaction enthalpy 
at a temperature T is related to the value at a diff erent temperature T by a special 
formulation of Kirchhoff ’s law:

DrH 3(T ′) = DrH 3(T) + (T ′ − T)DrC 3
p Kirchhoff’s law  (1.24)

where DrC 3
p  is the diff erence between the weighted sums of the standard molar 

heat capacities of the products and the reactants:

DrC 3
p  = ∑ nC 3

p,m(products) − ∑ nC 3
p,m(reactants) (1.25)

Values of standard molar constant-pressure heat capacities for a number of sub-
stances are given in the Resource section. Because eqn 1.24 applies only when the 
heat capacities are constant over the range of temperature of interest, its use is 
restricted to small temperature diff erences (of no more than 100 K or so).

Justification 1.4 Kirchhoff’s law

To derive Kirchhoff ’s law, we consider the variation of the enthalpy with 
temperature. We begin by rewriting eqn 1.14b to calculate the change in the 
standard molar enthalpy Hm of each reactant and product as the temperature of 
the reaction mixture is increased:

dH 3
m = C 3

p,mdT

where C 3
p,m is the standard molar constant-pressure heat capacity, the molar 

heat capacity at 1 bar. We proceed by integrating both sides of the expression 

Fig. 1.26 Th e enthalpy of a 
substance increases with 
temperature, therefore if the 
total enthalpy of the reactants 
increases by a diff erent amount 
from that of the products, the 
reaction enthalpy will change 
with temperature. Th e change in 
reaction enthalpy depends on the 
relative slopes of the two lines 
and hence on the heat capacities 
of the substances.
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for dH 3
m from an initial temperature T and initial enthalpy H 3

m(T) to a fi nal 
temperature T ′ and enthalpy H 3

m(T ′):

 �
H 3

m(T ′)

H 3
m(T)

 dH = �
T ′

T

 C 3
p,m dT 

It follows that for each reactant and product (assuming that no phase transition 
takes place in the temperature range of interest)

H m
3(T ′) = H m

3(T) + �
T

T ′

 C 3
p,m dT 

Because this equation applies to each substance in the reaction, we use it and 
eqn 1.23 to write the following expression for DrH 3(T ′):

DrH3(T ′) = DrH3(T) + �
T

T ′

  DrC 3
pdT

where DrC 3
p  is given by eqn 1.25. Th is equation is the exact form of Kirchhoff ’s 

law. Th e special case given by eqn 1.24 can be derived readily from it by making 
the approximation that DrC 3

p  is independent of temperature. Th en the integral 
on the right evaluates to

�
T

T ′

 DrC 3
pdT = DrC 3

p�
T

T ′

 dT = DrC 3
p × (T ′ − T) 

and we obtain eqn 1.24.
 

Example 1.6 Using Kirchhoff’s law

Th e enzyme glutamine synthetase mediates the synthesis of the amino acid 
glutamine (Gln, 8) from the amino acid glutamate (Glu, 7) and ammonium 
ion:

DrH 3 = +21.8 kJ mol−1 at 25°C

Th e process is endothermic and requires energy extracted from the oxidation of 
biological fuels and stored in ATP (Case study 1.1). Estimate the value of the re-
action enthalpy at 60°C by using data found in this text (see the Resource section) 
and the following additional information: C 3

p,m(Gln, aq) = 187.0 J K−1 mol−1 
and C 3

p,m(Glu, aq) = 177.0 J K−1 mol−1.

Strategy Calculate the value of DrC 3
p from the available data and eqn 1.25 and 

use the result in eqn 1.24.

Solution From the Resource section, the standard molar constant-pressure heat 
capacities of H2O(l) and NH4

+(aq) are 75.3 J K−1 mol−1 and 79.9 J K−1 mol−1, 
respectively. It follows that

DrC 3
p = {C 3

p,m(Gln, aq) + C 3
p,m(H2O, l)} − {C 3

p,m(Glu, aq) + C 3
p,m(NH4

+, aq)}
 = {(187.0 J K−1 mol−1) + (75.3 J K−1 mol−1)} − {(177.0 J K−1 mol−1) 
  + (79.9 J K−1 mol−1)}
 = +5.4 J K−1 mol−1 = +5.4 × 10−3 kJ K−1 mol−1

A note on good practice 
Because heat capacities can be 
measured more accurately 
than some reaction enthalpies, 
the exact form of Kirchhoff ’s 
law, with numerical 
integration of DrC p

3 over the 
temperature range of interest, 
sometimes gives results 
more accurate than a direct 
measurement of the reaction 
enthalpy at the second 
temperature.
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Self-test 1.7 Estimate the standard enthalpy of combustion of solid glycine 
at 340 K from the data in Self-test 1.6 and the Resource section.

Answer: −9683 kJ mol−1

Th e calculation in Example 1.6 shows that the standard reaction enthalpy at 60°C 
is only slightly diff erent from that at 25°C. Th e reason is that the change in reac-
tion enthalpy is proportional to the diff erence between the molar heat capacities 
of the products and the reactants, which is usually not very large. It is generally 
the case that provided the temperature range is not too wide, enthalpies of reac-
tions vary only slightly with temperature. A reasonable fi rst approximation is that 
standard reaction enthalpies are independent of temperature. However, notable 
exceptions are processes involving the unfolding of macromolecules, such as pro-
teins (In the laboratory 1.1). Th e diff erence in molar heat capacities between the 
folded and unfolded states of proteins is usually rather large, in the order of a few 
kilojoules per mole, so the enthalpy of protein unfolding varies signifi cantly with 
temperature.

Checklist of key concepts

 1. A system is classifi ed as open, closed, or isolated.
 2. Th e surroundings remain at constant temperature and 

either constant volume or constant pressure when 
processes occur in the system.

 3. An exothermic process releases energy as heat, q, to 
the surroundings; an endothermic process absorbs 
energy as heat.

 4. Metabolism is the collection of chemical reactions 
that trap, store, and utilize energy in biological cells.

 5. Catabolism is the collection of reactions associated 
with the oxidation of nutrients in the cell. Anabolism 
is the biosynthesis of small and large molecules.

 6. Maximum expansion work is achieved in a reversible 
change.

 7. Th e First Law of thermodynamics states that the 
internal energy of an isolated system is constant.

 8. A change in internal energy is equal to the energy 
transferred as heat at constant volume (DU = qV); a 
change in enthalpy is equal to the energy transferred 
as heat at constant pressure (DH = qp).

 9. Th e standard state of a substance is the pure substance 
at 1 bar.

 10. Bomb calorimetry is a useful technique for the study 
of nutrients.

 11. Isobaric calorimetry is a useful technique for the study 
of fuels.

 12. Diff erential scanning calorimetry (DSC) is a useful 
technique for the investigation of phase transitions, 
especially those observed in biological 
macromolecules.

 13. Th e standard enthalpy of transition, D trsH3, is the 
change in molar enthalpy when a substance in one 
phase changes into another phase, both phases being 
in their standard states.

 14. Th e standard enthalpy of the reverse of a process is 
the negative of the standard enthalpy of the forward 
process, DreverseH3 = −D forwardH3.

 15. Th e standard enthalpy of a process is the sum of 
the standard enthalpies of the individual processes 
into which it may be regarded as divided, as in 
DsubH3 = DfusH3 + DvapH3.

Th en, because T ′ − T = +35 K, from eqn 1.24 we fi nd

DrH 3(333 K) = (+21.8 kJ mol−1) + (5.4 × 10−3 kJ K−1 mol−1) × (35 K)
 = (+21.8 kJ mol−1) + (0.19 kJ mol−1)
 = +22.0 kJ mol−1
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Checklist of key equations

Property or process Equation Comment

Work of expansion w = −pexDV Constant pressure
Heat capacity
Change in internal energy
Constant-volume heat capacity
Enthalpy
Enthalpy change
Constant-pressure heat capacity
Diff erence between the molar heat capacities
Standard reaction enthalpy

Kirchhoff ’s law

C = q/DT
DU = w + q
CV = dU/dT
H = U + pV
DH = DU + pDV
Cp = dH/dT
Cp,m − CV,m = R
DrH 3 = ∑ nHm

3(products) − ∑ nHm
3(reactants)

DrH 3 = ∑ nDfH 3(products) − ∑ nDfH 3(reactants)
DrH 3(T ′) = DrH 3(T) + DrC p

3(T ′ − T)

General defi nition

Defi nition
Defi nition
Constant pressure
Defi nition
Perfect gas
Defi nition
Practical implementation
Constant-pressure heat capacities are 
independent of temperature

Discussion questions

Exercises

1.1 Provide molecular interpretations of work, heat, temperature, and 
heat capacity. 

1.2 Suggest a reason why most molecules survive for long periods at 
room temperature. 

1.3 Describe the general patterns of energy conversion in living 
organisms.

1.4 Explain the diff erence between the change in internal energy and 
the change in enthalpy of a chemical or physical process.

1.5 Explain the limitations of the following expressions: 
(a) DH = DU + pDV; 
(b) DrH 3(T ′) = DrH 3(T) + DrC 3

p × (T ′ − T).

Assume all gases are perfect unless stated otherwise. All thermochemical 
data are for 298.15 K.

1.10 Th e unit 1 electronvolt (1 eV) is defi ned as the energy acquired 
by an electron as it moves through a potential diff erence of 1 V. 
Suppose two states diff er in energy by 1.0 eV. What is the ratio of 
their populations at (a) 300 K and (b) 3000 K? 

1.6 A primitive air-conditioning unit for use in places where electrical 
power is not available can be made by hanging up strips of linen 
soaked in water. Explain why this strategy is eff ective.

1.7 In many experimental thermograms, such as that shown in 
Fig. 1.20, the baseline below T1 is at a diff erent level from that 
above T2. Explain this observation.

1.8 Describe at least two calculational methods by which standard 
reaction enthalpies can be predicted. Discuss the advantages and 
disadvantages of each method.

1.9 Distinguish between (a) the standard state and the reference state 
of an element; (b) endothermic and exothermic compounds.

1.11 How much metabolic energy must a bird of mass 200 g 
expend to fl y to a height of 20 m? Neglect all losses due to 
friction, physiological imperfection, and the acquisition of 
kinetic energy.

1.12 Calculate the work of expansion accompanying the complete 
combustion of 1.0 g of glucose to carbon dioxide and (a) liquid 

 16. Hess’s law states that the standard enthalpy of a 
reaction is the sum of the standard enthalpies of the 
reactions into which the overall reaction can be 
divided.

 17. Th e standard enthalpy of formation of a compound, 
DfH 3, is the standard reaction enthalpy for the 

formation of the compound from its elements in 
their reference states.

 18. At constant pressure, exothermic compounds are 
those for which DfH3 < 0; endothermic compounds 
are those for which DfH3 > 0.
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water, and (b) water vapor at 20°C when the external pressure is 
1.0 atm.

1.13 We are all familiar with the general principles of operation of an 
internal combustion reaction: the combustion of fuel drives out the 
piston. It is possible to imagine engines that use reactions other than 
combustions, and we need to assess the work they can do. A chemical 
reaction takes place in a container of cross-sectional area 100 cm2; the 
container has a piston at one end. As a result of the reaction, the piston 
is pushed out through 10.0 cm against a constant external pressure of 
100 kPa. Calculate the work done by the system.

1.14 A sample of methane of mass 4.50 g occupies 12.7 dm3 at 310 K. 
Calculate the work done when the gas expands (a) isobarically against 
a constant external pressure of 30.0 kPa until its volume has increased 
by 3.3 dm3, and (b) isothermally by 3.3 dm3.

1.15 Th e heat capacity of air is much smaller than that of water, 
and relatively modest amounts of heat are needed to change its 
temperature. Th is is one of the reasons why desert regions, although 
very hot during the day, are bitterly cold at night. Th e heat capacity of 
air at room temperature and pressure is approximately 21 J K−1 mol−1. 
How much energy is required to raise the temperature of a room of 
dimensions 5.5 m × 6.5 m × 3.0 m by 10°C? If losses are neglected, 
how long will it take a heater rated at 1.5 kW to achieve that increase 
given that 1 W = 1 J s−1?

1.16 Th e transfer of energy from one region of the atmosphere to 
another is of great importance in meteorology for it aff ects the 
weather. Calculate the heat needed to be supplied to a parcel of air 
containing 1.00 mol air molecules to maintain its temperature at 
300 K when it expands reversibly and isothermally from 22 dm3 
to 30.0 dm3 as it ascends.

1.17 A laboratory animal exercised on a treadmill, which, through 
pulleys, raised a mass of 200 g through 1.55 m. At the same time, the 
animal lost 5.0 J of energy as heat. Disregarding all other losses and 
regarding the animal as a closed system, what is its change in internal 
energy?

1.18 A sample of a serum of mass 25 g is cooled from 290 K to 275 K 
at constant pressure by the extraction of 1.2 kJ of energy as heat. 
Calculate q and DH and estimate the heat capacity of the sample.

1.19 (a) Show that for a perfect gas, Cp,m − CV,m = R. (b) When 229 J 
of energy is supplied as heat at constant pressure to 3.00 mol CO2(g), 
the temperature of the sample increases by 2.06 K. Calculate the molar 
heat capacities at constant volume and constant pressure of the gas.

1.20 Use the information in Exercise 1.19 to calculate the change in 
(a) molar enthalpy and (b) molar internal energy when carbon 
dioxide is heated from 15°C (the temperature when air is inhaled) 
to 37°C (blood temperature, the temperature in our lungs).

1.21 Suppose that the molar internal energy of a substance over a 
limited temperature range could be expressed as a polynomial in T 
as Um(T) = a + bT + cT2. Find an expression for the constant-volume 
molar heat capacity at a temperature T.

1.22 Th e heat capacity of a substance is oft en reported in the 
form Cp,m = a + bT + c/T 2. Use this expression to make a more 
accurate estimate of the change in molar enthalpy of carbon 
dioxide when it is heated from 15°C to 37°C (as in Exercise 1.20), 
given a = 44.22 J K−1 mol−1, b = 8.79 × 10−3 J K−2 mol−1, and 
c = −8.62 × 105 J K mol−1. Hint: You will need to integrate dH = CpdT.

1.23 Exercise 1.22 gives an expression for the temperature 
dependence of the constant-pressure molar heat capacity over a 

limited temperature range. (a) How does the molar enthalpy of 
the substance change over that range? (b) Plot the molar enthalpy 
as a function of temperature using the data in Exercise 1.22.

1.24 Classify as endothermic or exothermic (a) a combustion 
reaction for which DrH 3 = −2020 kJ mol−1, (b) a dissolution for 
which DH 3 = +4.0 kJ mol−1, (c) vaporization, (d) fusion, and 
(e) sublimation.

1.25 Th e pressures deep within the Earth are much greater than 
those on the surface, and to make use of thermochemical data in 
geochemical assessments we need to take the diff erences into account. 
(a) Given that the enthalpy of combustion of graphite is −393.5 kJ 
mol−1 and that of diamond is −395.41 kJ mol−1, calculate the standard 
enthalpy of the C(s, graphite) → C(s, diamond) transition. (b) Use 
the information in part (a) together with the densities of graphite 
(2.250 g cm−3) and diamond (3.510 g cm−3) to calculate the internal 
energy of the transition when the sample is under a pressure of 
150 kbar.

1.26 A typical human produces about 10 MJ of energy transferred as 
heat each day through metabolic activity. (a) If a human body were 
an isolated system of mass 65 kg with the heat capacity of water, what 
temperature rise would the body experience? (b) Human bodies 
are actually open systems, and the main mechanism of heat loss is 
through the evaporation of water. What mass of water should be 
evaporated each day to maintain constant temperature?

1.27 Use the information in Tables 1.1 and 1.2 to calculate the total 
heat required to melt 100 g of ice at 0°C, heat it to 100°C, and then 
vaporize it at that temperature. Sketch a graph of temperature against 
time on the assumption that the sample is heated at a constant rate.

1.28 In preparation for a study of the metabolism of an organism, 
a small, sealed calorimeter was assembled. In the initial phase of the 
experiment, a current of 22.22 mA from an 11.8 V source was passed 
for 162 s through a heater inside the calorimeter. What is the change 
in internal energy of the calorimeter?

1.29 Water is heated to boiling under a pressure of 1.0 atm. When 
an electric current of 0.50 A from a 12 V supply is passed for 300 s 
through a resistance in thermal contact with it, it is found that 
0.798 g of water is vaporized. Calculate the molar internal energy 
and enthalpy changes at the boiling point (373.15 K).

1.30 In an experiment to determine the energy content of a food, 
a sample of the food was burned in an oxygen atmosphere and the 
temperature rose by 2.89°C. When a current of 1.27 A from a 12.5 V 
source fl owed through the same calorimeter for 157 s, the temperature 
rose by 3.88°C. What energy was released as heat by the combustion?

1.31 A sample of the sugar d-ribose (C5H10O5) of mass 0.727 g was 
placed in a calorimeter and then ignited in the presence of excess 
oxygen. Th e temperature rose by 0.910 K. In a separate experiment in 
the same calorimeter, the combustion of 0.917 g of benzoic acid, for 
which the internal energy of combustion is −3226 kJ mol−1, gave a 
temperature rise of 1.940 K. Calculate the enthalpy of formation of 
d-ribose.

1.32 Figure 1.27 shows the experimental DSC scan of hen white 
lysozyme (G. Privalov et al., Anal. Biochem. 79, 232 (1995)) converted 
to kilojoules (from calories). Determine the enthalpy of unfolding of 
this protein by integration of the curve and the change in heat capacity 
accompanying the transition.

1.33 Th e mean bond enthalpies of C–C, C–H, C=O, and O–H bonds 
are 348, 412, 743, and 463 kJ mol−1, respectively. Th e combustion of 
a fuel such as octane is exothermic because relatively weak bonds 
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break to form relatively strong bonds. Use this information to justify 
why glucose has a lower specifi c enthalpy than the lipid decanoic 
acid (C10H20O2) even though these compounds have similar molar 
masses.

1.34 Use bond enthalpies and mean bond enthalpies to estimate 
(a) the enthalpy of the anaerobic breakdown of glucose to lactic 
acid in cells that are starved of O2, C6H12O6(aq) → 2 CH3CH(OH)
COOH(aq), and (b) the enthalpy of combustion of glucose. Ignore 
the contributions of enthalpies of fusion and vaporization.

1.35 Glucose and fructose are simple sugars with the molecular 
formula C6H12O6. Sucrose (table sugar) is a complex sugar with 
molecular formula C12H22O11 that consists of a glucose unit covalently 
bound to a fructose unit (a water molecule is eliminated as a result 
of the reaction between glucose and fructose to form sucrose). 
(a) Calculate the energy released as heat when a typical table sugar 
cube of mass 1.5 g is burned in air. (b) To what height could you climb 
on the energy a table sugar cube provides assuming 25 per cent of the 
energy is available for work? (c) Th e mass of a typical glucose tablet is 
2.5 g. Calculate the energy released as heat when a glucose tablet is 
burned in air. (d) To what height could you climb on the energy a 
tablet provides assuming 25 per cent of the energy released by the 
metabolism of glucose is available for work?

1.36 Camping gas is typically propane. Th e standard enthalpy of 
combustion of propane gas is −2220 kJ mol−1 and the standard 
enthalpy of vaporization of the liquid is +15 kJ mol−1. Calculate 
(a) the standard enthalpy and (b) the standard internal energy of 
combustion of the liquid.

1.37 Ethane is fl amed off  in abundance from oil wells because it is 
unreactive and diffi  cult to use commercially. But would it make a good 
fuel? Th e standard enthalpy of reaction for 2 C2H6(g) + 7 O2(g) → 
4 CO2(g) + 6 H2O(l) is −3120 kJ. (a) What is the standard enthalpy 
of combustion of ethane? (b) What is the specifi c enthalpy of 
combustion of ethane? (c) Is ethane a more or less effi  cient fuel 
than methane?

1.38 Estimate the diff erence between the standard enthalpy of 
formation of H2O(l) as currently defi ned (at 1 bar) and its value 
using the former defi nition (at 1 atm).

1.39 Use information in the Resource section to calculate the standard 
enthalpies of the following reactions:

(a) the hydrolysis of a glycine–glycine dipeptide:

 +NH3CH2CONHCH2CO2
−(s) + H2O(l) → 2 +NH3CH2CO2

−(aq)

(b) the combustion of solid b-d-fructose
(c) the dissociation of nitrogen dioxide, which occurs in the 

atmosphere:

 NO2(g) → NO(g) + O(g)

1.40 During glycolysis, glucose is partially oxidized to pyruvic acid, 
CH3COCOOH, by NAD+ (see Chapter 4) without the involvement 
of O2. However, it is also possible to carry out the oxidation in the 
presence of O2:

C6H12O6(s) + O2(g) → 2 CH3COCOOH(s) + 2 H2O(l) 
DrH3 = −480.7 kJ mol−1

From these data and additional information in the Resource section, 
calculate the standard enthalpy of combustion and standard enthalpy 
of formation of pyruvic acid.

1.41 At 298 K, the enthalpy of denaturation of hen egg white 
lysozyme is +217.6 kJ mol−1 and the change in the constant-pressure 
molar heat capacity resulting from denaturation of the protein is 
+6.3 kJ K−1 mol−1. (a) Estimate the enthalpy of denaturation of the 
protein at (i) 351 K, the ‘melting’ temperature of the macromolecule, 
and (ii) 263 K. State any assumptions in your calculations. (b) Based 
on your answers to part (a), is denaturation of hen egg white lysozyme 
always endothermic?

1.42 Estimate the enthalpy of vaporization of water at 100°C from 
its value at 25°C (+44.01 kJ mol−1) given the constant-pressure heat 
capacities of 75.29 J K−1 mol−1 and 33.58 J K−1 mol−1 for liquid and gas, 
respectively.

1.43 Is the standard enthalpy of combustion of glucose likely to be 
higher or lower at blood temperature than at 25°C?

1.44 Using the fact that the enthalpy is a state function, derive a 
version of Kirchhoff ’s law (eqn 1.24) by adding contributions from the 
following processes: (a) the enthalpy change when the reactants are 
cooled from a temperature T to 298 K, (b) the reaction enthalpy at 
298 K, and (c) the enthalpy change when the temperature of the 
products is increased from 298 K to T.

1.45 Derive a version of Kirchhoff ’s law (eqn 1.24) for the 
temperature dependence of the internal energy of reaction.

1.46 Th e formulation of Kirchhoff ’s law given in eqn 1.24 is valid 
when the diff erence in heat capacities is independent of temperature 
over the temperature range of interest. Suppose instead that 
DrC p

3 = a + bT + c/T2. Derive a more accurate form of Kirchhoff ’s 
law in terms of the parameters a, b, and c. Hint: Th e change in the 
reaction enthalpy for an infi nitesimal change in temperature is 
DrC p

3dT. Integrate this expression between the two temperatures 
of interest.

Fig. 1.27 Experimental DSC scan of hen white lysozyme.
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Projects

1.47 Th e Boltzmann distribution can be used to calculate the average 
energy associated with each mode of motion of a molecule. However, 
for certain modes of motion, such as translation, there is a short cut, 
called the equipartition theorem:

In a sample at a temperature T, all quadratic contributions to the 
total energy have the same mean value, namely 12kT.

A ‘quadratic contribution’ means a contribution that depends on the 
square of the position or the velocity (or momentum). 

(a) Th e kinetic energy of a particle of mass m free to undergo 
translation in three dimensions is Ek = 12mv2

x + 12mv2
y + 12mv2

z. What is the 
average kinetic energy of a particle free to move in three dimensions? 

(b) Use the equipartition theorem to show that for a monatomic 
perfect gas:

Um(T) = Um(0) + 32RT  CV,m = 32R

where Um(0) is the molar internal energy at T = 0, when all 
translational motion has ceased. 

(c) When the gas consists of molecules, we need to take into account 
the eff ect of rotation and vibration. A linear molecule, such as N2 and 
CO2, can rotate around two axes perpendicular to the line of the 
atoms, so it has two rotational modes of motion, each contributing 
a term 12kT to the internal energy. Show that 

Um(T) = Um(0) + 52RT  CV,m = 52R  
(linear molecule, translation and rotation only)

(d) A non-linear molecule, such as CH4 or H2O, can rotate around 
three axes and, again, each mode of motion contributes a term 12kT 
to the internal energy. Show that

Um(T) = Um(0) + 3RT  CV,m = 3R 
(non-linear molecule, translation and rotation only)

(e) Molecules do not vibrate signifi cantly at room temperature and, 
as a fi rst approximation, the contribution of molecular vibrations to 
the internal energy is negligible except for very large molecules such 
as polymers and biological macromolecules. Use the information in 
this problem to justify the following statement: the internal energy 
of a perfect gas does not change when the gas undergoes isothermal 
expansion. 

(f) Use the equipartition theorem to calculate the contribution of 
molecular motion to the total energy of a sample of 10.0 g of (i) argon, 
(ii) carbon dioxide, and (iii) methane at 20°C. Hint: For (ii) and (iii), 
take into account translation and rotation but not vibration. 

(g) We saw in part (e) that the internal energy of a perfect gas does 
not change when the gas undergoes isothermal expansion. What is 
the change in enthalpy?

1.48 It is possible to see with the aid of a powerful microscope that a 
long piece of double-stranded DNA is fl exible, with the distance 

between the ends of the chain adopting a wide range of values. Th is 
fl exibility is important because it allows DNA to adopt very compact 
conformations as it is packaged in a chromosome (see Chapter 11). It 
is convenient to visualize a long piece of DNA as a freely jointed chain, 
a chain of N small, rigid units of length l that are free to make any 
angle with respect to each other. Th e length l, the persistence length, is 
approximately 45 nm, corresponding to approximately 130 base pairs. 
You will now explore the work associated with extending a DNA 
molecule.

(a) Suppose that a DNA molecule resists being extended from an 
equilibrium, more compact conformation with a restoring force 
F = −kfx, where x is the diff erence in the end-to-end distance of the 
chain from an equilibrium value and kf is the force constant. Systems 
showing this behavior are said to obey Hooke’s law. (i) What are the 
limitations of this model of the DNA molecule? (ii) Using this model, 
write an expression for the work that must be done to extend a DNA 
molecule by x. Draw a graph of your conclusion.

(b) A better model of a DNA molecule is the one-dimensional freely 
jointed chain, in which a rigid unit of length l can make an angle of 
only 0° or 180° with an adjacent unit. In this case, the restoring force 
of a chain extended by x = nl is given by

F = kT
2l

 ln AC
1 + n
1 − n

D
F   n = n/N

where k = 1.381 × 10−23 J K−1 is Boltzmann’s constant (not a force 
constant). (i) What are the limitations of this model? (ii) What is 
the magnitude of the force that must be applied to extend a DNA 
molecule with N = 200 by 90 nm? (iii) Plot the restoring force against 
n, noting that n can be either positive or negative. How is the variation 
of the restoring force with end-to-end distance diff erent from that 
predicted by Hooke’s law? (iv) Keeping in mind that the diff erence 
in end-to-end distance from an equilibrium value is x = nl and, 
consequently, dx = ldn = Nldn, write an expression for the work of 
extending a DNA molecule. (v) Calculate the work of extending a 
DNA molecule from n = 0 to n = 1.0. Hint: You must integrate the 
expression for w. Th e task can be accomplished easily with 
mathematical soft ware.

(c) Show that for small extensions of the chain, when n << 1, 
the restoring force is given by

F ≈ nkT
l

 = nkT
Nl

Hint: See Mathematical toolkit 3.2 for a review of series expansions of 
functions.

(d) Is the variation of the restoring force with extension of the chain 
given in part (c) diff erent from that predicted by Hooke’s law? Explain 
your answer.
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Some things happen; some things don’t. A gas expands to fill the vessel it occupies; 
a gas that already fills a vessel does not suddenly contract into a smaller volume. A 
hot object cools to the temperature of its surroundings; a cool object does not sud-
denly become hotter than its surroundings. Hydrogen and oxygen combine explosively 
(once their ability to do so has been liberated by a spark) and form water; water left 
standing in oceans and lakes does not gradually decompose into hydrogen and 
oxygen. These everyday observations suggest that changes can be divided into two 
classes. A spontaneous change is a change that has a tendency to occur without 
work having to be done to bring it about. A spontaneous change has a natural 
tendency to occur. A non-spontaneous change is a change that can be brought 
about only by doing work. A non-spontaneous change has no natural tendency to 
occur. Non-spontaneous changes can be made to occur by doing work: a gas can be 
compressed into a smaller volume by pushing in a piston, the temperature of a cool 
object can be raised by forcing an electric current through a heater attached to it, and 
water can be decomposed by the passage of an electric current. However, in each 
case we need to act in some way on the system to bring about the non-spontaneous 
change. There must be some feature of the world that accounts for the distinction 
between the two types of change.

Throughout this chapter and the rest of the text we shall use the terms ‘spontan-
eous’ and ‘non-spontaneous’ in their thermodynamic sense. That is, we use them to 
signify that a change does or does not have a natural tendency to occur. In thermo-
dynamics the term spontaneous has nothing to do with speed. Some spontaneous 
changes are very fast, such as the precipitation reaction that occurs when solutions 
of sodium chloride and silver nitrate are mixed. However, some spontaneous changes 
are so slow that there may be no observable change even after millions of years. 
For example, although the decomposition of benzene into carbon and hydrogen is 
spontaneous, it does not occur at a measurable rate under normal conditions, and 
benzene is a common laboratory commodity with a shelf life of (in principle) millions of 
years. Thermodynamics deals with the tendency to change; it is silent on the rate at 
which that tendency is realized.

We shall use the concepts introduced in this chapter as a basis for our study of 
bioenergetics and structure in biological systems. Our discussion of energy conversion 
in biological cells has focused on the chemical sources of energy that sustain life. We 
now begin an investigation—to be continued throughout the text—of the mechanisms 
by which energy in the form of radiation from the Sun or ingested as oxidizable mole-
cules is converted into work of muscle contraction, neuronal activity, biosynthesis of 
essential molecules, and transport of material into and out of the cell. We shall also 
explain a remark made in Chapter 1, that only part of the energy of biological fuels 
leads to work, with the rest being dissipated in the surroundings as heat. We shall also 

The Second Law 2
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see that the material discussed in this chapter is relevant not only to the transforma-
tions of energy but also to the structures of proteins. 

Entropy

A few moments’ thought is all that is needed to identify the reason why some 
changes are spontaneous and others are not. Th at reason is not the tendency of the 
system to move toward lower energy. Th is point is easily established by identify-
ing an example of a spontaneous change in which there is no change in energy. 
Th e isothermal expansion of a perfect gas into a vacuum is spontaneous, but the 
total energy of the gas does not change because the molecules continue to travel at 
the same average speed and so keep their same total kinetic energy. Even in a pro-
cess in which the energy of a system does decrease (as in the spontaneous cooling 
of a block of hot metal), the First Law requires the total energy to be constant. 
Th erefore, in this case the energy of another part of the universe must increase if 
the energy decreases in the part that interests us. For instance, a hot block of metal 
in contact with a cool block cools and loses energy; however, the second block 
becomes warmer and increases in energy. It is equally valid to say that the second 
block has a tendency to go to higher energy as it is to say that the fi rst block has a 
tendency to go to lower energy!

In the next few sections we shall develop the thermodynamic criteria for spon-
taneity by using an approach similar to that adopted in Chapter 1. At fi rst sight 
the ideas, models, and mathematical expressions in our discussion may appear to 
be of no immediate concern to a biochemist. But in due course we shall see how 
they are of the greatest importance for an understanding of the fl ow of energy 
in biological systems, the reactions that sustain them, and the structures of bio-
logical macromolecules.

2.1 The direction of spontaneous change
To understand the processes occurring in organisms, we need to identify the factors 
that drive any physical or chemical change.

We shall now show that the apparent driving force of spontaneous change is the 
tendency of energy and matter to disperse. For example, the molecules of a gas may 
all be in one region of a container initially, but their ceaseless disorderly motion 
ensures that they spread rapidly throughout the entire volume of the container 
(Fig. 2.1). Because their motion is so random, there is a negligibly small probabil-
ity that all the molecules will fi nd their way back simultaneously into the region 
of the container they occupied initially. In this instance, the natural direction of 
change corresponds to the disorderly dispersal of matter.

A similar explanation accounts for spontaneous cooling, but now we need to 
consider the dispersal of energy rather than of matter. In a block of hot metal 
in which there is a temperature gradient, the atoms in the hot region are oscillat-
ing vigorously, and the hotter the region, the more vigorous their motion. Th e 
cooler region also consists of oscillating atoms, but their motion is less vigorous. 
Th e vigorously oscillating atoms jostle their neighbors in the cooler region, 
and the energy of the atoms in the block is handed on to the atoms in the cooler 
region (Fig. 2.2). Th e process continues until the vigor with which the atoms in 
the system are oscillating is uniform. Th e opposite fl ow of energy is very unlikely. 
It is highly improbable that there will be a net accumulation of energy in one 

Fig. 2.1 One fundamental type 
of spontaneous process is the 
disorderly dispersal of matter. 
Th is tendency accounts for the 
spontaneous tendency of a gas to 
spread into and fi ll the container 
it occupies. It is extremely 
unlikely that all the particles will 
collect into one small region of 
the container. (In practice, the 
number of particles is of the 
order of 1023.)

Fig. 2.2 Another fundamental type 
of spontaneous process is the 
disorderly dispersal of energy 
(represented by the color: red is 
high temperature, blue is low 
temperature).
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region as a result of the jostling of molecules within the block. In this case, the 
natural direction of change corresponds to the disorderly dispersal of energy. 
Similar remarks apply to the cooling of a hot block to the temperature of its 
surroundings.

Th e tendency of energy to disperse also explains the fact that, despite countless 
attempts, it has proved impossible to construct an engine like that shown in 
Fig. 2.3, in which heat, perhaps from the combustion of a fuel, is drawn from a 
hot reservoir and completely converted into work, such as the work of moving 
an automobile. All actual heat engines have both a hot region, the ‘source’, and a 
cold region, the ‘sink’, and it has been found that for such engines to operate, some 
energy must be discarded into the cold sink as heat and not used to do work. In 
molecular terms, only some of the energy stored in the atoms and molecules of 
the hot source can be used to do work and transferred to the surroundings in 
an orderly way. For the engine to do work, some energy must be transferred to 
the cold sink as heat, to stimulate random motion of its atoms and molecules. 
Before long, we shall see that the heat engine, although it looks like an engineer-
ing concept, when appropriately interpreted is directly applicable to biochemical 
processes even though there is no actual ‘engine’ present. 

In summary, we have identifi ed two basic types of spontaneous physical 
process:

1) Matter tends to disperse in disorder.
2) Energy tends to disperse in disorder.

We now need to take the next step and see how these two fundamental pro-
cesses result in some chemical reactions being spontaneous and others not. It 
may seem very puzzling that chaotic dispersal can account for the formation 
of such organized systems as proteins and biological cells. Nevertheless, in 
due course we shall see that change in all its forms, including the formation of 
organized structures, is driven by the tendency of energy and matter to disperse 
in disorder.

2.2 Entropy and the Second Law
To make progress with our quantitative discussion of biological structure and 
reactivity, we need to associate the dispersal of energy and matter with the change 
in a state function.

Th e measure of the disorderly dispersal of energy or matter used in thermodynamics 
is called the entropy, S. We shall soon defi ne entropy precisely and quantitatively, 
but for now all we need to know is that when matter and energy disperse in dis-
order, entropy increases. Th at being so, we can combine the two remarks above 
into a single statement known as the Second Law of thermodynamics:

Th e entropy of an isolated system tends to increase. The Second Law

Th e ‘isolated system’ may consist of a system in which we have a special interest 
(a beaker containing reagents, a biological cell, or even an organelle within a cell) 
and that system’s surroundings: the two components jointly form a little ‘universe’ 
in the thermodynamic sense.

(a) The definition of entropy

To make progress and turn the Second Law into a quantitatively useful statement, 
we shall use the following defi nition of a change in entropy:

Fig. 2.3 Th e Second Law denies 
the possibility of the process 
illustrated here, in which heat is 
changed completely into work, 
there being no other change. Th e 
process is not in confl ict with the 
First Law because the energy is 
conserved.
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 DS = qrev

T
 Definition of 

entropy change
 (2.1)

Th at is, the change in entropy of a system is equal to the energy transferred 
as heat to it reversibly divided by the temperature at which the transfer takes 
place. Th is defi nition can be justifi ed thermodynamically,1 but we shall confi ne 
ourselves to showing that it is plausible and then show how to use it to obtain 
numerical values for a range of processes.

Th ere are three points we need to understand about the defi nition in eqn 2.1: 

Th e signifi cance of the term ‘reversible’
We met the concept of reversibility in Section 1.3, where we saw that it refers to 
the ability of an infi nitesimal change in a control variable to change the direction 
of a process. Mechanical reversibility refers to the equality of pressure acting on 
either side of a movable wall. Th ermal reversibility, the type involved in eqn 2.1, 
refers to the equality of temperature on either side of a thermally conducting wall. 
Reversible transfer of heat is smooth, careful, restrained transfer between two 
bodies at the same temperature. By making the transfer reversible, we ensure that 
there are no hot spots generated in the object that later disperse spontaneously 
and hence add to the entropy.

Why heat (not work) appears in the numerator 
Recall from Section 1.2 that to transfer energy as heat, we make use of the random 
motion of molecules, whereas to transfer energy as work, we make use of orderly 
motion. It should be plausible that the change in entropy—the change in the 
degree of disorder of energy and matter—is proportional to the energy transfer 
that takes place by making use of random motion rather than orderly motion.

Why temperature appears in the denominator
Th e presence of the temperature in the denominator in eqn 2.1 takes into account 
the randomness of motion that is already present. If a given quantity of energy is 
transferred as heat to a hot object (one in which the atoms already undergo a sig-
nifi cant amount of thermal motion), then the additional randomness of motion 
generated is less signifi cant than if the same quantity of energy is transferred as 
heat to a cold object in which the atoms have less thermal motion. Th e diff erence 
is like sneezing in a busy street (an environment analogous to a high tempera-
ture), which adds little to the disorder already present, and sneezing in a quiet 
library (an environment analogous to a low temperature), which can be very 
disruptive.

1 For a thermodynamic justifi cation, see our Physical chemistry (2010).

A brief illustration

An organism inhabits a pond. In the course of its life, the organism transfers 
100 kJ of heat to the pond water at 0°C (273 K). Th e resulting change in entropy 
of the water due to this transfer is

DS = qrev

T
 = 100 × 103 J

273 K
 = +366 J K−1

Th e pond is large enough to ensure that the temperature of the water does not 
change as heat is transferred. Th e same transfer at 100°C (373 K) results in
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DS = 100 × 103 J

373 K
 = +268 J K−1

Th e increase in entropy is greater at the lower temperature. Notice that the 
units of entropy are joules per kelvin (J K−1). Entropy is an extensive property. 
When we deal with molar entropy, an intensive property, the units will be 
joules per kelvin per mole (J K−1 mol−1).

Th e entropy (it can be proved) is a state function, a property with a value that 
depends only on the present state of the system.2 Th e entropy is a measure of the 
current state of dispersal of energy and matter in the system, and how that change 
was achieved is not relevant to its current value. Th e implication of entropy being 
a state function is that a change in its value when a system undergoes a change of 
state is independent of how the change of state is brought about. 

(b) The entropy change accompanying heating

We can oft en rely on intuition to judge whether the entropy increases or decreases 
when a substance undergoes a physical change. For instance, the entropy of a 
sample of gas increases as it expands because the molecules are able to move in 
a greater volume and so are more widely dispersed. Similarly, we should expect 
the entropy of a sample to increase as the temperature is raised because the ther-
mal motion is greater at the higher temperature. As we show in the following 
Justifi cation, provided the heat capacity is constant over the range of temperatures 
of interest,

DS = C ln Tf

Ti  
Change in entropy 
on heating  

(2.2)

where C is the heat capacity of the system; if the pressure is held constant during 
the heating, we use the constant-pressure heat capacity, Cp, and if the volume is 
held constant, we use the constant-volume heat capacity, CV.

Justification 2.1 Th e change in entropy with temperature

Equation 2.1 refers to the transfer of heat to a system at a temperature T. In 
general, the temperature changes as we heat a system, so we cannot use eqn 2.1 
directly. Suppose, however, that we transfer only an infi nitesimal energy as 
heat, dq, to the system; then there is only an infi nitesimal change in tempera-
ture and we introduce negligible error if we keep the temperature in the 
denominator of eqn 2.1 equal to T during that transfer. As a result, the entropy 
increases by an infi nitesimal amount dS given by

dS = dqrev

T

To calculate dq, we recall from Section 1.4 that the heat capacity C = q/DT, 
where DT is macroscopic change in temperature. For an infi nitesimal change 
dT brought about by an infi nitesimal transfer of heat dq we write C = dq/dT 
and therefore dq = CdT, so we can write dqrev = CdT and therefore

2 Again see our Physical chemistry (2010) for a proof.



74   2 THE SECOND LAW

 
DS = CdT

T

Th e total change in entropy,  DS, when the temperature changes from Ti to Tf is 
the sum (integral) of all such infi nitesimal terms:

DS = �
Tf

Ti

 CdT
T

For many substances and for small temperature ranges we may take C to be 
constant. (Th is is strictly true only for a monatomic perfect gas.) Th en C may 
be taken outside the integral and the latter evaluated as follows:

DS = �
Tf

Ti

 CdT
T

 = C �
Tf

Ti

 dT
T

 = C ln Tf

Ti

Equation 2.2 is in line with what we expect. When Tf > Ti, Tf /Ti > 1, which 
implies that the logarithm is positive, that DS > 0, and therefore that the entropy 
increases (Fig. 2.4). Note that the relation also shows a less obvious point, that 
the higher the heat capacity of the substance, the greater the change in entropy for 
a given rise in temperature. A moment’s thought shows this conclusion to be rea-
sonable too: a high heat capacity implies that a lot of heat is required to produce a 
given change in temperature, so the ‘sneeze’ (in terms of the analogy mentioned 
earlier) must be more powerful than when the heat capacity is low, and the entropy 
increase is correspondingly high.

Fig. 2.4 Th e entropy of a sample 
with a heat capacity that can be 
regarded as independent of 
temperature in the range of 
interest increases as ln T as the 
temperature is increased. Th e 
increase is proportional to the 
heat capacity of the sample.

Fig. 2.5 Th e experimental 
determination of the change in 
entropy of a sample that has a 
heat capacity that varies with 
temperature, as shown in (a), 
involves measuring the heat 
capacity over the range of 
temperatures of interest, then 
plotting C/T against T and 
determining the area under the 
curve (the tinted area shown), as 
shown in (b). Th e heat capacity 
of all solids decreases toward zero 
as the temperature is reduced.

Self-test 2.1 Calculate the change in molar entropy when water vapor is 
heated from 160°C to 170°C at constant volume. (CV,m = 26.92 J K−1 mol−1.)

Answer: +0.615 J K−1 mol−1

When we cannot assume that the heat capacity is constant over the tempera-
ture range of interest, which is the case for all solids at low temperatures, we have 
to allow for the variation of C with temperature. In Justifi cation 2.1 we found, 
before making the assumption that the heat capacity is constant, that

DS = �
Tf

Ti

 CdT
T

 (2.3)

All we need to recognize is the standard result from calculus, that the integral 
of a function between two limits is the area under the graph of the function 
between the two limits. In this case, the function is C/T, the heat capacity at each 
temperature divided by that temperature, and it follows that

DS = area under the graph of C/T  Experimental basis of determining 
an entropy change plotted against T, between Ti and Tf

Th is rule is illustrated in Fig. 2.5. To use eqn 2.3, we measure the heat capacity 
throughout the range of temperatures of interest. Th en we divide each measure-
ment by the corresponding temperature to get C/T at each temperature, plot these 
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(c) The entropy change accompanying a phase transition

We can suspect that the entropy of a substance increases when it melts and when 
it vaporizes because its molecules become distributed in a more disorderly way as 
it changes from solid to liquid and from liquid to vapor. Likewise, we expect the 
unfolding of a protein from a compact, active three-dimensional conformation to 
a more fl exible conformation, a process discussed in In the laboratory 1.1, to be 
accompanied by an increase of entropy because the secondary structure of the 
polypeptide chain is lost.

Th e transfer of energy as heat occurs reversibly when a solid is at its melting 
temperature. If the temperature of the surroundings is infi nitesimally lower than 
that of the system, then energy fl ows out of the system as heat and the substance 
freezes. If the temperature is infi nitesimally higher, then energy fl ows into the 
system as heat and the substance melts. Moreover, because the transition occurs 
at constant pressure, we can identify the energy transferred by heating per mole of 
substance with the enthalpy of fusion (melting). Th erefore, the entropy of fusion, 
DfusS, the change of entropy per mole of substance, at the melting temperature, 
Tfus, is

At the melting temperature: DfusS = DfusH(Tfus)
Tfus  

Entropy of 
fusion

 (2.4)

Notice how we must use the enthalpy of fusion at the melting temperature and 
that this expression applies only at the melting temperature. We get the standard 
entropy of fusion, DfusS3, if the solid and liquid are both at 1 bar; we use the melt-
ing temperature at 1 bar and the corresponding standard enthalpy of fusion at 
that temperature. All enthalpies of fusion are positive (melting is endothermic: it 
requires heat), so all entropies of fusion are positive too: disorder increases on 
melting. Th e entropy of water, for example, increases when it melts because the 
orderly structure of ice collapses as the liquid forms (Fig. 2.6).

A brief illustration

Th e molar heat capacity of chloroform between 20°C and 37°C was found to fi t 
the following expression:

Cp,m(T) = 91.74 J K−1 mol−1 + 0.075T J K−2 mol−1

Th e change in entropy over this range is therefore

DSm = Sm(310 K) − Sm(293 K) 

 = �
310 K

293 K

 AC
(91.74 J K−1 mol−1

T
 + 0.075 J K−2 mol−1D

F  dT

 = (91.74 J K−1 mol−1)ln 310 K
293 K

 + (0.075 J K−2 mol−1)(310 K − 293 K)

 = +6.45 J K−1 mol−1

C/T against T, and evaluate the area under the graph between the temperatures Ti 
and Tf. In practice, mathematical soft ware is used to fi t a curve to the variation of 
C with T and the integration carried out automatically.

Fig. 2.6 (a) When a solid, here a 
highly stylized version of ice, 
melts, the molecules form a 
liquid. (b) As a result, the entropy 
of the sample increases.
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Th e entropy of other types of transition may be discussed similarly. Th us, the 
entropy of vaporization, DvapS, at the boiling temperature, Tb, of a liquid is related 
to its enthalpy of vaporization at that temperature by

At the boiling temperature: DvapS = DvapH(Tb)
Tb  

Enthalpy of 
vaporization

 (2.5)

Note that to use this formula we use the enthalpy of vaporization at the boiling 
temperature. Table 2.1 lists the entropy of vaporization of several substances at 
1 atm. For the standard value, DvapS, we use data corresponding to 1 bar. Because 
vaporization is endothermic for all substances (with one exception of little relev-
ance to biology: helium), all entropies of vaporization are positive. Th e increase 
in entropy accompanying vaporization is in line with what we should expect when 
a compact liquid turns into a gas. To calculate the entropy of phase transition at 
a temperature other than the transition temperature, we have to do additional 
calculations, as shown in the following brief illustration.

A brief illustration

Th e protein lysozyme, an enzyme that breaks down bacterial cell walls, unfolds 
at a transition temperature of 75.5°C, and the standard enthalpy of transition 
as determined using diff erential scanning calorimetry is +509 kJ mol−1. It 
follows that

DtrsS3 = DtrsH3(Ttrs)
Ttrs

 = +509 kJ mol−1

(273.15 + 75.5) K
 = +1.46 kJ K−1 mol−1

At the molecular level, the positive entropy change can be explained by the 
dispersal of matter and energy that accompanies the unraveling of the com-
pact three-dimensional structure of lysozyme into a long, fl exible chain that 
can adopt many diff erent conformations as it writhes about in solution.

Fig. 2.7 Th e cycle of steps used to 
calculate the entropy of transition 
at a temperature other than the 
transition temperature.

Table 2.1 Entropies of 
vaporization at 1 atm and 
the normal boiling point

Substance DvapS/
(J K−1 mol−1)

Ammonia, NH3  97.4
Benzene, C6H6  87.2
Bromine, Br2  88.6
Carbon tetrachloride, 
CCl4

 85.9

Cyclohexane, C6H12  85.1
Ethanol, CH3CH2OH 109.7
Hydrogen sulfi de, H2S  87.9
Water, H2O 109.1

Self-test 2.2 Calculate the standard entropy of fusion of ice at 0°C from the 
information in Table 1.2.

Answer: +22 J K−1 mol−1

A brief illustration

Suppose we want to calculate the entropy of vaporization of water at 25°C. We 
need to perform three calculations (Fig. 2.7). First, we calculate the entropy 
change for heating liquid water from 25°C to 100°C (using eqn 2.2 with data 
for the liquid from Table 1.1):

DS1 = Cp,m(H2O, liquid) ln Tf

Ti
 = (75.29 J K−1 mol−1) × ln 373 K

298 K
 

 = +16.9 J K−1 mol−1

Th en, we use eqn 2.5 and data from Table 1.2 to calculate the entropy of transi-
tion at 100°C:

DS2 = DvapH(Tb)
Tb

 = 4.07 × 104 J mol−1

373 K
 = +109 J K−1 mol−1
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Finally, we calculate the change in entropy for cooling the vapor from 100°C 
to 25°C (using eqn 2.2 again, but now with data for the vapor from Table 1.1):

DS3 = Cp,m(H2O, vapor) ln Tf

Ti
 = (33.58 J K−1 mol−1) × ln 298 K

373 K
 

 = −7.5 J K−1 mol−1

Th e sum of the three entropy changes is the entropy of transition at 25°C:

DvapS(298 K) = DS1 + DS2 + DS3 = +118 J K−1 mol−1

(d) Entropy changes in the surroundings

We can use the defi nition of entropy in eqn 2.1 to calculate the entropy change of 
the surroundings in contact with the system at the temperature T: DSsur = qsur,rev/T. 
However, surroundings are so extensive that the spread of heat through them 
is eff ectively reversible, so the ‘rev’ subscript can be dropped and we can write 
DSsur = qsur/T. Moreover, the heat entering the surroundings is lost from the sys-
tem, so qsur = −q. (For instance, if q = +100 J, an infl ux of 100 J into the system, then 
qsur = −100 J, indicating that the surroundings have lost that 100 J.) Th erefore, at 
this stage we can write DSsur = −q/T. Finally, if the change in the system is taking 
place at constant pressure, we can identify q with the change of enthalpy DH, and 
so obtain

for a process at constant pressure: DSsur = − DH
T

 Entropy change of 
the surroundings

 (2.6)

Th is enormously important expression will lie at the heart of our discussion of 
bioenergetics and the structural consequences of the Second Law. We see that it is 
consistent with common sense: if the process is exothermic, DH is negative and 
therefore DSsur is positive. Th e entropy of the surroundings increases if heat is 
released into them. If the process is endothermic (DH > 0), then the entropy of the 
surroundings decreases.

A brief illustration

Th e enthalpy of vaporization of water at 20°C is 44 kJ mol−1. When 10 cm3 of 
water (corresponding to 10 g or 0.55 mol H2O) in an open vessel evaporates 
at that temperature, the change in entropy of the surroundings is

DSsur = − (0.55 mol) × (44 kJ mol−1)
293 K

 = −83 J K−1

Th e entropy of the surroundings decreases because heat fl ows out of them into 
the water.

2.3 Absolute entropies and the Third Law of thermodynamics
To calculate the entropy changes associated with biological processes, we need 
to see how to compile tables that list the values of the entropies of substances.

Th e graphical procedure summarized by Fig. 2.5 and eqn 2.3 for the determin-
ation of the diff erence in entropy of a substance at two temperatures has a very 
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important application. If Ti = 0, then the area under the graph between T = 0 and 
some temperature T gives us the value of DS = S(T) − S(0). However, at T = 0, all 
the motion of the atoms has been eliminated and there is no thermal disorder. 
Moreover, if the substance is perfectly crystalline, with every atom in a well-
defi ned location, then there is no spatial disorder either. We can therefore suspect 
that at T = 0, the entropy is zero.

Th e thermodynamic evidence for this conclusion is based on observations 
like the following. Sulfur undergoes a phase transition from its rhombic form 
to its monoclinic polymorph at 96°C (369 K) and the enthalpy of transition 
is +402 J mol−1. Th e entropy of transition is therefore +1.09 J K−1 mol−1 at this 
temperature. We can also measure the molar entropy of each phase relative to its 
value at T = 0 by determining the heat capacity from T = 0 up to the transition 
temperature (Fig. 2.8). At this stage, we do not know the values of the entropies 
at T = 0. However, as we see from the illustration, to match the observed entropy 
of transition at 369 K, the molar entropies of the two crystalline forms must be 
the same at T = 0. We cannot say that the entropies are zero at T = 0, but from 
the experimental data we do know that they are the same. Th is observation is 
generalized into the Th ird Law of thermodynamics:

Th e entropies of all perfectly crystalline substances are the same at T = 0. 
 The Third Law

For convenience (and in accordance with our understanding of entropy as a 
measure of disorder), we take this common value to be zero. Th en, with this 
convention, according to the Th ird Law,

S(0) = 0 for all perfectly ordered crystalline materials.

Th e Th ird-Law entropy, which is commonly called simply ‘the entropy’, at any 
temperature, S(T), is based on setting S(0) = 0. Th e entropy of a substance depends 
on the pressure; we therefore select a standard pressure (1 bar) and report the 
standard molar entropy, S3

m, the molar entropy of a substance in its standard 
state at the temperature of interest. Some values at 298.15 K (the conventional 
temperature for reporting data) are given in Table 2.2.

It is worth taking a moment to look at the values in Table 2.2 to see that they are 
consistent with our understanding. All standard molar entropies are positive 
because raising the temperature of a sample above T = 0 invariably increases its 
entropy above the value S(0) = 0 because there is more thermal disorder. Another 
feature that we can understand in terms of disorder is illustrated by the standard 
molar entropy of diamond (2.4 J K−1 mol−1), which is lower than that of graphite 
(5.7 J K−1 mol−1). Th is diff erence is consistent with the atoms being linked less 
rigidly in graphite than in diamond and their thermal motion being correspond-
ingly greater. Th e standard molar entropies of ice, water, and water vapor at 25°C 
are, respectively, 45, 70, and 189 J K−1 mol−1, and the increase in values corres-
ponds to the increasing molecular disorder on going from a solid to a liquid and 
then to a gas.

Fig. 2.8 Th e molar entropies of 
monoclinic and rhombic sulfur 
vary with temperature as shown 
here. Initially we do not know 
their values at T = 0. When we 
slide the two curves together by 
matching their separation to the 
measured entropy of transition at 
the transition temperature, we 
fi nd that the entropies of the two 
forms are the same at T = 0.

Fig. 2.9 Th e absolute entropy 
(or Th ird-Law entropy) of a 
substance is calculated by 
extending the measurement of 
heat capacities down to T = 0 (or 
as close to that value as possible) 
and then determining the area 
of the graph of C/T against T up 
to the temperature of interest. 
Th e area is equal to the absolute 
entropy at the temperature T.

In the laboratory 2.1 The measurement of entropies

Th e Th ird-Law entropy at any temperature, S(T), is equal to the area under the 
graph of C/T between T = 0 and the temperature T (Fig. 2.9). If there are any 
phase transitions (for example, melting) in that range, then the entropy of each 
transition at the transition temperature is calculated like that in eqn 2.4 and 
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its contribution added to the contributions from each of the phases, as shown 
in Fig. 2.10. Th e entropies of gas-phase species may also be calculated from 
spectroscopic data about bond lengths and angles using the techniques of 
statistical thermodynamics, but few biologically interesting substances can be 
treated in this way.

To implement the calorimetric procedure the heat capacity of the substance is 
measured (for instance, by using a diff erential scanning calorimeter (DSC)) 
down to as low a temperature as feasible and then using eqn 2.3. In practice, a 
polynomial in T is fi tted to the experimental data and then Cp/T is integrated 
from the lowest temperature attainable up to the temperature of interest. Th us, 
if the function Cp(T) = a + bT + cT 2 + · · · is fi tted (for instance, by using a least-
squares procedure in a soft ware package) to the data between Tlowest and Ttrs, 
where Ttrs is the temperature of a phase transition, the entropy just before the 
phase transition is

S(Ttrs) = S(Tlowest) + �
T trs

T lowest

 Cp(T)
T

 dT

Th en another polynomial is fi tted to the heat capacities for the new phase up to 
the temperature of interest (or the next phase transition and a similar integral 
is evaluated). At each phase transition the enthalpy of transition is measured 
(once again, typically with a DSC), the entropy of transition is calculated as 
DtrsH(Ttrs)/Ttrs by analogy with eqn 2.4, and this value is added to the value 
calculated by integrating the heat capacity.

Table 2.2 Standard molar entropies of some substances at 298.15 K*

Substance S9
m/(J K−1 mol−1)

Gases
Ammonia, NH3 192.5
Carbon dioxide, CO2 213.7
Hydrogen, H2 130.7
Nitrogen, N2 191.6
Oxygen, O2 205.1
Water vapor, H2O 188.8
Liquids
Acetic acid, CH3COOH 159.8
Ethanol, CH3CH2OH 160.7
Water, H2O  69.9
Solids
Calcium carbonate, CaCO3  92.9
Diamond, C   2.4
Glycine, CH2(NH2)COOH 103.5
Graphite, C   5.7
Sodium chloride, NaCl  72.1
Sucrose, C12H22O11 360.2
Urea, CO(NH2)2 104.60

*See the Resource section for more values.

Fig. 2.10 Th e determination of 
entropy from heat capacity data. 
(a) Variation of C/T with the 
temperature of the sample. 
(b) Th e entropy, which is equal to 
the area beneath the upper curve 
up to the temperature of interest 
plus the entropy of each phase 
transition between T = 0 and 
the temperature of interest.



80   2 THE SECOND LAW

Th ere remains the experimental problem of determining S(Tlowest), the entropy 
at the lowest attainable temperature. If very low temperatures (within a few 
kelvins of T = 0) can be reached and reliable measurements of Cp made, it is 
possible to use an extrapolation based on the observation that many non-
metallic substances have a heat capacity that obeys the Debye T 3-law:

At temperatures close to T = 0, Cp = aT 3 Debye T 3-law  (2.7a)

where a is a constant that depends on the substance and is found by fi tting this 
equation to a series of measurements of the heat capacity close to T = 0. With a 
determined, the entropy at low temperatures is simply

At temperatures close to T = 0, S(T) = 13Cp(T) Entropy at low 
temperatures  

(2.7b)

(See Exercise 2.21.) Th at is, the molar entropy at the low temperature T (which 
can be identifi ed as Tlowest) is equal to one-third of the constant-pressure 
molar heat capacity at that temperature. Other extrapolation techniques have 
been developed that do not require reaching such low temperatures as those 
required for the Debye approximation to be reliable and are described in 
textbooks of laboratory procedures. 

2.4 The molecular interpretation of the Second and 
Third Laws

To gain insight into the thermodynamic properties of biological assemblies and a 
deeper understanding of what drives a spontaneous change, we need to develop 
a molecular view of entropy.

Th e entry point into the molecular interpretation of the Second Law of thermo-
dynamics is Boltzmann’s insight into the manner in which molecules are distri-
buted over their available energy levels, which we explored in Fundamentals F.3 
and Section 1.2.

(a) The Boltzmann formula

Boltzmann made the link between the distribution of molecules over energy 
levels and the entropy. He proposed that the entropy of a system is given by

S = k ln W Boltzmann formula 
for the entropy

 (2.8)

where k is Boltzmann’s constant and W is the number of microstates, the ways 
in which the molecules of a system can be arranged for the same total energy. At 
T = 0, all the molecules must be in the lowest energy state, and there is only one 
way of achieving that arrangement, so W = 1 and S(0) = 0 (because ln 1 = 0), in 
accord with the Th ird Law. As the temperature is raised, more arrangements 
correspond to the same energy, so W increases and S rises.

Suppose we raise the temperature just enough for two molecules of a 100-
molecule system to be able to leave their lowest energy state and occupy the fi rst 
excited state. Two possible microstates are

([3,4, . . . ,100]in state 0[1,2]in state 1) and 
([1,3,4 . . . 42,44, . . . . 100]in state 0[2,43]in state 1)
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where molecules 1 and 2 are excited in the fi rst microstate and molecules 2 and 43 
are excited in the second. Each microstate lasts only for an instant and corres-
ponds to a particular distribution of molecules over the available energy levels. 
Th ese two microstates and a large number of others all correspond to the same 
confi guration, in this case the confi guration {98,2,0, . . .} we introduced in Section 
1.2(c). In this case, there are W = 4950 possible microstates (that corresponds to 
the number of ways of choosing two molecules from 100). 

As we saw in Section 1.2(c), there is a dominating confi guration of the sys-
tem—the one corresponding to the greatest number of microstates for a given 
total energy—and the properties of the system are those of this most probable 
confi guration. Th at confi guration is the one with populations given by the 
Boltzmann distribution. To use Boltzmann’s formula for the entropy, we set the 
W that occurs in it equal to the W of this dominating confi guration. 

A brief illustration

Suppose that a protein molecule of 100 amino acid residues denatured into a 
random coil can adopt 1.0 × 1031 diff erent conformations of the same energy. 
We set W = 1.0 × 1031 and calculate the entropy as

S = (1.38 × 10−23 J K−1) × ln(1.0 × 1031) = 9.9 × 10−22 J K−1

Th e corresponding molar entropy of the protein is 600 J K−1 mol−1 (to 2 signi-
fi cant fi gures; that is, 6.0 × 102 J K−1 mol−1).

(b) The relation between thermodynamic and statistical entropy

Th e concept of the number of microstates makes quantitative the ill-defi ned 
qualitative concepts of  ‘disorder’ and ‘the dispersal of matter and energy’ that we 
have used to introduce the concept of entropy: a more ‘disorderly’ distribution of 
energy and matter corresponds to a greater number of microstates associated 
with the same total energy. For instance, when a perfect gas expands, the available 
translational energy levels get closer together (Fig. 2.11), so it is possible to dis-
tribute the molecules over them in more ways than when the volume of the con-
tainer is small and the energy levels are further apart. Th erefore, as the container 
expands, W and therefore S increase, just as for thermodynamic entropy. 

Th e Boltzmann approach also illuminates the thermodynamic defi nition itself 
(eqn 2.1) and in particular the role of the temperature. Molecules in a system at 
high temperature can occupy a large number of the available energy levels, so a 
small additional transfer of energy as heat will lead to a relatively small change in 
the number of accessible energy levels. Consequently, the number of microstates 
does not increase appreciably and neither does the entropy of the system. In con-
trast, the molecules in a system at low temperature have access to far fewer energy 
levels (at T = 0, only the lowest level is accessible), and the transfer of the same 
quantity of energy by heating will increase the number of accessible energy levels 
and the number of microstates signifi cantly. Hence, the change in entropy on 
heating will be greater when the energy is transferred to a cold body than when it 
is transferred to a hot body. Th is argument suggests that the change in entropy 
should be inversely proportional to the temperature at which the transfer takes 
place, as in eqn 2.1.

Fig. 2.11 When the size of a 
container is increased (shown 
here in two dimensions), the 
energy levels available to the 
molecules inside it move closer 
together so more are accessible at 
a given temperature (as indicated 
by the levels colored red).
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(c) The residual entropy

In most cases, W = 1 at T = 0 because there is only one way of putting all the 
molecules into the same, lowest state. Th erefore, as we have seen, S = 0 at T = 0, in 
accord with the Th ird Law of thermodynamics. In certain cases, however, W may 
diff er from 1 at T = 0. Th is is the case if disorder survives down to absolute zero 
because there is no energy advantage in adopting a particular orientation. For 
instance, there may be no energy diff erence between the arrangements . . . AB AB 
AB . . . and . . . BA AB BA . . . , so W > 1 even at T = 0. If S > 0 at T = 0 we say that the 
substance has a residual entropy. Ice has a residual entropy of 3.4 J K−1 mol−1. 
It stems from the disorder in the hydrogen bonds between neighboring water 
molecules: a given O atom has two short O–H bonds and two long O···H bonds 
to its neighbors, but there is a degree of randomness in which two bonds are 
short and which two are long.

Fig. 2.12 Th e six possible 
arrangements of H atoms around 
a central O atom in ice. Occupied 
locations are indicated by black 
dots and unoccupied locations by 
a grey outline.

A brief illustration

Consider a sample of ice of N H2O molecules. Each of the 2N H atoms can 
be either close to or relatively far from an O atom, resulting in 22N possible 
arrangements. However, of the 24 = 16 possible arrangements around a single 
O atom, only 6 have two short and two long bonds (Fig. 2.12) and hence are 
acceptable. Th erefore W = 22N( 6

16)N = (3
2)N and the residual entropy is

S(0) = k ln W = k ln (3
2)N = Nk ln 32

Th e molar residual entropy (replace N by NA and use NAk = R) is therefore

Sm(0) = R ln 32 = 3.4 J K−1 mol−1

2.5 Entropy changes accompanying chemical reactions
To move into the arena of biochemistry, where reactants are transformed into 
products, we need to establish procedures for using the tabulated values of absolute 
entropies to calculate entropy changes associated with chemical reactions; to assess 
the spontaneity of a biological process, we need to see how to take into account 
entropy changes in both the system and the surroundings.

Once again, we can sometimes use our intuition to predict the sign of the entropy 
change associated with a chemical reaction. When there is a net formation of a 
gas in a reaction, as in a combustion or the equivalent but controlled oxidations 
characteristic of organisms, we can usually anticipate that the entropy increases. 
When there is a net consumption of gas, as in the fi xation of N2 by certain micro-
organisms, it is usually safe to predict that the entropy decreases. However, for a 
quantitative value of the change in entropy and to predict the sign of the change 
when no gases are involved, we need to do an explicit calculation.

(a) Standard reaction entropies

Th e diff erence in molar entropy between the products and the reactants in their 
standard states is called the standard reaction entropy, DrS3. It can be expressed 
in terms of the molar entropies of the substances in much the same way as we have 
already used for the standard reaction enthalpy:

DrS3 = ∑ nS3
m(products) − ∑ nS3

m(reactants) The standard entropy 
of reaction

 (2.9)

where the v are the stoichiometric coeffi  cients in the chemical equation.
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(b) The spontaneity of chemical reactions

A process may be spontaneous even though the entropy change of the system 
itself is negative. Consider the binding of oxidized nicotinamide adenine 
dinucleotide (NAD+; Atlas N4), an important electron carrier in metabolism 
(Case studies 1.1 and 1.2), to the enzyme lactate dehydrogenase, which plays a 
role in the catabolism and anabolism of carbohydrates. Experiments show that 
DrS3 = −16.8 J K−1 mol−1 for binding at 25°C and pH = 7.0. Th e negative sign of the 
entropy change is expected because the association of two reactants gives rise to 
a more compact structure. Th e reaction results in a more organized structure, 
yet it is spontaneous!

Th e resolution of this apparent paradox underscores a feature of entropy that 
recurs throughout chemistry and biology: it is essential to consider the entropy of 
both the system and its surroundings when deciding whether or not a process 
is spontaneous. Th e reduction in entropy by 16.8 J K−1 mol−1 relates only to the 
system, the reaction mixture. To apply the Second Law correctly, we need to 
calculate the total entropy, the sum of the changes in the system and the sur-
roundings that jointly compose the entire ‘isolated system’ referred to in the 
Second Law. It may well be the case that the entropy of the system decreases when 
a change takes place, but there may be a more than compensating increase in 
entropy of the surroundings, so that overall the entropy change is positive. Th e 
opposite may also be true: a large decrease in the entropy of the surroundings may 
occur when the entropy of the system increases. In that case we would be wrong 
to conclude from the increase in the system alone that the change is spontaneous. 
Whenever considering the implications of entropy, we must always consider the 
total change of the system and its surroundings.

A brief illustration

Th e enzyme carbonic anhydrase catalyses the hydration of CO2 gas in red 
blood cells: CO2(g) + H2O(l) → H2CO3(aq). We expect a negative entropy of 
reaction because a gas is consumed. To fi nd the explicit value at 25°C, we use 
the information from the Resource section to write

DrS3 = S3
m(H2CO3, aq) − {S3

m(CO2, g) + S3
m(H2O, 1)}

 = (187.4 J K−1 mol−1) − {(213.74 J K−1 mol−1) + (69.91 J K−1 mol−1)}
 = −96.3 J K−1 mol−1

A brief illustration

To calculate the entropy change in the surroundings when a reaction takes place 
at constant pressure, we use eqn 2.6, interpreting the DH in that expression as the 
reaction enthalpy. For example, for the formation of the NAD+-enzyme complex 
discussed above, with DrH 3 = −24.2 kJ mol−1, the change in entropy of the sur-
roundings (which are maintained at 25°C, the same temperature as the reaction 
mixture) is

Self-test 2.3 (a) Predict the sign of the entropy change associated with the 
complete oxidation of solid sucrose, C12H22O11(s), by O2 gas to CO2 gas and 
liquid H2O. (b) Calculate the standard reaction entropy at 25°C.

Answer: (a) Positive; (b) +512 J K−1 mol−1

A note on good practice 
Do not make the mistake of 
setting the standard molar 
entropies of elements equal 
to zero: they have non-zero 
values (provided T > 0), as 
we have already discussed.

 



84   2 THE SECOND LAW

 
DrSsur = − DrH

T
 = − (−24.2 kJ mol−1)

298 K
 = +81.2 J K−1 mol−1

Now we can see that the total entropy change is positive:

DrStotal = (−16.8 J K−1 mol−1) + (81.2 J K−1 mol−1) = +64.4 J K−1 mol−1

Th is calculation confi rms that the reaction is spontaneous. In this case, the 
spontaneity is a result of the dispersal of energy that the reaction generates in 
the surroundings: the complex is dragged into existence, even though it has a 
lower entropy than the separated reactants, by the tendency of energy to dis-
perse into the surroundings.

The Gibbs energy

One of the problems with entropy calculations is already apparent: we have to 
work out two entropy changes, the change in the system and the change in 
the surroundings, and then consider the sign of their sum. Th e great American 
theoretician J.W. Gibbs, who laid the foundations of chemical thermodynamics 
toward the end of the nineteenth century, discovered how to combine the two 
calculations into one. Th e combination of the two procedures in fact turns out to 
be of much greater relevance than just saving a little labor, and throughout this 
text we shall see consequences of the procedure he developed.

2.6 Focusing on the system
To simplify the discussion of the role of the total change in the entropy, we need to 
introduce a new state function, the Gibbs energy, which will be used extensively in 
our study of bioenergetics and biological structure.

Th e total entropy change that accompanies a process is

DStotal = DS + DSsur Total entropy change  (2.10)

where DS is the entropy change for the system; for a spontaneous change, DStotal > 0. 
If the process occurs at constant pressure and temperature, we can use eqn 2.6 
to express the change in entropy of the surroundings in terms of the enthalpy 
change of the system, DH. When the resulting expression is inserted into this one, 
we obtain

At constant temperature and pressure: DStotal = DS − DH
T

 (2.11)

Th e great advantage of this formula is that it expresses the total entropy change 
of the system and its surroundings in terms of the properties of the system alone. 
Th e only restriction is that the expression is confi ned to changes at constant pres-
sure and temperature.

(a) The definition of the Gibbs energy

Now we take a very important step. First, we introduce the Gibbs energy, G, 
which is defi ned as3

3 Th e Gibbs energy is still commonly referred to by its older name, the ‘free energy’.
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G = H − TS Definition of Gibbs energy  (2.12)

Because H, T, and S are state functions, G is a state function too. A change in 
Gibbs energy, DG, at constant temperature arises from changes in enthalpy and 
entropy and is

At constant temperature: DG = DH − TDS Change in G at constant T  (2.13)

By comparing eqns 2.11 and 2.13, we obtain

At constant temperature and pressure: DG = −TDStotal (2.14)

We see that at constant temperature and pressure, the change in the Gibbs 
energy of a system is proportional to the overall change in the entropy of the sys-
tem plus its surroundings.

(b) Spontaneity and the Gibbs energy

Th e diff erence in sign between DG and DStotal in eqn 2.14 implies that the condi-
tion for a process being spontaneous changes from DStotal > 0 in terms of the total 
entropy (which is universally true) to DG < 0 in terms of the Gibbs energy (for 
processes occurring at constant temperature and pressure). Th at is, in a spon-
taneous change at constant temperature and pressure, the Gibbs energy decreases 
(Fig. 2.13).

It may seem more natural to think of a system as falling to a lower value of some 
property. However, it must never be forgotten that to say that a system tends to 
fall toward lower Gibbs energy is only a modifi ed way of saying that a system and 
its surroundings jointly tend toward a greater total entropy. Th e only criterion 
of spontaneous change is the total entropy of the system and its surroundings; 
the Gibbs energy merely contrives a way of expressing that total change in terms 
of the properties of the system alone and is valid only for processes that occur at 
constant temperature and pressure.

Case study 2.1 Life and the Second Law

Every chemical reaction that is spontaneous under conditions of constant 
temperature and pressure, including those that drive the processes of growth, 
learning, and reproduction, is a reaction that proceeds in the direction of 
lower Gibbs energy, or—another way of expressing the same thing—results in 
the overall entropy of the system and its surroundings becoming greater. With 
these ideas in mind, it is easy to explain why life, which can be regarded as a 
collection of biological processes, proceeds in accord with the Second Law of 
thermodynamics.

It is not diffi  cult to imagine conditions in the cell that may render spontaneous 
many of the reactions of catabolism described briefl y in Case study 1.1. Aft er 
all, the breakdown of large molecules, such as sugars and lipids, into smaller 
molecules leads to the dispersal of matter in the cell. Energy is also dispersed, 
as it is released on reorganization of bonds in foods when they are oxidized. 
More diffi  cult to rationalize is life’s requirement of the organization of a very 
large number of molecules into biological cells, which in turn assemble into 
organisms. To be sure, the entropy of the system—the organism—is very low 
because matter becomes less dispersed when molecules assemble to form cells, 
tissues, organs, and so on. However, the lowering of the system’s entropy comes 
at the expense of an increase in the entropy of the surroundings. 

Fig. 2.13 Th e criterion of 
spontaneous change is the 
increase in total entropy of the 
system and its surroundings. 
Provided we accept the limitation 
of working at constant pressure 
and temperature, we can focus 
entirely on the properties of the 
system and express the criterion 
as a tendency to move to lower 
Gibbs energy.
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To understand this point, recall from Case study 1.1 and Case study 1.2 that 
cells grow by converting energy from the Sun or oxidation of foods partially 
into work. Th e remaining energy is released as heat into the surroundings, so 
qsur > 0 and DSsur > 0. As with any process, life is spontaneous and organisms 
thrive as long as the increase in the entropy of the organism’s environment 
compensates for decreases in the entropy arising from the assembly of the 
organism. Alternatively, we may say that DG < 0 for the overall sum of physical 
and chemical changes that we call life. 

2.7 The hydrophobic interaction
To gain insight into the thermodynamic factors that contribute to the spontaneous 
assembly of biological macromolecules, we need to examine in detail some of the 
interactions that bring molecular building blocks together.

Th roughout the text we shall see how concepts of physical chemistry can be used 
to establish some of the known ‘rules’ for the assembly of complex biological 
structures. Here, we describe how the Second Law can account for the formation 
of such organized assemblies as proteins and biological cell membranes.

As remarked in the Prologue, we do not know all the rules that govern the 
folding of proteins into well-defi ned three-dimensional structures. However, 
a number of general conclusions from experimental studies give some insight 
into the origin of tertiary and quaternary structure in proteins. Here we focus 
on the observation that, in an aqueous environment (including the interior of 
biological cells), the chains of a protein fold in such a way as to place hydro-
phobic groups (water-repelling, non-polar groups such as –CH2CH(CH3)2) in the 
interior, which is oft en not very accessible to solvent, and hydrophilic groups 
(water-loving, polar or charged groups such as –NH3

+) on the surface, which is 
in direct contact with the polar solvent. A species with both hydrophobic and 
hydrophilic regions is called amphipathic.4 Phospholipids also are amphipathic 
molecules that can group together to form bilayer structures and cell membranes 
(recall Fig. F.1).

To understand the process in more detail, imagine a hypothetical initial state in 
which a polypeptide chain is immersed in water and has not acquired its fi nal 
structure. Each hydrophobic group is surrounded by a cage of water molecules 
(Fig. 2.14). Now consider the actual fi nal state in which hydrophobic groups are 
clustered together. Although the clustering together results in a negative contri-
bution to the change in entropy of the system (the solution), fewer (albeit larger) 
cages are required and more solvent molecules are free to move. Th e net eff ect of 
the formation of clusters of hydrophobic groups is then a decrease in the organ-
ization of the solvent and a net increase in entropy of the system. Th is increase in 
entropy of the solvent is large enough to result in the association of hydrophobic 
groups in an aqueous environment being spontaneous. Th e process that drives 
the spontaneous clustering of hydrophobic groups in the presence of water is 
called the hydrophobic interaction. 

4 Th e amphi- part of the name is from the Greek word for ‘both’ and the -pathic part is from the 
same root (meaning ‘feeling’) as sympathetic.

Fig. 2.14 When a hydrophobic 
molecule (in shades of gray) is 
surrounded by water, the H2O 
molecules (with their oxygen 
atoms shown in red) form a 
cage, of which a cross-section 
is shown here. As a result of 
this acquisition of structure, 
the entropy of water decreases, 
so the dispersal of the 
hydrophobic molecule into the 
water is entropy opposed; its 
coalescence is entropy favored.
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To understand the hydrophobic interaction more completely we need to know 
more about the energetics of the interaction of hydrophobic groups and water. 
Experiments indicate that the dissolution of a largely hydrophobic molecule 
in water is commonly endothermic (DdissH > 0) but that the entropy change is 
positive (DdissS > 0):

 DdissG3/kJ mol−1 DdissH3/kJ mol−1 DdissS3/J K−1 mol−1

CH3CH2CH2CH2OH −10 +9 +65
CH3CH2CH2CH2CH2OH −13 +8 +72

Th e positive entropy of dissolving is consistent with the solvent water becom-
ing more disorganized in the presence of the hydrophobic tails of the alkanol 
molecules, as the hydrophobic interaction requires. Th ese experimental values 
are consistent with a general rule that each additional –CH2– group contributes a 
further −3 kJ mol−1 to the Gibbs energy of dissolving.

An important consequence of this analysis is that low temperatures disfavor 
the hydrophobic interaction. Th us, from DG = DH − TDS, lowering the temper-
ature reduces the eff ect of DS and the DG can change from negative to positive. 
Th is is the reason why some proteins and viruses dissociate into their individual 
subunits as the temperature is lowered to 0°C.

A further aspect of this discussion is that we can set up a scale of hydropho-
bicities. Th e hydrophobicity of a small molecular group R is reported by defi ning 
the hydrophobicity constant, p, as

p = log s(RX)
s(HX)

 Definition of hydrophobicity 
constant

 (2.15)

where s(RX) is the ratio of the molar solubility (the maximum chemical 
amount that can be dissolved to form 1 dm3 of solution) of the compound RX in 
octan-1-ol, a non-polar solvent, to that in water, and s(HX) is the ratio of the 
molar solubility of the compound HX in octan-1-ol to that in water. Th erefore, 
positive values of p indicate hydrophobicity and negative values indicate hydro-
philicity, the thermodynamic preference for water as a solvent. It is observed 
experimentally that the p values of most groups do not depend on the nature 
of X. However, measurements do suggest group additivity of p values:

–R –CH3 –CH2CH3 –(CH2)2CH3 –(CH2)3CH3 –(CH2)4CH3

p 0.5 1 1.5 2 2.5

We see that acyclic saturated hydrocarbons become more hydrophobic as the 
carbon chain length increases. Th is trend can be rationalized by DdissH becoming 
more positive and DdissS more negative as the number of carbon atoms in the 
chain increases.

Self-test 2.4 Two long-chain hydrophobic polypeptides can associate end-
to-end so that only the ends meet or side-by-side so that the entire chains are 
in contact. Which arrangement would produce a larger entropy change when 
they come together?

Answer: Th e side-by-side arrangement
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2.8 Work and the Gibbs energy change
To understand how biochemical reactions can be used to release energy as work 
in the cell, we need to gain deeper insight into the Gibbs energy.

An important feature of the Gibbs energy is that the value of DG for a process 
gives the maximum non-expansion work that can be extracted from the process 
at constant temperature and pressure. By non-expansion work, wnon-exp, we mean 
any work other than that arising from the expansion of the system. It may include 
electrical work, if the process takes place inside an electrochemical or biological 
cell, or other kinds of mechanical work, such as the winding of a spring or the 
contraction of a muscle. As we show in the following Justifi cation, 

At constant temperature and pressure: DG = wmax,non-exp

 Gibbs energy and 
non-expansion work

 (2.16)

Justification 2.3 Maximum non-expansion work

We need to consider infi nitesimal changes because dealing with reversible pro-
cesses is then much easier. Our aim is to derive the relation between the infi ni-
tesimal change in Gibbs energy, dG, accompanying a process and the maximum 
amount of non-expansion work that the process can do, dwnon-exp. We start with 
the infi nitesimal form of eqn 2.13,

at constant temperature: dG = dH − TdS

where, as usual, d denotes an infi nitesimal diff erence. A good rule in the 
manipulation of thermodynamic expressions is to feed in defi nitions of the 
terms that appear. We do this twice. First, we use the expression for the change 
in enthalpy at constant pressure (eqn 1.11b, written as dH = dU + pdV) and 
obtain

at constant temperature and pressure: dG = dU + pdV − TdS

Th en we replace dU in terms of infi nitesimal contributions from work and heat 
(dU = dw + dq):

dG = dw + dq + pdV − TdS

Th e work done on the system consists of expansion work, −pexdV, and non-
expansion work, dwnon-exp. Th erefore,

dG = −pexdV + dwnon-exp+ dq + pdV − TdS

Th is derivation is valid for any process taking place at constant temperature 
and pressure.

Now we specialize to a reversible change. For expansion work to be reversible, 
we need to match p and pex, in which case the fi rst and fourth terms on the right 
cancel. Moreover, because the transfer of energy as heat is also reversible, we 
can replace dq by TdS, in which case the third and fi ft h terms also cancel. We 
are left  with

at constant temperature and pressure, for a reversible process:  dG = dwnon-exp,rev

Maximum work is done during a reversible change (Section 1.3(c)), so another 
way of writing this expression is
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at constant temperature and pressure: dG = dwmax,non-exp

Because this relation holds for each infi nitesimal step between the specifi ed 
initial and fi nal states, it applies to the overall change too. Th erefore, we obtain 
eqn 2.16.

Example 2.1 Estimating a change in Gibbs energy for a metabolic process

Suppose a certain small bird has a mass of 30 g. What is the minimum mass of 
glucose that it must consume to fl y up to a branch 10 m above the ground? Th e 
change in Gibbs energy that accompanies the oxidation of 1.0 mol C6H12O6(s) 
to carbon dioxide gas and liquid water at 25°C is −2808 kJ.

Strategy First, we need to calculate the work needed to raise a mass m through 
a height h on the surface of the Earth. As we saw in eqn 1.2, this work is 
equal to mgh, where g is the acceleration of free fall. Th is work, which is non-
expansion work, can be identifi ed with DG. We need to determine the amount 
of substance that corresponds to the required change in Gibbs energy and then 
convert that amount to a mass by using the molar mass of glucose.

Solution Th e non-expansion work to be done is

wnon-exp = (30 × 10−3 kg) × (9.81 m s−2) × (10 m) = 3.0 × 9.81 × 1.0 × 10−1 J

(because 1 kg m2 s−2 = 1 J). Th e amount, n, of glucose molecules required for 
oxidation to give a change in Gibbs energy of this value given that 1 mol pro-
vides 2808 kJ is

n = 3.0 × 9.81 × 1.0 × 10−1 J
2.808 × 106 J mol−1

 = 3.0 × 9.81 × 1.0 × 10−7

2.808
 mol

Th erefore, because the molar mass, M, of glucose is 180 g mol−1, the mass, m, 
of glucose that must be oxidized is

m = nM = AC
3.0 × 9.81 × 1.0 × 10−7

2.808
 molDF  × (180 g mol−1) = 1.9 × 10−4 g

Th at is, the bird must consume at least 0.19 mg of glucose for the mechanical 
eff ort (and more if it thinks about it).

Self-test 2.5 A hardworking human brain, perhaps one that is grappling 
with physical chemistry, operates at about 25 J s−1. What mass of glucose must 
be consumed to sustain that metabolic rate for an hour?

Answer: 5.8 g

Th e great importance of the Gibbs energy in chemistry is becoming apparent. 
At this stage, we see that it is a measure of the non-expansion work resources of 
chemical reactions: if we know DG, then we know the maximum non-expansion 
work that we can obtain by harnessing the reaction in some way. In some cases, 
the non-expansion work is extracted as electrical energy. Th is is the case when 
electrons are transferred across cell membranes in some key reactions of photo-
synthesis and respiration (see Sections 5.10 and 5.11). 
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Some insight into the physical signifi cance of G itself comes from its defi nition 
as H − TS. Th e enthalpy is a measure of the energy that can be obtained from the 
system as heat. Th e term TS is a measure of the quantity of energy stored in the 
random motion of the molecules making up the sample. Work, as we have seen, is 
energy transferred in an orderly way, so we cannot expect to obtain work from 
the energy stored randomly. Th e diff erence between the total stored energy and 
the energy stored randomly, H − TS, is available for doing work, and we recognize 
that diff erence as the Gibbs energy. In other words, the Gibbs energy is the energy 
stored in the uniform motion and arrangement of the molecules in the system.

Case study 2.2 The action of adenosine triphosphate

In biological cells, the energy released by the oxidation of foods (Case study 1.1) 
is stored in adenosine triphosphate (ATP or ATP4−, Atlas N3). Th e essence of 
ATP’s action is its ability to lose its terminal phosphate group by hydrolysis 
and to form adenosine diphosphate (ADP or ADP3−, Atlas N2):

ATP4−(aq) + H2O(l) → ADP3−(aq) + HPO4
2−(aq) + H3O+(aq)

At pH = 7.0 and 37°C (310 K, blood temperature) the enthalpy and Gibbs 
energy of hydrolysis are DrH = −20 kJ mol−1 and DrG = −31 kJ mol−1, respec-
tively. Under these conditions, the hydrolysis of 1 mol ATP4−(aq) results in the 
extraction of up to 31 kJ of energy that can be used to do non-expansion work, 
such as the synthesis of proteins from amino acids, muscular contraction, and 
the activation of neuronal circuits in our brains, as we shall see in Chapter 5. If 
no attempt is made to extract any energy as work, then 20 kJ (in general, DH) 
of heat will be produced. 

Checklist of key concepts

 1. A spontaneous change is a change that has a tendency 
to occur without work having to be done to bring it 
about.

 2. Matter and energy tend to disperse.

 3. Th e Second Law states that the entropy of an isolated 
system tends to increase.

 4. In general, the entropy change accompanying the 
heating of a system is equal to the area under the 
graph of C/T against T between the two temperatures 
of interest.

 5. Th e Th ird Law of thermodynamics states that the 
entropies of all perfectly crystalline substances are 
the same at T = 0 (and may be taken to be zero).

 6. Th e Boltzmann formula expresses the statistical 
entropy in terms of the number of microstates of a 
system.

 7. Th e Gibbs energy is defi ned as G = H − TS and is a 
state function.

 8. At constant temperature and pressure, a system tends 
to change in the direction of decreasing Gibbs energy.

 9. Th e hydrophobic interaction is a process that leads to 
the organization of solute molecules and is driven by 
a tendency toward greater dispersal of solvent 
molecules.

 10. At constant temperature and pressure, the change in 
Gibbs energy accompanying a process is equal to the 
maximum non-expansion work the process can do.
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Checklist of key equations

Property or process Equation Comment

Entropy change DS = qrev/T Defi nition
Entropy change of surroundings

Boltzmann formula for the entropy
Entropy of transition
Entropy change due to 
a change in temperature
Standard reaction entropy
Gibbs energy
Change in Gibbs energy
Relation to maximum non-expansion work

DSsur = −q/T
DSsur = −DH/T

S = k ln W
DtrsS (Ttrs) = DtrsH(Ttrs)/Ttrs

DS = C ln(T2/T1)

DrS3 = ∑nSm
3(products) − ∑nSm

3(reactants)
G = H − TS
DG = DH − TDS
DG = wmax,non-exp

q is heat supplied to the system
DH is the enthalpy change of the system; 
constant pressure process
W is the number of microstates
At the transition temperature
Heat capacity constant in the range of 
interest
Defi nition
Defi nition
At constant temperature
At constant temperature and pressure

Discussion questions

2.1 Th e following expressions have been used to establish criteria for 
spontaneous change: DSisolated system > 0 and DG < 0. Discuss the origin, 
signifi cance, and applicability of each criterion.

2.2 Explain the limitations of the following expressions: 
(a) DS = C ln(Tf/Ti), (b) DG = DH − TDS, and (c) DG = wmax,non-exp.

2.3 Suggest a procedure for the measurement of the entropy of 
unfolding of a protein with diff erential scanning calorimetry 
(see In the laboratory 1.1).

2.4 Justify the identifi cation of the statistical entropy with the 
thermodynamic entropy. 

2.5 Explain the origin of the residual entropy. 

2.6 Without performing a calculation, predict whether the standard 
entropies of the following reactions are positive or negative:

(a) Ala–Ser–Th r–Lys–Gly–Arg–Ser 
 trypsinffg Ala–Ser–Th r–Lys–   

+ Gly–Arg
(b) N2(g) + 3 H2(g) 

 trypsinffg 2 NH3(g)
(c) ATP4−(aq) + H2O(1) 

 trypsinffg ADP3−(aq) + HPO4
2−(aq) + 

H3O+(aq)

2.7 Provide a molecular interpretation of the hydrophobic 
interaction.

Exercises

2.8 A goldfi sh swims in a bowl of water at 20°C. Over a period of 
time, the fi sh transfers 120 J to the water as a result of its metabolism. 
What is the change in entropy of the water?

2.9 Suppose that when you exercise, you consume 100 g of glucose 
and that all the energy released as heat remains in your body at 37°C. 
What is the change in entropy of your body?

2.10 Suppose you put a cube of ice of mass 100 g into a glass of water at 
just above 0°C. When the ice melts, about 33 kJ of energy is absorbed 
from the surroundings as heat. What is the change in entropy of 
(a) the sample (the ice) and (b) the surroundings (the glass of water)?

2.11 Calculate the change in entropy of 100 g of ice at 0°C as it is 
melted, heated to 100°C, and then vaporized at that temperature. 
Suppose that the changes are brought about by a heater that supplies 

energy at a constant rate, and sketch a graph showing (a) the change 
in temperature of the system, (b) the enthalpy of the system, and 
(c) the entropy of the system as a function of time.

2.12 What is the change in entropy of 100 g of water when it is heated 
from room temperature (20°C) to body temperature (37°C)? Use 
Cp,m = 75.5 J K−1 mol−1.

2.13 Estimate the molar entropy of potassium chloride at 5.0 K given 
that its molar heat capacity at that temperature is 1.2 mJ K−1 mol−1.

2.14 Equation 2.2 is based on the assumption that the heat capacity is 
independent of temperature. Suppose, instead, that the heat capacity 
depends on temperature as C = a + bT + a/T 2. Find an expression for 
the change of entropy accompanying heating from Ti to Tf. Hint: See 
Justifi cation 2.1.
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2.15 Calculate the change in entropy when 100 g of water at 80°C is 
poured into 100 g of water at 10°C in an insulated vessel given that 
Cp,m = 75.5 J K−1 mol−1.

2.16 Th e protein lysozyme unfolds at a transition temperature of 
75.5°C, and the standard enthalpy of transition is 509 kJ mol−1. 
Calculate the entropy of unfolding of lysozyme at 25.0°C, given that 
the diff erence in the constant-pressure heat capacities on unfolding 
is 6.28 kJ K−1 mol−1 and can be assumed to be independent of 
temperature. Hint: Imagine that the transition at 25.0°C occurs 
in three steps: (i) heating of the folded protein from 25.0°C to the 
transition temperature, (ii) unfolding at the transition temperature, 
and (iii) cooling of the unfolded protein to 25.0°C. Because the 
entropy is a state function, the entropy change at 25.0°C is equal 
to the sum of the entropy changes of the steps.

2.17 Th e enthalpy of the graphite → diamond phase transition, 
which under 100 kbar occurs at 2000 K, is +1.9 kJ mol−1. Calculate 
the entropy of transition at that temperature.

2.18 Th e enthalpy of vaporization of methanol is 35.27 kJ mol−1 
at its normal boiling point of 64.1°C. Calculate (a) the entropy of 
vaporization of methanol at this temperature and (b) the entropy 
change of the surroundings.

2.19 Trouton’s rule summarizes the results of experiments showing 
that the entropy of vaporization measured at the boiling point, 
DvapS = DvapH(Tb)/Tb, is approximately the same and equal to about 
85 J K−1 mol−1 for all liquids except when hydrogen bonding or some 
other kind of specifi c molecular interaction is present. (a) Provide a 
molecular interpretation for Trouton’s rule. (b) Estimate the entropy 
of vaporization and the enthalpy of vaporization of octane, which 
boils at 126°C. (c) Trouton’s rule does not apply to water because in 
the liquid, water molecules are held together by an extensive network 
of hydrogen bonds. Provide a molecular interpretation for the 
observation that Trouton’s rule underestimates the value of the 
entropy of vaporization of water.

2.20 Calculate the entropy of fusion of a compound at 25°C given that 
its enthalpy of fusion is 32 kJ mol−1 at its melting point of 146°C and 
the molar heat capacities (at constant pressure) of the liquid and solid 
forms are 28 J K−1 mol−1 and 19 J K−1 mol−1, respectively.

2.21 Show that at temperatures close to T = 0, S(T) = 13Cp(T). 

2.22 Calculate the residual molar entropy of a solid in which the 
molecules can adopt (a) three, (b) fi ve, and (c) six orientations of 
equal energy at T = 0.  

2.23 Calculate the standard reaction entropy at 298 K 
of the fermentation of glucose to ethanol: 
C6H12O6(s) → 2 C2H5OH(l) + 2 CO2(g).

2.24 Th e constant-pressure molar heat capacities of linear gaseous 
molecules are approximately 72 R and those of non-linear gaseous 
molecules are approximately 4R. Estimate the change in standard 
reaction entropy of the following two reactions when the temperature 
is increased by 10 K at constant pressure:

(a) 2 H2(g) + O2(g) → 2 H2O(l)
(b) CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g)

2.25 Use the information in Exercise 2.24 to calculate the standard 
Gibbs energy of reaction of N2 + 3 H2(g) → 2 NH3(g).  

2.26 In a particular biological reaction taking place in the body at 
37°C, the change in enthalpy was −125 kJ mol−1 and the change in 
entropy was −126 J K−1 mol−1. (a) Calculate the change in Gibbs 
energy. (b) Is the reaction spontaneous? (c) Calculate the total 
change in entropy of the system and the surroundings.

2.27 Th e change in Gibbs energy that accompanies the oxidation of 
C6H12O6(s) to carbon dioxide and water vapor at 25°C is −2808 kJ 
mol−1. How much glucose does a person of mass 65 kg need to 
consume to climb through 10 m?

2.28 A non-spontaneous reaction may be driven by coupling it to 
a reaction that is spontaneous. Th e formation of glutamine from 
glutamate and ammonium ions requires 14.2 kJ mol−1 of energy input. 
It is driven by the hydrolysis of ATP to ADP mediated by the enzyme 
glutamine synthetase. (a) Given that the change in Gibbs energy for 
the hydrolysis of ATP corresponds to DG = −31 kJ mol−1 under the 
conditions prevailing in a typical cell, can the hydrolysis drive the 
formation of glutamine? (b) How many moles of ATP must be 
hydrolyzed to form 1 mol glutamine?

2.29 Th e hydrolysis of acetyl phosphate has DG = −42 kJ mol−1 under 
typical biological conditions. If the phosphorylation of acetic acid 
were to be coupled to the hydrolysis of ATP, what is the minimum 
number of ATP molecules that would need to be involved?

2.30 Suppose that the radius of a typical cell is 10 mm and that inside 
it 106 ATP molecules are hydrolyzed each second. What is the power 
density of the cell in watts per cubic meter (1 W = 1 J s−1)? A computer 
battery delivers about 15 W and has a volume of 100 cm3. Which has 
the greater power density, the cell or the battery? (For data, see 
Exercise 2.28.)

Projects

2.31 Th e following is an example of a structure–activity relation 
(SAR), in which it is possible to correlate the eff ect of a structural 
change in a compound with its biological function. Th e use of SARs 
can improve the design of drugs for the treatment of disease because 
it facilitates the prediction of the biological activity of a compound 
before it is synthesized. Th e binding of non-polar groups of amino 
acid to hydrophobic sites in the interior of proteins is governed largely 
by hydrophobic interactions.

(a) Consider a family of hydrocarbons R–H. Th e hydrophobicity 
constants, p, for R = CH3, CH2CH3, (CH2)2CH3, (CH2)3CH3, and 
(CH2)4CH3 are, respectively, 0.5, 1.0, 1.5, 2.0, and 2.5. Use these 
data to predict the p value for (CH2)6CH3.

(b) Th e equilibrium constants KI for the dissociation of inhibitors (1) 
from the enzyme chymotrypsin (Atlas P3) were measured for diff erent 
substituents R:
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R CH3CO CN NO2 CH3 Cl
p −0.20 −0.025 0.33 0.50 0.90
log KI −1.73 −1.90 −2.43 −2.55 −3.40

Plot log KI against p. Does the plot suggest a linear relationship? If so, 
what are the slope and intercept to the log KI axis of the line that best 
fi ts the data?

(c) Predict the value of Ki for the case R = H.

2.32 An exergonic reaction is a reaction for which DG < 0, and an 
endergonic reaction is a reaction for which DG > 0. Here we investigate 
the molecular basis for the observation fi rst discussed in Case study 
2.2 that the hydrolysis of ATP is exergonic at pH = 7.0 and 310 K:

ATP4−(aq) + H2O(l) → ADP3−(aq) + HPO4
2−(aq) + H3O+(aq) 

DrG = −31 kJ mol−1

(a) It is thought that the exergonicity of ATP hydrolysis is due in part 
to the fact that the standard entropies of hydrolysis of polyphosphates 
are positive. Why would an increase in entropy accompany the 
hydrolysis of a triphosphate group into a diphosphate and a phosphate 
group?

(b) Under identical conditions, the Gibbs energies of hydrolysis of 
H4ATP and MgATP2−, a complex between the Mg2+ ion and ATP4−, 
are less negative than the Gibbs energy of hydrolysis of ATP4−. Th is 
observation has been used to support the hypothesis that electrostatic 
repulsion between adjacent phosphate groups is a factor that controls 
the exergonicity of ATP hydrolysis. Provide a rationale for the 
hypothesis and discuss how the experimental evidence supports it. 
Do these electrostatic eff ects contribute to the DrH or DrS terms that 
determine the exergonicity of the reaction? Hint: In the MgATP2− 
complex, the Mg2+ ion and ATP4− anion form two bonds: one that 
involves a negatively charged oxygen belonging to the terminal 
phosphate group of ATP4− and another that involves a negatively 
charged oxygen belonging to the phosphate group adjacent to the 
terminal phosphate group of ATP4−.

(c) Stabilization due to resonance in ATP4− and the HPO4
2− ion is 

thought to be one of the factors that controls the exergonicity of ATP 
hydrolysis. Provide a rationale for the hypothesis. Does stabilization 
through resonance contribute to the DrH or DrS terms that determine 
the exergonicity of the reaction?
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Boiling, freezing, the unfolding of proteins, and the unzipping of a DNA double helix are 
all examples of phase transitions, or changes of phase without change of chemical 
composition. Many phase changes are common everyday phenomena, and their 
description is an important part of physical chemistry. They occur whenever a solid 
changes into a liquid, as in the melting of ice, or a liquid changes into a vapor, as in the 
vaporization of water in our lungs. They also occur when one solid phase changes into 
another, as in the conversion of one phase of a biological membrane into another as 
it is heated.

The thermodynamics of phase changes of pure materials is also important because 
it prepares us first for the study of mixtures and then for the study of chemical equilibria 
(Chapter 4). Some of the thermodynamic concepts developed in this chapter also form 
the basis of important experimental techniques in biochemistry, such as the measure-
ment of molar masses of proteins and nucleic acids and the investigation of the binding 
of small molecules to proteins.

The thermodynamics of transition

Because the Gibbs energy, G = H − TS, provides a signpost of spontaneous change 
when the pressure and temperature are constant, and we need to know the con-
ditions under which a transition from one state to another becomes spontaneous, 
it is at the centre of all that follows. In particular, we need to know how G depends 
on the pressure and temperature. As we work out these dependencies, we shall 
acquire deep insight into the thermodynamic properties of biologically import-
ant substances and the transitions they can undergo.

3.1 The condition of stability
To understand processes ranging from the melting of ice to the denaturation of 
biopolymers, we need to understand the relative thermodynamic stabilities of the 
phases of a substance.

First, we need to establish the importance of the molar Gibbs energy, Gm = G/n, in 
the discussion of phase transitions of a pure substance. Th e molar Gibbs energy, 
an intensive property, is characteristic of the phase of the substance. For instance, 
the molar Gibbs energy of liquid water is in general diff erent from that of water 
vapor at the same temperature and pressure. When an amount n of the substance 
changes from phase 1 (for instance, liquid) with molar Gibbs energy Gm(1) to 
phase 2 (for instance, vapor) with molar Gibbs energy Gm(2), the change in Gibbs 
energy is

Phase equilibria3
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DG = nGm(2) − nGm(1) = n{Gm(2) − Gm(1)}

We know that a negative value of DG indicates that the change from phase 1 to 
phase 2 is spontaneous at constant temperature and pressure. It follows that the 
change from phase 1 to phase 2 is spontaneous if the molar Gibbs energy of phase 
2 is lower than that of phase 1. In other words, a substance has a spontaneous 
tendency to change into the phase with the lower molar Gibbs energy.

If at a certain temperature and pressure the solid phase of a substance has a 
lower molar Gibbs energy than its liquid phase, then the solid phase is thermo-
dynamically more stable and the liquid will (or at least has a tendency to) freeze. 
If the opposite is true, the liquid phase is thermodynamically more stable and the 
solid will melt. For example, at 1 atm, ice has a lower molar Gibbs energy than 
liquid water when the temperature is below 0°C, and under these conditions water 
converts spontaneously to ice.

3.2 The variation of Gibbs energy with pressure
To discuss how phase transitions depend on the pressure and to lay the foundation 
for understanding the behavior of solutions of biological macromolecules, we need 
to know how the molar Gibbs energy varies with pressure.

Why should biologists be interested in the variation of the Gibbs energy with the 
pressure since in most cases their systems are at pressures close to 1 atm? You 
should recall the discussion in Chapter 1, where we pointed out that to study the 
thermodynamic properties of a liquid (in which biochemists do have an interest), 
we can explore the properties of a vapor which, as a gas, are easy to formulate, 
and then imagine bringing the vapor into equilibrium with the liquid. Th en the 
properties of the liquid mirror those of the vapor. Th at is the strategy we adopt 
throughout this chapter. First we establish equations that apply to gases. Th en we 
consider equilibria between gases and liquids and adapt the gas-phase expres-
sions to describe what really interests us, the properties of liquids.

We show in the following Justifi cation that when the temperature is held 
constant and the pressure is changed from pi to pf, the molar Gibbs energy of an 
incompressible liquid becomes

Gm(pf) = Gm(pi) + (pf − pi)Vm Variation of the Gibbs energy with 
pressure (for an incompressible liquid)

 (3.1)

where Vm is the molar volume of the substance. Th is expression is valid when 
the molar volume is constant in the pressure range of interest, which is true of 
most liquids (and solids) under normal circumstances. Even though gases are far 
from incompressible, we can also use eqn 3.1 for the qualitative discussion of the 
pressure dependence of Gm of a gas provided the change in pressure is small.

Justification 3.1 The variation of G of an incompressible liquid with pressure

When the temperature, volume, and pressure of a substance are changed by 
infi nitesimal amounts, H changes to H + dH, T changes to T + dT, and S changes 
to S + dS. As a result, G changes to G + dG, where

G + dG = (H + dH) − (T + dT)(S + dS) = H + dH − TS − TdS − SdT − dTdS

Th e G on the left  cancels the H − TS on the right, the doubly infi nitesimal dTdS 
can be neglected, and we are left  with
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dG = dH − TdS − SdT

In a similar way, from the defi nition H = U + pV, letting U change to U + dU, 
and so on, and neglecting the doubly infi nitesimal term dpdV, we can write

dH = dU + pdV + Vdp

At this point we need to know how the internal energy changes, and write

dU = dq + dw

If initially we consider only reversible changes, we can replace dq by TdS 
(because dS = dqrev/T) and dw by −pdV (because dw = −pexdV and pex = p for a 
reversible change) and obtain

dU = TdS − pdV

Now we substitute this expression into the expression for dH and that expres-
sion into the expression for dG and obtain

dG = TdS − pdV + pdV + Vdp − TdS − SdT

It follows that

dG = Vdp − SdT Variation of the Gibbs energy 
with pressure and temperature

 (3.2)

Now here is a subtle but important point. To derive this result we have sup-
posed that the changes in conditions have been made reversibly. However, G is 
a state function and so the change in its value is independent of path. Th erefore, 
the expression is valid for any change within a system of known composition, 
not just a reversible change.

At this point we decide to keep the temperature constant and set dT = 0; this 
leaves

dG = Vdp

and, for molar quantities, dGm = Vmdp. Th is expression is exact but applies only 
to an infi nitesimal change in the pressure. For an observable change, we replace 
dGm by Gm(pf) − Gm(pi) and dp by pf − pi,  respectively, and obtain eqn 3.1, pro-
vided the molar volume is constant over the range of interest.
 

Equation 3.1 tells us that, because all molar volumes are positive, the molar 
Gibbs energy increases (Gm(pf) > Gm(pi)) when the pressure increases (pf > pi). We 
also see that, for a given change in pressure, the resulting change in molar Gibbs 
energy is greatest for substances with large molar volumes. Again bearing in mind 
that we can apply eqn 3.1 qualitatively to gases over small changes in pressure, we 
see that because the molar volume of a gas is much larger than that of a condensed 
phase (a liquid or a solid), the dependence of Gm on p is much greater for a gas 
than for a condensed phase. For most substances (water is an important excep-
tion), the molar volume of the liquid phase is greater than that of the solid phase. 
Th erefore, for most substances, the slope of a graph of Gm against p is greater for a 
liquid than for a solid. Th ese characteristics are illustrated in Fig. 3.1.

As we see from Fig. 3.1, when we increase the pressure on a substance, the 
molar Gibbs energy of the gas phase rises above that of the liquid, then the molar 
Gibbs energy of the liquid rises above that of the solid. Because the system has a 

A note on good practice 
When confronted with a 
proof in thermodynamics, 
go back to fundamental 
defi nitions (as we did three 
times in succession in this 
derivation: fi rst of G, then 
of H, and fi nally of U).

 

Fig. 3.1 Th e variation of molar 
Gibbs energy with pressure. Th e 
region of stability of each phase 
is indicated in the band at the 
bottom of the illustration.
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tendency to convert into the state of lowest molar Gibbs energy, the graphs show 
that at low pressures the gas phase is the most stable, then at higher pressures the 
liquid phase becomes the most stable, followed by the solid phase. In other words, 
under pressure the substance condenses to a liquid, and then further pressure can 
result in the formation of a solid.

We can use eqn 3.1 to predict the actual shape of graphs like those in Fig. 3.1. 
For a solid or liquid, the molar volume is almost independent of pressure, so eqn 
3.1 is an excellent approximation to the change in molar Gibbs energy. It shows 
that the molar Gibbs energy of a solid or liquid increases linearly with pressure. 
However, because the molar volume of a condensed phase is so small, the depen-
dence is very weak, and for typical ranges of pressure of interest to us, we can 
ignore the pressure dependence of G. Th e molar Gibbs energy of a gas, however, 
does depend on the pressure, and because the molar volume of a gas is large, the 
dependence is signifi cant. To fi nd a quantitative expression for the pressure 
dependence that is valid over a substantial pressure range, we have to take into 
account the fact that a gas is compressible and that the molar volume decreases 
as pressure is applied. We therefore expect the Gibbs energy to increase with pres-
sure, but for it to become less sensitive to pressure as the pressure rises (because 
the molar volume is decreasing). We show in the following Justifi cation that

Gm(pf) = Gm(pi) + RT ln pf

 pi
 (3.3)

Th is equation shows that the molar Gibbs energy increases logarithmically 
(as ln p) with the pressure (Fig. 3.2). Th e fl attening of the curve at high pressures 
refl ects the fact that, as we anticipated, as Vm gets smaller, Gm becomes less respon-
sive to pressure.

Justification 3.2 The pressure variation of the Gibbs energy of a perfect gas

We start with the exact expression for the eff ect of an infi nitesimal change in 
pressure obtained in Justifi cation 3.1, that dGm = Vmdp. For a change in pressure 

Fig. 3.2 Th e variation of the molar 
Gibbs energy of a perfect gas with 
pressure.

  Mathematical toolkit 3.1 Integration

Th e area under a graph of any function f is found by 
the techniques of integration. For instance, the area 
under the graph of the function f(x) between x = a and 
x = b is denoted by

area between a and b = �
b

a

f(x)dx

Th e elongated S symbol on the right is called the 
integral of the function f. When written as 2 alone, it is 
the indefi nite integral of the function. When written 
with limits (as in the expression above), it becomes the 
defi nite integral of the function. Th e defi nite integral 
is the indefi nite integral evaluated at the upper limit 
(b) minus the indefi nite integral evaluated at the lower 
limit (a).

A very useful integral in physical chemistry is

 �dx
x

 = ln x + constant

where ln x is the natural logarithm of x. To evaluate the 
integral between the limits x = a and x = b, we write

 �
b

a

dx
x

 = (ln x + constant)  
b

a

 

 = (ln b + constant) − (ln a + constant)

 = ln b − ln a = ln b
a

We see that the constant cancels. For instance, the area 
under the graph of 1/x lying between a = 2 and b = 3 
is ln(3

2) = 0.41.
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from pi to pf, we need to add together (integrate) all these infi nitesimal changes 
and write

DGm = �
pf

pi

Vmdp

To evaluate the integral, we must know how the molar volume depends on the 
pressure. Th e easiest case to consider is a perfect gas, for which Vm = RT/p. 
Th en

DGm = �
pf

pi 

 RT
p

 dp = RT �
pf

pi

 dp
p

 = RT ln pf

 pi

We have used the standard integral described in Mathematical toolkit 3.1. 
Finally, with DGm = Gm(pf) − Gm(pi), we get eqn 3.3.

3.3 The variation of Gibbs energy with temperature
To understand why phase transitions, including the denaturation of a biopolymer, 
occur at a specific temperature, we need to know how molar Gibbs energy varies 
with temperature.

For small changes in temperature, we show in the following Justifi cation that the 
change in molar Gibbs energy at constant pressure may be written as

Gm(Tf) = Gm(Ti) − (Tf − Ti)Sm Variation of the Gibbs 
energy with temperature

 (3.4)

Th is expression is valid provided the entropy of the substance is unchanged over 
the range of temperatures of interest.

Justification 3.3 The variation of the Gibbs energy with temperature

Th e starting point for this short derivation is eqn 3.2 in Justifi cation 3.1, which 
we rewrite as the change in molar Gibbs energy when both the pressure and the 
temperature are changed by infi nitesimal amounts:

dGm = Vmdp − SmdT

If we hold the pressure constant, dp = 0, and

dGm = −SmdT

Th is expression is exact. If we suppose that the molar entropy is unchanged in 
the range of temperatures of interest, we can replace the infi nitesimal changes 
by observable changes and so obtain eqn 3.4.

Equation 3.4 tells us that, because molar entropy is positive, an increase in tem-
perature (Tf > Ti) results in a decrease in Gm (Gm(Tf) < Gm(Ti)). Moreover, for a 
given change of temperature, the change in molar Gibbs energy is proportional to 
the molar entropy. For a given substance, because the molar entropy of the gas 
phase is greater than that for a condensed phase, the molar Gibbs energy falls 
more steeply with temperature for a gas than for a condensed phase. Th e molar 
entropy of the liquid phase of a substance is greater than that of its solid phase, so 
the slope is least steep for a solid. Figure 3.3 summarizes these characteristics.

Fig. 3.3 Th e variation of molar 
Gibbs energy with temperature. 
All molar Gibbs energies 
decrease with increasing 
temperature. Th e regions of 
temperature over which the solid, 
liquid, and gaseous forms of a 
substance have the lowest molar 
Gibbs energy are indicated in the 
band at the top of the illustration.
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Figure 3.3 reveals the thermodynamic reason why substances melt and 
vaporize as the temperature is raised. At low temperatures, the solid phase has 
the lowest molar Gibbs energy and is therefore the most stable. However, as the 
temperature is raised, the molar Gibbs energy of the liquid phase falls below 
that of the solid phase and the substance melts. At even higher temperatures, 
the molar Gibbs energy of the vapor plunges down below that of the liquid phase, 
and the vapor becomes the most stable phase. In other words, above a certain 
temperature, the liquid vaporizes.

We can also start to understand why some substances, such as solid carbon 
dioxide, sublime to a vapor without fi rst forming a liquid. Th ere is no funda-
mental requirement for the three lines to lie exactly in the positions we have 
drawn them in Fig. 3.3: the liquid line, for instance, could lie where we have drawn 
it in Fig. 3.4. Now we see that at no temperature (at the given pressure) does the 
liquid phase have the lowest molar Gibbs energy. Such a substance converts spon-
taneously directly from the solid to the vapor. Th at is, the substance sublimes.

Th e transition temperature between two phases, such as between liquid and 
solid or between conformations of a protein, is the temperature, at a given pres-
sure, at which the two phases are in equilibrium and therefore their molar Gibbs 
energies are equal. At 1 atm, for instance, ice and liquid water are in equilibrium 
at 0°C and Gm(H2O,l) = Gm(H2O,s).

As always when using thermodynamic arguments, it is important to keep in 
mind the distinction between the spontaneity of a phase transition and its rate. 
Spontaneity is a tendency, not necessarily an actuality. A phase transition predicted 
to be spontaneous may occur so slowly as to be unimportant in practice. For 
instance, at normal temperatures and pressures the molar Gibbs energy of graph-
ite is 3 kJ mol−1 lower than that of diamond, so there is a thermodynamic tendency 
for diamond to convert into graphite. However, for this transition to take place, 
the carbon atoms of diamond must change their locations, and because the bonds 
between the atoms are so strong and large numbers of bonds must change simul-
taneously, this process is immeasurably slow except at high temperatures. In gases 
and liquids the mobilities of the molecules normally allow phase transitions to 
occur rapidly, but in solids thermodynamic instability may be frozen in and a 
thermodynamically unstable phase may persist for thousands of years. Th e mol-
ecules of liquids are mobile, so this ‘metastability’ is much less likely to occur. 
Nevertheless, even a liquid may persist above its boiling point as a superheated 
liquid if it is heated carefully and there are no so-called nucleation centers, such 
as scratches on the interior of the containing vessel, at which the vapor can form.

3.4 Phase diagrams
To prepare for being able to describe phase transitions in biological macromolecules, 
first we need to explore the conditions for equilibrium between phases of simpler 
substances.

Th e phase diagram of a substance is a map showing the conditions of tem-
perature and pressure at which its various phases are thermodynamically most 
stable (Fig. 3.5). For example, at point A in the illustration, the vapor phase of 
the substance is thermodynamically the most stable, but at C the liquid phase 
is the most stable.

Th e boundaries between regions in a phase diagram, which are called phase 
boundaries, show the values of p and T at which the two neighboring phases are 
in equilibrium. For example, if the system is arranged to have a pressure and 

Fig. 3.4 If the line for the Gibbs 
energy of the liquid phase does 
not cut through the line for the 
solid phase (at a given pressure) 
before the line for the gas phase 
cuts through the line for the solid, 
the liquid is not stable at any 
temperature at that pressure. 
Such a substance sublimes.

Fig. 3.5 A typical phase diagram, 
showing the regions of pressure 
and temperature at which each 
phase is the most stable. Th e 
phase boundaries (three are 
shown here) show the values 
of pressure and temperature at 
which the two phases separated 
by the line are in equilibrium. 
Th e signifi cance of the letters A, 
B, C, D, and E (also referred to in 
Fig. 3.8) is explained in the text.
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temperature represented by point B, then the liquid and its vapor are in equilib-
rium (like liquid water and water vapor at 1 atm and 100°C). If the temperature is 
reduced at constant pressure, the system moves to point C, where the liquid is 
stable (like water at 1 atm and at temperatures between 0°C and 100°C). If the 
temperature is reduced still further to D, then the solid and liquid phases are in 
equilibrium (like ice and water at 1 atm and 0°C). A further reduction in tempera-
ture to E takes the system into the region where the solid is the stable phase.

Any point lying on a phase boundary represents a pressure and temperature at 
which there is a ‘dynamic equilibrium’ between the two adjacent phases. A state of 
dynamic equilibrium is one in which a reverse process is taking place at the same 
rate as the forward process. Although there may be a great deal of activity at a 
molecular level, there is no net change in the bulk properties or appearance of 
the sample. For example, any point on the liquid–vapor boundary represents a 
state of dynamic equilibrium in which vaporization and condensation continue at 
matching rates. Molecules are leaving the surface of the liquid at a certain rate, 
and molecules already in the gas phase are returning to the liquid at the same rate; 
as a result, there is no net change in the number of molecules in the vapor and 
hence no net change in its pressure. Similarly, a point on the solid–liquid curve 
represents conditions of pressure and temperature at which molecules are cease-
lessly breaking away from the surface of the solid and contributing to the liquid. 
However, they are doing so at a rate that exactly matches that at which molecules 
already in the liquid are settling onto the surface of the solid and contributing to 
the solid phase.

(a) Phase boundaries

Th e pressure of a vapor that is in equilibrium with its condensed phase is called 
the vapor pressure of the substance. Vapor pressure increases with temperature 
because, as the temperature is raised, more molecules have suffi  cient energy to 
leave their neighbors in the liquid. To determine the vapor pressure, a small 
amount of liquid can be introduced into the near-vacuum at the top of a mercury 
barometer and the depression of the column measured (Fig. 3.6). To ensure that 
the pressure exerted by the vapor is truly the vapor pressure, enough liquid must 
be added for some to remain aft er the vapor forms, for only then are the liquid 
and vapor phases in equilibrium. Th e temperature can be changed to determine 
another point on the curve, and so on (Fig. 3.7).

Th e plot of the vapor pressure against temperature is also the liquid–vapor 
boundary in a phase diagram. To appreciate that interpretation, suppose we have 
a liquid in a cylinder fi tted with a piston. If at some temperature we apply a pres-
sure greater than the vapor pressure of the liquid, the vapor is eliminated, the 
piston rests on the surface of the liquid, and the system moves to one of the points 
in the ‘liquid’ region of the phase diagram. If instead we reduce the pressure on 
the system to a value below the vapor pressure at that temperature, the system 
moves to one of the points in the ‘vapor’ region of the diagram. At the vapor 
pressure itself, vapor and liquid are in equilibrium, and the state of the system 
is represented by a point on the phase boundary.

Fig. 3.7 Th e experimental 
variation of the vapor pressure 
of water with temperature.

Fig. 3.6 When a small volume of 
water is introduced into the 
vacuum above the mercury in a 
barometer (a), the mercury is 
depressed (b) by an amount that 
is proportional to the vapor 
pressure of the liquid. (c) Th e 
same pressure is observed 
however much liquid is present 
(provided some is present).

Self-test 3.1 What would be observed when a pressure of 50 Torr is applied 
to a sample of water in equilibrium with its vapor at 25°C, when its vapor pres-
sure is 23.8 Torr?

Answer: Th e sample condenses entirely to liquid.
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Th e same approach can be used to plot the solid–vapor boundary, which is a 
graph of the vapor pressure of the solid against temperature. Th e sublimation 
vapor pressure of a solid, the pressure of the vapor in equilibrium with a solid at a 
particular temperature, is usually much lower than that of a liquid because the 
molecules are more strongly bound together in the solid than in the liquid.

A more sophisticated procedure is needed to determine the locations of solid–
solid phase boundaries like that between the diff erent forms of ice, for instance, 
because the transition between two solid phases is more diffi  cult to detect. One 
approach is to use thermal analysis, which takes advantage of the heat released 
during a transition. In a typical thermal analysis experiment, a sample is allowed 
to cool and its temperature is monitored. When the transition occurs, energy is 
released as heat and the cooling stops until the transition is complete (Fig. 3.8). 
Th e transition temperature is obvious from the shape of the graph and is used to 
mark a point on the phase diagram. Th e pressure can then be changed and the 
corresponding transition temperature determined.

(b) The location of phase boundaries

Th ermodynamics provides us with a way of predicting the location of the phase 
boundaries and relating their location and shape to the thermodynamic prop-
erties of the system. For instance, the shape of the vapor pressure curve (the 
liquid–vapor boundary) is related to the enthalpy of vaporization of the liquid.

Suppose two phases, such as liquid and vapor, are in equilibrium at a given 
pressure and temperature. As we have seen, at a given temperature, the pressure 
corresponding to equilibrium is the vapor pressure of the liquid. If we change the 
temperature, the vapor pressure changes to a diff erent value. Th at is, there is a 
relation between the change in temperature, dT, and the accompanying change in 
vapor pressure, dp. If we were considering the equilibrium between a solid and a 
liquid, the focus would be diff erent: in this case we would typically be interested 
in the change in melting point as the pressure is increased. We show in the follow-
ing Justifi cation that the relation between dT and dp that ensures that in either 
case the two phases remain in equilibrium is given by the Clapeyron equation 
for the slope of the phase boundary at any temperature

dp
dT

 = DtrsH
TDtrsV

 Clapeyron equation  (3.5)

where DtrsH is the enthalpy of transition and DtrsV is the volume of transition (the 
change in molar volume that accompanies the transition) at the temperature of 
interest. For the liquid–vapor equilibrium, the equation in the form dp = (DvapH/
TDvapV)dT gives the change in vapor pressure when the temperature is changed; 
for the solid–liquid equilibrium, the equation in the form dT = (TD fusV/D fusH)dp 
gives the change in melting point caused by a change in pressure.

For the solid–liquid phase boundary, the enthalpy of fusion is positive because 
melting is endothermic for all substances of interest in biology. For most sub-
stances, the molar volume increases slightly on melting, so D fusV is positive but 
small. It follows that the melting temperature changes very little when the pres-
sure is changed. In other words, the slope of the phase boundary is large and 
positive (up from left  to right). Water, however, is quite diff erent, for although 
its melting is endothermic, its molar volume decreases on melting (liquid water is 
denser than ice at 0°C, which is why ice fl oats on water), so DfusV is small but nega-
tive. Consequently, an increase in pressure brings about a decrease in the melting 
point of ice.

Fig. 3.8 Th e cooling curve for the 
B–E section of the horizontal 
line in Fig. 3.5. Th e halt at D 
corresponds to the pause in 
cooling while the liquid freezes 
and releases its enthalpy of 
transition. Th e halt lets us locate 
Tf even if the transition cannot 
be observed visually.
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For the liquid–vapor boundary (the vapor pressure curve), both the enthalpy and 
volume of vaporization are invariably positive, so the vapor pressure invariably 
increases with temperature (dp is positive if dT is positive). However, we have to 
be cautious because although the enthalpy of vaporization is not very sensitive 
to temperature, the volume of vaporization depends strongly on the temperature 
(through the eff ect of temperature on the volume of a gas). If we suppose that the 
vapor behaves as a perfect gas, then we show in the following Justifi cation that 
the relation between a change in temperature and a change in vapor pressure is 
given by the Clausius–Clapeyron equation:

d ln p
dT

 = DvapH
RT 2

 Clausius–Clapeyron 
equation  (3.6)

A brief illustration

For water at 1 bar, DfusH3 = 6.008 × 103 J mol−1 and DfusV3 = −1.634 × 10−6 m3 mol−1. 
It follows from eqn 3.5 that at T = 273.15 K, the melting point of ice,

dp
dT

 = 6.008 × 103 J mol−1

(273.15 K) × (−1.634 × 10−6 m3 mol−1)
 = −1.346 × 107 Pa K−1

where we have used 1 Pa = 1 N m−2 and 1 J = 1 N m to write 1 Pa = 1 J m−3. In 
other words, the slope of the ice–water phase boundary is steep but negative 
(down from left  to right).

A brief illustration

For water at 1 bar and 373.2 K (the boiling point of water), DvapH 3 = 4.07 × 
104 J mol−1, and it follows that

d ln p
dT

 = 4.07 × 104 J mol−1

(8.314 J K−1 mol−1) × (373.2 K)2 
 = 3.51 × 10−2 K−1

Th e liquid–vapor boundary of the phase diagram for water has a positive slope, 
and we shall see in Section 3.4(d) that the slope of the liquid–vapor phase 
boundary is much less steep than the slope of the ice–water phase boundary.
 

Justification 3.4 The Clapeyron and Clausius–Clapeyron equations

Th e derivation of the Clapeyron equations is based on eqn 3.2, written as 
dGm = Vmdp − SmdT. At a certain pressure and temperature two phases, which 
we call 1 and 2 but can imagine to be a liquid and a vapor, respectively, are in 
equilibrium and Gm(1) = Gm(2) (Fig. 3.9). When the temperature is changed by 
dT and the pressure changes by dp, the molar Gibbs energies change as follows:

dGm(1) = Vm(1)dp − Sm(1)dT  dGm(2) = Vm(2)dp − Sm(2)dT

Th e two phases are in equilibrium before the change and remain in equilibrium 
aft er the change, so the two changes in molar Gibbs energy must be equal, 
dGm(1) = dGm(2). It follows that

Vm(1)dp − Sm(1)dT = Vm(2)dp − Sm(2)dT

Fig. 3.9 At equilibrium, two 
phases have the same molar 
Gibbs energy. When the 
temperature is changed by dT, 
for the two phases to remain in 
equilibrium, the pressure must 
be changed by dp so that the 
Gibbs energies of the two phases 
remain equal.
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and therefore
{Vm(2) − Vm(1)}dp = {Sm(2) − Sm(1)}dT

With DtrsV = Vm(2) − Vm(1) and DtrsS = Sm(2) − Sm(1), this equation becomes
DtrsVdp = DtrsSdT

or
dp
dT

 = DtrsS
DtrsV 

We saw in Section 2.2 that the transition entropy is related to the enthalpy of tran-
sition by DtrsS = DtrsH/Ttrs, so eqn 3.5 follows immediately. We have dropped 
the ‘trs’ subscript from the temperature in eqn 3.5 because all the points on the 
phase boundary—the only points we are considering in eqn 3.5—are transition 
temperatures.
To move on to the Clausius–Clapeyron equation, we consider the case of vapor-
ization. Because the molar volume of a gas is much larger than the molar volume 
of a liquid, we can replace DvapV  = Vm(g) − Vm(l) by Vm(g) alone and write

dp
dT

 ≈ DvapH
TVm(g)

 

Next, we suppose that the vapor behaves as a perfect gas and write its molar 
volume as Vm(g) = RT/p. Th en

dp
dT

 = DvapH
T(RT/p)

 = pDvapH
RT 2

and therefore
1
p

 dp
dT

 = DvapH
RT 2

A standard result of calculus is d ln x/dx = 1/x, and therefore (by multiplying 
both sides by dx), dx/x = d ln x. In this case, dp/p = d ln p, and eqn 3.6 follows.
 

A note on good practice 
Keep a note of any 
approximations made in a 
derivation, for they limit the 
range of applicability of an 
expression. We have made 
two approximations 
in the derivation of the 
Clausius–Clapeyron equation: 
(1) the molar volume of a gas 
is much greater than that of 
a liquid and (2) the vapor 
behaves as a perfect gas.

 

(c) Characteristic points

We have seen that as the temperature of a liquid is raised, its vapor pressure 
increases. What we observe, however, depends on whether the heating takes place 
in a closed or an open container.

First, consider what we would observe when we heat a liquid in an open vessel. 
At a certain temperature, the vapor pressure becomes equal to the external pres-
sure. At this temperature, the vapor can drive back the surrounding atmosphere 
and expand indefi nitely. Moreover, because there is no constraint on expansion, 
bubbles of vapor can form throughout the body of the liquid, the condition known 
as boiling. Th e temperature at which the vapor pressure of a liquid is equal to the 
external pressure is called the boiling temperature. When the external pressure is 
1 atm, the boiling temperature is called the normal boiling point, Tb. It follows 
that we can predict the normal boiling point of a liquid by noting the temperature 
on the phase diagram at which its vapor pressure is 1 atm.

Now consider what happens when we heat the liquid in a closed vessel. Because 
the vapor cannot escape, its density increases as the vapor pressure rises and 
in due course the density of the vapor becomes equal to that of the remaining 
liquid. At this stage the surface between the two phases disappears (Fig. 3.10). 

Fig. 3.10 When a liquid is heated 
in a sealed container, the density 
of the vapor phase increases and 
that of the liquid phase decreases, 
as depicted here by the changing 
density of shading. Th ere comes a 
stage at which the two densities 
are equal and the interface 
between the two fl uids 
disappears. Th is disappearance 
occurs at the critical temperature. 
Th e container needs to be strong: 
the critical temperature of water 
is at 373°C and the vapor pressure 
is then 218 atm.
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Th e temperature at which the surface disappears is the critical temperature, Tc. 
Th e vapor pressure at the critical temperature is called the critical pressure, pc, 
and the critical temperature and critical pressure together identify the critical 
point of the substance (see Table 3.1). If we exert pressure on a sample that is 
above its critical temperature, we produce a denser fl uid. However, no surface 
appears to separate the two parts of the sample and a single uniform phase, a 
supercritical fl uid, continues to fi ll the container. Th at is, we have to conclude 
that a liquid cannot be produced by the application of pressure to a substance if it is 
at or above its critical temperature. Th at is why the liquid–vapor boundary in a 
phase diagram terminates at the critical point (Fig. 3.11). A supercritical fl uid is 
not a true liquid, but it behaves like a liquid in many respects—for example, it has 
a density similar to that of a liquid.

Table 3.1 Critical constants*

pc/atm Vc/(cm3 mol−1) Tc/K

Ammonia, NH3 111  73 406
Argon, Ar  48  75 151
Benzene, C6H6  49 260 563
Carbon dioxide, CO2  73  94 304
Hydrogen, H2  13  65  33
Methane, CH4  46  99 191
Oxygen, O2  50  78 155
Water, H2O 218  55 647

*Th e critical volume, Vc, is the molar volume at the critical pressure and critical volume.

Fig. 3.11 Th e signifi cant points of a 
phase diagram. Th e liquid–vapor 
phase boundary terminates at the 
critical point. At the triple point, 
solid, liquid, and vapor are 
in dynamic equilibrium. Th e 
normal freezing point is the 
temperature at which the liquid 
freezes when the pressure is 
1 atm; the normal boiling point 
is the temperature at which the 
vapor pressure of the liquid 
is 1 atm.

A brief illustration

Supercritical carbon dioxide, scCO2, is the center of attention for an increasing 
number of solvent-based processes. Th e critical temperature of CO2, 304.2 K 
(31.0°C) and its critical pressure, 72.9 atm, are readily accessible, it is cheap, 
and it can readily be recycled. A great advantage of scCO2 is that there are no 
noxious residues once the solvent has been allowed to evaporate, so, coupled 
with its low critical temperature, scCO2 is ideally suited to food processing and 
the production of pharmaceuticals. It is used, for instance, to remove caff eine 
from coff ee or fats from milk. Th e supercritical fl uid is also increasingly being 
used for dry cleaning, which avoids the use of carcinogenic and environ-
mentally damaging chlorinated hydrocarbons.

Th e temperature at which the liquid and solid phases of a substance coexist 
in equilibrium at a specifi ed pressure is called the melting temperature of the 
substance. Because a substance melts at the same temperature as it freezes, the 
melting temperature is the same as the freezing temperature. Th e solid–liquid 
boundary therefore shows how the melting temperature of a solid varies with 
pressure.
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Th e melting temperature when the pressure on the sample is 1 atm is called the 
normal melting point or the normal freezing point, Tf. A liquid freezes when 
the energy of the molecules in the liquid is so low that they cannot escape from 
the attractive forces of their neighbors and lose their mobility.

Th ere is a set of conditions under which three diff erent phases (typically solid, 
liquid, and vapor) all simultaneously coexist in equilibrium. It is represented by 
the triple point, where the three phase boundaries meet. Th e triple point of a pure 
substance is a characteristic, unchangeable physical property of the substance. 
For water the triple point lies at 273.16 K and 611 Pa, and ice, liquid water, and 
water vapor coexist in equilibrium at no other combination of pressure and tem-
perature.1 At the triple point, the rates of each forward and reverse process are 
equal (but the three individual rates are not necessarily the same).

Th e triple point and the critical point are important features of a substance 
because they act as frontier posts for the existence of the liquid phase. As we see 
from Fig. 3.12a, if the slope of the solid-liquid phase boundary is as shown in the 
diagram:

Th e triple point marks the lowest temperature at which the liquid can exist.
Th e critical point marks the highest temperature at which the liquid can exist.

We shall see in the following section that for water, the solid–liquid phase 
boundary slopes in the opposite direction, and then only the second of these 
conclusions is relevant (see Fig. 3.12b).

(d) The phase diagram of water

Figure 3.13 is the phase diagram for water. Th e liquid–vapor phase boundary 
shows how the vapor pressure of liquid water varies with temperature. We can use 
this curve to decide how the boiling temperature varies with changing external 
pressure. For example, when the external pressure is 149 Torr (at an altitude of 
12 km), water boils at 60°C because that is the temperature at which the vapor 
pressure is 149 Torr (19.9 kPa).

Th e solid–liquid boundary line in Fig. 3.14 shows how the melting temperature 
of water depends on the pressure. For example, although ice melts at 0°C at 1 atm, 
it melts at −1°C when the pressure is 130 atm. Th e very steep slope of the bound-
ary indicates that enormous pressures are needed to bring about signifi cant 
changes. Notice that the line slopes down from left  to right, which—as we 
anticipated—means that the melting temperature of ice falls as the pressure is 
raised. We can trace the reason for this unusual behavior to the decrease in 
volume that occurs when ice melts: it is favorable for the solid to transform into 
the denser liquid as the pressure is raised. Th e decrease in volume is a result of 
the very open structure of the crystal structure of ice: as shown in Fig. 3.15, the 
water molecules are held apart, as well as together, by the hydrogen bonds between 
them, but the structure partially collapses on melting and the liquid is denser 
than the solid.

Figure 3.13 shows that water has one liquid phase but many diff erent solid 
phases other than ordinary ice (‘ice I’, shown in Fig. 3.15). Th ese solid phases 
diff er in the arrangement of the water molecules: under the infl uence of very 
high pressures, hydrogen bonds buckle and the H2O molecules adopt diff erent 

Fig. 3.12 (a) For substances that 
have phase diagrams resembling 
the one shown here (which is 
common for most substances, 
with the important exception of 
water), the triple point and the 
critical point mark the range of 
temperatures over which the 
substance can exist as a liquid. 
Th e shaded areas show the 
regions of temperature in which 
a liquid cannot exist as a stable 
phase. (b) A liquid cannot exist as 
a stable phase if the pressure is 
below that of the triple point for 
normal or anomalous liquids.

1 Th e triple point of water is used to defi ne the Kelvin scale of temperatures: the triple point is 
defi ned as lying at 273.16 K exactly. Th e normal freezing point of water is found experimentally to lie 
approximately 0.01 K below the triple point, at very close to 273.15 K.
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arrangements. Th ese polymorphs, or diff erent solid phases, of ice may be respon-
sible for the advance of glaciers, for ice at the bottom of glaciers experiences very 
high pressures where it rests on jagged rocks. Th e sudden apparent explosion of 
Halley’s comet in 1991 may have been due to the conversion of one form of ice 
into another in its interior. Figure 3.13 also shows that four or more phases of 
water (such as two solid forms, liquid, and vapor) are never in equilibrium. Th is 
observation is justifi ed and generalized to all substances by the phase rule, which 
is derived in Further information 3.1.

Phase transitions in biopolymers 
and aggregates

In Fundamentals F.1 and Chapter 2 we saw that proteins and biological mem-
branes can exist in ordered structures stabilized by a variety of molecular inter-
actions, such as hydrogen bonds and hydrophobic interactions. However, when 
certain conditions are changed, the helical and sheet structures of a polypeptide 
chain may collapse into a random coil and the hydrocarbon chains in the interior 
of bilayer membranes may become more or less fl exible. Th ese structural changes 
may be regarded as phase transitions in which molecular interactions in compact 
phases are disrupted at characteristic transition temperatures to yield phases in 
which the atoms can move more randomly.

3.5 The stability of nucleic acids and proteins
To understand melting of proteins and nucleic acids at specific transition 
temperatures, we need to explore quantitatively the effect of intermolecular 
interactions on the stability of compact conformations of biopolymers.

Fig. 3.15 Th e structure of ice I. 
Each O atom is at the center of a 
tetrahedron of four O atoms at a 
distance of 276 pm. Th e central 
O atom is attached by two short 
O–H bonds to two H atoms and 
by two long hydrogen bonds 
to the H atoms of two of the 
neighboring molecules. Overall, 
the structure consists of planes of 
puckered hexagonal rings of H2O 
molecules (like the chair form 
of cyclohexane). Th is structure 
collapses partially on melting, 
leading to a liquid that is denser 
than the solid.

Fig. 3.13 Th e phase diagram for water showing the diff erent solid phases. Fig. 3.14 Th e solid–liquid boundary 
of water in more detail. Th e graph 
is schematic and not to scale.
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From In the laboratory 1.1 we learned that the thermal denaturation of a biopoly-
mer may be thought of as a kind of intramolecular melting from an organized 
structure to a fl exible coil. Th is melting occurs at a specifi c melting temperature, 
Tm, which increases with the strength and number of intramolecular and inter-
molecular interactions in the material. Denaturation is a cooperative process 
in the sense that the biopolymer becomes increasingly more susceptible to dena-
turation once the process begins. Th is cooperativity is observed as a sharp step 
in a plot of fraction of unfolded polymer against temperature (Fig. 3.16). Th e 
melting temperature, Tm, is the temperature at which the fraction of unfolded 
polymer is 0.5.

Closer examination of thermal denaturation reveals some of the chemical fac-
tors that determine protein and nucleic acid stability. For example, the thermal 
stability of DNA increases with the number of C–G base pairs in the sequence 
because each C–G base pair has three hydrogen bonds (1), whereas each T–A 
base pair has only two (2). More energy is required to unravel a double helix that 
has a higher proportion of hydrogen bonding interactions per base pair.

Fig. 3.16 A protein unfolds as 
the temperature of the sample 
increases. Th e sharp step in the 
plot of fraction of unfolded 
protein against temperature 
indicates that the transition 
is cooperative. Th e melting 
temperature, Tm, is the 
temperature at which the fraction 
of unfolded polymer is 0.5.

A note on good practice 
In this example we do not 
have a good theory to guide 
us in the choice of a 
mathematical model to 
describe the behavior of the 
system over a wide range of 
parameters. We are limited to 
fi nding a purely empirical 
relation—in this case a simple 
fi rst-order polynomial 
equation—that fi ts the 
available data. It follows that 
we should not attempt to 
predict the property of a 
system that falls outside the 
narrow range of the data used 
to generate the fi t because the 
mathematical model may 
have to be enhanced (for 
example, by using higher-
order polynomial equations) 
to describe the system over a 
wider range of conditions. In 
the present case, we should 
not attempt to predict the Tm 
of DNA molecules outside the 
range 0.375 < f < 0.750.

 

Example 3.1 Predicting the melting temperature of DNA

Th e melting temperature of a DNA molecule can be determined by diff erential 
scanning calorimetry (In the laboratory 1.1). Th e following data were obtained 
in 0.010 m Na3PO4(aq) for a series of DNA molecules with varying base pair 
composition, with f the fraction of C–G base pairs:

f 0.375 0.509 0.589 0.688 0.750
Tm/K 339 344 348 351 354

Estimate the melting temperature of a DNA molecule containing 40.0 per cent 
C–G base pairs.

Strategy We need to look for a quantitative relation between the melting tem-
perature and the composition of DNA. We can begin by plotting Tm against 
fraction of C–G base pairs and examining the shape of the curve. If visual 
inspection of the plot suggests a linear relation, then the melting point at any 
composition can be predicted from the equation of the line that fi ts the data.

Solution Figure 3.17 shows that Tm varies linearly with the fraction of C–G 
base pairs, at least in this range of composition. Th e equation of the line that 
fi ts the data is

Tm/K = 325 + 39.7f

It follows that Tm = 341 K for 40.0 per cent C–G base pairs (at f = 0.400).
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Example 3.1 and Self-test 3.2 reveal that DNA is rather stable toward thermal 
denaturation, with Tm values ranging from about 340 K to 375 K, which is signifi c-
antly higher than body temperature (310 K). Th e data also show that increasing 
the concentration of ions in solution increases the melting temperature of DNA. 
Th e stabilizing eff ect of ions can be traced to the fact that DNA has negatively 
charged phosphate groups decorating its surface. When the concentration of ions 
in solution is low, repulsive Coulomb interactions between neighboring phos-
phate groups destabilize the double helix and lower the melting temperature. 
On the other hand, positive ions, such as the Na+ ions in Self-test 3.2, bind 
electrostatically to the surface of DNA and mitigate repulsive interactions between 
phosphate groups. Th e result is stabilization of the double helical conformation 
and an increase in Tm.

In contrast to DNA, proteins are relatively unstable toward thermal denatur-
ation. For example, Tm = 320 K for ribonuclease T1 (an enzyme that cleaves 
RNA in the cell), which is close to body temperature. More surprisingly, the 
Gibbs energy for the unfolding of ribonuclease T1 at pH = 7.0 and 298 K is only 
+22.5 kJ mol−1, which is comparable to the energy required to break a single 
hydrogen bond (about 20 kJ mol−1) despite the fact that the formation of helices 
and sheets in proteins requires many hydrogen bonds. Th erefore, unlike DNA, 
the stability of a protein does not increase in a simple way with the number of 
hydrogen bonding interactions. Although the reasons for the low stability of pro-
teins are not known, the answer probably lies in a delicate balance of all intra- and 
intermolecular interactions that allow a protein to fold into its active conforma-
tion (Chapter 11).

3.6 Phase transitions of biological membranes
To understand why cell membranes are sufficiently rigid to encase life’s molecular 
machines while being flexible enough to allow for cell division, we need to explore 
the factors that determine the melting temperatures of lipid bilayers.

All lipid bilayers undergo a transition from a state of high to low chain mobility at 
a temperature that depends on the structure of the lipid. To visualize the transi-
tion, we consider what happens to a membrane as we lower its temperature 
(Fig. 3.18). Th ere is suffi  cient energy available at normal temperatures for limited 
bond rotation to occur and the fl exible chains to writhe around. However, the 
membrane is still highly organized in the sense that the bilayer structure does not 
come apart and the system is best described as a liquid crystal, a substance having 
liquid-like, imperfect long-range order in at least one direction in space but posi-
tional or orientational order in at least one other direction (Fig. 3.18a). At lower 
temperatures, the amplitudes of the writhing motion decrease until a specifi c 
temperature is reached at which motion is largely frozen. Th e membrane is then 

Fig. 3.17 Data for Example 3.1 
showing the variation of the 
melting temperature of DNA 
molecules with the fraction of 
C–G base pairs. All the samples 
also contain 1.0 × 10−2 mol dm−3 
Na3PO4.

Fig. 3.18 A depiction of the 
variation with temperature 
of the fl exibility of hydrocarbon 
chains in a lipid bilayer. (a) At 
physiological temperature, the 
bilayer exists as a liquid crystal, 
in which some order exists but 
the chains writhe. (b) At a specifi c 
temperature, the chains are 
largely frozen and the bilayer 
is said to exist as a gel.

Self-test 3.2 Th e following calorimetric data were obtained in solutions 
containing 0.15 m NaCl(aq) for the same series of DNA molecules studied in 
Example 3.1. Estimate the melting temperature of a DNA molecule containing 
40.0 per cent C–G base pairs under these conditions.

f 0.375 0.509 0.589 0.688 0.750
Tm/K 359 364 368 371 374

Answer: 360 K
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said to exist as a gel (Fig. 3.18b). Biological membranes exist as liquid crystals at 
physiological temperatures.

Phase transitions in membranes are oft en observed as ‘melting’ from gel to 
liquid crystal by diff erential scanning calorimetry (In the laboratory 1.1). Th e data 
show relations between the structure of the lipid and the melting temperature. 
For example, the melting temperature increases with the length of the hydropho-
bic chain of the lipid. Th is correlation is reasonable, as we expect longer chains to 
be held together more strongly by hydrophobic interactions than shorter chains 
(Section 2.7). It follows that stabilization of the gel phase in the membranes of 
lipids with long chains results in relatively high melting temperatures. On the 
other hand, any structural elements that prevent alignment of the hydrophobic 
chains in the gel phase lead to low melting temperatures. Indeed, lipids contain-
ing unsaturated chains, those containing some C=C bonds, form membranes 
with lower melting temperatures than those formed from lipids with fully satur-
ated chains, those consisting of C–C bonds only.

Interspersed among the phospholipids of biological membranes are sterols, 
such as cholesterol (Atlas L1), which is largely hydrophobic but does contain a 
hydrophilic –OH group. Sterols, which are present in diff erent proportions in 
diff erent types of cells, prevent the hydrophobic chains of lipids from ‘freezing’ 
into a gel and, by disrupting the packing of the chains, spread the melting point 
of the membrane over a range of temperatures.

Fig. 3.19 An example of a 
temperature–composition 
diagram showing denaturation 
of a protein in a native phase 
into molten globule and 
fully unfolded phases. Th e 
concentrations marked x and y 
will be used in Exercise 3.39.

Case study 3.1 The use of phase diagrams in the study of proteins

As in the discussion of pure substances, the phase diagram of a mixture shows 
which phase is most stable for the given conditions. However, composition is 
now a variable in addition to the pressure and temperature. Phase equilibria in 
binary mixtures may be explored by collecting data at constant pressure and 
displaying the results as a temperature–composition diagram, in which one 
axis is the temperature and the other axis is the mole fraction or concentration.

Temperature–composition diagrams may be used to characterize intermedi-
ates in the unfolding of a protein caused by denaturation with a chemical agent. 
For example, urea, CO(NH2)2, competes for NH and CO groups, interferes 
with hydrogen bonding in a polypeptide, and disrupts the intramolecular 
interactions responsible for its native three-dimensional conformation. 
A temperature–composition diagram, such as the idealized form shown in 
Fig. 3.19, can reveal conditions under which diff erent forms of the polypeptide 
can exist. Th e idealized diagram shows three structural regions, or phases: the 
native form, the unfolded form, and a ‘molten globule’ form, a partially unfolded 
but still compact form of the protein. As usual, two phases in equilibrium 

Self-test 3.3 Organisms are capable of biosynthesizing lipids of diff erent 
composition so that cell membranes have melting temperatures close to the 
ambient temperature. Why do bacterial and plant cells grown at low tempera-
tures synthesize more phospholipids with unsaturated chains than do cells 
grown at higher temperatures?

Answer: Insertion of lipids with unsaturated chains lowers the plasma membrane’s 
melting temperature to a value that is close to the lower ambient temperature.
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defi ne a line in the diagram, and a point represents a unique set of conditions 
under which the three phases are in equilibrium.

In another type of phase diagram, the mole fraction or concentration of one 
component of a mixture is plotted against the mole fraction or concentration 
of another component, and experiments are conducted at constant tempera-
ture and pressure. Phase diagrams so constructed help biochemists fi nd condi-
tions under which a protein may form an ordered crystal amenable to study by 
X-ray diff raction techniques, which can reveal the three-dimensional arrange-
ment of atoms in biological assemblies (see the Prologue and Chapter 11). 
A common crystallization technique for charged proteins consists of adding 
large amounts of a salt, such as (NH4)2SO4, to a buff er solution containing the 
biopolymer. Th e increase in the ionic strength of the solution decreases 
the solubility of the protein to such an extent that the protein precipitates. Th e 
idealized phase diagram in Fig. 3.20 shows that ordered crystals precipitate 
over a relatively narrow range of protein and salt concentrations. Precise 
knowledge of crystallization conditions is a key to the reproducibility of X-ray 
diff raction experiments.
 

Fig. 3.20 An example of a phase 
diagram in which the mole 
fraction of a precipitant, 
a substance that causes 
precipitation, is plotted against 
the mole fraction of a protein. 
Th e data help biochemists fi nd 
conditions under which a protein 
crystallizes. The thermodynamic description of mixtures

We now leave pure materials and the limited but important changes they can 
undergo and examine mixtures. We shall consider only homogeneous mixtures, 
or solutions, in which the composition is uniform however small the sample. Th e 
component in smaller abundance is called the solute and that in larger abundance 
is the solvent. Th ese terms, however, are normally but not invariably reserved for 
solids dissolved in liquids; one liquid mixed with another is normally called sim-
ply a ‘mixture’ of the two liquids. In this chapter we consider mainly nonelectro-
lyte solutions, where the solute is not present as ions. Examples are sucrose 
dissolved in water, sulfur dissolved in carbon disulfi de, and a mixture of ethanol 
and water. Although we also consider some of the special problems of electrolyte 
solutions, in which the solute consists of ions that interact strongly with one 
another, we defer a full study until Chapter 5. Th e measures of concentration com-
monly encountered in physical chemistry are reviewed in Further information 3.2.

3.7 The chemical potential
To assess the spontaneity of a biological process involving a mixture, we need to 
know how to compute the contribution of each substance to the total Gibbs energy 
of the mixture.

A partial molar property is the contribution (per mole) that a substance makes to 
an overall property of a mixture. Th e most important partial molar property for 
our purposes is the partial molar Gibbs energy, GJ,m, of a substance J, which is the 
contribution of J (per mole of J) to the total Gibbs energy of a mixture. It follows 
that if we know the partial molar Gibbs energies of two substances A and B in a 
mixture of a given composition, then we can calculate the total Gibbs energy of 
the mixture by using

G = nAGA,m + nBGB,m (3.7)
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To gain insight into the signifi cance of the partial molar Gibbs energy, consider 
a mixture of ethanol and water. Ethanol has a particular partial molar Gibbs 
energy when it is pure (and every molecule is surrounded by other ethanol 
molecules), and it has a diff erent partial molar Gibbs energy when it is in an 
aqueous solution of a certain composition (because then each ethanol molecule 
is surrounded by a mixture of ethanol and water molecules).

Th e partial molar Gibbs energy is so important in chemistry that it is given a 
special name and symbol. From now on, we shall call it the chemical potential 
and denote it m (mu). Th en eqn 3.7 becomes

G = nAmA + nBmB (3.8)

where mA is the chemical potential of A in the mixture and mB is the chemical 
potential of B. In the course of this chapter and the next we shall see that the name 
‘chemical potential’ is very appropriate, for it will become clear that mJ is a mea-
sure of the ability of J to bring about physical and chemical change. A substance 
with a high chemical potential has a high ability, in a sense we shall explore, to 
drive a reaction or some other physical process forward.

We saw in Section 3.1 that the molar Gibbs energy of a pure substance is the 
same in all the phases at equilibrium. We can use the same argument to show 
in the following Justifi cation that a system is at equilibrium when the chemical 
potential of each substance has the same value in every phase in which it occurs. 
We can think of the chemical potential as the pushing power of each substance, 
and equilibrium is reached only when each substance pushes with the same 
strength in any phase it occupies.

Justification 3.5 The uniformity of chemical potential

Suppose a substance J occurs in diff erent phases in diff erent regions of a sys-
tem. For instance, we might have a liquid mixture of ethanol and water and a 
mixture of their vapors. Let the substance J have chemical potential mJ(l) in the 
liquid mixture and mJ(g) in the vapor. We could imagine an infi nitesimal 
amount, dnJ, of J migrating from the liquid to the vapor. As a result, the Gibbs 
energy of the liquid phase falls by mJ(l)dnJ and that of the vapor rises by mJ(g)
dnJ. Th e net change in Gibbs energy is

dG = mJ(g)dnJ − mJ(l)dnJ = {mJ(g) − mJ(l)}dnJ

Th ere is no tendency for this migration (and the reverse process, migration from 
the vapor to the liquid) to occur, and the system is at equilibrium if dG = 0, which 
requires that mJ(g) = mJ(l). Th e argument applies to each component of the sys-
tem. Th erefore, for a substance to be at equilibrium throughout the system, 
its chemical potential must be the same everywhere, as asserted in the text.

3.8 Ideal and ideal–dilute solutions
Because in biochemistry we are concerned primarily with liquid solutions, we need 
expressions for the chemical potentials of solutes and solvents.

We need an explicit formula for the variation of the chemical potential of a sub-
stance with the composition of the mixture. Here we use the strategy mentioned 
at the start of the chapter: we begin by considering the chemical potential of a gas, 
not because gases are particularly interesting in biology but because we can use 
the resulting expression to derive results for solutions.
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(a) The chemical potential of a gas

Our starting point is eqn 3.3, Gm(pf) = Gm(pi) + RT ln(pf/pi), which shows how 
the molar Gibbs energy of a perfect gas depends on pressure. First, we set pf = p, 
the pressure of interest, and pi = p3, the standard pressure (1 bar). At the latter 
pressure, the molar Gibbs energy has its standard value, G3

m, so we can write

Gm(p) = G3
m + RT ln(p/p3) (3.9)

Next, for a mixture of perfect gases, we interpret p as the partial pressure of the 
gas, and Gm is the partial molar Gibbs energy, the chemical potential. Th erefore, 
for a mixture of perfect gases, for each component J present at a partial pressure pJ,

mJ = mJ
3 + RT ln(pJ/p3) (3.10a)

In this expression, mJ
3 is the standard chemical potential of the gas J, which is 

identical to its standard molar Gibbs energy, the value of Gm for the pure gas at 
1 bar. If we adopt the convention that, whenever pJ appears in a formula, it is to be 
interpreted as pJ/p3 (so, if the pressure is 2.0 bar, pJ = 2.0), we can write eqn 3.10a 
more simply as

mJ = mJ
3 + RT ln pJ (3.10b)

Figure 3.21 illustrates the pressure dependence of the chemical potential of a 
perfect gas predicted by this equation. Note that the chemical potential becomes 
negatively infi nite as the pressure tends to zero, rises to its standard value at 1 bar 
(because ln 1 = 0), and then increases slowly (logarithmically, as ln p) as the pres-
sure is increased further.

Equation 3.10 tells us that the higher the partial pressure of a gas, the higher its 
chemical potential. Th is conclusion is consistent with the interpretation of the 
chemical potential as an indication of the potential of a substance to be active 
chemically: the higher the partial pressure, the more active chemically the spe-
cies. In this instance the chemical potential represents the tendency of the 
substance to react when it is in its standard state (the signifi cance of the term m3) 
plus an additional tendency that refl ects whether it is at a diff erent pressure. A 
higher partial pressure gives a substance more chemical ‘punch’, just like winding 
a spring gives a spring more physical punch (that is, enables it to do more work).

Self-test 3.4 Suppose that the partial pressure of a perfect gas falls from 
1.00 bar to 0.50 bar as it is consumed in a reaction at 25°C. What is the change 
in chemical potential of the substance?

Answer: −1.7 kJ mol−1

(b) The chemical potential of a solvent

We can anticipate that the chemical potential of a species ought to increase with 
concentration because the higher its concentration, the greater its chemical 
‘punch’. In the following, we use J to denote a substance in general, A to denote a 
solvent, and B to denote a solute.

Th e key to linking the properties of a solution to those of a gas and setting up an 
expression for the chemical potential of a solute is the work done by the French 
chemist François Raoult (1830–1901), who spent most of his life measuring the 
vapor pressures of solutions. He measured the partial vapor pressure, pJ, of each 
component in the mixture, the partial pressure of the vapor of each component in 

Fig. 3.21 Th e variation with partial 
pressure of the chemical potential 
of a perfect gas. Note that the 
chemical potential increases with 
pressure.
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Th e molecular origin of Raoult’s law is the eff ect of the solute on the entropy of 
the solution. Th e entropy of the solvent arises from the random locations and the 
thermal motion of its molecules. Th e vapor pressure then represents the tendency 
of the system and its surroundings to reach a higher entropy. When a solute is 
present, the molecules in the solution are more dispersed than in the pure solvent, 
so we cannot be sure that a molecule chosen at random will be a solvent molecule 
(Fig. 3.23). Because the entropy of the solution is higher than that of the pure 
solvent, the solution has a lower tendency to acquire an even higher entropy by 
the solvent vaporizing. In other words, the vapor pressure of the solvent in the 
solution is lower than that of the pure solvent.

A hypothetical solution of a solute B in a solvent A that obeys Raoult’s 
law throughout the composition range from pure A to pure B is called an ideal 
solution. Th e law is most reliable when the components of a mixture have 
similar molecular shapes and are held together in the liquid by similar types and 
strengths of intermolecular forces. An example is a mixture of two structurally 
similar hydrocarbons. A mixture of benzene and methylbenzene (toluene) is a 
good approximation to an ideal solution, for the partial vapor pressure of each 
component satisfi es Raoult’s law reasonably well throughout the composition 
range from pure benzene to pure methylbenzene (Fig. 3.24).

Fig. 3.22 Th e partial vapor 
pressures of the two components 
of an ideal binary mixture are 
proportional to the mole 
fractions of the components in 
the liquid. Th e total pressure of 
the vapor is the sum of the two 
partial vapor pressures.

A brief illustration

When the mole fraction of water in an aqueous solution is 0.90, then, provided 
Raoult’s law is obeyed, the partial vapor pressure of the water in the solution is 
90 per cent that of pure water. Th is conclusion is approximately true whatever 
the identity of the solute and the solvent (Fig. 3.22).

Fig. 3.23 (a) In a pure liquid, we can be confi dent that any molecule selected from the 
sample is a solvent molecule. (b) When a solute is present, we cannot be sure that blind 
selection will give a solvent molecule, so the entropy of the system is greater than in the 
absence of the solute.

dynamic equilibrium with the liquid mixture, and established what is now called 
Raoult’s law:

Th e partial vapor pressure of a substance in a liquid 
mixture is proportional to its mole fraction in the 
mixture and its vapor pressure when pure: pJ = xJp J*  Raoult’s law  (3.11)

In this expression, p J* is the vapor pressure of the pure substance.

Fig. 3.24 Two similar substances, 
in this case benzene and 
methylbenzene (toluene), behave 
almost ideally and have vapor 
pressures that closely resemble 
those for the ideal case depicted 
in Fig. 3.22.
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No mixture is perfectly ideal, and all real mixtures show deviations from 
Raoult’s law. However, the deviations are small for the component of the mixture 
that is in large excess (the solvent) and become smaller as the concentration 
of solute decreases (Fig. 3.25). We can usually be confi dent that Raoult’s law is 
reliable for the solvent when the solution is very dilute. More formally, Raoult’s 
law is a limiting law (like the perfect gas law) and is strictly valid only at the limit 
of zero concentration of solute.

Th e theoretical importance of Raoult’s law is that, because it relates vapor pres-
sure to composition and we know how to relate pressure to chemical potential, 
we can use the law to relate chemical potential to the composition of a solution. 
As we show in the following Justifi cation, the chemical potential of a solvent A 
present in solution at a mole fraction xA is

mA = mA* + RT ln xA Chemical potential of the 
solvent in an ideal solution

 (3.12)

where mA* is the chemical potential of pure A. Th is expression is valid through-
out the concentration range for either component of a binary ideal solution. It 
is valid for the solvent of a real solution the closer the composition approaches 
pure solvent (pure A).

Justification 3.6 The chemical potential of a solvent

When a solvent A in a solution is in equilibrium with its vapor at a partial pres-
sure pA, the chemical potentials of the two phases are equal and we can write 
mA(l) = mA(g) (Fig. 3.26). However, we have just derived an expression for the 
chemical potential of a vapor, eqn 3.10, so at equilibrium

mA(l) = m3
A(g) + RT ln pA

According to Raoult’s law, pA = xApA*, so we can use the relation ln(xy) = 
ln x + ln y to write

mA(l) = m3
A(g) + RT ln (xApA*) = m3

A(g) + RT ln pA* + RT ln xA

Th e fi rst two terms on the right, m3
A(g) and RT ln pA*, are independent of the 

composition of the mixture and can be combined into the constant mA*, the 
chemical potential of pure liquid A. Equation 3.12 then follows.

Figure 3.27 shows the variation of the chemical potential of the solvent pre-
dicted by this expression. Note that the chemical potential has its pure value at 
xA = 1 (when only A is present). Th e essential feature of eqn 3.12 is that because 
xA < 1 implies that ln xA < 0, the chemical potential of a solvent is lower in a solu-
tion than when it is pure. Provided the solution is almost ideal, a solvent in 
which a solute is present has less chemical ‘punch’ (including a lower ability to 
generate a vapor pressure) than when it is pure.

Fig. 3.25 Strong deviations from 
ideality are shown by dissimilar 
substances, in this case carbon 
disulfi de and acetone 
(propanone). Note, however, 
that Raoult’s law is obeyed by 
propanone when only a small 
amount of carbon disulfi de is 
present (on the left ) and by 
carbon disulfi de when only a 
small amount of propanone 
is present (on the right).

A note on good practice 
An asterisk (*) denotes a pure 
substance, but not one that 
is necessarily in its standard 
state. Only if the pressure is 
1 bar would mA* be the standard 
chemical potential of A, and it 
would then be written as m3

A.
 

Self-test 3.5 By how much is the chemical potential of benzene reduced at 
25°C by a solute that is present at a mole fraction of 0.10?

Answer: 0.26 kJ mol−1

(c) The chemical potential of a solute

Raoult’s law provides a good description of the vapor pressure of the solvent in a 
very dilute solution, when the solvent A is almost pure. However, we cannot in 
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general expect it to be a good description of the vapor pressure of the solute B 
because a solute in dilute solution is very far from being pure. In a dilute solution, 
each solute molecule is surrounded by nearly pure solvent, so its environment is 
quite unlike that in the pure solute, and except when solute and solvent are very 
similar (such as benzene and methylbenzene), it is very unlikely that the vapor 
pressure of the solute will be related in a simple manner to the vapor pressure of 
the pure solute. However, it is found experimentally that in dilute solutions, the 
vapor pressure of the solute is in fact proportional to its mole fraction, just as for 
the solvent. Unlike the solvent, however, the constant of proportionality is not in 
general the vapor pressure of the pure solute. Th is linear but diff erent dependence 
was discovered by the English chemist William Henry (1774–1836) and is sum-
marized as Henry’s law:

Th e vapor pressure of a volatile solute B is proportional 
to its mole fraction in a solution: pB = K ′HxB Henry’s law  (3.13)

Here K ′H, which is called Henry’s law constant, is characteristic of the solute 
and chosen so that the straight line predicted by eqn 3.13 is tangent to the experi-
mental curve at xB = 0 (Fig. 3.28). Henry’s law is usually obeyed only at low con-
centrations of the solute (close to xB = 0). Solutions that are dilute enough for the 
solute to obey Henry’s law are called ideal–dilute solutions.

Th e Henry’s law constants of some gases are listed in Table 3.2. Th e values given 
there are for the law rewritten to show how the molar concentration depends on 
the partial pressure, rather than vice versa:

[J] = KHpJ Another version of Henry’s law  (3.14)

Fig. 3.27 Th e variation of the chemical potential 
of the solvent with the composition of the 
solution. Note that the chemical potential of 
the solvent is lower in the mixture than for the 
pure liquid (for an ideal system). Th is behavior 
is likely to be shown by a dilute solution in 
which the solvent is almost pure (and obeys 
Raoult’s law).

Fig. 3.28 When a component (the 
solvent) is almost pure, it behaves 
in accord with Raoult’s law and 
has a vapor pressure that is 
proportional to the mole fraction 
in the liquid mixture and a slope 
p*, the vapor pressure of the 
pure substance. When the 
same substance is the minor 
component (the solute), its vapor 
pressure is still proportional to its 
mole fraction, but the constant 
of proportionality is now K ′H.

Fig. 3.26 At equilibrium, the chemical 
potential of a substance in its liquid 
phase is equal to the chemical 
potential of the substance in its 
vapor phase.

Table 3.2 Henry’s law constants 
for gases dissolved in water 
at 25°C

KH/
(mol m−3 kPa−1)

Carbon dioxide, 
CO2

3.39 × 10−1

Hydrogen, H2 7.78 × 10−3

Methane, CH4 1.48 × 10−2

Nitrogen, N2 6.48 × 10−3

Oxygen, O2 1.30 × 10−2
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Henry’s law lets us write an expression for the chemical potential of a solute in 
a solution. We show in the following Justifi cation that the chemical potential of 
the solute when it is present at a mole fraction xB is

mB = mB* + RT ln xB Chemical potential of the solute 
in terms of the mole fraction

 (3.15)

Th is expression, which is illustrated in Fig. 3.29, applies when Henry’s law is valid, 
in very dilute solutions. Th e chemical potential of the solute has its pure value 
when it is present alone (xB = 1, ln 1 = 0) and a smaller value when dissolved 
(when xB < 1, ln xB < 0).

A note on good practice 
Th e number of signifi cant 
fi gures in the result of a 
calculation should not exceed 
the number in the data.

 

Example 3.2 Determining whether a natural water can support aquatic life

Th e concentration of O2 in water required to support aerobic aquatic life is 
about 4.0 mg dm−3. What is the minimum partial pressure of oxygen in the 
atmosphere that can achieve this concentration?

Strategy Th e strategy of the calculation is to determine the partial pressure of 
oxygen that, according to Henry’s law (written as eqn 3.14), corresponds to the 
concentration specifi ed.

Solution Equation 3.14 becomes

pO2
 = [O2]

KH

We note that the molar concentration of O2 is

 [O2] = 4.0 × 10−3 g dm−3

32 g mol−1
 = 4.0 × 10−3 mol

32 dm3
 = 4.0 × 10−3 mol

32 × 10−3 m3
 = 4.0

32
 mol m−3

From Table 3.2, KH for oxygen in water is 1.30 × 10−2 mol m−3 kPa−1, therefore 
the partial pressure needed to achieve the stated concentration is

pO2
 = (4.0/32) mol m−3

1.30 × 10−2 mol m−3 kPa−1
 = 9.6 kPa

Th e partial pressure of oxygen in air at sea level is 21 kPa (158 Torr), which is 
greater than 9.6 kPa (72 Torr), so the required concentration can be main-
tained under normal conditions.

Self-test 3.6 What partial pressure of methane is needed to dissolve 21 mg 
of methane in 100 g of benzene at 25°C (K ′H = 5.69 × 104 kPa, for Henry’s law in 
the form given in eqn 3.13)?

Answer: 57 kPa (4.3 × 102 Torr)

Fig. 3.29 Th e variation of the 
chemical potential of the solute 
with the composition of the 
solution expressed in terms of the 
mole fraction of solute. Note that 
the chemical potential of the 
solute is lower in the mixture 
than for the pure solute (for an 
ideal system). Th is behavior is 
likely to be shown by a dilute 
solution in which the solvent is 
almost pure and the solute obeys 
Henry’s law.

Th e Henry’s law constant, KH, is commonly reported in moles per cubic metre 
per kilopascal (mol m−3 kPa−1). Th is form of the law and these units make it very 
easy to calculate the molar concentration of the dissolved gas, simply by multiply-
ing the partial pressure of the gas (in kilopascals) by the appropriate constant. 
Equation 3.14 is used, for instance, to estimate the concentration of O2 in natural 
waters or the concentration of carbon dioxide in blood plasma.
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Justification 3.7 The chemical potential of the solute

We apply the same reasoning as in Justifi cation 3.6. When a solute B in a 
solution is in equilibrium with its vapor at a partial pressure pB, we can write 
mB(l) = mB(g) and (from eqn 3.10)

mB(l) = mB
3(g) + RT ln pB

According to Henry’s law, pB = K ′HxB, so it follows that

mB(l) = mB
3(g) + RT ln K ′HxB = mB

3(g) + RT ln K ′H + RT ln xB

Th e terms mB
3(g) and RT ln KH are independent of the composition of the mix-

ture and can be combined into the constant mB*, the chemical potential of pure 
liquid B. Equation 3.15 then follows.

A note on good practice 
It is meaningless to take 
logarithms of quantities with 
units, so always ensure that 
the x of ln x is a pure number.

 

We oft en express the composition of a solution in terms of the molar concen-
tration of the solute, [B], rather than as a mole fraction. Th e mole fraction and the 
molar concentration are proportional to each other in dilute solutions, so we 
write xB = constant × [B]/c3, where c3 = 1 mol dm−3 is introduced to ensure that 
the constant is dimensionless. We shall call c3 the standard molar concentration. 
Th en eqn 3.15 becomes

mB = mB* + RT ln(constant) + RT ln([B]/c3)

We can combine the fi rst two terms into a single constant, which we denote mB
3, 

and write this relation as

mB = mB
3 + RT ln([B]/c3) Chemical potential of the solute in 

terms of the molar concentration
 (3.16a)

Th is equation is the best way to write the relation, but it is cumbersome, and for 
the rest of the chapter we shall write [B]/c3 simply as [B] and—to conform to the 
requirement stated in the note on good practice—interpret [B] as the molar con-
centration with the units deleted (we treated pressure similarly earlier in the 
chapter). Th us, if in fact [B] = 0.1 mol dm−3, so [B]/c3= 0.1, from now on we shall 
write [B] = 0.1 and use eqn 3.16a in the form

mB = mB
3 + RT ln[B] Simplified form of eqn 3.16a  (3.16b)

Figure 3.30 illustrates the variation of chemical potential with concentration 
predicted by this equation. Th e chemical potential of the solute has its standard 
value when the molar concentration of the solute is c3 = 1 mol dm−3.

At this stage a summary of the results so far might be helpful:

Species Chemical potential Comment
Gas, J mJ = mJ

3 + RT ln pJ Perfect gas
Solvent, A mA = mA* + RT ln xA Dilute solution
Solute, B mB = mB* + RT ln xB Dilute solution
 mB = mB

3 + RT ln[B] 
Fig. 3.30 Th e variation of the 
chemical potential of the solute 
with the composition of the 
solution that obeys Henry’s 
law expressed in terms of the 
molar concentration of solute. 
Th e chemical potential has 
its standard value at [B] = 
1 mol dm−3.

Case study 3.2 Gas solubility and breathing

We inhale about 500 cm3 of air with each breath we take. Th e infl ux of air is 
a result of changes in volume of the lungs as the diaphragm is depressed and 
the chest expands, which results in a decrease in pressure of about 100 Pa 
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relative to atmospheric pressure. Expiration occurs as the diaphragm rises and 
the chest contracts, and gives rise to a diff erential pressure of about 100 Pa 
above atmospheric pressure. Th e total volume of air in the lungs is about 
6 dm3, and the additional volume of air that can be exhaled forcefully aft er 
normal expiration is about 1.5 dm3. Some air remains in the lungs at all times 
to prevent the collapse of the alveoli.

Th e eff ect of gas exchange between blood and air inside the alveoli of the lungs 
means that the composition of the air in the lungs is diff erent from that in the 
atmosphere, and changes throughout the breathing cycle. Alveolar gas is in 
fact a mixture of newly inhaled air and air about to be exhaled. Th e concentra-
tion of oxygen present in arterial blood is equivalent to a partial pressure of 
about 40 Torr (5.3 kPa), whereas the partial pressure of freshly inhaled air in 
the alveoli of the lungs is about 100 Torr (13.3 kPa). Arterial blood remains in 
the capillary passing through the wall of an alveolus for about 0.75 s, but such 
is the steepness of the pressure gradient that it becomes fully saturated with 
oxygen in about 0.25 s. If the lungs collect fl uids (as in pneumonia), then the 
respiratory membrane thickens, diff usion is greatly slowed, and body tissues 
begin to suff er from oxygen starvation. Carbon dioxide moves in the opposite 
direction across the respiratory tissue, but the partial pressure gradient is 
much less, corresponding to about 5 Torr (0.7 kPa) in blood and 40 Torr 
(5.3 kPa) in air at equilibrium in the alveoli of the lungs. However, because 
carbon dioxide is much more soluble in the alveolar fl uid than oxygen is, equal 
amounts of oxygen and carbon dioxide are exchanged in each breath.

A hyperbaric oxygen chamber, in which oxygen is at an elevated partial 
pressure, is used to treat certain types of disease. Carbon monoxide poisoning 
can be treated in this way, as can the consequences of shock. Diseases that are 
caused by anaerobic bacteria, such as gas gangrene and tetanus, can also be 
treated because the bacteria cannot thrive in high oxygen concentrations.

(d) Real solutions: activities

No actual solutions are ideal, and many solutions deviate from ideal–dilute 
behavior as soon as the concentration of solute rises above a small value. In 
thermodynamics we try to preserve the form of equations developed for ideal 
systems so that it becomes easy to step between the two types of system.2 Th is is 
the thought behind the introduction of the activity, aJ, of a substance, which is 
a kind of eff ective concentration. Th e activity is defi ned so that the expression

mJ = mJ
3 + RT ln aJ The chemical potential in 

terms of the activity
 (3.17)

is true at all concentrations and for both the solvent and the solute.
For ideal solutions, aJ = xJ, and the activity of each component is equal to 

its mole fraction. For ideal–dilute solutions using the defi nition in eqn 3.17, 
aB = [B]/c3, and the activity of the solute is equal to the numerical value of its 
molar concentration. For non-ideal solutions we write

For the solvent: aA = gAxA The activity in terms of 
the activity coefficient

 (3.18)
For the solute: aB = gB[B]/c3

2 An added advantage is that there are fewer equations to remember!
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where the g (gamma) in each case is the activity coeffi  cient. Activity coeffi  cients 
depend on the composition of the solution, and we should note the following:

Because the solvent behaves more in accord with Raoult’s law as it becomes 
pure, gA → 1 as xA → 1.
Because the solute behaves more in accord with Henry’s law as the solution 
becomes very dilute, gB → 1 as [B] → 0.

Conventions concerning standard states and activities of ideal systems are sum-
marized in Table 3.3.

Activities and activity coeffi  cients are oft en branded as ‘fudge factors’. To some 
extent that is true. However, their introduction does allow us to derive thermo-
dynamically exact expressions for the properties of nonideal solutions. Moreover, 
in a number of cases it is possible to calculate or measure the activity coeffi  cient 
of a species in solution. In this text we shall normally derive thermodynamic 
relations in terms of activities, but when we want to make contact with actual 
measurements, we shall set the activities equal to the ‘ideal’ values in Table 3.3.

Case study 3.3 The Donnan equilibrium

Th e term Donnan equilibrium refers to the distribution of ions between two 
solutions in contact through a semipermeable membrane, in one of which 
there is a polyelectrolyte, such as NanP (with Pn− a polyanion), and where the 
membrane is not permeable to the large charged macromolecule. Th is arrange-
ment is one that actually occurs in living systems, where we have seen that 
osmosis is an important feature of cell operation. Th e thermodynamic con-
sequences of the distribution and transfer of charged species across cell 
membranes is explored further in Chapter 5.

Consider a situation in which a high concentration of a salt such as NaCl is 
added to the solution on both sides of the membrane so that the number of 
cations that Pn− provides is insignifi cant in comparison with the number sup-
plied by the additional salt. Apart from small imbalances of charge close to the 
membrane (which have important consequences, as we shall see in Chapter 5), 
electrical neutrality must be preserved in the bulk on both sides of the mem-
brane: if an anion migrates, a cation must accompany it. For simplicity, we take 
the volumes of the solutions on each side of the membrane to be equal.

On one side of the membrane—call it the ‘left -hand’ side—there are Pn−, Na+, 
and Cl− ions. In the ‘right-hand’ side there are Na+ and Cl− ions. Th e condition 

Table 3.3 Activities and standard states*

Substance Standard state Activity, a

Solid Pure solid, 1 bar 1
Liquid Pure liquid, 1 bar 1
Gas Pure gas, 1 bar p/p3

Solute Molar concentration of 1 mol dm−3 [J]/c3

p3 = 1 bar (= 105 Pa), c3 = 1 mol dm−3.
*Activities are for perfect gases and ideal–dilute solutions; all activities are dimensionless.
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for equilibrium is that the chemical potentials of the Na+ and Cl− ions in solu-
tion are the same in both sides, so a net fl ow of Na+ and Cl− ions occurs until 
the chemical potentials are equalized. Th is equality occurs when

m3(Na+) + m3(Cl−) + RT ln aL(Na+) + RT ln aL(Cl−)
 = m3(Na+) + m3(Cl−) + RT ln aR(Na+) + RT ln aR(Cl−)

where the subscripts L and R refer to the left -hand and right-hand sides, 
respectively, separated by the membrane. It follows that

RT ln aL(Na+)aL(Cl−) = RT ln aR(Na+)aR(Cl−)

If we ignore activity coeffi  cients and interpret [Na+]/c3 and [Cl−]/c3 as [Na+] 
and [Cl−], respectively, the two expressions are equal when [Na+]L[Cl−]L = 
[Na+]R[Cl−]R. As the Na+ ions are supplied by the polyelectrolyte as well as 
the added salt, the conditions for bulk electrical neutrality lead to the charge-
balance equations [Na+]L = [Cl−]L + n[Pn−] and [Na+]R = [Cl−]R. We can now 
combine these three conditions to obtain expressions for the diff erences in ion 
concentrations across the membrane. For example, we write

[Na+]L = [Na+]R[Cl−]R

[Cl−]L
 = [Na+]R

2

[Na+]L − n[Pn−]

which rearranges to

[Na+]L
2 − [Na+]R

2 = n[Pn−][Na+]L

Aft er applying the relation a2 − b2 = (a + b)(a − b) and rearranging, we obtain

[Na+]L − [Na+]R = n[Pn−][Na+]L

[Na+]L + [Na+]R

It follows from the defi nition [Cl−] = 12 ([Cl−]L + [Cl−]R) and the charge–balance 
equations that

[Na+]L + [Na+]R = [Cl−]L + [Cl−]R + n[Pn−] = 2[Cl−] + n[Pn−]

Substitution of this result into the equation for [Na+]L − [Na+]R leads to

 [Na+]L − [Na+]R = n[Pn−][Na+]L

2[Cl−] + n[Pn−]
 (3.19a)

Similar manipulations lead to an equation for the diff erence in chloride ion 
concentration:

[Cl−]L − [Cl−]R = − n[Pn−][Cl−]L

[Cl−]L + [Cl−]R

which becomes

[Cl−]L − [Cl−]R = − n[Pn−][Cl−]L

2[Cl−]
 (3.19b)

Note that cations will dominate the anions in the compartment that contains 
the polyanion because the concentration diff erence is positive for Na+ and 
negative for Cl−. It also follows that from a measurement of the ion concentra-
tions, it is possible to determine the net charge of the polyanion, which may be 
unknown.
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Example 3.3 Analyzing a Donnan equilibrium

Suppose that two equal volumes of 0.200 m NaCl(aq) solution are separated 
by a membrane and that the left -hand side of the experimental arrangement 
contains a polyelectrolyte Na6P at a concentration of 50 g dm−3. Assuming 
that the membrane is not permeable to the polyanion, which has a molar mass 
of 55 kg mol−1, calculate the molar concentrations of Na+ and Cl− in each 
compartment.

Strategy We saw above that the sum of the equilibrium concentrations of 
Na+ in both compartments is

[Na+]L + [Na+]R = 2[Cl−] + n[Pn−]

with [Cl−] = 0.200 mol dm−3, and [Pn−] being calculated from the mass con-
centration and the molar mass of the polyanion. At this point, we have one 
equation and two unknowns, [Na+]L and [Na+]R, so we use a second equation, 
eqn 3.19a, to solve for both Na+ ion concentrations. To calculate the Cl− ion 
concentrations, we use [Cl−]R = [Na+]R and [Cl−]L = [Na+]L − n[Pn−], with n = 6.

Solution Th e molar concentration of the polyanion is [Pn−] = 9.1 × 10−4 mol 
dm−3. It follows from eqn 3.19a that

 [Na+]L − [Na+]R = 6 × (9.1 × 10−4 mol dm−3) × [Na+ ]L

2 × (0.200 mol dm−3) + 6 × (9.1 × 10−4 mol dm−3)

Th e sum of Na+ concentrations is

[Na+]L + [Na+]R = 2 × (0.200 mol dm−3) + 6 × (9.1 × 10−4 mol dm−3) 
 = 0.405 mol dm−3

Th e solutions of these two equations are

[Na+]L = 0.204 mol dm−3  [Na+]R = 0.201 mol dm−3

Th en

[Cl−]R = [Na+]R = 0.201 mol dm−3

[Cl−]L = [Na+]L − 6[Pn−] = 0.199 mol dm−3

Self-test 3.7 Repeat the calculation for 0.300 m NaCl(aq), a polyelectrolyte 
Na10P of molar mass 33 kg mol−1 at a mass concentration of 50.0 g dm−3.

Answer: [Na+]L = 0.31 mol dm−3, [Na+]R = 0.30 mol dm−3

(e) The thermodynamics of dissolving

We now have enough information to formulate a thermodynamic description 
of dissolving to form an ideal solution. As we see in the following Justifi cation, 
when an amount nB of a solute B dissolves in an amount nA of a solvent A at a 
temperature T,

DG = nRT{xA ln xA + xB ln xB} Gibbs energy 
of dissolving

 (3.20)

with n = nA + nB and the xJ the mole fractions in the mixture.
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Justification 3.8 The Gibbs energy of dissolving

Th e Gibbs energy of the two unmixed components is the sum of their individual 
Gibbs energies:

Gi = nAmA* + nBmB*

When B is dissolved in A to form an ideal solution, the Gibbs energy becomes

Gf = nAmA + nBmB = nA{mA* + RT ln xA} + nB{mB* + RT ln xB}
 = nAmA* + nART ln xA + nBmB* + nBRT ln xB

where the xJ are the mole fractions of the two components in the solution. Th e 
diff erence Gf − Gi is the change in Gibbs energy that accompanies dissolving. 
Th e pure chemical potentials cancel, so

DG = RT{nA ln xA + nB ln xB}

Because xJ = nJ/n, we can substitute nA = xAn and nB = xBn into the expression 
above and obtain

DG = nRT{xA ln xA + xB ln xB}

which is eqn 3.20.

Equation 3.20 tells us the change in Gibbs energy when a solute dissolves to 
give an ideal solution (Fig. 3.31). Th e crucial feature is that because xA and xB are 
both less than 1, the two logarithms are negative (ln x < 0 if x < 1), so DG < 0 at all 
compositions. Th erefore, dissolving to form an ideal solution is spontaneous in all 
proportions. Furthermore, if we compare eqn 3.20 with DG = DH − TDS, we can 
conclude that:

DH = 0 Enthalpy of dissolving  (3.21a)

DS = −nR{xA ln xA + xB ln xB} Entropy of dissolving  (3.21b)

Th e value of DH indicates that although there are interactions between the 
molecules, the solute–solute, solvent–solvent, and solute–solvent interactions are 
all the same, so the solute slips into solution without a change in enthalpy. Th ere is 
an increase in entropy because the molecules are more dispersed in the solution 
than in the unmixed components. Th e entropy of the surroundings is unchanged 
because the enthalpy of the system is constant, so no energy escapes as heat 
into the surroundings. It follows that the increase in entropy of the system is the 
‘driving force’ of the dissolving.

Colligative properties

An ideal solute has no eff ect on the enthalpy of a solution in the sense that the 
enthalpy of mixing is zero. However, it does aff ect the entropy, and we found in 
eqn 3.21 that DS > 0 when a solute dissolves in a solvent to give an ideal solution. 
We can therefore expect a solute to modify the physical properties of the solution. 
Apart from lowering the vapor pressure of the solvent, which we have already 
considered, a nonvolatile solute has three main eff ects: it raises the boiling point 
of a solution, it lowers the freezing point, and it gives rise to an osmotic pressure. 

Fig. 3.31 Th e variation of the 
Gibbs energy of dissolving with 
composition for two components 
at constant temperature and 
pressure. Note that DG < 0 for all 
compositions, which indicates 
that two components mix 
spontaneously in all proportions.
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(Th e meaning of the last will be explained shortly.) Th ese properties, which are 
called colligative properties, stem from a change in the dispersal of solvent mol-
ecules that depends on the number of solute particles present but is independent 
of the identity of the species we use to bring it about.3 Th us, a 0.01 mol kg−1 aque-
ous solution of any nonelectrolyte should have the same boiling point, freezing 
point, and osmotic pressure.

3.9 The modification of boiling and freezing points
To understand the origins of the colligative properties and their effect on biological 
processes, it is useful to explore the modification of the boiling and freezing points 
of a solvent in a solution.

It is found empirically, and can be justifi ed thermodynamically, that the elevation 
of boiling point, Tb, and the depression of freezing point, Tf, are both propor-
tional to the molality, bB, of the solute:

DTb = KbbB Elevation of the boiling point  

DTf = KfbB Depression of the freezing point  (3.22)

where Kb is the ebullioscopic constant and Kf is the cryoscopic constant of the 
solvent.4 Th e two constants can be estimated from other properties of the solvent, 
but both are best treated as empirical constants (Table 3.4).

3 Hence, the name colligative, meaning ‘depending on the collection’.
4 Th ey are also called the ‘boiling-point constant’ and the ‘freezing-point constant’.

Table 3.4 Cryoscopic and ebullioscopic constants

Solvent Kf/(K kg mol−1) Kb/(K kg mol−1)

Acetic acid  3.90 3.07
Benzene  5.12 2.53
Camphor 40
Carbon disulfi de  3.8 2.37
Naphthalene  6.94 5.8
Phenol  7.27 3.04
Tetrachloromethane 30 4.95
Water  1.86 0.51

Self-test 3.8 Estimate the lowering of the freezing point of the solution 
made by dissolving 3.0 g (about one cube) of sucrose in 100 g of water.

Answer: 0.16 K

To understand the origin of these eff ects, we shall make two simplifying 
assumptions:

1) Th e solute is not volatile and therefore does not appear in the vapor phase.
2) Th e solute is insoluble in the solid solvent and therefore does not appear in 

the solid phase.
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For example, a solution of sucrose in water consists of a solute (sucrose, 
C12H22O11) that is not volatile and therefore never appears in the vapor, which is 
therefore pure water vapor. Th e sucrose is also left  behind in the liquid solvent 
when ice begins to form, so the ice remains pure.

Th e origin of colligative properties is the lowering of chemical potential of the 
solvent by the presence of a solute, as expressed by eqn 3.12. We saw in Section 3.3 
that the freezing and boiling points correspond to the temperatures at which the 
graph of the molar Gibbs energy of the liquid intersects the graphs of the molar 
Gibbs energy of the solid and vapor phases, respectively. Because we are now 
dealing with mixtures, we have to think about the partial molar Gibbs energy (the 
chemical potential) of the solvent. Th e presence of a solute lowers the chemical 
potential of the liquid, but because the vapor and solid remain pure, their chem-
ical potentials remain unchanged. As a result, we see from Fig. 3.32 that the freez-
ing point moves to lower values; likewise, from Fig. 3.33 we see that the boiling 
point moves to higher values. In other words, the freezing point is depressed, 
the boiling point is elevated, and the liquid phase exists over a wider range of 
temperatures.

Th e elevation of boiling point is too small to have any practical signifi cance. A 
practical consequence of the lowering of freezing point, and hence the lowering 
of the melting point of the pure solid, is its employment in organic chemistry to 
judge the purity of a sample, for any impurity lowers the melting point of a sub-
stance from its accepted value. Th e salt water of the oceans freezes at temperatures 
lower than that of fresh water, and salt is spread on highways to delay the onset of 
freezing. Th e addition of ‘antifreeze’ to car engines and, by natural processes, to 
arctic fi sh, is commonly held up as an example of the lowering of freezing point, 
but the concentrations are far too high for the arguments we have used here to be 
applicable. Th e 1,2-ethanediol (‘glycol’) used as antifreeze probably just interferes 
with bonding between water molecules. Likewise, the antifreeze proteins of arctic 
fi sh act by binding to small ice crystals and preventing larger crystals from 
forming.

Fig. 3.32 Th e chemical potentials 
of pure solid solvent and pure 
liquid solvent also decrease with 
temperature, and the point of 
intersection, where the chemical 
potential of the liquid rises above 
that of the solid, marks the 
freezing point of the pure solvent. 
A solute lowers the chemical 
potential of the solvent but leaves 
that of the solid unchanged. As a 
result, the intersection point lies 
farther to the left  and the freezing 
point is therefore lowered.

  Mathematical toolkit 3.2 Power series and expansions

A power series has the form

c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n + · · · 

 = 
∞

∑
n=0

cn(x − a)n 

where cn and a are constants. It is oft en useful to express 
a function f(x) in the vicinity of x = a as a special power 
series called the Taylor series, or Taylor expansion, 
which has the form

f(x) = f(a) + 
A
C

df
dx

D
F a

 (x − a) + 1
2!

 
A
C

d2f
dx2

D
F

a

(x − a)2 + 

   · · · + 1
n!

 
A
C

dnf
dxn

D
F a

(x − a)n + · · ·

 = 
∞

∑
n=0

 1
n!

 
A
C

dnf
dxn

D
F a

(x − a)n

where n! denotes a factorial given by n! = n(n − 1)
(n − 2) . . . 1.

Th e following Taylor expansions are oft en useful:

(1 + x)−1 = 1 − x + x2 − · · · 
ex = 1 + x + 12 x2 + · · · 
ln x = (x − 1) − 12 (x − 1)2 + 13 (x − 1)3 − 14 (x − 1)4 + · · · 
ln(1 + x) = x − 12 x2 + 13 x3 − · · · 

If x << 1, then

(1 + x)−1 ≈ 1 − x
ex ≈ 1 + x
ln(1 + x) ≈ x.
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3.10 Osmosis
To understand why cells neither collapse nor burst easily, we need to explore the 
thermodynamics of the transfer of water through cell membranes.

Th e phenomenon of osmosis is the passage of a pure solvent into a solution separ-
ated from it by a semipermeable membrane,5 a membrane that is permeable to 
the solvent but not to the solute (Fig. 3.34). Th e membrane might have micro-
scopic holes that are large enough to allow water molecules to pass through, but 
not ions or carbohydrate molecules with their bulky coating of hydrating water 
molecules. Th e osmotic pressure, P (uppercase pi), is the pressure that must be 
applied to the solution to stop the inward fl ow of solvent.

In the simple arrangement shown in Fig. 3.34, the pressure opposing the 
passage of solvent into the solution arises from the hydrostatic pressure of the 
column of solution that the osmosis itself produces. Th is column is formed when 
the pure solvent fl ows through the membrane into the solution and pushes the 
column of solution higher up the tube. Equilibrium is reached when the down-
ward pressure exerted by the column of solution is equal to the upward osmotic 
pressure. A complication of this arrangement is that the entry of solvent into the 
solution results in dilution of the latter, so it is more diffi  cult to treat mathematic-
ally than an arrangement in which an externally applied pressure opposes any 
fl ow of solvent into the solution.

Th e osmotic pressure of a solution is proportional to the concentration of 
solute. In fact, we show in the following Justifi cation that the expression for the 
osmotic pressure of an ideal solution, which is called the van ’t Hoff  equation, 
bears an uncanny resemblance to the expression for the pressure of a perfect gas:

PV ≈ nBRT van ’t Hoff equation  (3.23a)

Because nB/V = [B], the molar concentration of the solute, a simpler form of this 
equation is

P ≈ [B]RT Another version of the 
van ’t Hoff equation

 (3.23b)

Th is equation applies only to solutions that are suffi  ciently dilute to behave as 
ideal–dilute solutions.

Justification 3.9 The van ’t Hoff equation

Th e thermodynamic treatment of osmosis makes use of the fact that, at equilib-
rium, the chemical potential of the solvent A is the same on each side of the 
membrane (Fig. 3.35). Th e starting relation is therefore

mA(pure solvent at pressure p) = mA(solvent in the solution at pressure p + P)

Th e pure solvent is at atmospheric pressure, p, and the solution is at a pressure 
p + P on account of the additional pressure, P, that has to be exerted on the 
solution to establish equilibrium. We shall write the chemical potential of the 
pure solvent at the pressure p as mA*(p). Th e chemical potential of the solvent in 
the solution is lowered by the solute, but it is raised on account of the greater 
pressure, p + P, acting on the solution. We denote this chemical potential by 
mA(xA, p + P). Our task is to fi nd the extra pressure P needed to balance the 
lowering of chemical potential caused by the solute.

5 Th e name osmosis is derived from the Greek word for ‘push’.

Fig. 3.33 Th e chemical potentials 
of pure solvent vapor and pure 
liquid solvent decrease with 
temperature, and the point of 
intersection, where the chemical 
potential of the vapor falls below 
that of the liquid, marks the 
boiling point of the pure solvent. 
A solute lowers the chemical 
potential of the solvent but leaves 
that of the vapor unchanged. 
As a result, the intersection point 
lies farther to the right and the 
boiling point is therefore raised.

Fig. 3.34 In a simple osmosis 
experiment, a solution is 
separated from the pure solvent 
by a semipermeable membrane. 
Pure solvent passes through the 
membrane and the solution rises 
in the inner tube. Th e net fl ow 
ceases when the pressure exerted 
by the column of liquid is equal 
to the osmotic pressure of the 
solution.
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Th e condition for equilibrium written above is

mA*(p) = mA(xA, p + P)

We take the eff ect of the solute into account using eqn 3.12:

mA(xA, p + P) = mA*(p + P) + RT ln xA

Th e eff ect of pressure on an (assumed incompressible) liquid is given by eqn 3.1 
(Gm(pf) = Gm(pi) + (pf − pi)Vm) but now expressed in terms of the chemical 
potential and the partial molar volume of the solvent:

mA*(p + P) = mA*(p) + (p + P − p)VA = mA*(p) + PVA

When the last three equations are combined, we get

mA*(p) = mA*(p) + PVA+ RT ln xA

and therefore

−RT ln xA = PVA

Th e mole fraction of the solvent is equal to 1 − xB, where xB is the mole fraction 
of solute molecules. In dilute solution, ln(1 − xB) is approximately equal to −xB 
(see Mathematical toolkit 3.2), so this equation becomes

RTxB ≈ PVA

When the solution is dilute, xB = nB/n ≈ nB/nA. Moreover, because nAVA ≈ V, the 
total volume of the solution, this equation becomes eqn 3.23.

Osmosis helps biological cells maintain their structure. Cell membranes are 
semipermeable and allow water, small molecules, and hydrated ions to pass, while 
blocking the passage of biopolymers synthesized inside the cell. Th e diff erence 
in concentrations of solutes inside and outside the cell gives rise to an osmotic 
pressure, and water passes into the more concentrated solution in the interior 
of the cell, carrying small nutrient molecules. Th e infl ux of water also keeps the 
cell swollen, whereas dehydration causes the cell to shrink. Th ese eff ects are 
important in everyday medical practice. To maintain the integrity of blood cells, 
solutions that are injected into the bloodstream for blood transfusions and intra-
venous feeding must be isotonic with the blood, meaning that they must have the 
same osmotic pressure as blood. If the injected solution is too dilute, or hypotonic, 
the fl ow of solvent into the cells, required to equalize the osmotic pressure, causes 
the cells to burst and die by a process called hemolysis. If the solution is too con-
centrated, or hypertonic, equalization of the osmotic pressure requires fl ow of 
solvent out of the cells, which shrink and die.

Osmosis also forms the basis of dialysis, a common technique for the removal 
of impurities from solutions of biological macromolecules. In a dialysis experi-
ment, a solution of macromolecules containing impurities, such as ions or small 
molecules (including small proteins or nucleic acids), is placed in a bag made of 
a material that acts as a semipermeable membrane and the fi lled bag is immersed 
in a solvent. Th e membrane permits the passage of the small ions and molecules 
but not the larger macromolecules, so the former migrate through the membrane, 
leaving the macromolecules behind. In practice, purifi cation of the sample 
requires several changes of solvent to coax most of the impurities out of the 
dialysis bag.

Fig. 3.35 Th e basis of the 
calculation of osmotic pressure. 
Th e presence of a solute lowers 
the chemical potential of the 
solvent in the right-hand 
compartment, but the application 
of pressure raises it. Th e osmotic 
pressure is the pressure needed to 
equalize the chemical potential 
of the solvent in the two 
compartments.
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Fig. 3.36 Th e plot and 
extrapolation made to analyze 
the results of an osmometry 
experiment.

In the laboratory 3.1 Osmometry

Osmometry is the determination of molar mass by the measurement of 
osmotic pressure. Biological macromolecules dissolve to produce solutions 
that are far from ideal, but we can still calculate the osmotic pressure by assum-
ing that the van’t Hoff  equation is only the fi rst term of a lengthier expression:

P = [B]RT{1 + B[B] + · · ·} Expanded van ’t 
Hoff equation

 (3.24a)

Th e empirical parameter B in this expression is called the osmotic virial co-
effi  cient. To use eqn 3.24a, we rearrange it into a form that gives a straight line 
by dividing both sides by [B]:

P/[B]= RT + BRT[B] + · · · (3.24b)

As we illustrate in the following example, the molar mass of the solute B can be 
found by measuring the osmotic pressure at a series of mass concentrations 
and making a plot of P/[B] against [B] (Fig. 3.36).

Example 3.4 Determining the molar mass of an enzyme from measurements 
of the osmotic pressure

Th e osmotic pressures of solutions of an enzyme in water at 298 K are given 
below. Find the molar mass of the enzyme.

c/(g dm−3) 1.00 2.00 4.00 7.00 9.00 
P/Pa 27.5 69.6 197 500 785 

Strategy First, we need to express eqn 3.24b in terms of the mass concentra-
tion, c, so that we can use the data. Th e molar concentration [B] of the solute is 
related to the mass concentration cB = mB/V by

cB = mB

V
 = mB

nB
 × nB

V
 = M × [B]

where M is the molar mass of the solute (M = mB/nB), so [B] = cB/M. With this 
substitution, eqn 3.24b becomes

P
cB/M

 = RT + BRTcB

M
 + · · ·

Division through by M gives

 P
cB

 = RT
M

 + AC
BRT
M2

D
F  cB + · · ·

It follows that, by plotting P/cB against cB, the results should fall on a straight 
line with intercept RT/M on the vertical axis at cB = 0. Th erefore, by locating the 
intercept by extrapolation of the data to cB = 0, we can fi nd the molar mass of 
the solute.

Solution Th e following values of P/cB can be calculated from the data:

cB/(g dm−3) 1.00 2.00 4.00 7.00 9.00
(P/Pa)/(cB/g dm−3) 27.5 34.8 49.3 71.5 87.2

Th e points are plotted in Fig. 3.37. Th e intercept with the vertical axis at cB = 0 
is at

Fig. 3.37 Th e plot of the data in 
Example 3.4.
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 P/Pa
cB/(g dm−3)

 = 19.8

which we can rearrange into

Π/cB = 19.8 Pa g−1 dm3

Th erefore, because this intercept is equal to RT/M, we can write

M = RT
19.8 Pa g−1 dm3

It follows that

M = (8.314 47 × 103 Pa dm3 K−1 mol−1) × (298 K)
19.8 Pa g−1 dm3

 = 1.25 × 105 g mol−1

Th e molar mass of the enzyme is therefore close to 125 kg mol−1 (correspond-
ing to a molecular mass of 125 kDa).

A note on good practice 
Graphs should be plotted 
on axes labeled with pure 
numbers. Note how the 
plotted quantities are divided 
by their units, so that cB/
(g dm−3), for instance, is a 
dimensionless number. By 
carrying the units through 
every stage of the calculation, 
we end up with the correct 
units for M. It is far better to 
proceed systematically in this 
way than to try to guess the 
units at the end of the 
calculation.

 
Self-test 3.9 Th e osmotic pressures of solutions of a protein at 25°C were 
as follows:

c/(g dm−3) 0.50 1.00 1.50 2.00 2.50
P/Pa 40.0 110 200 330 490

What is the molar mass of the protein?
Answer: 49 kg mol−1

Checklist of key concepts

 1. A phase diagram of a substance shows the conditions 
of pressure and temperature at which its various 
phases are most stable.

 2. A phase boundary depicts the pressures and 
temperatures at which two phases are in equilibrium.

 3. Th e boiling temperature is the temperature at which 
the vapor pressure is equal to the external pressure; the 
normal boiling point is the temperature at which 
the vapor pressure is 1 atm. Th e triple point is the 
condition of pressure and temperature at which 
three phases are in mutual equilibrium.

 4. A partial molar quantity is the contribution of a 
component (per mole) to the overall property of a 
mixture.

 5. Th e chemical potential of a component is the partial 
molar Gibbs energy of that component in a mixture.

 6. An ideal solution is one in which both components 
obey Raoult’s law over the entire composition range.

 7. An ideal–dilute solution is one in which the solute 
obeys Henry’s law.

 8. Th e activity of a substance is an eff ective 
concentration; see Table 3.3.

 9. Th e Donnan equilibrium determines the distribution 
of ions between two solutions in contact through a 
membrane, in one of which there is a polyelectrolyte 
and where the membrane is not permeable to the large 
charged macromolecule.

 10. A colligative property is a property that depends on 
the number of solute particles, not their chemical 
identity; it arises from the eff ect of a solute on the 
entropy of the solution.

 11. Colligative properties include lowering of vapor 
pressure, depression of freezing point, elevation of 
boiling point, and osmotic pressure.

 12. Th e molar masses of biological polymers can be 
determined by measurements of the osmotic 
pressure of their solutions.
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Checklist of key equations

Property or process Equation Comment

Dependence of the Gibbs energy on pressure DGm = VmDp Liquids and solids

DGm = RT ln(pf /pi) Perfect gases
Dependence of the Gibbs energy on temperature DGm = −SmDT
Clapeyron equation dp/dT = DtrsH/TDtrsV
Clausius–Clapeyron equation d ln p/dT = DvapH/RT 2 Vapor behaves as a perfect gas
Gibbs energy of a binary mixture G = nAmA + nBmB

Chemical potential mJ = mJ
3  + RT ln pJ Perfect gas

mJ = mJ* + RT ln xJ Solvent and solute in a dilute solution
Raoult’s law pJ = xJpJ* For an ideal solution
Henry’s law pB = xBK ′H, [B] = KHpB For an ideal–dilute solution
Elevation of the boiling point DTb = KbbB

Depression of the freezing point DTf = KfbB

van ’t Hoff  equation PV ≈ nBRT Ideal solution

Further information

Further information 3.1 The phase rule

To explore whether four phases of a single substance could 
ever be in equilibrium (such as four of the many phases of ice), 
we think about the thermodynamic criterion for four phases 
to be in equilibrium. For equilibrium, the four molar Gibbs 
energies would all have to be equal, and we could write

Gm(1) = Gm(2)  Gm(2) = Gm(3)  Gm(3) = Gm(4)

(Th e other equalities, Gm(1) = Gm(4), and so on, are implied by 
these three equations.) Each Gibbs energy is a function of the 
pressure and temperature, so we should think of these three 
relations as three equations for the two unknowns p and T. In 
general, three equations for two unknowns have no solution. 
For instance, the three equations 5x + 3y = 4, 2x + 6y = 5, and 
x + y = 1 have no solutions (try it). Th erefore, we have to 
conclude that the four molar Gibbs energies cannot all be 
equal. In other words, four phases of a single substance cannot 
coexist in mutual equilibrium.

Th e conclusion we have reached is a special case of one of 
the most elegant results of chemical thermodynamics. Th e 
phase rule was derived by Gibbs and states that, for a system 
at equilibrium,

F = C − P + 2
Here F is the number of degrees of freedom, C is the 
number of components, and P is the number of phases. 
Th e number of components, C, in a system is the minimum 

number of independent species necessary to defi ne the 
composition of all the phases present in the system. Th e 
defi nition is easy to apply when the species present in a system 
do not react, for then we simply count their number. For 
instance, pure water is a one-component system (C = 1), and 
a mixture of ethanol and water is a two-component system 
(C = 2). Th e number of degrees of freedom, F, of a system 
is the number of intensive variables (such as the pressure, 
temperature, or mole fractions) that can be changed 
independently without disturbing the number of phases in 
equilibrium.

For a one-component system, such as pure water, we set 
C = 1 and the phase rule simplifi es to F = 3 − P. When only 
one phase is present, F = 2, which implies that p and T can 
be varied independently. In other words, a single phase is 
represented by an area on a phase diagram. When two phases 
are in equilibrium, F = 1, which implies that pressure is not 
freely variable if we have set the temperature. Th at is, the 
equilibrium of two phases is represented by a line in a phase 
diagram: a line in a graph shows how one variable must 
change if another variable is varied (Fig. 3.38). Instead of 
selecting the temperature, we can select the pressure, but 
having done so, the two phases come into equilibrium at a 
single defi nite temperature. Th erefore, freezing (or any other 
phase transition of a single substance) occurs at a defi nite 
temperature at a given pressure. When three phases are in 
equilibrium, F = 0. Th is special ‘invariant condition’ can 
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For any type of gas (perfect or not) in a gaseous mixture, the 
partial pressure, pJ, of the gas J is defi ned as

pJ = xJp Definition of the 
partial pressure

 (3.26)

where xJ is the mole fraction of the gas J in the mixture. For 
perfect gases, the partial pressure of a gas defi ned in this way is 
also the pressure that the gas would exert if it were alone in the 
container at the same temperature.

Fig. 3.38 Th e features of a phase diagram represent diff erent 
degrees of freedom. When only one phase is present, F = 2 
and the pressure and temperature can be varied at will. 
When two phases are present in equilibrium, F = 1: now if 
the temperature is changed, the pressure must be changed 
by a specifi c amount. When three phases are present in 
equilibrium, F = 0 and there is no freedom to change either 
variable.

therefore be established only at a defi nite temperature and 
pressure. Th e equilibrium of three phases is therefore 
represented by a point, the triple point, on the phase diagram. 
If we set P = 4, we get the absurd result that F is negative; that 
result is in accord with the conclusion at the start of this 
section that four phases cannot be in equilibrium in a 
one-component system.

Further information 3.2 Measures of concentration

A useful measure of concentration of component J of a 
mixture is its mole fraction, the amount of J molecules 
expressed as a fraction of the total amount of molecules in 
the mixture. In a mixture that consists of nA A molecules, nB B 
molecules, and so on (where the nJ are amounts in moles), 
the mole fraction of J (where J = A, B, . . .) is

xJ = nJ

n
 Definition of the 

mole fraction
 (3.25a)

where n = nA + nB + . . . . For a binary mixture, one that consists 
of two species, this general expression becomes

xA = nA

nA + nB
  xB = nB

nA + nB
  xA + xB = 1 (3.25b)

When only A is present, xA = 1 and xB = 0. When only B is 
present, xB = 1 and xA = 0. When both are present in the same 
amounts, xA = 12 and xB = 12 (Fig. 3.39).

Fig. 3.39 Th e mole fraction is an indication of the fraction 
of molecules in a sample that are of the specifi ed identity. 
In this fi gure, the mole fraction xA of component A (in blue) 
of a binary mixture increases from (a) 0.167, to (b) 0.452, 
to (c) 0.833.

Self-test 3.10 Calculate the mole fractions of N2, O2, 
and Ar in dry air at sea level, given that 100.0 g of air 
consists of 75.5 g of N2, 23.2 g of O2, and 1.3 g of Ar. (Hint: 
Begin by converting each mass to an amount in moles.)

Answer: 0.780, 0.210, 0.009
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Th e molar concentration, [J] or cJ, of a solute J in a solution 
(more formally, the ‘amount of substance concentration’) is 
the chemical amount of J divided by the volume of the 
solution:6

[J] = nJ

V
 Definition of the molar 

concentration
 (3.27)

Molar concentration is typically reported in moles per cubic 
decimeter (and commonly as moles per liter, mol L−1). Th e 
unit 1 mol dm−3 is commonly denoted 1 m (and read ‘molar’). 
Once we know the molar concentration of a solute, we can 
calculate the amount of that substance in a given volume, V, 
of solution by writing

nJ = [J]V (3.28)

Th e molality, bJ, of a solute J in a solution is the amount of 
substance divided by the mass of solvent used to prepare the 
solution:

bJ = nJ

msolvent
 Definition of molality  (3.29)

Molality is typically reported in moles of solute per 
kilogram of solvent (mol kg−1). Th is unit is sometimes (but 
unoffi  cially) denoted m, with 1 m = 1 mol kg−1. An important 
distinction between molar concentration and molality is that 
whereas the former is defi ned in terms of the volume of the 
solution, the molality is defi ned in terms of the mass of solvent 
used to prepare the solution. A distinction to remember is that 
molar concentration varies with temperature as the solution 
expands and contracts, but the molality does not. For dilute 
solutions in water, the numerical values of the molality and 
molar concentration diff er very little because 1 dm3 of solution 
is mostly water and has a mass close to 1 kg; for concentrated 
aqueous solutions and for all nonaqueous solutions with 
densities diff erent from 1 g cm−3, the two values are very 
diff erent.

As we have indicated, we use molality when we need 
to emphasize the relative amounts of solute and solvent 
molecules. To see why this is so, we note that the mass of 

A brief illustration

From Self-test 3.10, we have xN2
 = 0.780, xO2

 = 0.210, and 
xAr = 0.009 for dry air at sea level. It then follows from 
eqn 3.26 that when the total atmospheric pressure is 
100 kPa, the partial pressure of nitrogen is pN2

 = xN2
p = 

0.780 × (100 kPa) = 78.0 kPa. Similarly, for the other two 
components we fi nd pO2

 = 21.0 kPa and pAr = 0.9 kPa.

6 Molar concentration is still widely called ‘molarity’.

Self-test 3.11 Calculate the mole fraction of sucrose 
molecules in 1.22 m C12H22O11(aq).

Answer: 2.15 × 10−2

Example 3.5 Relating mole fraction and molality

What is the mole fraction of glycine molecules in 0.140 m 
NH2CH2COOH(aq)? Disregard the eff ects of protonation 
and deprotonation.

Strategy We consider a sample that contains (exactly) 
1 kg of solvent and hence an amount nJ = bJ × (1 kg) of 
solute molecules. Th e amount of solvent molecules in 
exactly 1 kg of solvent is

nsolvent = 1 kg
M

where M is the molar mass of the solvent. Once these two 
amounts are available, we can calculate the mole fraction 
by using eqn 3.25 with n = nJ + nsolvent.

Solution It follows from the discussion in the Strategy that 
the amount of glycine (gly) molecules in exactly 1 kg of 
solvent is

ngly = (0.140 mol kg−1) × (1 kg) = 0.140 mol

Th e amount of water molecules in exactly 1 kg (103 g) of 
water is

nwater = 103 g
18.02 g mol−1 = 103

18.02
 mol

Th e total amount of molecules present is

n = 0.140 mol + 103

18.02
 mol

Th e mole fraction of glycine molecules is therefore

xgly = 0.140 mol
{0.140 + (103/18.02)} mol

 = 2.52 × 10−3

A note on good practice We refer to exactly 1 kg of solvent to 
avoid problems with signifi cant fi gures.

 

solvent is proportional to the amount of solvent molecules 
present, so from eqn 3.29 we see that the molality is 
proportional to the ratio of the amounts of solute and solvent 
molecules. For example, any 1.0 m aqueous nonelectrolyte 
solution contains 1.0 mol solute particles per 55.5 mol 
H2O molecules, so in each case there is 1 solute molecule 
per 55.5 solvent molecules.
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Exercises

3.9 What is the diff erence in molar Gibbs energy due to pressure 
alone of (a) water (density 1.03 g cm−3) at the ocean surface and 
in the Mindañao trench (depth 11.5 km) and (b) mercury (density 
13.6 g cm−3) at the top and bottom of the column in a barometer? 
Hint: At the very top, the pressure on the mercury is equal to the 
vapor pressure of mercury, which at 20°C is 160 mPa.

3.10 Th e density of the fat tristearin is 0.95 g cm−3. Calculate the 
change in molar Gibbs energy of tristearin when a deep-sea creature is 
brought to the surface (p = 1.0 atm) from a depth of 2.0 km. To calculate 
the hydrostatic pressure, take the mean density of water to be 1.03 g cm−3.

3.11 Calculate the change in molar Gibbs energy of carbon dioxide 
(treated as a perfect gas) at 20°C when its pressure is changed 
isothermally from 1.0 bar to (a) 2.0 bar and (b) 0.000 27 atm, its 
partial pressure in air. 

3.12 Th e standard molar entropies of water ice, liquid, and vapor are 
37.99, 69.91, and 188.83 J K−1 mol−1, respectively. On a single graph, 
show how the Gibbs energies of each of these phases vary with 
temperature.

3.13 An open vessel containing (a) water, (b) benzene, and 
(c) mercury stands in a laboratory measuring 6.0 m × 5.3 m × 3.2 m 
at 25°C. What mass of each substance will be found in the air if there 
is no ventilation? (Th e vapor pressures are (a) 2.3 kPa, (b) 10 kPa, 
and (c) 0.30 Pa.)

3.14 (a) Use the Clapeyron equation to estimate the slope of the solid−
liquid phase boundary of water given that the enthalpy of fusion is 
6.008 kJ mol−1 and the densities of ice and water at 0°C are 0.916 71 
and 0.999 84 g cm−3, respectively. Hint: Express the entropy of fusion in 
terms of the enthalpy of fusion and the melting point of ice. (b) Estimate 
the pressure required to lower the melting point of ice by 1°C.

3.15 (a) Use the Clausius–Clapeyron equation to show that the vapor 
pressure p ′ at a temperature T ′ is related to the vapor pressure p at a 
temperature T by

ln p′ = ln p + DvapH
R

 AC
1
T

 − 1
T ′

D
F

(b) Th e vapor pressure of mercury at 20°C is 160 mPa. What is its 
vapor pressure at 40°C given that its enthalpy of vaporization is 
59.30 kJ mol−1?

3.16 (a) Th e vapor pressures of substances are commonly reported 
as log(p/kPa) = A − B/T, where A and B are constants. Show that the 
expression you derived in Exercise 3.15 reduces to this form, and write 
expressions for the constants A and B. (b) For benzene in the range 
0–42°C, A = 7.0871 and B = 1785 K. What is the enthalpy of 
vaporization of benzene?

3.17 On a cold, dry morning aft er a frost, the temperature was −5°C 
and the partial pressure of water in the atmosphere fell to 2 Torr. Will 
the frost sublime? What partial pressure of water would ensure that 
the frost remained? 

3.18 (a) Refer to Fig. 3.13 and describe the changes that would be 
observed when water vapor at 1.0 bar and 400 K is cooled at constant 
pressure to 260 K. (b) Suggest the appearance of a plot of temperature 
against time if energy is removed at a constant rate. To judge the 
relative slopes of the cooling curves, you need to know that the 
constant-pressure molar heat capacities of water vapor, liquid, and 
solid are approximately 4R, 9R, and 4.5R; the enthalpies of transition 
are given in Table 1.2. 

3.19 Refer to Fig. 3.13 and describe the changes that would be 
observed when cooling takes place at the pressure of the triple point. 

3.20 A thermodynamic treatment allows predictions to be made of 
the temperature Tm for the unfolding of a helical polypeptide into a 
random coil. If a polypeptide has n amino acids, n − 4 hydrogen bonds 
are formed to form an α-helix, the most common type of helix in 
naturally occurring proteins (see Chapter 11). Because the fi rst and 
last residues in the chain are free to move, it follows that n − 2 residues 
form the compact helix and have restricted motion. Based on these 
ideas, the molar Gibbs energy of unfolding of a polypeptide with 
n ≥ 5 may be written as

DGm = (n − 4)DhbHm − (n − 2)TDhbSm 

where DhbHm and DhbSm are, respectively, the molar enthalpy and 
entropy of dissociation of hydrogen bonds in the polypeptide. 
(a) Justify the form of the equation for the Gibbs energy of 
unfolding. Th at is, why are the enthalpy and entropy terms 
written as (n − 4)DhbHm and (n − 2)DhbSm, respectively? 
(b) Show that Tm may be written as 

Tm = (n − 4)DhbHm/(n − 2)DhbSm

Discussion questions

3.1 Why does the chemical potential vary with (a) temperature and 
(b) pressure?

3.2 Discuss the implications for phase stability of the variation of 
chemical potential with temperature and pressure.

3.3 State and justify the thermodynamic criterion for solution–vapor 
equilibrium.

3.4 Explain the signifi cance of the Clapeyron equation and the 
Clausius–Clapeyron equation.

3.5 How would you expect the shape of the curve shown in Fig. 3.16 
to change if the degree of cooperativity of denaturation of a protein 
were to increase or decrease for a constant value of the melting 
temperature?

3.6 What is meant by the activity of a solute?

3.7 Explain the origin of colligative properties. Why do they not 
depend on the chemical identity of the solute?

3.8 Explain how osmometry can be used to determine the molar mass 
of a biological macromolecule. 
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(c) Plot Tm/(DhbHm/DhbSm) for 5 ≤ n ≤ 20. At what value of n does Tm 
change by less than 1 per cent when n increases by one?

3.21 A thermodynamic treatment allows predictions of the stability 
of DNA. Th e table below lists the standard Gibbs energies, enthalpies, 
and entropies of formation at 298 K of short sequences of base pairs 
as two polynucleotide chains come together: 

Sequence 5′–A–G 5′–G–C 5′–T–G
 3′–T–C 3′–C–G 3′–A–C
DseqG3/(kJ mol−1)  −5.4  −10.5  −6.7
DseqH 3/(kJ mol−1) −25.5  −46.4 −31.0
DseqS 3(kJ mol−1) −67.4 −118.8 −80.8

To estimate the standard Gibbs energy of formation of a double-
stranded piece of DNA, DDNAG3, we sum the contributions from the 
formation of the sequences and add to that quantity the standard 
Gibbs energy of initiation of the process, which in the case treated 
in this exercise may be set equal to DinitG3 = +14.2 kJ mol−1:

DDNAG3 = DinitG3 + DseqG3(sequences)

Similar procedures lead to DDNAH 3 and DDNAS 3. (a) Provide a 
molecular explanation for the fact that DinitG3 is positive and 
DseqG3 negative. (b) Estimate the standard Gibbs energy, enthalpy, 
and entropy changes for the following reaction:

5′–A–G–C–T–G–3′ + 5′–C–A–G–C–T– 3′ → 
5′–A–G–C–T–G–3′
3′–T–C–G–A–C–5′

Use DinitH 3 = +2.5 kJ mol−1 and DinitS 3 = −37.7 J K−1 mol−1. (c) Estimate 
the ‘melting’ temperature of the piece of DNA shown in part (b). 

3.22 Th e vapor pressure of water at blood temperature is 47 Torr. 
What is the partial pressure of dry air in our lungs when the total 
pressure is 760 Torr? 

3.23 A gas mixture being used to simulate the atmosphere of 
another planet consists of 320 mg of methane, 175 mg of argon, 
and 225 mg of nitrogen. Th e partial pressure of nitrogen at 300 K 
is 15.2 kPa. Calculate (a) the volume and (b) the total pressure of 
the mixture.

3.24 Calculate the mass of glucose you should use to prepare 
(a) 250.0 cm3 of 0.112 m C6H12O6(aq) and (b) 0.112 m C6H12O6(aq) 
using 250.0 g of water.

3.25 What is the mole fraction of alanine in 0.134 m CH3CH(NH2)
COOH(aq)?

3.26 What mass of sucrose, C12H22O11, should you dissolve in 100.0 g 
of water to obtain a solution in which the mole fraction of C12H22O11 
is 0.124?

3.27 Calculate (a) the (molar) Gibbs energy of mixing and (b) the 
(molar) entropy of mixing when the two major components of air 
(nitrogen and oxygen) are mixed to form air. Th e mole fractions of 
N2 and O2 are 0.78 and 0.22, respectively. Is the mixing spontaneous?

3.28 Suppose now that argon is added to the mixture in Exercise 3.27 
to bring the composition closer to real air, with mole fractions 0.780, 
0.210, and 0.0096, respectively. What is the additional change in molar 
Gibbs energy and entropy? Is the mixing spontaneous?

3.29 Estimate the vapor pressure of seawater at 20°C given that 
the vapor pressure of pure water is 2.338 kPa at that temperature 
and the solute is largely Na+ and Cl− ions, each present at about 
0.50 mol dm−3.

3.30 Hemoglobin, the red blood protein responsible for oxygen 
transport, binds about 1.34 cm3 of oxygen per gram. Normal blood 
has a hemoglobin concentration of 150 g dm−3. Hemoglobin in the 
lungs is about 97 per cent saturated with oxygen but in the capillary 
is only about 75 per cent saturated. What volume of oxygen is given 
up by 100 cm3 of blood fl owing from the lungs in the capillary?

3.31 In scuba diving (where scuba is an acronym formed from 
‘self-contained underwater breathing apparatus’), air is supplied at a 
higher pressure so that the pressure within the diver’s chest matches 
the pressure exerted by the surrounding water. Th e latter increases by 
about 1 atm for each 10 m of descent. One unfortunate consequence 
of breathing air at high pressures is that nitrogen is much more soluble 
in fatty tissues than in water, so it tends to dissolve in the central 
nervous system, bone marrow, and fat reserves. Th e result is nitrogen 
narcosis, with symptoms like intoxication. If the diver rises too rapidly 
to the surface, the nitrogen comes out of its lipid solution as bubbles, 
which causes the painful and sometimes fatal condition known as the 
bends. Many cases of scuba drowning appear to be consequences of 
arterial embolisms (obstructions in arteries caused by gas bubbles) 
and loss of consciousness as the air bubbles rise into the head. Th e 
Henry’s law constant in the form c = Kp for the solubility of nitrogen 
is 0.18 mg/(g H2O atm). (a) What mass of nitrogen is dissolved in 
100 g of water saturated with air at 4.0 atm and 20°C? Compare your 
answer to that for 100 g of water saturated with air at 1.0 atm. (Air is 
78.08 mole per cent N2.) (b) If nitrogen is four times as soluble in fatty 
tissues as in water, what is the increase in nitrogen concentration in 
fatty tissue in going from 1 atm to 4 atm?

3.32 Calculate the concentration of carbon dioxide in fat given that 
the Henry’s law constant is 8.6 × 104 Torr and the partial pressure of 
carbon dioxide is 55 kPa.

3.33 Th e rise in atmospheric carbon dioxide results in higher 
concentrations of dissolved carbon dioxide in natural waters. Use 
Henry’s law and the data in Table 3.2 to calculate the solubility of 
CO2 in water at 25°C when its partial pressure is (a) 4.0 kPa and 
(b) 100 kPa.

3.34 Th e mole fractions of N2 and O2 in air at sea level are 
approximately 0.78 and 0.21. Calculate the molalities of the 
solution formed in an open fl ask of water at 25°C.

3.35 Estimate the freezing point of 150 cm3 of water sweetened with 
7.5 g of sucrose.

3.36 A compound A existed in equilibrium with its dimer, A2, in an 
aqueous solution. Derive an expression for the equilibrium constant 
K = [A2]/[A]2 in terms of the depression in vapor pressure caused by a 
given concentration of compound. Hint: Suppose that a fraction f of 
the A molecules are present as the dimer. Th e depression of vapor 
pressure is proportional to the total concentration of A and A2 
molecules regardless of their chemical identities.

3.37 Th e osmotic pressure of an aqueous solution of urea at 300 K is 
120 kPa. Calculate the freezing point of the same solution.

3.38 Th e molar mass of an enzyme was determined by dissolving it in 
water, measuring the osmotic pressure at 20°C and extrapolating the 
data to zero concentration. Th e following data were used: 

c/(mg cm−3)  3.221 4.618  5.112  6.722
h/cm 5.746  8.238 9.119 11.990

Calculate the molar mass of the enzyme. Hint: Begin by expressing 
eqn 3.24 in terms of the height of the solution by using P = rgh; 
take r = 1.000 g cm−3.
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Projects

3.39 We now explore further the use of temperature–composition 
diagrams in the study of biological systems.

(a) Use the phase rule described in Further information 3.1 to justify 
the statement that in a temperature–composition diagram for a binary 
mixture, two-phase equilibria defi ne a line and a three-phase 
equilibrium is represented by a point.

(b) Consider Fig. 3.19. (i) Is the molten globule form ever stable 
when the denaturant concentration is below the level marked x? 
(ii) Describe what happens to the polymer as the native form is 
heated in the presence of denaturant at concentration y. 

(c) In an experimental study of membrane-like assemblies, a 
phase diagram like that shown in Fig. 3.40 was obtained. Th e 
two components are dielaidoylphosphatidylcholine (DEL) and 
dipalmitoylphosphatidylcholine (DPL). Explain what happens 
as a liquid mixture of composition xDEL = 0.5 is cooled from 45°C.

concentration of bound A. Now we explore the quantitative 
consequences of the experimental arrangement just described.

(a) Th e average number of A molecules bound to M molecules, n, is 

n = [A]bound

[M]
 = [A]in − [A]out

[M]

Th e bound and unbound A molecules are in equilibrium, 
M + A 7 MA. Recall from introductory chemistry that we 
may write the equilibrium constant for binding, K, as 

K = [MA]
[M]free[A]free

Now show that 

K = n
(1 − n)[A]out

(b) If there are N identical and independent binding sites on each 
macromolecule, each macromolecule behaves like N separate smaller 
macromolecules, with the same value of K for each site. It follows that 
the average number of A molecules per site is n/N. Show that, in this 
case, we may write the Scatchard equation: 

n
[A]out

 = KN − Kn

(c) Th e Scatchard equation implies that a plot of n/[A]out against n 
should be a straight line of slope K and intercept KN at n = 0. To apply 
the Scatchard equation, consider the binding of ethidium bromide 
(EB) to a short piece of DNA by a process called intercalation, in 
which the aromatic ethidium cation fi ts between two adjacent DNA 
base pairs. A 1.00 × 10−6 mol dm−3 aqueous solution of the DNA 
sample was dialyzed against an excess of EB. Th e following data were 
obtained for the total concentration of EB: 

[EB]/(mmol dm−3)
Side without DNA 0.042 0.092 0.204 0.526 1.150
Side with DNA 0.292 0.590 1.204 2.531 4.150

From these data, make a Scatchard plot and evaluate the equilibrium 
constant, K, and total number of sites per DNA molecule. Is the 
identical and independent sites model for binding applicable? 

(d) For nonidentical independent binding sites, the Scatchard 
equation is 

n
[A]out

 = ∑
i

 NiKi

1 + Ki[A]out

Plot n/[A] for the following cases. (i) Th ere are four independent sites 
on an enzyme molecule and the equilibrium constant is K = 1.0 × 107. 
(ii) Th ere are a total of six sites per enzyme molecule. Four of the sites 
are identical and have an equilibrium constant of 1 × 105. Th e binding 
constants for the other two sites are 2 × 106.

Fig. 3.40 

3.40 Dialysis may also be used to study the binding of small molecules 
to macromolecules, such as an inhibitor to an enzyme, an antibiotic to 
DNA, and any other instance of cooperation or inhibition by small 
molecules attaching to large ones. To see how this is possible, suppose 
inside the dialysis bag the molar concentration of the macromolecule 
M is [M] and the total concentration of small molecule A is [A]in. 
Th is total concentration is the sum of the concentrations of free A 
and bound A, which we write [A]free and [A]bound, respectively. At 
equilibrium, mA,free = mA,out, which implies that [A]free = [A]out, provided 
the activity coeffi  cient of A is the same in both solutions. Th erefore, 
by measuring the concentration of A in the solution outside the bag, 
we can fi nd the concentration of unbound A in the macromolecule 
solution and, from the diff erence [A]in − [A]free = [A]in − [A]out, the 
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Now we arrive at the point where real chemistry begins. Chemical thermodynamics is 
used to predict whether a mixture of reactants has a spontaneous tendency to change 
into products, to predict the composition of the reaction mixture at equilibrium, and to 
predict how that composition will be modified by changing the conditions. In biology, 
life is the avoidance of equilibrium; the attainment of equilibrium is death. Knowing 
whether equilibrium lies in favor of reactants or products under certain conditions is 
a good indication of the feasibility of a biochemical reaction. Indeed, the material we 
cover in this chapter is of crucial importance for understanding the mechanisms of 
oxygen transport in blood, metabolism, and all the processes going on inside organ-
isms. One very important feature of life is that one reaction can drive another in a vast 
web of processes. Broadly speaking, that is why we have to eat. We shall see later in 
the chapter how thermodynamics can be used to assess the ability of one reaction to 
drive another.

There is one word of warning that is essential to remember: thermodynamics is silent 
about the rates of reaction. All it can do is to identify whether a particular reaction 
mixture has a tendency to form products; it cannot say whether that tendency will ever 
be realized. We explore what determines the rates of chemical reactions in Chapters 6 
through 8.

Thermodynamic background

Th e thermodynamic criterion for spontaneous change at constant temperature 
and pressure is DG < 0. Th e principal idea behind this chapter, therefore, is that, 
at constant temperature and pressure, a reaction mixture tends to adjust its com-
position until its Gibbs energy is a minimum. If the Gibbs energy of a mixture 
varies as shown in Fig. 4.1a, very little of the reactants convert into products 
before G has reached its minimum value, and the reaction ‘does not go’. If G varies 
as shown in Fig. 4.1c, then a high proportion of products must form before G 
reaches its minimum and the reaction ‘goes’. In many cases, the equilibrium mix-
ture contains almost no reactants or almost no products. Many reactions have a 
Gibbs energy that varies as shown in Fig. 4.1b, and at equilibrium the reaction 
mixture contains substantial amounts of both reactants and products.

4.1 The reaction Gibbs energy
To explore metabolic processes, we need a measure of the driving power of a 
chemical reaction, and to understand the chemical composition of cells, we need 
to know what those compositions would be if the reactions taking place in them 
had reached equilibrium.

Chemical equilibrium 4
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To keep our ideas in focus, we consider two important processes. One is the isom-
erism of glucose-6-phosphate (1, G6P) to fructose-6-phosphate (2, F6P), which 
is an early step in the anaerobic breakdown of glucose (Case study 4.3):

G6P(aq) → F6P(aq) (A)

Th e second is the binding of O2(g) to the protein hemoglobin, Hb, in blood:

Hb(aq) + 4 O2(g) → Hb(O2)4(aq) (B)

Th ese two reactions are specifi c examples of a general reaction of the form

a A + b B → c C + d D (C)

with arbitrary physical states.
First, consider reaction A. Suppose that in a short interval while the reaction is 

in progress, the amount of G6P changes infi nitesimally by −dn. As a result of this 
change in amount, the contribution of G6P to the total Gibbs energy of the system 
changes by −mG6Pdn, where mG6P is the chemical potential (the partial molar Gibbs 
energy) of G6P in the reaction mixture. In the same interval, the amount of F6P 
changes by +dn, so its contribution to the total Gibbs energy changes by +mF6Pdn, 
where mF6P is the chemical potential of F6P. Th e change in Gibbs energy of the 
system is

dG = mF6Pdn − mG6Pdn

On dividing through by dn, we obtain the reaction Gibbs energy, DrG:

dG
dn

 = mF6P − mG6P = DrG (4.1a)

Th ere are two ways to interpret DrG. First, it is the diff erence of the chemical 
potentials of the products and reactants at the current composition of the reaction 
mixture. Second, we can think of DrG as the derivative of G with respect to n, 
which is the slope of the graph of G plotted against the changing composition of 
the system (Fig. 4.2). As we see from the illustration, that slope changes as the 
reaction proceeds because the two chemical potentials change as the composition 
of the reaction mixture changes.

Th e binding of oxygen to hemoglobin provides a slightly more complicated 
example. When the amount of Hb changes by −dn, from the reaction stoichio-
metry the change in the amount of O2 is −4dn and the change in the amount of 
Hb(O2)4 is +dn. Th e overall change in the Gibbs energy of the mixture is 
therefore

dG = mHb(O2)4
 × dn − mHb × dn − mO2

 × 4dn
 = (mHb(O2)4

 − mHb − 4mO2
)dn

where the mJ are the chemical potentials of the species in the reaction mixture. In 
this case, therefore, the reaction Gibbs energy is

 DrG = dG
dn

 = mHb(O2)4
 − mHb − 4mO2

 (4.1b)

Note that each chemical potential is multiplied by the corresponding stoichio-
metric coeffi  cient and that reactants are subtracted from products. For the 
general reaction C,

Fig. 4.1 Th e variation of Gibbs 
energy of a reaction mixture 
with progress of the reaction, 
pure reactants on the left  and 
pure products on the right. 
(a) Th is reaction ‘does not go’: 
the minimum in the Gibbs 
energy occurs very close to the 
reactants. (b) Th is reaction 
reaches equilibrium with 
approximately equal amounts of 
reactants and products present 
in the mixture. (c) Th is reaction 
goes almost to completion, as 
the minimum in Gibbs energy 
lies very close to pure products.
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DrG = (cmC + dmD) − (amA + bmB) Gibbs energy of reaction  (4.1c)

where the chemical potentials are those for each substance at the current com-
position of the mixture.

Th e chemical potential of a substance depends on the composition of the mix-
ture in which it is present and is high when its concentration or partial pressure is 
high. Th erefore, DrG changes as the composition changes (Fig. 4.3). Remember 
that DrG is the slope of G plotted against composition. We see that DrG < 0 and the 
slope of G is negative (down from left  to right) when the mixture is rich in 
the reactants A and B because mA and mB are then high. Conversely, DrG > 0 and the 
slope of G is positive (up from left  to right) when the mixture is rich in the prod-
ucts C and D because mC and mD are then high. At compositions corresponding 
to DrG < 0 the reaction tends to form more products; where DrG > 0, the reverse 
reaction is spontaneous, and the products tend to decompose into reactants. 
Where DrG = 0 (at the minimum of the graph where the slope is zero), the reaction 
has no tendency to form either products or reactants. In other words, the reaction 
is at equilibrium. Th at is, the criterion for chemical equilibrium at constant tem-
perature and pressure is

DrG = 0 Criterion of chemical equilibrium  (4.2)

4.2 The variation of DrG with composition
The reactants and products in a biological cell are rarely at equilibrium, so we need 
to know how the reaction Gibbs energy depends on their concentrations.

Our starting point is the general expression for the composition dependence of 
the chemical potential derived in Section 3.8:

mJ = mJ
3 + RT ln aJ  Chemical potential of a species J  (4.3)

where aJ is the activity of the species J. When we are dealing with systems that may 
be treated as ideal, which will be the case in this chapter, we use the identifi cations 
given in Table 3.3:

For solutes in an ideal solution, aJ = [J]/c3, the molar concentration of J relative 
to the standard value c3 = 1 mol dm−3.
For perfect gases, aJ = pJ/p3, the partial pressure of J relative to the standard 
pressure p3 = 1 bar.
For pure solids and liquids, aJ = 1. 

As in Chapter 3, to simplify the appearance of expressions in what follows, we 
shall not write c3 and p3 explicitly.

(a) The reaction quotient

Substitution of eqn 4.3 into eqn 4.1c gives

DrG = {c(m3
C + RT ln aC) + d(m3

D + RT ln aD)} 
  − {a(m3

A + RT ln aA) + b(m3
B  + RT ln aB)}

 = {(cm3
C + dm3

D) − (am3
A + bm3

A)}
  + RT{c ln aC + d ln aD − a ln aA − b ln aB}

Th e fi rst term on the right in the second equality is the standard reaction Gibbs 
energy, DrG3:

DrG3 = {cm3
C + dm3

D} − {am3
A + bm3

B} (4.4a)

Fig. 4.2 Th e variation of Gibbs 
energy with progress of reaction 
showing how the reaction Gibbs 
energy, DrG, is related to the 
slope of the curve at a given 
composition. When DG and 
Dn are both infi nitesimal, the 
slope is written dG/dn.

Fig. 4.3 At the minimum of 
the curve, corresponding to 
equilibrium, DrG = 0. To the left  
of the minimum, DrG < 0, and the 
forward reaction is spontaneous. 
To the right of the minimum, 
DrG > 0, and the reverse reaction 
is spontaneous.
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Because the standard states refer to the pure materials, the standard chemical 
potentials in this expression are the standard molar Gibbs energies of the (pure) 
species. Th erefore, eqn 4.4a is the same as

DrG3 = {cG3
m(C) + dG3

m(D)} − {aG3
m(A) + bG3

m(B)} Standard Gibbs 
energy of reaction

 (4.4b)

We consider this important quantity in more detail shortly. At this stage, there-
fore, we know that

DrG = DrG3 + RT{c ln aC + d ln aD − a ln aA − b ln aB}

and the expression for DrG is beginning to look much simpler.
To make further progress, we rearrange the remaining terms on the right as 

follows:

c ln aC + d ln aD − a ln aA − b ln aB = ln ac
C + ln ad

D − ln aa
A − ln ab

B

 = ln ac
Cad

D − ln aa
Aab

B = ln a
c
Cad

D

aa
Aab

B

At this point, we have deduced that

DrG = DrG3 + RT ln a
c
Cad

D

aa
Aad

B
 (4.5)

To simplify the appearance of this expression still further, we introduce the 
(dimensionless) reaction quotient, Q, for reaction C:

Q = a
c
Cad

D

aa
Aab

B
 Definition of 

reaction quotient
 (4.6)

Note that Q has the form of products divided by reactants, with the activity of 
each species raised to a power equal to its stoichiometric coeffi  cient in the 
reaction; because activities are dimensionless quantities, Q is a dimensionless 
quantity. We can now write the overall expression for the reaction Gibbs energy at 
any composition of the reaction mixture as

DrG = DrG3 + RT ln Q Reaction Gibbs 
energy

 (4.7)

Th is simple but hugely important equation will occur several times in diff erent 
disguises.

Example 4.1 Formulating a reaction quotient

Formulate the reaction quotients for reactions A (the isomerism of glucose-6-
phosphate) and B (the binding of oxygen to hemoglobin).

Strategy Use Table 3.3 to express activities in terms of molar concentrations 
or pressures. Th en use eqn 4.6 to write an expression for the reaction quotient 
Q. In reactions involving gases and solutes, the expression for Q will contain 
pressures and molar concentrations.
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Solution Th e reaction quotient for reaction A is

Q = aF6P

aG6P
 = [F6P]/c3

[G6P]/c3
 = [F6P]

[G6P]
 

For reaction B, the binding of oxygen to hemoglobin, the reaction quotient is

Q = aHb(O2)4

aHba4
O2

 = [Hb(O2)4]/c3

([Hb]/c3)(pO2
/p3)4

Because we are not writing the standard concentration and pressure explicitly, 
this expression simplifi es to

Q = [Hb(O2)4]
[Hb]p4

O2

 

with pJ the numerical value of the partial pressure of J in bar (so if pO2
 = 2.0 bar, 

we just write pO2
 = 2.0 when using this expression).

Self-test 4.1 Write the reaction quotient for the esterifi cation reaction 
CH3COOH + C2H5OH → CH3COOC2H5 + H2O. (All four components are 
present in the reaction mixture as liquids: the mixture is not an aqueous 
solution.)

Answer: Q ≈ [CH3COOC2H5][H2O]/[CH3COOH][C2H5OH]

(b) Biological standard states

Th e thermodynamic defi nition of standard states of solutes takes them as being at 
unit activity (in elementary work, at c3 = 1 mol dm−3). Th e conventional standard 
state of hydrogen ions (aH3O

+ = 1, corresponding to pH = 0, a strongly acidic solu-
tion) is not appropriate to normal biological conditions inside cells, where the pH 
is close to 7. Th erefore, in biochemistry it is common to adopt the biological stand-
ard state, in which pH = 7, a neutral solution. When we adopt this convention 
we label the corresponding standard quantities as G⊕, H ⊕, and S⊕.1 Equation 4.8 
allows us to relate the two standard Gibbs energies of formation.

For a reaction of the form

reactants + n H3O+(aq) → products

the biological and thermodynamic standard states are related by

DrG⊕ = DrG3 − RT ln(10−7)n = DrG3 + 7nRT ln 10 Relation between 
standard values

 (4.8)

where we have used the relations (xa)b = xab and ln xab = ab ln x. It follows that

at 298.15 K:  DrG⊕ = DrG3 + n(39.96 kJ mol−1)
at 37°C (310 K, body temperature): DrG⊕ = DrG3 + n(41.5 kJ mol−1)

Th ere is no diff erence between thermodynamic and biological standard values if 
hydrogen ions are not involved in the reaction (n = 0).

1 Another convention to denote the biological standard state is to write Xo′ or X3′.
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4.3 Reactions at equilibrium
We need to be able to identify the equilibrium composition of a reaction so that we 
can discuss the approach to equilibrium systematically.

At equilibrium, the reaction quotient has a certain (dimensionless) value called 
the equilibrium constant, K, of the reaction:

K = AC
ac

Cad
D

aa
Aab

B

D
F equilibrium

 Definition of 
equilibrium constant

 (4.9)

We shall not normally write equilibrium; the context will always make it clear 
that Q refers to an arbitrary stage of the reaction, whereas K, the value of Q at 

Example 4.2 Converting between thermodynamic and biological 
standard states

Th e standard reaction Gibbs energy for the hydrolysis of ATP is +10 kJ mol−1 at 
298 K. What is the biological standard state value?

Strategy Because protons occur as products, lowering their concentration 
(from 1 mol dm−3 to 10−7 mol dm−3) suggests that the reaction will have a higher 
tendency to form products. Th erefore, we expect a more negative value of the 
reaction Gibbs energy for the biological standard than for the thermodynamic 
standard. Th e two types of standard are related by eqn 4.8, with the activity of 
hydrogen ions 10−7 in place of 1.

Solution Th e reaction quotient for the hydrolysis reaction

ATP4−(aq) + H2O(l) → ADP3−(aq) + HPO4
2−(aq) + H3O+(aq)

when all the species are in their standard states except the hydrogen ions, 
which are present at 10−7 mol dm−3, is

Q = aADP3−aHPO4
2−aH3O+

aATP4 − aH2O
 = 1 × 1 × 10−7

1 × 1
 = 10−7

Th e thermodynamic and biological standard values are therefore related by 
eqn 4.8 in the form

DrG⊕ = DrG3 + RT ln(10−7)

At 298 K

DrG⊕ = 10 kJ mol−1 + (8.3145 J K−1 mol−1) × (298 K) × ln(10−7)
 = 10 kJ mol−1 − 40 kJ mol−1 
 = −30 kJ mol−1

Note how the large change in pH changes the sign of the standard reaction 
Gibbs energy.

Self-test 4.2 Th e overall reaction for the glycolysis reaction (Case study 4.3) 
is C6H12O6(aq) + 2 NAD+(aq) + 2 ADP3−(aq) + 2 HPO4

2−(aq) + 2 H2O(l) → 
2 CH3COCO2

−(aq) + 2 NADH(aq) + 2 ATP4−(aq) + 2 H3O+(aq). For this reaction, 
DrG⊕ = −80.6 kJ mol−1 at 298 K. What is the value of DrG3?

Answer: −0.7 kJ mol−1
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equilibrium, is calculated from the equilibrium composition. It now follows from 
eqn 4.7 that at equilibrium

0 = DrG3 + RT ln K 

and therefore that

DrG3 = −RT ln K Expression for calculating 
an equilibrium constant

 (4.10a)

Th is is one of the most important equations in the whole of chemical thermo-
dynamics. Its principal use is to predict the value of the equilibrium constant of 
any reaction from tables of thermodynamic data, like those in the Resource section. 
Alternatively, we can use it to determine DrG3 by measuring the equilibrium con-
stant of a reaction.

A note on good practice 
Th e exponential function 
(ex) is very sensitive to the 
value of x, so evaluate it only 
at the end of a numerical 
calculation.

 

A brief illustration

Th e fi rst step in the metabolic breakdown of glucose is its phosphorylation 
to G6P:

glucose(aq) + ATP(aq) → G6P(aq) + ADP(aq) + H+(aq)

Th e standard reaction Gibbs energy for the reaction is −34 kJ mol−1 at 37°C, 
so it follows from eqn 4.10a that

ln K = − 
DrG3

RT
 = − (−3.4 × 104 J mol−1)

(8.3145 J K−1 mol−1) × (310 K)
 = 3.4 × 104

8.3145 × 310

To calculate the equilibrium constant of the reaction, which (like the reaction 
quotient) is a dimensionless number, we use the relation eln x = x with x = K:

K = e3.4×104/8.3145×310 = 5.4 × 105

Self-test 4.3 Calculate the equilibrium constant of the reaction N2(g) + 
3 H2(g) 7  2 NH3(g) at 25°C, given that DrG3 = −32.90 kJ mol−1.

Answer: 5.8 × 105

If the biological standard state is used in place of the thermodynamic standard 
state, we write eqn 4.10a in the same way,

DrG⊕ = −RT ln K Expression for calculating 
an equilibrium constant

 (4.10b)

but interpret the concentration of any hydronium ions that occurs in K as relative 
to c⊕ = 10−7 mol dm−3 rather than relative to c3 = 1 mol dm−3. Th at is, we interpret 
the activity of hydronium ions in the expression for K as aH3o+ = [H3O+]/c⊕.

A brief illustration

Th e biological standard reaction Gibbs energy for the reaction in the preced-
ing brief illustration is −75.5 kJ mol−1. Th e same calculation illustrated there 
but with this value gives K ′ = 5.3 × 1012. Th is value is for
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K ′ = [G6P][ADP]([H3O+]/10−7)

[glucose][ATP]
 = 5.3 × 1012

whereas the former value was for

K = [glucose][ADP][H3O+]
[F6P][ATP]

 = 5.4 × 105

Multiplication of both sides of the fi rst equation of this pair by 10−7 gives a 
result in accord with the second equation.

Fig. 4.4 Th e relation between 
standard reaction Gibbs energy 
and the equilibrium constant 
of the reaction.

Table 4.1 Th ermodynamic criteria of spontaneity

1. If the reaction is exothermic (DrH3 < 0) and DrS3 > 0
 DrG3 < 0 and K > 1 at all temperatures
2. If the reaction is exothermic (DrH3 < 0) and DrS3 < 0
 DrG3 < 0 and K > 1 provided that T < DrH3/DrS3

3. If the reaction is endothermic (DrH3 > 0) and DrS3 > 0
 DrG3 < 0 and K > 1 provided that T > DrH3/DrS3

4. If the reaction is endothermic (DrH3 > 0) and DrS3 < 0
 DrG3 < 0 and K > 1 at no temperature

Fig. 4.5 An endothermic reaction 
may have K > 1 provided the 
temperature is high enough for 
TDrS3 to be large enough that, 
when subtracted from DrH3, 
the result is negative.

(a) The significance of the equilibrium constant

An important feature of eqn 4.10a is that it tells us that K > 1 if DrG3< 0 (and 
correspondingly that K ′ > 1 if DrG⊕ < 0). Broadly speaking, K > 1 implies that 
products are dominant at equilibrium, so we can conclude that a reaction is 
thermodynamically feasible if DrG3 < 0 (Fig. 4.4). Conversely, because eqn 4.10a 
tells us that K < 1 if DrG3 > 0, then we know that the reactants will be dominant 
in a reaction mixture at equilibrium if DrG3 > 0. In other words, a reaction with 
DrG3 > 0 is not thermodynamically feasible. Some care must be exercised with 
these rules, however, because the products will be signifi cantly more abundant 
than reactants only if K >> 1 (more than about 103), and even a reaction with K < 1 
may have a reasonable abundance of products at equilibrium.

Table 4.1 summarizes the conditions under which DrG3 < 0 and K > 1. Because 
DrG3 = DrH3 − TDrS3, the standard reaction Gibbs energy is certainly negative if 
both DrH3 < 0 (an exothermic reaction) and DrS3 > 0 (a reaction system that 
becomes more disorderly, such as by forming a gas). Th e standard reaction Gibbs 
energy is also negative if the reaction is endothermic (DrH3 > 0) and TDrS3 is 
suffi  ciently large and positive. Note that for an endothermic reaction to have 
DrG3 < 0, its standard reaction entropy must be positive. Moreover, the tempera-
ture must be high enough for TDrS3 to be greater than DrH3 (Fig. 4.5). Th e switch 
of DrG3 from positive to negative, corresponding to the switch from K < 1 (the 
reaction ‘does not go’) to K > 1 (the reaction ‘goes’), occurs at a temperature given 
by equating DrH3 − TDrS3 to 0, which gives

T = DrH3

DrS3
 

Temperature at which 
an endothermic reaction 
becomes spontaneous

 (4.11)
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(b) The composition at equilibrium

An equilibrium constant expresses the composition of an equilibrium mixture as 
a ratio of products of activities. Even if we confi ne our attention to ideal systems, 
it is still necessary to do some work to extract the actual equilibrium concentra-
tions or partial pressures of the reactants and products given their initial values 
(see, for example, Example 4.5).

Self-test 4.4 Suppose that the enthalpy change accompanying the dissoci-
ation of base pairs is of the order of +15 kJ per mole of base pairs and the 
corresponding entropy change is 45 J K−1 mol−1. At what temperature can you 
expect a DNA chain to denature spontaneously?

Answer: 60°C

Example 4.3 Calculating an equilibrium composition

Consider reaction A, for which DrG3 = +1.7 kJ mol−1 at 25°C. Estimate the 
fraction f of F6P in equilibrium with G6P at 25°C, where f is defi ned as

f = [F6P]
[F6P] + [G6P]

Strategy Express f in terms of K. To do so, recognize that if the numerator and 
denominator in the expression for f are both divided by [G6P]; then the ratios 
[F6P]/[G6P] can be replaced by K. Calculate the value of K by using eqn 4.10a.

Solution Division of the numerator and denominator by [G6P] gives

f = [F6P]/[G6P]
[F6P]/[G6P] + 1

 = K
K + 1

We fi nd the equilibrium constant by rearranging eqn 4.10a into

K = e−DrG3/RT

with

DrG3

RT
 = 1.7 × 103 J mol−1

(8.3145 J K−1 mol−1) × (298 K)
 = 1.7 × 103

8.3145 × 298

Th erefore,

K = e−1.7×103/8.3145×298 = 0.50

and

f = 0.50
0.50 + 1

 = 0.33

Th at is, at equilibrium, 33 per cent of the solute is F6P and 67 per cent is G6P.

Self-test 4.5 Estimate the composition of a solution in which two isomers 
A and B are in equilibrium (A 7 B) at 37°C and DrG3 = −2.2 kJ mol−1.

Answer: Th e fraction of B at equilibrium is feq = 0.70.
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(c) The molecular origin of chemical equilibrium

We can obtain a deeper insight into the origin and signifi cance of the equilibrium 
constant by considering the Boltzmann distribution of molecules over the avail-
able states of a system composed of reactants and products. When atoms can 
exchange partners, as in a chemical reaction, the available states of the system 
include arrangements in which the atoms are present in the form of reactants and 
other atoms are present in the form of products. Th ese arrangements have their 
characteristic sets of energy levels, but the Boltzmann distribution does not dis-
tinguish between their identities, only their energies. Th e atoms distribute them-
selves over both sets of energy levels in accord with the Boltzmann distribution 
(Fig. 4.6). At a given temperature, there is a specifi c distribution of populations 
and hence a specifi c composition of the reaction mixture.

It can be appreciated from Fig. 4.6 that if the reactants and products both have 
similar arrays of molecular energy levels, then the dominant species in a reaction 
mixture at equilibrium will be the species with the lower set of energy levels. 
However, the fact that the equilibrium constant is related to the Gibbs energy 
(through ln K = −DrG3/RT) is a signal that entropy plays a role as well as energy. 
Its role can be appreciated by referring to Fig. 4.7. We see that although the B 
energy levels lie higher than the A energy levels, in this instance they are much 
more closely spaced. As a result, their total population may be considerable and 
B could even dominate in the reaction mixture at equilibrium. Closely spaced 
energy levels correlate with a high entropy, so in this case we see that entropy 
eff ects dominate adverse energy eff ects. Th at is, a positive reaction enthalpy 
results in a lowering of the equilibrium constant (that is, an endothermic reaction 
can be expected to have an equilibrium composition that favors the reactants). 
However, if there is positive reaction entropy, then the equilibrium composition 
may favor products, despite the endothermic character of the reaction.

Fig. 4.7 Even though the reaction 
A → B is endothermic, the 
density of energy levels in B is so 
much greater than that in A, the 
population associated with B is 
greater than that associated with 
A; hence B is dominant at 
equilibrium.

Fig. 4.6 Th e Boltzmann 
distribution of populations over 
the energy levels of two species 
A and B with similar densities of 
energy levels; the reaction A → B 
is endothermic in this example. 
Th e bulk of the population is 
associated with the species A, 
so that species is dominant at 
equilibrium. 

Case study 4.1 Binding of oxygen to myoglobin and hemoglobin

Biochemical equilibria can be far more complex than those we have con-
sidered so far, but exactly the same principles apply. An example of a complex 
process is the binding of O2 by hemoglobin in blood, which is described only 
approximately by reaction B. Th e protein myoglobin (Mb, Atlas P10) stores 
O2 in muscle, and the protein hemoglobin (Hb, Atlas P7) transports O2 in 
blood. Th ese two proteins are related, for hemoglobin is a tetramer of four 
myoglobin-like molecules. In each protein, the O2 molecule attaches to an iron 
ion in a heme group (Atlas R2) (Fig. 4.8).

First, consider the equilibrium between Mb and O2:

Mb(aq) + O2(g) 7 MbO2(aq)  K = [MbO2]
[Mb]p

where p is the numerical value of the partial pressure of O2 gas in bar. It follows 
that the fractional saturation, s, the fraction of Mb molecules that are oxygen-
ated, is

s = [MbO2]
[Mb]total

 = [MbO2]
[Mb] + [MbO2]

 = Kp
1 + Kp

 Fractional saturation 
of myoglobin

 (4.12)

Th e dependence of s on p is shown in Fig. 4.9.
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Now consider the equilibrium between Hb and O2:

Hb(aq) + O2(g) 7 HbO2(aq) K1 = [HbO2]
[Hb]p

HbO2(aq) + O2(g) 7 Hb(O2)2(aq) K2 = [Hb(O2)2]
[HbO2]p

Hb(O2)2(aq) + O2(g) 7 Hb(O2)3(aq) K3 = [Hb(O2)3]
[Hb(O2)2]p

Hb(O2)3(aq) + O2(g) 7 Hb(O2)4(aq) K4 = [Hb(O2)4]
[Hb(O2)3]p

To develop an expression for s, we express [Hb(O2)2] in terms of [HbO2] by using 
K2, then express [HbO2] in terms of [Hb] by using K1, and likewise for all the other 
concentrations of Hb(O2)3 and Hb(O2)4. It follows that

[HbO2] = K1[Hb]p [Hb(O2)2] = K1K2[Hb]p2

[Hb(O2)3] = K1K2K3[Hb]p3 [Hb(O2)4] = K1K2K3K4[Hb]p4

Th e total concentration of bound O2 is

[O2]bound = [HbO2] + 2[Hb(O2)2] + 3[Hb(O2)3] + 4[Hb(O2)4]
 = (1 + 2K2p + 3K2K3p2 + 4K2K3K4 p3 )K1[Hb]p

where we have used the fact that n O2 molecules are bound in Hb(O2)n, so 
the concentration of bound O2 in Hb(O2)2 is 2[Hb(O2)2], and so on. Th e total 
concentration of hemoglobin is

[Hb]total = (1 +  K1p + K1K2p2 + K1K2K3p3 + K1K2K3K4 p4)[Hb]

Because each Hb molecule has four sites at which O2 can attach, the fractional 
saturation is

s = [O2]bound

4[Hb]total

 = (1 + 2K2p + 3K2K3p2 + 4K2K3K4 p3)K1p
4(1 + K1p + K1K2p2 + K1K2K3p3 + K1K2K3K4 p4)

 
Fractional
saturation of 
hemoglobin

 (4.13)

A reasonable fi t of the experimental data can be obtained with K1 = 0.01, 
K2 = 0.02, K3 = 0.04, and K4 = 0.08 when p is expressed in torr.

Th e binding of O2 to hemoglobin is an example of cooperative binding, in 
which the binding of a ligand (in this case O2) to a biopolymer (in this case Hb) 
becomes more favorable thermodynamically (that is, the equilibrium constant 
increases) as the number of bound ligands increases up to the maximum number 
of binding sites. We see the eff ect of cooperativity in Fig. 4.9. Unlike the myo-
globin saturation curve, the hemoglobin saturation curve is sigmoidal (S shaped): 
the fractional saturation is small at low ligand concentrations, increases sharply 
at intermediate ligand concentrations, and then levels off  at high ligand con-
centrations. Cooperative binding of O2 by hemoglobin is explained by an allos-
teric eff ect, in which an adjustment of the conformation of a molecule when 
one substrate binds aff ects the ease with which a subsequent substrate molecule 
binds. Th e details of the allosteric eff ect in hemoglobin will be explored in 
Case study 10.4.

Fig. 4.8 One of the four 
polypeptide chains that make 
up the human hemoglobin 
molecule. Th e chains, which are 
similar to the oxygen storage 
protein myoglobin, consist of 
helical and sheet-like regions. 
Th e heme group is at the lower 
left .

Fig. 4.9 Th e variation of the 
fractional saturation of 
myoglobin and hemoglobin 
molecules with the partial 
pressure of oxygen. Th e diff erent 
shapes of the curves account for 
the diff erent biological functions 
of the two proteins.
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Th e diff ering shapes of the saturation curves for myoglobin and hemoglobin 
have important consequences for the way O2 is made available in the body: in 
particular, the greater sharpness of the Hb saturation curve means that Hb can 
load O2 more fully in the lungs and unload it more fully in diff erent regions of the 
organism. In the lungs, where p ≈ 105 Torr (14 kPa), s ≈ 0.98, representing almost 
complete saturation. In resting muscular tissue, p is equivalent to about 38 Torr 
(5 kPa), corresponding to s ≈ 0.75, implying that suffi  cient O2 is still available 
should a sudden surge of activity take place. If the local partial pressure falls to 
22 Torr (3 kPa), s falls to about 0.1. Note that the steepest part of the curve falls in 
the range of typical tissue oxygen partial pressure. Myoglobin, on the other hand, 
begins to release O2 only when p has fallen below about 22 Torr, so it acts as a 
reserve to be drawn on only when the Hb oxygen has been used up.

4.4 The standard reaction Gibbs energy
The standard reaction Gibbs energy is central to the discussion of chemical equilibria 
and the calculation of equilibrium constants. It is also a useful indicator of the energy 
available from catabolism to drive anabolic processes, such as the synthesis of 
proteins.

We have seen that standard reaction Gibbs energy, DrG3, is defi ned as the diff er-
ence in standard molar Gibbs energies of the products and the reactants weighted 
by the stoichiometric coeffi  cients, n, in the chemical equation

DrG3 = ∑
Products

 nG3
m − ∑

Reactants
 nG3

m Definition of standard 
Gibbs energy of reaction

 (4.14)

For example, the standard reaction Gibbs energy for reaction A is the diff erence 
between the molar Gibbs energies of fructose-6-phosphate and glucose-6-
phosphate in solution at 1 mol dm−3 and 1 bar.

We cannot calculate DrG3 from the standard molar Gibbs energies themselves 
because these quantities are not known. One practical approach is to calculate the 
standard reaction enthalpy from standard enthalpies of formation (Section 1.11), 
the standard reaction entropy from Th ird-Law entropies (Section 2.5), and then 
to combine the two quantities by using

DrG3 = DrH3 − TDrS3 Construction of DrG3  (4.15)

Example 4.4 Calculating the standard reaction Gibbs energy of an enzyme-
catalyzed reaction

Evaluate the standard reaction Gibbs energy at 25°C for the reaction CO2(g) 
+ H2O(l) → H2CO3(aq) catalyzed by the enzyme carbonic anhydrase in red 
blood cells.

Strategy Obtain the relevant standard enthalpies of formation and standard 
entropies from the Resource section. Th en calculate the standard reaction 
enthalpy and the standard reaction entropy from

DrH3 = ∑
Products

 nDfH3 − ∑
Reactants 

nDfH3

DrS3 = ∑
Products

 nS3
m − ∑

Reactants 
nS3

m

and the standard reaction Gibbs energy from eqn 4.14.
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Solution Th e standard reaction enthalpy is

DrH3 = Df H3(H2CO3,aq) − {Df H3(CO2,g) + Df H3(H2O,l)}
 = −699.65 kJ mol−1 − {(−393.51 kJ mol−1) + (−285.83 kJ mol−1)}
 = −20.31 kJ mol−1

Th e standard reaction entropy was calculated in the brief illustration in 
Section 2.5:

DrS3 = −96.3 J K−1 mol−1

which, because 96.3 J is the same as 9.63 × 10−2 kJ, corresponds to −9.63 × 
10−2 kJ K−1 mol−1. Th erefore, from eqn 4.15,

DrG3 = (−20.31 kJ mol−1) − (298.15 K) × (−9.63 × 10−2 kJ K−1 mol−1)
 = +8.40 kJ mol−1

Self-test 4.6 Use the information in the Resource section to determine the 
standard reaction Gibbs energy for 3 O2(g) → 2 O3(g) from standard enthal-
pies of formation and standard entropies.

Answer: +326.4 kJ mol−1

(a) Standard Gibbs energies of formation

We saw in Section 1.11 how to use standard enthalpies of formation of substances 
to calculate standard reaction enthalpies. We can use the same technique for 
standard reaction Gibbs energies. To do so, we list the standard Gibbs energy 
of formation, DfG3, of a substance, which is the standard reaction Gibbs energy 
(per mole of the species) for its formation from the elements in their reference 
states. Th e concept of reference state was introduced in Section 1.11 (a reminder: 
it is the most stable form of the element under the prevailing conditions; do not 
confuse ‘reference state’ with ‘standard state’, but be aware that a reference state 
of an element will also be in its standard state if the pressure is 1 bar); the tempera-
ture is arbitrary, but we shall almost always take it to be 25°C (298 K). For 
example, the standard Gibbs energy of formation of liquid water, DfG3(H2O,l), 
is the standard reaction Gibbs energy for

H2(g) + 12 O2(g) → H2O(l)

and is −237 kJ mol−1 at 298 K. Some standard Gibbs energies of formation are 
listed in Table 4.2 and more can be found in the Resource section. It follows from 
the defi nition that the standard Gibbs energy of formation of an element in its 
reference state is zero because reactions such as C(s, graphite) → C(s, graphite) 
are null (that is, nothing happens). Th e standard Gibbs energy of formation of an 
element in a phase diff erent from its reference state is nonzero:

C(s, graphite) → C(s, diamond)  DfG3(C, diamond) = +2.90 kJ mol−1

Many of the values in the tables have been compiled by combining the standard 
enthalpy of formation of the species with the standard entropies of the compound 
and the elements, as illustrated in Example 4.4, but there are other sources of data 
and we encounter some of them later.

Standard Gibbs energies of formation can be combined to obtain the standard 
Gibbs energy of almost any reaction. We use the now familiar expression
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DrG3 = ∑

Products
 nD fG3 − ∑

Reactants 
nD fG3 Calculation of standard 

Gibbs energy of reaction
 (4.16)

If we need the biological standard reaction Gibbs energy, we convert DrG3 to DrG⊕ 
by using eqn 4.8.

Table 4.2 Standard Gibbs energies of formation at 298.15 K*

Substance DfG9/(kJ mol−1)

Gases
Carbon dioxide, CO2 −394.36
Methane, CH4 −50.72
Nitrogen oxide, NO +86.55
Water, H2O −228.57

Liquids
Ethanol, CH3CH2OH −174.78
Hydrogen peroxide, H2O2 −120.35
Water, H2O −237.13

Solids
α-d-Glucose C6H12O6 −917.2 
Glycine, CH2(NH2)COOH −532.9 
Sucrose, C12H22O11 −1543
Urea, CO(NH2)2 −197.33

Solutes in aqueous solution
Carbon dioxide, CO2 −385.98
Carbonic acid, H2CO3 −623.08
Phosphoric acid, H3PO4 −1018.7

*Additional values are given in the Data section.

A brief illustration

To determine the standard reaction Gibbs energy for the complete oxidation 
of solid sucrose, C12H22O11(s), by oxygen gas to carbon dioxide gas and liquid 
water,

C12H22O11(s) + 12 O2(g) → 12 CO2(g) + 11 H2O(l)

we carry out the following calculation:

DrG3 = {12DfG3(CO2,g) + 11DfG3(H2O,l)} − {DfG3(C12H22O11,s) + 12DfG3(O2,g)}
 = {12(−394 kJ mol−1) + 11(−237 kJ mol−1)} − {−1543 kJ mol−1 + 0}
 = −5.79 × 103 kJ mol−1

Self-test 4.7 Calculate the standard reaction Gibbs energy of the oxidation 
of ammonia to nitric oxide according to the equation 4 NH3(g) + 5 O2(g) → 
4 NO(g) + 6 H2O(g).

Answer: −959.42 kJ mol−1
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(b) Stability and instability

Standard Gibbs energies of formation of compounds have their own signifi cance 
as well as being useful in calculations of K. Th ey are a measure of the ‘thermody-
namic altitude’ of a compound above or below a ‘sea level’ of stability represented 
by the elements in their reference states (Fig. 4.10). If the standard Gibbs energy 
of formation is positive and the compound lies above ‘sea level’, then the com-
pound has a spontaneous tendency to sink toward thermodynamic sea level and 
decompose into the elements. Th at is, K < 1 for their formation reaction. We say 
that a compound with D fG3 > 0 is thermodynamically unstable with respect to 
its elements or that it is endergonic. Th us, the endergonic substance ozone, for 
which D fG3 = +163 kJ mol−1, has a spontaneous tendency to decompose into oxy-
gen under standard conditions at 25°C. More precisely, the equilibrium constant 
for the reaction 3

2 O2(g) 7 O3(g) is less than 1 (much less, in fact: K = 2.7 × 10−29). 
However, although ozone is thermodynamically unstable, it can survive if the 
reactions that convert it into oxygen are slow. Th at is the case in the upper atmo-
sphere, and the O3 molecules in the ozone layer survive for long periods. Benzene 
(D fG3 = +124 kJ mol−1) is also thermodynamically unstable with respect to its ele-
ments (K = 1.8 × 10−22). However, the fact that bottles of benzene are everyday 
laboratory commodities also reminds us of the point made at the start of the 
chapter, that spontaneity is a thermodynamic tendency that might not be realized at 
a signifi cant rate in practice.

Another useful point that can be made about standard Gibbs energies of 
formation is that there is no point in searching for direct syntheses of a thermo-
dynamically unstable compound from its elements (under standard conditions, 
at the temperature to which the data apply) because the reaction does not occur in 
the required direction: the reverse reaction, decomposition, is spontaneous. 
Endergonic compounds must be synthesized by alternative routes or under con-
ditions for which their Gibbs energy of formation is negative and they lie beneath 
thermodynamic sea level.

Compounds with D fG3 < 0 (corresponding to K > 1 for their formation reac-
tions) are said to be thermodynamically stable with respect to their elements or 
exergonic. Exergonic compounds lie below the thermodynamic sea level of the 
elements (under standard conditions). An example is the exergonic compound 
ethane, with D fG3 = −33 kJ mol−1: the negative sign shows that the formation 
of ethane gas from its elements is spontaneous in the sense that K > 1 (in fact, 
K = 7.1 × 105 at 25°C).

The response of equilibria to the conditions

In introductory chemistry, we meet the empirical rule of thumb known as 
Le Chatelier’s principle:

When a system at equilibrium is subjected to a disturbance, the composition of 
the system adjusts so as to tend to minimize the eff ect of the disturbance.

Le Chatelier’s principle is only a rule of thumb, and to understand why reactions 
respond as they do and to calculate the new equilibrium composition, we need to 
use thermodynamics. We need to keep in mind that some changes in conditions 
aff ect the value of DrG3 and therefore of K (temperature is the only instance), 
whereas others change the consequences of K having a particular fi xed value 
without changing the value of K (the pressure, for instance).

Fig. 4.10 Th e standard Gibbs 
energy of formation of a 
compound is like a measure of 
the compound’s altitude above 
or below sea level: compounds 
that lie above sea level have 
a spontaneous tendency to 
decompose into the elements 
(and to revert to sea level). 
Compounds that lie below sea 
level are stable with respect to 
decomposition into the elements.
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4.5 The presence of a catalyst
Enzymes are biological versions of catalysts and are so ubiquitous that we need to 
know how their action affects chemical equilibria.

We study the action of catalysts (a substance that accelerates a reaction without 
itself appearing in the overall chemical equation), especially enzymes, in Chapter 8 
and at this stage do not need to know in detail how they work other than that they 
provide an alternative, faster route from reactants to products. Although the new 
route from reactants to products is faster, the initial reactants and the fi nal products 
are the same. Th e quantity DrG3 is defi ned as the diff erence of the standard molar 
Gibbs energies of the reactants and products, so it is independent of the path link-
ing the two. It follows that an alternative pathway between reactants and products 
leaves DrG3 and therefore K unchanged. Th at is, the presence of a catalyst does not 
change the equilibrium constant of a reaction.

4.6 The effect of temperature
In organisms, biochemical reactions occur over a very narrow range of temperatures, 
and changes by only a few degrees can have serious consequences, including death. 
Therefore, it is important to know how changes in temperature, such as those 
brought about by infections, affect biological processes.

According to Le Chatelier’s principle, we can expect a reaction to respond to 
a lowering of temperature by releasing heat and to respond to an increase of 
temperature by absorbing heat. Th at is:

When the temperature is raised, the equilibrium composition of an exothermic 
reaction will tend to shift  toward reactants; the equilibrium composition of an 
endothermic reaction will tend to shift  toward products.

In each case, the response tends to minimize the eff ect of raising the temperature. 
But why do reactions at equilibrium respond in this way? Le Chatelier’s principle 
is only a rule of thumb and gives no clue to the reason for this behavior. As we 
shall now see, the origin of the eff ect is the dependence of DrG3, and therefore of 
K, on the temperature.

First, we consider the eff ect of temperature on DrG3. We use the relation 
DrG3 = DrH3 − TDrS3 and make the assumption that neither the reaction enthalpy 
nor the reaction entropy varies much with temperature (over small ranges, at 
least). It follows that

change in DrG3 = −(change in T) × DrS3 (4.17)

Th is expression is easy to apply when there is a consumption or formation of gas 
because, as we have seen (Section 2.5), gas formation dominates the sign of the 
reaction entropy.

Now consider the eff ect of temperature on K itself. At fi rst, this problem looks 
troublesome because both T and DrG3 appear in the expression for K. However, as 
we show in the following Justifi cation, the eff ect of temperature can be expressed 
very simply as the van ’t Hoff  equation.2

ln K2 = ln K1 + DrH3

R  

A
C

1
T1

 − 1
T2

D
F  van ’t Hoff equation  (4.18)

2 Th ere are several ‘van ’t Hoff  equations’. To distinguish them, this one is sometimes called the van 
’t Hoff  isochore.
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where K1 is the equilibrium constant at the temperature T1 and K2 is its value 
when the temperature is T2. All we need to know to calculate the temperature 
dependence of an equilibrium constant, therefore, is the standard reaction 
enthalpy.

Justification 4.1 The van ’t Hoff equation

As before, we use the approximation that the standard reaction enthalpy and 
entropy are independent of temperature over the range of interest, so the entire 
temperature dependence of DrG3 stems from the T in DrG3 = DrH3 − TDrS3. At 
a temperature T1,

ln K1 = − DrG3

RT1
 = −DrH3

RT1
 + DrS3

R

At another temperature T2, when DrG3′ = DrH3 − T2DrS3 and the equilibrium 
constant is K2, a similar expression holds:

ln K2 = −DrH3

RT2
 + DrS3

R

Th e diff erence between the two is eqn 4.18.

Let’s explore the information in the van ’t Hoff  equation. Consider the case 
when T2 > T1. Th en the term in parentheses in eqn 4.18 is positive. If DrH3 > 0, 
corresponding to an endothermic reaction, the entire term on the right is positive. 
In this case, therefore, ln K2 > ln K1. Th at being so, we conclude that K2 > K1 for 
an endothermic reaction. In general, the equilibrium constant of an endothermic 
reaction increases with temperature. Th e opposite is true when DrH3 < 0, so we can 
conclude that the equilibrium constant of an exothermic reaction decreases with an 
increase in temperature.

Statistical principles also give us insight into the temperature dependence of 
the equilibrium constant. Th e typical arrangement of energy levels for an endo-
thermic reaction is shown in Fig. 4.11a. When the temperature is increased, the 
Boltzmann distribution adjusts and the populations change as shown. Th e change 
corresponds to an increased population of the higher energy states at the expense 
of the population of the lower-energy states. We see that the states that arise from 
the B molecules become more populated at the expense of the A molecules. 
Th erefore, the total population of B states increases, and B becomes more 
abundant in the equilibrium mixture. Conversely, if the reaction is exothermic 
(Fig. 4.11b), then an increase in temperature increases the population of the A 
states (which start at higher energy) at the expense of the B states, so the reactants 
become more abundant. 

Coupled reactions in bioenergetics

We remarked in the introduction to this chapter that thermodynamics enables us 
to determine whether one reaction can drive another forward. We now have 
enough information to take this step. A simple mechanical analogy is a pair of 
weights joined by a string (Fig. 4.12): the lighter of the pair of weights will be 
pulled up as the heavier weight falls down. Although the lighter weight has a 

Fig. 4.11 Th e eff ect of temperature 
on a chemical equilibrium can 
be interpreted in terms of the 
change in the Boltzmann 
distribution with temperature 
and the eff ect of that change in 
the population of the species. 
(a) In an endothermic reaction, 
the population of B increases 
at the expense of A as the 
temperature is raised. (b) In 
an exothermic reaction, the 
opposite happens.

Fig. 4.12 If two weights are coupled 
as shown here, then the heavier 
weight will move the lighter 
weight in its nonspontaneous 
direction: overall, the process is 
still spontaneous. Th e weights 
are the analogs of two chemical 
reactions: a reaction with a large 
negative DrG can force another 
reaction with a smaller DrG to 
run in its nonspontaneous 
direction.
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natural tendency to move downward, its coupling to the heavier weight results in 
it being raised. Th e thermodynamic analog is an endergonic reaction, a reaction 
with a positive Gibbs energy, DrG (the analog of the lighter weight moving up), 
being forced to occur by coupling it to an exergonic reaction, a reaction with a 
negative Gibbs energy, DrG′ (the analog of the heavier weight falling down). Th e 
overall reaction is spontaneous because the sum DrG + DrG′ is negative. Th e whole 
of life’s activities depend on couplings of this kind, for the oxidation reactions of 
food act as the heavy weights that drive other reactions forward and result in the 
formation of proteins from amino acids, the actions of muscles for propulsion, 
and even the activities of the brain for refl ection, learning, and imagination.

Case study 4.2 ATP and the biosynthesis of proteins

Th e function of adenosine triphosphate, ATP4− (Atlas N3) or (more succinctly) 
ATP, is to store the energy made available when food is oxidized and then to 
supply it on demand to a wide variety of processes, including muscular con-
traction, reproduction, and vision. We saw in Case study 2.2 that the essence of 
ATP’s action is its ability to lose its terminal phosphate group by hydrolysis 
and to form adenosine diphosphate, ADP3− (Atlas N2):

ATP4−(aq) + H2O(l) → ADP3−(aq) + HPO4
2−(aq) + H3O+(aq)

Th is reaction is exergonic under the conditions prevailing in cells and can 
drive an endergonic reaction forward if suitable enzymes are available to 
couple the reactions. One reason why ATP is so potent is that its concentration 
in cells is high, so its chemical potential is also high.

Th e biological standard values for the hydrolysis of ATP at 37°C are

DrG⊕ = −31 kJ mol−1  DrH⊕ = −20 kJ mol−1  DrS⊕ = +34 J K−1 mol−1

Th e hydrolysis is therefore exergonic (DrG < 0) under these conditions, and 
31 kJ mol−1 is available for driving other reactions. On account of its exergonic 
character, the ADP–phosphate bond has been called a ‘high-energy phosphate 
bond’. Th e name is intended to signify a high tendency to undergo reaction 
and should not be confused with ‘strong’ bond in its normal chemical sense 
(that of a high bond enthalpy). In fact, even in the biological sense it is not of 
very ‘high energy’. Th e action of ATP depends on the bond being intermediate 
in strength. Th us ATP acts as a phosphate donor to a number of acceptors 
(such as glucose) but is recharged with a new phosphate group by more power-
ful phosphate donors in the phosphorylation steps in the respiration cycle.

In the cell, each ATP molecule can be used to drive an endergonic reaction 
for which DrG3 does not exceed 31 kJ mol−1. For example, the biosynthesis 
of sucrose from glucose and fructose can be driven by enzyme-catalyzed 
processes in plants because the reaction is endergonic to the extent DrG⊕ = 
+23 kJ mol−1. Th e biosynthesis of proteins is strongly endergonic, not only 
on account of the enthalpy change but also on account of the large decrease in 
entropy that occurs when many amino acid residues are assembled into a 
precisely determined sequence. For instance, the formation of a peptide link is 
endergonic, with DrG⊕ =  +17 kJ mol−1, but the biosynthesis occurs indirectly 
and is equivalent to the consumption of three ATP molecules for each link. 
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In a moderately small protein such as myoglobin, with about 150 peptide 
links, the construction alone requires 450 ATP molecules and therefore about 
12 mol of glucose molecules for 1 mol of protein molecules.

Self-test 4.8 Fats yield almost twice as much energy per gram as carbo-
hydrates. What mass of fat would need to be metabolized to synthesize 1.0 mol 
of myoglobin molecules?

Answer: 1.1 kg

Adenosine triphosphate is not the only phosphate species capable of driving 
other less exergonic reactions. For instance, creatine phosphate (3) can release 
its phosphate group in a hydrolysis reaction, and DrG⊕ = −43 kJ mol−1. Th ese 
diff erent exergonicities give rise to the concept of transfer potential, which is 
the negative of the value of DrG⊕ for the hydrolysis reaction. Th us, the transfer 
potential of creatine phosphate is +43 kJ mol−1. Just as one exergonic reaction can 
drive a less exergonic reaction, so the hydrolysis of a species with a high transfer 
potential can drive the phosphorylation of a species with a lower transfer poten-
tial (Table 4.3).

Table 4.3 Transfer potentials at 298.15 K

Substance Transfer potential, −DrG9/(kJ mol−1)

AMP 14
ATP, ADP 31
1,3-Bis(phospho)glycerate 49 
Creatine phosphate 43
Glucose-6-phosphate 14
Glycerol-1-phosphate 10
Phosphoenolpyruvate 62
Pyrophosphate, HP2O7

3− 33

Case study 4.3 The oxidation of glucose

Th e breakdown of glucose in the cell begins with glycolysis, a partial oxidation 
of glucose by nicotinamide adenine dinucleotide (NAD+, Atlas N4) to pyru-
vate ion, CH3COCO2

− (4). Metabolism continues in the form of the citric acid 
cycle, in which pyruvate ions are oxidized to CO2, and ends with oxidative 
phosphorylation, in which O2 is reduced to H2O. Glycolysis is the main source 
of energy during anaerobic metabolism, a form of metabolism in which inhaled 
O2 does not play a role. Th e citric acid cycle and oxidative phosphorylation 
are the main mechanisms for the extraction of energy from carbohydrates 
during aerobic metabolism, a form of metabolism in which inhaled O2 does 
play a role.

Glycolysis occurs in the cytosol, the aqueous material encapsulated by the 
cell membrane, and consists of 10 enzyme-catalyzed reactions (Fig. 4.13). 
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Th e process needs to be initiated by consumption of two molecules of ATP per 
molecule of glucose. Th e fi rst ATP molecule is used to drive the phosphory-
lation of glucose to glucose-6-phosphate (G6P):

glucose(aq) + ATP(aq) → G6P(aq) + ADP(aq) + H+(aq) DrG⊕ = −17 kJ mol−1

 (Note that ATP, ADP, and G6P denote charged species, so charges are in fact 
balanced in this and similar equations, but charge balance is not displayed 
explicitly.) As we saw in Section 4.1, the next step is the isomerization of G6P 
to fructose-6-phosphate (F6P). Th e second ATP molecule consumed during 
glycolysis drives the phosphorylation of F6P to fructose-1,6-diphosphate (FDP):

F6P(aq) + ATP(aq) → FDP(aq) + ADP(aq) + H+(aq) DrG⊕ = −14 kJ mol−1

In the next step, FDP is broken into two three-carbon units, dihydroxyacetone 
phosphate (1,3-dihydroxypropanone phosphate, CH2OHCOCH2OPO3

2−, 5) 
and glyceraldehyde-3-phosphate (6), which exist in mutual equilibrium. Only 
the glyceraldehyde-3-phosphate is oxidized by NAD+ to pyruvate ion, with 
formation of two ATP molecules. As glycolysis proceeds, all the dihydroxy-
acetone phosphate is converted to glyceraldehyde-3-phosphate, so the result 
is the consumption of two NAD+ molecules and the formation of four ATP 
molecules per molecule of glucose.

A brief comment
From now on, we shall 
represent biochemical 
reactions with chemical 
equations written with a 
shorthand method, in which 
some substances are given 
‘nicknames’ and charges are 
not always given explicitly. 
For example, H2PO4

2− is written 
as Pi, ATP4− as ATP, and so on. 
We need to show hydrogen 
ions explicitly (because they 
account for diff erences 
between thermodynamic and 
biological standard states 
and for the role of pH); in 
such cases charges will not 
seem to be balanced.

Fig. 4.13 Th e reactions of 
glycolysis, in which glucose 
is partially oxidized by 
nicotinamide adenine 
dinucleotide (NAD+, Atlas N4) 
to pyruvate ion.
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Th e oxidation of glucose by NAD+ to pyruvate ions has DrG⊕ = −147 kJ mol−1 
at blood temperature. In glycolysis, the oxidation of one glucose molecule is 
coupled to the net conversion of two ADP molecules to two ATP molecules 
(‘net’ because two ATP molecules are consumed and four are formed), so the 
net reaction of glycolysis is

glucose(aq) + 2 NAD+(aq) + 2 ADP(aq) + 2 Pi(aq) + 2 H2O(l) → 
  2 CH3COCO2

−(aq) + 2 NADH(aq) + 2 ATP(aq) + 2 H3O+(aq)

Th e biological standard reaction Gibbs energy is (−147) −2(−31) kJ mol−1 = 
−85 kJ mol−1. Th e reaction is exergonic and therefore spontaneous under 
biological standard conditions: the oxidation of glucose is used to ‘recharge’ 
the ATP.

In cells that are deprived of O2, pyruvate ion is reduced to lactate ion, 
CH3CH(OH)CO2

− (7) by NADH.3 Very strenuous exercise, such as bicycle 
racing, can decrease sharply the concentration of O2 in muscle cells, and the 
condition known as muscle fatigue results from increased concentrations of 
lactate ion.

Th e standard Gibbs energy of combustion of glucose is −2880 kJ mol−1, so ter-
minating its oxidation at pyruvate is a poor use of resources, akin to the partial 
combustion of hydrocarbon fuels in a badly tuned engine. In the presence 
of O2, pyruvate is oxidized further during the citric acid cycle and oxidative 
phosphorylation, which occur in the mitochondria of cells.

Th e further oxidation of carbon derived from glucose begins with a reaction 
between pyruvate ion, NAD+, and coenzyme A (CoA, Atlas N6) to give acetyl 
CoA, NADH, and CO2. Acetyl CoA is then oxidized by NAD+ and fl avin 
adenine dinucleotide (FAD, Atlas N7) in the citric acid cycle (Fig. 4.14), which 

Fig. 4.14 Th e reactions of the citric 
acid cycle, in which acetyl CoA is 
oxidized by NAD+ and FAD, 
resulting in the synthesis of GTP 
(shown) or ATP, depending on 
the type of cell. Th e GTP 
molecules are eventually 
converted to ATP.

3 In yeast, the terminal products are ethanol and CO2.
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requires eight enzymes and results in the synthesis of guanosine triphosphate 
(GTP, Atlas N8) from guanosine diphosphate, GDP, or of ATP from ADP:

Acetyl CoA(aq) + 3 NAD+(aq) + FAD(aq) + GDP(aq) + Pi(aq) + 2 H2O(l) →
 2 CO2(g) + 3 NADH(aq) + 2 H3O+(aq) + FADH2(aq) + GTP(aq) + CoA(aq)
  DrG⊕ = −57 kJ mol−1

In cells that produce GTP, the enzyme nucleoside diphosphate kinase catalyzes 
the transfer of a phosphate group to ADP to form ATP:

GTP(aq) + ADP(aq) → GDP(aq) + ATP(aq)

For this reaction, DrG⊕ = 0 because the phosphate group transfer potentials 
for GTP and ATP are essentially identical. Overall, we write the oxidation of 
glucose as a result of glycolysis and the citric acid cycle as

glucose(aq) + 10 NAD+(aq) + 2 FAD(aq) + 4 ADP(aq) + 4 Pi(aq) + 2 H2O(l) →
 6 CO2(g) + 10 NADH(aq) + 6 H3O+(aq) + 2 FADH2(aq) + 4 ATP(aq)

Th e NADH and FADH2 go on to reduce O2 during oxidative phosphorylation 
(Section 5.10b), which also produces ATP. Th e citric acid cycle and oxidative 
phosphorylation generate as many as 38 ATP molecules for each glucose 
molecule consumed. Each mole of ATP molecules extracts 31 kJ from the 
2880 kJ supplied by 1 mol C6H12O6 (180 g of glucose), so 1178 kJ is stored for 
later use. Th erefore, aerobic oxidation of glucose is much more effi  cient than 
glycolysis.

Proton transfer equilibria

An enormously important biological aspect of chemical equilibrium is that 
involving the transfer of protons (hydrogen ions, H+) between species in aqueous 
environments, such as living cells. Even small drift s in the equilibrium concentra-
tion of hydrogen ions can result in disease, cell damage, and death. In this section 
we see how the general principles outlined earlier in the chapter are applied to 
proton transfer equilibria.

4.7 Brønsted–Lowry theory
Cells have elaborate procedures for using proton transfer equilibria, and this function 
cannot be understood without knowing which species provide protons and which 
accept them and how to express the concentration of hydrogen ions in solution.

According to the Brønsted–Lowry theory of acids and bases, an acid is a proton 
donor and a base is a proton acceptor. Th e proton, which in this context means a 
hydrogen ion, H+, is highly mobile and acids and bases in water are always in 
equilibrium with their deprotonated and protonated counterparts and hydro-
nium ions (H3O+, 8). Th us, an acid HA, such as HCN, immediately establishes the 
equilibrium

HA(aq) + H2O(l) 7 H3O+(aq) + A−(aq)  K = aH3O+aA−

aHAaH2O
 (4.19a)
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A base B, such as NH3, immediately establishes the equilibrium

B(aq) + H2O(l) 7 HB+(aq) + OH−(aq)  K = aHB+aOH−

aBaH2O
 (4.19b)

In these equilibria, A− is the conjugate base of the acid HA, and BH+ is the con-
jugate acid of the base B. Even in the absence of added acids and bases, proton 
transfer occurs between water molecules, and the autoprotolysis equilibrium4

2 H2O(l) 7 H3O+(aq) + OH−(aq) K = aH3O+aOH−

a2
H2O

 Autoprotolysis 
equilibrium

 (4.20)

is always present.
As will be familiar from introductory chemistry, the hydronium ion concen-

tration is commonly expressed in terms of the pH, which is defi ned formally as

pH = −log aH3O+ Definition of pH  (4.21)

where the logarithm is to base 10. In elementary work, the hydronium ion activity 
is replaced by the numerical value of its molar concentration, [H3O+], which is 
equivalent to setting the activity coeffi  cient g equal to 1.

Self-test 4.9 Death is likely if the pH of human blood plasma changes by 
more than ±0.4 from its normal value of 7.4. What is the approximate range of 
molar concentrations of hydrogen ions for which life can be sustained?

Answer: 16 nmol dm−3 to 100 nmol dm−3 (1 nmol = 10−9 mol)

A brief illustration

If the molar concentration of H3O+ is 2.0 mmol dm−3 (where 1 mmol = 
10−3 mol), then

pH ≈ − log(2.0 × 10−3) = 2.70

If the molar concentration were 10 times less, at 0.20 mmol dm−3, then the 
pH would be 3.70.

Notice that the higher the pH, the lower the concentration of hydronium ions in 
the solution and that a change in pH by 1 unit corresponds to a 10-fold change in 
their molar concentration. However, it should never be forgotten that the replace-
ment of activities by molar concentration is invariably hazardous. Because ions 
interact over long distances, the replacement is unreliable for all but the most 
dilute solutions.

4.8 Protonation and deprotonation
The protonation and deprotonation of molecules are key steps in many biochemical 
reactions, and we need to be able to describe procedures for treating protonation 
and deprotonation processes quantitatively.

All the solutions we consider are so dilute that we can regard the water present as 
being a nearly pure liquid and therefore as having unit activity (see Table 3.3). 

4 Autoprotolysis is also called autoionization.
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Th is feature leads to convenient expressions for quantities that measure the 
strengths of acids and bases and the extent of protonation of bases and deproton-
ation of acids.

(a) The strengths of acids and bases

When we set aH2O = 1 for all the solutions we consider, the resulting equilibrium 
constant is called the acidity constant, Ka, of the acid HA:5

HA(aq) + H2O(l) 7 H3O+(aq) + A−(aq)  

Ka = aH3O+aA−

aHA
 Definition of 

acidity constant
 (4.22a)

In elementary applications, the activities are replaced by the numerical values of 
the molar concentrations, and we write

Ka = [H3O+][A−]
[HA]

 (4.22b)

Data are widely reported in terms of the negative common (base 10) logarithm of 
this quantity:

pKa = −log Ka Definition of pKa  (4.23)

It follows from eqn 4.10a (DrG3 = −RT ln K) that pKa is proportional to DrG3 
for the proton transfer reaction. More explicitly, pKa = DrG3/(RT ln 10), with 
ln 10 = 2.303. . . . Th erefore, manipulations of pKa and related quantities are 
actually manipulations of standard reaction Gibbs energies in disguise.

Self-test 4.10 Show that pKa = DrG3/(RT ln 10). Hint: ln x = ln 10 × log x.

5 Acidity constants are also called acid ionization constants and, less appropriately, dissociation 
constants.

6 Sulfuric acid, H2SO4, is strong with respect only to its fi rst deprotonation; HSO4
− is weak.

Th e value of the acidity constant indicates the extent to which proton transfer 
occurs at equilibrium in aqueous solution. Th e smaller the value of Ka (for instance 
10−8 compared with 10−6) and therefore the larger the value of pKa (for instance, 
8 compared with 6), the lower is the concentration of deprotonated molecules. 
Most acids have Ka < 1 (and usually much less than 1), with pKa > 0, indicating 
only a small extent of deprotonation in water. Th ese acids are classifi ed as weak 
acids. A few acids, most notably, in aqueous solution, HCl, HBr, HI, HNO3, 
H2SO4, and HClO4, are classifi ed as strong acids and are commonly regarded as 
being completely deprotonated in aqueous solution.6

Th e corresponding expression for a base is called the basicity constant, Kb:

B(aq) + H2O(l) 7 HB+(aq) + OH−(aq)  

Kb = aHB+aOH−

aB
 Definition of 

basicity constant
 (4.24a)

and the corresponding value of pKb = −log Kb. As for acids, in elementary 
applications the activities are replaced by the numerical values of the molar con-
centrations and we use
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Kb = [HB+][OH−]

[B]
 (4.24b)

A strong base is fully protonated in solution in the sense that Kb > 1. One example 
is the oxide ion, O2−, which cannot survive in water but is immediately and fully 
converted into its conjugate acid OH−. A weak base is not fully protonated in 
water, in the sense that Kb < 1 (and usually much less than 1). Ammonia, NH3, 
and its organic derivatives the amines are all weak bases in water, and only a small 
proportion of their molecules exist as the conjugate acid (NH4

+ or RNH3
+).

Th e autoprotolysis constant for water, Kw, is obtained in a similar way by 
setting the activity of water in eqn 4.19 to its ‘pure’ value:

Kw = aH3O+aOH− ≈ [H3O+][OH−] 
Definition of the 
autoprotolysis 
constant of water

 (4.25)

At 25°C, Kw = 1.0 × 10−14 and pKw = −log Kw = 14.00.
As may be confi rmed by multiplying the two constants together, the basicity 

constant of a base B and the acidity constant of its conjugate acid, HB+,

B(aq) + H2O(l) 7 HB+(aq) + OH−(aq)   Kb = aHB+aOH−

aB

HB+(aq) + H2O(l) 7 H3O+(aq) + B(aq)  Ka = aH3O+aB

aHB+

are related by

KaKb = aH3O+aB

aHB+

 × aHB+aOH−

aB
 = aH3O+aOH− = Kw Relation between 

Ka and Kb
 (4.26a)

Th e implication of this relation is that Ka increases as Kb decreases to maintain 
a product equal to the constant Kw. Th at is, as the strength of a base decreases, 
the strength of its conjugate acid increases and vice versa. On taking the negative 
common logarithm of both sides of eqn 4.26a, we obtain

pKa + pKb = pKw Relation between 
pKa and pKb

 (4.26b)

Th e great advantage of this relation is that the pKb values of bases may be expressed 
as the pKa of their conjugate acids, so the strengths of all weak acids and bases 
may be listed in a single table (Table 4.4).

A brief illustration

If the acidity constant of the conjugate acid (CH3NH3
+) of the base methylam-

ine (CH3NH2) is reported as pKa = 10.56, we can infer that the basicity con-
stant of methylamine itself is

pKb = pKw − pKa = 14.00 − 10.56 = 3.44

Another useful relation is obtained by taking the negative common logarithm 
of both sides of the defi nition of Kw in eqn 4.24, which gives

pH + pOH = pKw Relation between 
pH and pOH

 (4.27)
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Table 4.4 Acidity and basicity constants* at 298.15 K

Acid/base Kb pKb Ka pKa

Strongest weak acids
Trichloroacetic acid, CCl3COOH 3.3 × 10−14 13.48 3.0 × 10−1 0.52
Benzenesulfonic acid, C6H5SO3H 5.0 × 10−14 13.30 2 × 10−1 0.70
Iodic acid, HIO3 5.9 × 10−14 13.23 1.7 × 10−1 0.77
Sulfurous acid, H2SO3 6.3 × 10−13 12.19 1.6 × 10−2 1.81
Chlorous acid, HClO2 1.0 × 10−12 12.00 1.0 × 10−2 2.00
Phosphoric acid, H3PO4 1.3 × 10−12 11.88 7.6 × 10−3 2.12
Chloroacetic acid, CH2ClCOOH 7.1 × 10−12 11.15 1.4 × 10−3 2.85
Lactic acid, CH3CH(OH)COOH 1.2 × 10−11 10.92 8.4 × 10−4 3.08
Nitrous acid, HNO2 2.3 × 10−11 10.63 4.3 × 10−4 3.37
Hydrofl uoric acid, HF 2.9 × 10−11 10.55 3.5 × 10−4 3.45
Formic acid, HCOOH 5.6 × 10−11 10.25 1.8 × 10−4 3.75
Benzoic acid, C6H5COOH 1.5 × 10−10 9.81 6.5 × 10−4 4.19
Acetic acid, CH3COOH 5.6 × 10−10 9.25 1.8 × 10−4 4.75
Carbonic acid, H2CO3 2.3 × 10−8 7.63 4.3 × 10−7 6.37
Hypochlorous acid, HClO 3.3 × 10−7 6.47 3.0 × 10−8 7.53
Hypobromous acid, HBrO 5.0 × 10−6 5.31 2.0 × 10−9 8.69
Boric acid, B(OH)3H† 1.4 × 10−5 4.86 7.2 × 10−10 9.14
Hydrocyanic acid, HCN 2.0 × 10−5 4.69 4.9 × 10−10 9.31
Phenol, C6H5OH 7.7 × 10−5 4.11 1.3 × 10−10 9.89
Hypoiodous acid, HIO 4.3 × 10−4 3.36 2.3 × 10−11 10.64

Weakest weak bases
Urea, CO(NH2)2 1.3 × 10−14 13.90 7.7 × 10−1 0.10
Aniline, C6H5NH2 4.3 × 10−10 9.37 2.3 × 10−5 4.63
Pyridine, C5H5N 1.8 × 10−9 8.75 5.6 × 10−6 5.35
Hydroxylamine, NH2OH 1.1 × 10−8 7.97 9.1 × 10−7 6.03
Nicotine, C10H11N2 1.0 × 10−6 5.98 1.0 × 10−8 8.02
Morphine, C17H19O3N 1.6 × 10−6 5.79 6.3 × 10−9 8.21
Hydrazine, NH2NH2 1.7 × 10−6 5.77 5.9 × 10−9 8.23
Ammonia, NH3 1.8 × 10−5 4.75 5.6 × 10−10 9.25
Trimethylamine, (CH3)3N 6.5 × 10−5 4.19 1.5 × 10−10 9.81
Methylamine, CH3NH2 3.6 × 10−4 3.44 2.8 × 10−11 10.56
Dimethylamine, (CH3)2NH 5.4 × 10−4 3.27 1.9 × 10−11 10.73
Ethylamine, C2H5NH2 6.5 × 10−4 3.19 1.5 × 10−11 10.81
Triethylamine, (C2H5)3N 1.0 × 10−3 2.99 1.0 × 10−11 11.01
Strongest weak bases

*Values for polyprotic acids—those capable of donating more than one proton—refer to the fi rst 
deprotonation.
†Th e proton transfer equilibrium is B(OH)3(aq) + 2 H2O(l) 7  H3O+(aq) + B(OH)4

−(aq).
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where pOH = −log aOH−. Th is enormously important relation means that the 
activities (in elementary work, the molar concentrations) of hydronium and 
hydroxide ions of a given solution are related by a seesaw relation: as one goes up, 
the other goes down to preserve the value of pKw.

Self-test 4.11 Th e molar concentration of OH− ions in a certain solution 
is 0.010 mmol dm−3. What is the pH of the solution?

Answer: 9.00

(b) The pH of a solution of a weak acid

Th e most reliable way to estimate the pH of a solution of a weak acid is to consider 
the contributions from deprotonation of the acid and autoprotolysis of water to 
the total concentration of hydronium ion in solution (see Further information 4.1). 
Autoprotolysis may be ignored if the weak acid is the main contributor of hydro-
nium ions, a condition that is satisfi ed if the acid is not very weak and is present at 
not too low a concentration. Th en we can estimate the pH of a solution of a weak 
acid and calculate either of these fractions by using the following strategy:

Organize the necessary work into a table with columns headed by the species 
present in the mixture (ignoring H2O) and, in successive rows write:
1. Th e initial molar concentrations of the species, ignoring any contributions 

to the concentration of H3O+ or OH− from the autoprotolysis of water.
2. Th e changes in these quantities that must take place for the system to reach 

equilibrium.
3. Th e resulting equilibrium values.

In most cases, we do not know the change that must occur for the system to reach 
equilibrium, so the change in the concentration of H3O+ is written as x and the 
reaction stoichiometry is used to write the corresponding changes in the other 
species. When the values at equilibrium (the last row of the table) are substituted 
into the expression for the acidity constant, we obtain an equation for x in terms 
of Ka. Th is equation can be solved for x. In general, solution of the equation for x 
results in several mathematically possible values of x. We select the chemically 
acceptable solution by considering the signs of the predicted concentrations: they 
must be positive.

Example 4.5 Estimating the pH of a solution of a weak acid

Acetic acid lends a sour taste to vinegar and is produced by aerobic oxidation 
of ethanol by bacteria in fermented beverages, such as wine and cider: 
CH3CH2OH(aq) + O2(g) → CH3COOH(aq) + H2O(l). Estimate the pH of 
(a) 0.15 m CH3COOH(aq) and (b) 1.5 × 10−4 m CH3COOH(aq).

Strategy Proceed as outlined above.

Solution We draw up the following equilibrium table based on the proton 
transfer equilibrium CH3COOH(aq) + H2O(l) 7 H3O+(aq) + CH3CO2

−(aq).

Species  CH3COOH H3O+ CH3CO2
−

Initial concentration/(mol dm−3) 0.15  0  0
Change to reach equilibrium/(mol dm−3) −x  +x  +x
Equilibrium concentration/(mol dm−3)  0.15 − x x  x
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(a)  Th e value of x is found by inserting the equilibrium concentrations into the 
expression for the acidity constant:

Ka = [H3O+][CH3CO2
−]

[CH3COOH]
 = x × x

0.15 − x

We could arrange the expression into a quadratic equation. However, it is more 
instructive to make use of the smallness of x to replace 0.15 − x by 0.15 (this 
approximation is valid if x << 0.15). Th en the simplifi ed equation rearranges 
fi rst to 0.15 × Ka = x2 and then to

x = (0.15 × Ka)1/2 = (0.15 × 1.8 × 10−5)1/2 = 1.6 × 10−3

where we have used Ka = 1.8 × 10−5 (Table 4.4). Th erefore, pH = 2.80. 
Calculations of this kind are rarely accurate to more than one decimal place in 
the pH (and even that may be too optimistic) because the eff ects of ion–ion 
interactions have been ignored, so this answer would be reported as pH = 2.8.

(b) Had we proceeded in the same way with the new concentration, we would 
calculate x = 5.2 × 10−5, which although less than the initial concentration is 
not much less. Th erefore, we must solve the quadratic equation

x2 + Kax − (1.5 × 10−4)Ka = 0

by setting a = 1, b = 1.8 × 10−5, and c = −1.5 × 1.8 × 10−9:

x = −1.8 × 10−5 ± ((−1.8 × 10−5)2 − 4(−1.5 × 1.8 × 10−9))1/2

2
 = 4.4 × 10−5 or −6.2 × 10−5

Because x is equal to the concentration of H3O+, it cannot be negative, so we 
select x = 4.4 × 10−5. It follows that pH = 4.4. (Th e illegal calculation would have 
given 4.3.)

Self-test 4.12 Estimate the pH of 0.010 m CH3CH(OH)COOH(aq) (lactic 
acid) from the data in Table 4.4. Before carrying out the numerical calculation, 
decide whether you expect the pH to be higher or lower than that calculated 
for the same concentration of acetic acid.

Answer: 2.6

A note on good practice 
When an approximation has 
been made, verify at the end 
of the calculation that the 
approximation is consistent 
with the result obtained. In 
this case, we assumed that 
x << 0.15 and have found 
that x = 1.6 × 10−3, which 
is consistent.

Another note on good practice 
Acetic acid (ethanoic acid) 
is written CH3COOH 
because the two O atoms are 
inequivalent; its conjugate 
base, the acetate ion 
(ethanoate ion), is written 
CH3CO2

− because the two 
O atoms are now equivalent 
(by resonance).

 

  Mathematical toobox 4.1 Quadratic equations

A quadratic equation is an equation of the form

ax2 + bx + c = 0

where a, b, and c are constants. Th e two roots (solu-
tions) of the equation are given by the expression

x = −b ± (b2 − 4ac)1/2

2a

Th e graph of the function ax2 + bx + c is a parabola, 
which cuts the x-axis at the two roots of the corres-
ponding quadratic equation:
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(c) The pH of a solution of a weak base

Th e calculation of the pH of a solution of a base involves an additional step. 
Th e fi rst step is to calculate the concentration of OH− ions in the solution from 
the value of Kb by using the equilibrium-table technique and to express it as the 
pOH of the solution. Th e additional step is to convert that pOH into a pH by using 
the water autoprotolysis equilibrium, eqn 4.27, in the form pH = pKw − pOH, with 
pKw = 14.00 at 25°C.

Example 4.6 Estimating the pH of a solution of a weak base

Calculate the pH of an 0.20 m aqueous solution of methylamine, CH3NH2, for 
which pKb = 3.44.

Strategy Proceed as outlined above.

Solution We draw up the following equilibrium table based on the proton 
transfer equilibrium CH3NH2(aq) + H2O(l) 7 CH3NH3

+(aq) + OH−(aq).

Species  CH3NH2 CH3NH3
+ OH−

Initial concentration/(mol dm−3) 0.20  0  0
Change to reach equilibrium/(mol dm−3) −x  +x  +x
Equilibrium concentration/(mol dm−3) 0.20 − x x x

Th en, because Kb = 10−3.44 = 3.6 × 10−4, and anticipating that x << 0.2,

[CH3NH3
+][OH−]

[CH3NH2]
 = x × x

0.20 − x
 ≈ x2

0.2
 = 3.6 × 10−4

It follows that [OH−] = x = 0.0085, so pOH = −log(0.0085) = 2.07. Th erefore, 
pH = 14.00 − 2.07 = 11.93 (more realistically, 11.9).

Self-test 4.13 Th e base quinoline has pKb = 9.12. Estimate the pH of an 
0.010 m aqueous solution of quinoline.

Answer: 8.4

(d) The extent of protonation and deprotonation

Th e extent of deprotonation of a weak acid in solution depends on the acidity 
constant and the initial concentration of the acid, its concentration as prepared. 
Th e fraction deprotonated, the fraction of acid molecules HA that have donated 
a proton, is

fdeprotonated = [A−]at equilbrium

[HA]as prepared
 Fraction of HA 

deprotonated
 (4.28a)

Th e extent to which a weak base B is protonated is reported in terms of the frac-
tion protonated:

fprotonated = [HB+]at equilibrium

[B]as prepared
 Fraction of B 

protonated
 (4.28b)

Th e calculation of either f proceeds in the same way as for the calculation of the 
pH of a solution, the only diff erence being how the calculated value of x in the 
equilibrium table is used.
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(e) The pH of solutions of salts

Th e ions present when a salt is added to water may themselves be either acids or 
bases and consequently aff ect the pH of the solution. For example, when ammo-
nium chloride is added to water, it provides both an acid (NH4

+) and a base (Cl−). 
Th e solution consists of a weak acid (NH4

+) and a very weak base (Cl−). Th e net 
eff ect is that the solution is acidic. Similarly, a solution of sodium acetate consists 
of an ion that is neither acidic nor basic (the Na+ ion) and a base (CH3CO2

−). Th e 
net eff ect is that the solution is basic, and its pH is greater than 7.

To estimate the pH of the solution, we proceed in exactly the same way as for 
the addition of a ‘conventional’ acid or base, for in the Brønsted–Lowry theory 
there is no distinction between ‘conventional’ acids such as acetic acid and the 
conjugate acids of bases (such as NH4

+).

A brief illustration

To calculate the pH of 0.010 m NH4Cl(aq) at 25°C, we proceed exactly as 
in Example 4.5, taking the initial concentration of the acid (NH4

+) to be 
0.010 mol dm−3. Th e Ka to use is the acidity constant of the acid NH4

+, which is 
listed in Table 4.4. Alternatively, we use Kb for the conjugate base (NH3) of the 
acid and convert that quantity to Ka by using eqn 4.26a (KaKb = Kw). We fi nd 
pH = 5.63, which is on the acid side of neutral.

A brief illustration

Th e fraction of acetic acid molecules deprotonated in the solution referred to 
in Example 4.5a is

fdeprotonated = [CH3CO2
−]at equilibrium

[CH3COOH]as prepared
 = x

0.15
 = 1.6 × 10−3

0.15
 = 0.011

Th at is, 1.1 per cent of CH3COOH molecules have lost their acidic proton.

Self-test 4.14 Estimate the fraction of quinoline molecules protonated in a 
0.010 m aqueous solution of quinoline.

Answer: 1/3600

Self-test 4.15 Estimate the pH of 0.0025 m NH(CH3)3Cl(aq) at 25°C.
Answer: 6.2

Exactly the same procedure is used to fi nd the pH of a solution of a salt of 
a weak acid, such as sodium acetate. Th e equilibrium table is set up by treating 
the anion CH3CO2

− as a base (which it is) and using for Kb the value obtained from 
the value of Ka for its conjugate acid (CH3COOH).

4.9 Polyprotic acids
Many biological macromolecules, such as the nucleic acids, contain multiple proton 
donor sites, and we need to see how to handle this complication quantitatively.



 4.9 POLYPROTIC ACIDS   165

A polyprotic acid is a molecular compound that can donate more than one pro-
ton. Two examples are sulfuric acid, H2SO4, which can donate up to two protons, 
and phosphoric acid, H3PO4, which can donate up to three. A polyprotic acid is 
best considered to be a molecular species that can give rise to a series of Brønsted 
acids as it donates its succession of protons. Th us, sulfuric acid is the parent of two 
Brønsted acids, H2SO4 itself and HSO4

−, and phosphoric acid is the parent of three 
Brønsted acids, namely H3PO4, H2PO4

−, and HPO4
2−.

For a species H2A with two acidic protons (such as H2SO4), the successive equi-
libria we need to consider are

H2A(aq) + H2O(l) 7 H3O+(aq) + HA−(aq) 

Ka1 =  aH3O+aHA−

aH2A
 First deprotonation  (4.29a)

HA−(aq) + H2O(l) 7 H3O+(aq) + A2−(aq)    

Ka2 = aH3O+aA2−

aHA−

 Second deprotonation  (4.29b)

In the fi rst of these equilibria, HA− is the conjugate base of H2A. In the second, 
HA− acts as the acid and A2− is its conjugate base. Values are given in Table 4.5. In 
all cases, Ka2 is smaller than Ka1, typically by three orders of magnitude for small 
molecular species, because the second proton is more diffi  cult to remove, partly 
on account of the negative charge on HA−. Enzymes are polyprotic acids, for they 
possess many protons that can be donated to a substrate molecule or to the sur-
rounding aqueous medium of the cell. For them, successive acidity constants vary 
much less because the molecules are so large that the loss of a proton from one 
part of the molecule has little eff ect on the ease with which another some distance 
away may be lost.

Table 4.5 Successive acidity constants of polyprotic acids at 298.15 K

Acid Ka1 pKa1 Ka2 pKa2 Ka3 pKa3

Carbonic acid, H2CO3 4.3 × 10−7 6.37 5.6 × 10−11 10.25
Hydrosulfuric acid, H2S 1.3 × 10−7 6.89 7.1 × 10−15 14.15
Oxalic acid, (COOH)2 5.9 × 10−2 1.23 6.5 × 10−5 4.19
Phosphoric acid, H3PO4 7.6 × 10−3 2.12 6.2 × 10−8 7.21 2.1 × 10−13 12.67
Phosphorous acid, H2PO3 1.0 × 10−2 2.00 2.6 × 10−7 6.59
Sulfuric acid, H2SO4 Strong 1.2 × 10−2 1.92
Sulfurous acid, H2SO3 1.5 × 10−2 1.81 1.2 × 10−7 6.91
Tartaric acid, C2H4O2(COOH)2 6.0 × 10−4 3.22 1.5 × 10−5 4.82

Example 4.7 Calculating the concentration of carbonate ion in carbonic acid

Groundwater contains dissolved carbon dioxide, carbonic acid, hydrogen-
carbonate ions, and a very low concentration of carbonate ions. Estimate the 
molar concentration of CO3

2− ions in a solution in which water and CO2(g) are 
in equilibrium. We must be very cautious in the interpretation of calculations 
involving carbonic acid because equilibrium between dissolved CO2 and 
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H2CO3 is achieved only very slowly. In organisms, attainment of equilibrium is 
facilitated by the enzyme carbonic anhydrase.

Strategy We start with the equilibrium that produces the ion of interest (such 
as A2−) and write its activity in terms of the acidity constant for its formation 
(Ka2). Th at expression will contain the activity of the conjugate acid (HA−), 
which we can express in terms of the activity of its conjugate acid (H2A) by 
using the appropriate acidity constant (Ka1). Th is equilibrium dominates all 
the rest provided the molecule is small and there are marked diff erences 
between its acidity constants, so it may be possible to make an approximation 
at this stage.

Solution Th e CO3
2− ion, the conjugate base of the acid HCO3

− is produced in the 
equilibrium

HCO3
−(aq) + H2O(l) 7 H3O+(aq) + CO3

2−(aq)  Ka2 = aH3O+aCO3
2−

aHCO3
−

Hence,

 aCO3
2− = aHCO3

−Ka2

aH3O+

Th e HCO3
− ions are produced in the equilibrium

H2CO3(aq) + H2O(l) 7 H3O+(aq) + HCO3
−(aq)

One H3O+ ion is produced for each HCO3
− ion produced. Th ese two con-

centrations are not exactly the same because a little HCO3
− is lost in the second 

deprotonation and the amount of H3O+ has been increased by it. Also, HCO3
− 

is a weak base and abstracts a proton from water to generate H2CO3 (see 
Section 4.10). However, those secondary changes can safely be ignored in an 
approximate calculation. Because the molar concentrations of HCO3

− and 
H3O+ are approximately the same, we can suppose that their activities are also 
approximately the same and set aHCO3

− ≈ aH3O+. When this equality is substituted 
into the expression for aCO3

2−, we obtain

 [CO3
2−] ≈ Ka2

Because we know from Table 4.5 that pKa2 = 10.25, it follows that [CO3
2−] = 

5.6 × 10−11 and therefore that the molar concentration of CO3
2− ions is 

56 pmol dm−3.

Self-test 4.16 Calculate the molar concentration of S2− ions in H2S(aq).
Answer: 7.1 fmol dm−3

Case study 4.4 The fractional composition of a solution of lysine

Th e amino acid lysine (HLys, Atlas A12) can accept two protons on its nitro-
gen atoms and donate one from its carboxyl group. Th e neutral acid is HLys 
and the fully protonated form is H3Lys2+. Let’s see how the composition of 
an aqueous solution that contains 0.010 mol dm−3 of lysine varies with pH. 
Th e pKa values of amino acids are given in Table 4.6.
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We expect the fully protonated species (H3Lys2+) at low pH (high H3O+ con-
centration), the partially protonated species (H2Lys+ and HLys) at intermedi-
ate pH, and the fully deprotonated species (Lys−) at high pH. Th e three acidity 
constants (using the notation in Table 4.6 and replacing activities by molar 
concentrations) are

H3Lys2+(aq) + H2O(l) 7 H3O+(aq) + H2Lys+(aq) Ka1 = [H3O+][H2Lys+]
[H3Lys2+]

H2Lys+(aq) + H2O(l) 7 H3O+(aq) + HLys(aq) Ka2 = [H3O+][HLys]
[H2Lys+]

HLys(aq) + H2O(l) 7 H3O+(aq) + Lys−(aq) Ka3 = [H3O+][Lys−]
[HLys]

We also know that the total concentration of lysine in all its forms is

L = [H3Lys2+] + [H2Lys+] + [HLys] + [Lys−] Total concentration 
of lysine

 (4.30)

We now have four equations for four unknown concentrations. To solve the 
equations, we proceed systematically, using Ka3 to express [Lys−] in terms of 
[HLys], then Ka2 to express [HLys] in terms of [H2Lys+], and so on:

[Lys−] = Ka3[HLys]
[H3O+]

 = Ka2Ka3[H2Lys+]
[H3O+]2

 = Ka1Ka2Ka3[H3Lys2+]
[H3O+]3

[HLys] = Ka2[H2Lys+]
[H3O+]

 = Ka1Ka2[H3Lys2+]
[H3O+]2

[H2Lys+] = Ka1[H3Lys2+]
[H3O+]

Th en the expression for the total concentration L can be written in terms of 
[H3Lys2+]:

L = H[H3Lys2+]
[H3O+]3

where

H = [H3O+]3 + Ka1[H3O+]2 + Ka1Ka2[H3O+] + Ka1Ka2Ka3 (4.31)

It then it follows that the fractions of each species present in the solution are

f(H3Lys2+) = [H3Lys2+]
L

 = [H3O+]3

H

f(H2Lys+) = [H2Lys+]
L

 = Ka1[H3O+]2

H  Fractional composition

 
(4.32)

f(HLys) = [HLys]
L

 = Ka1Ka2[H3O+]
H

f(Lys−) = [Lys−]
L

 = Ka1Ka2Ka3

H

Th ese fractions are plotted against pH (by using [H3O+] = 10−pH) in Fig. 4.15. 
Note that:

Table 4.6 Acidity constants of 
amino acids at 298.15 K*

Acid pKa1 pKa2 pKa3

Ala 2.33 9.71
Arg 2.03 9.00 12.10
Asn 2.16 8.73
Asp 1.95 3.71  9.66
Cys 1.91 8.14 10.28
Gln 2.18 9.00
Glu 2.16 4.15  9.58
Gly 2.34 9.58
His 1.70 6.04  9.09
Ile 2.26 9.60
Leu 2.32 9.58
Lys 2.15 9.16 10.67
Met 2.16 9.08
Phe 2.18 9.09
Pro 1.95 10.47
Ser 2.13 9.05
Th r 2.20 9.96
Trp 2.38 9.34
Tyr 2.24 9.04 10.10
Val 2.27 9.52

*For the identities of the acids, see the 
Atlas of structures. Th e acidity constants 
refer, respectively, to the most highly 
protonated form, the next most, and so 
on. So the values for Lys, for instance, 
refer to H3Lys2+, H2Lys+, and HLys (the 
electrically neutral molecule).
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• H3Lys2+ is dominant for pH < pKa1

• H3Lys2+ and H2Lys+ have the same concentration at pH = pKa1

• H2Lys+ is dominant for pH > pKa1 until HLys becomes dominant, and so on.

In a neutral solution at pH = 7, the dominant species is H2Lys+, for pH = 7 lies 
between pKa1 and pKa2: below pKa1, H3Lys2+ is dominant and above pKa2, HLys 
is dominant.

Self-test 4.17 Construct the diagram for the fraction of protonated species in 
an aqueous solution of histidine (Atlas A9).

Answer: Fig. 4.16

Fig. 4.15 Th e fractional 
composition of the protonated 
and deprotonated forms of lysine 
(Lys) in aqueous solution as 
a function of pH. Note that 
conjugate pairs are present at 
equal concentrations when the 
pH is equal to the pKa of the acid 
member of the pair.

A note on good practice 
Take note of the symmetry of 
the expressions in eqn 4.31. 
By doing so, it is easy to write 
down the corresponding 
expressions for species with 
diff erent numbers of acidic 
protons without repeating the 
lengthy calculation.

 

We can summarize the behavior discussed in Case study 4.4 and illustrated in 
Figs 4.15 and 4.16 as follows. Consider each conjugate acid–base pair, with acidity 
constant Ka; then:

Th e acid form is dominant for pH < pKa.
Th e conjugate pair have equal concentrations at pH = pKa.
Th e base form is dominant for pH > pKa.

In each case, the other possible forms of a polyprotic system can be ignored, pro-
vided the pKa values are not too close together.

Fig. 4.16 Th e fractional 
composition of the protonated 
and deprotonated forms of 
histidine (His) in aqueous 
solution as a function of pH.
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4.10 Amphiprotic systems
Many molecules of biochemical significance (including the amino acids) can act as 
both proton donors and proton acceptors, and we need to be able to treat this dual 
function quantitatively.

An amphiprotic species is a molecule or ion that can both accept and donate pro-
tons. For instance, HCO3

− can act as an acid (to form CO3
2−) and as a base (to form 

H2CO3). Among the most important amphiprotic compounds are the amino 
acids, which can act as proton donors by virtue of their carboxyl groups and as 
bases by virtue of their amino groups.

(a) The fractional composition of amino acid solutions

In solution, amino acids are present largely in their zwitterionic (‘double ion’) 
form, in which the amino group is protonated and the carboxyl group is depro-
tonated: the acidic proton of the carboxyl group has been donated to the basic 
amino group (but not necessarily of the same molecule). Th e zwitterionic form of 
glycine, NH2CH2COOH, for instance, is +H3NCH2CO2

−. We can suppose that in 
an aqueous solution of glycine, the species present are NH2CH2COOH (and in 
general BAH, where B represents the basic amino group and AH the carboxylic 
acid group), NH2CH2CO2

− (BA−), +NH3CH2COOH (+HBAH), and the zwitterion 
+NH3CH2CO2

− (+HBA−). Th e proton transfer equilibria in water are

BAH(aq) + H2O(l) 7 H3O+(aq) + BA−(aq) K1
+HBAH(aq) + H2O(l) 7 H3O+(aq) + BAH(aq) K2
+HBA−(aq) + H2O(l) 7 H3O+(aq) + BA−(aq) K3

By following the same procedure as in Case study 4.4, we fi nd the following expres-
sions for the composition of the solution:

f(BA−) = K1K2K3

H

f(BAH) = K2K3[H3O+]
H

f(+HBA−) = K1K2[H3O+]
H

 

f(+HBAH) = K3[H3O+]2

H
 Fractional composition  (4.33)

with H = [H3O+]2K3 + [H3O+](K1 + K3)K2 + K1K2K3. Th e variation of composi-
tion with pH is shown in Fig. 4.17. Because we can expect the zwitterion to be 
a much weaker acid than the neutral molecule (because the negative charge 
on the carboxylate group hinders the escape of the proton from the conjugate 
acid of the amino group), we can anticipate that K3 << K1 and therefore that 
f(BAH) << f(+HBA−) at all values of pH.

(b) The pH of solutions of amphiprotic anions

Th e further question we need to tackle is the pH of a solution of a salt with 
an amphiprotic anion, such as a solution of NaHCO3. Is the solution acidic on 
account of the acid character of HCO3

− or is it basic on account of the anion’s basic 
character? As we show in Further information 4.2, under the circumstances 
specifi ed there (Ka2 << Ka1, S >> Kw/Ka2, and S >> Ka1), where S is the numerical 

A note on good practice 
Distinguish between 
amphiprotic, which means 
that a species can both accept 
and donate protons, and 
amphoteric, which means 
that a substance can react 
with both an acid and a base. 
Aluminum is amphoteric 
but not amphiprotic.
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value of the molar concentration of the salt providing the anion), the pH of such a 
solution is given by

pH = 12 (pKa1 + pKa2) The pH of the solution 
of an amphiprotic anion

 (4.34)

A brief illustration

Using values from Table 4.5, we can immediately conclude that the pH of 
the solution of sodium hydrogencarbonate of any concentration (subject to the 
conditions just quoted) is

pH = 12 (6.37 + 10.25) = 8.31

Th e solution is basic. We can treat a solution of potassium hydrogenphos-
phate in the same way, taking into account only the second and third acidity 
constants of H3PO4 because protonation as far as H3PO4 is negligible (see 
Table 4.5):

pH = 12 (7.21 + 12.67) = 9.94

4.11 Buffer solutions
Cells cease to function and may be damaged irreparably if the pH changes 
significantly, so we need to understand how the pH is stabilized by a buffer.

Suppose that we make an aqueous solution by dissolving known amounts of 
a weak acid (which provides the species HA) and its conjugate base (which pro-
vides the species A−). To calculate the pH of this solution, we make use of the 
expression for Ka of the weak acid, eqn 4.22, with [HA] = [acid] and [A−] = [base], 
and write

Ka = aH3O+abase

aacid
 ≈ aH3O+[base]

[acid]

which rearranges fi rst to

aH3O+ ≈ Ka[acid]
[base]

Fig. 4.17 Th e fractional 
composition of the protonated 
and deprotonated forms of an 
amino acid NH2CHRCOOH 
(with arbitrarily chosen values of 
pK), in which the group R does 
not participate in proton transfer 
reactions.
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It is observed that solutions containing known amounts of an acid and that 
acid’s conjugate base show buff er action, the ability of a solution to oppose 
changes in pH when small amounts of strong acids and bases are added. An acid 
buff er solution, one that stabilizes the solution at a pH below 7, is typically pre-
pared by making a solution of a weak acid (such as acetic acid) and a salt that 
supplies its conjugate base (such as sodium acetate). A base buff er, one that 
stabilizes a solution at a pH above 7, is prepared by making a solution of a weak 
base (such as ammonia) and a salt that supplies its conjugate acid (such as 
ammonium chloride). Physiological buff ers are responsible for maintaining the 
pH of blood within a narrow range of 7.37 to 7.43, thereby stabilizing the active 
conformations of biological macromolecules and optimizing the rates of bio-
chemical reactions.

An acid buff er stabilizes the pH of a solution because the abundant supply 
of A− ions (from the salt) can remove any H3O+ ions brought by additional strong 
acid; furthermore, the abundant supply of HA molecules (from the acid com-
ponent of the buff er) can provide H3O+ ions to react with any strong base that 
is added. Similarly, in a base buff er the weak base B can accept protons when 
a strong acid is added and its conjugate acid BH+ can supply protons if a strong 
base is added. Th e following example explores the quantitative basis of buff er 
action.

A brief illustration

To calculate the pH of a solution formed from equal amounts of CH3COOH(aq) 
and NaCH3CO2(aq), we note that the latter dissociates (in the sense that the 
ions separate) fully in water, yielding Na+(aq) and CH3CO2

−(aq), the conjugate 
base of CH3COOH(aq). Because [CH3COOH] = [CH3CO2

−] (that is, [acid] = 
[base]), for this solution provided we disregard protonation and deproton-
ation, pH ≈ pKa. Because the pKa of CH3COOH(aq) is 4.75 (Table 4.4), it 
follows that pH = 4.8 (more realistically, pH = 5).

Self-test 4.18 Calculate the pH of an aqueous solution that contains equal 
amounts of NH3 and NH4Cl.

Answer: 9.25; more realistically: 9

and then, by taking negative common logarithms, to the Henderson–Hasselbalch 
equation:

pH = pKa − log [acid]
[base]

 Henderson–Hasselbalch
equation:

 (4.35)

When the concentrations of the conjugate acid and base are equal, the second 
term on the right of eqn 4.35 is log 1 = 0, so under these conditions pH = pKa. 
Although the equation has been derived without making any assumptions about 
[acid] and [base], it is common to suppose that, because the acid is weak, [acid] 
and [base] are unchanged from the values used to make up the solution; that is, 
we disregard the small amount of deprotonation of the added acid and the small 
amount of protonation of the added base.
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Example 4.8 Assessing buffer action

Estimate the eff ect of addition of 0.020 mol of hydronium ions (from a 
solution of a strong acid, such as hydrochloric acid) on the pH of 1.0 dm3 of 
(a) 0.15 m CH3COOH(aq) and (b) a buff er solution containing 0.15 m 
CH3COOH(aq) and 0.15 m NaCH3CO2(aq).

Strategy Before addition of hydronium ions, the pH of solutions (a) and (b) is 
2.8 (Example 4.5) and 4.8 (see the preceding brief illustration). Aft er addition 
to solution (a) the initial molar concentration of CH3COOH(aq) is 0.15 m 
and that of H3O+(aq) is (0.020 mol)/(1.0 dm3) = 0.020 m. Aft er addition to 
solution (b), the initial molar concentrations of CH3COOH(aq), CH3CO2

−(aq), 
and H3O+(aq) are 0.15 m, 0.15 m, and 0.020 m, respectively. Th e weak base 
already present in solution, CH3CO2

−(aq), reacts immediately with the added 
hydronium ions:

CH3CO2
−(aq) + H3O+(aq) → CH3COOH(aq) + H2O(l)

We use the adjusted concentrations of CH3COOH(aq) and CH3CO2
−(aq) and 

eqn 4.45 to calculate a new value of the pH of the buff er solution.

Solution For addition of a strong acid to solution (a), we draw up the following 
equilibrium table to show the eff ect of the addition of hydronium ions:

Species CH3COOH H3O+ CH3CO2
−

Initial concentration/(mol dm−3) 0.15 0.020 0
Change to reach equilibrium/(mol dm−3) −x +x +x
Equilibrium concentration/(mol dm−3) 0.15 − x 0.020 + x x

Th e value of x is found by inserting the equilibrium concentrations into the 
expression for the acidity constant:

Ka = [H3O+][CH3CO2
−]

[CH3COOH]
 = (0.020 + x)x

0.15 − x

As in Example 4.5, we assume that x is very small; in this case x << 0.020, and 
write

Ka ≈ 0.020x
0.15

Th en

x = (0.15/0.020) × Ka = 7.5 × 1.8 × 10−5 = 1.4 × 10−4

We see that our approximation is valid and, therefore, [H3O+] = 0.020 + x 
≈ 0.020 and pH = 1.7. It follows that the pH of the unbuff ered solution (a) 
changes from 2.8 to 1.7 on addition of 0.020 m H3O+ (aq).

Now we consider the addition of 0.020 m H3O+(aq) to solution (b). Reaction 
between the strong acid and weak base consumes the added hydronium ions 
and changes the concentration of CH3CO2

−(aq) to 0.13 m and the concentra-
tion of CH3COOH(aq) to 0.17 m. It follows from eqn 4.35 that

pH = pKa − log [CH3COOH]
[CH3CO2

−]
 = 4.75 − log 0.17

0.13
 = 4.6

Th e pH of the buff er solution (b) changes only slightly from 4.8 to 4.6 on 
addition of 0.020 m H3O+(aq).
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Self-test 4.19 Estimate the change in pH of solution (b) from Example 4.8 
aft er addition of 0.020 mol of OH−(aq).

Answer: 4.9

Case study 4.5 Buffer action in blood

Th e pH of blood in a healthy human being varies from 7.37 to 7.43. Th ere are 
two buff er systems that help maintain the pH of blood relatively constant: one 
arising from a carbonic acid/bicarbonate (hydrogencarbonate) ion equilibrium 
and another involving protonated and deprotonated forms of hemoglobin.

Carbonic acid forms in blood from the reaction between water and CO2 gas, 
which comes from inhaled air and is also a by-product of metabolism (Case 
study 4.3):

CO2(g) + H2O(l) 7 H2CO3(aq)

In red blood cells, this reaction is catalyzed by the enzyme carbonic anhydrase. 
Aqueous carbonic acid then deprotonates to form bicarbonate (hydrogencar-
bonate) ion:

H2CO3(aq) 7 H+(aq) + HCO3
−(aq)

Th e fact that the pH of normal blood is approximately 7.4 implies that [HCO3
−]/

[H2CO3] ≈ 20. Th e body’s control of the pH of blood is an example of 
homeostasis, the ability of an organism to counteract environmental changes 
with physiological responses. For instance, the concentration of carbonic acid 
can be controlled by respiration: exhaling air depletes the system of CO2(g) 
and H2CO3(aq) so the pH of blood rises when air is exhaled. Th e kidneys also 
play a role in the control of the concentration of hydronium ions. Th ere, 
ammonia formed by the release of nitrogen from some amino acids (such as 
glutamine) combines with excess hydronium ions and the ammonium ion is 
excreted through urine.

Th e condition known as alkalosis occurs when the pH of blood rises above 
about 7.45. Respiratory alkalosis is caused by hyperventilation, or excessive 
respiration. Th e simplest remedy consists of breathing into a paper bag in 
order to increase the levels of inhaled CO2. Metabolic alkalosis may result 
from illness, poisoning, repeated vomiting, and overuse of diuretics. Th e body 
may compensate for the increase in the pH of blood by decreasing the rate 
of respiration.

Acidosis occurs when the pH of blood falls below about 7.35. In respiratory 
acidosis, impaired respiration increases the concentration of dissolved CO2 
and lowers the blood’s pH. Th e condition is common in victims of smoke 
inhalation and patients with asthma, pneumonia, and emphysema. Th e most 
effi  cient treatment consists of placing the patient in a ventilator. Metabolic 
acidosis is caused by the release of large amounts of lactic acid or other acidic 
by-products of metabolism (Case study 4.3), which react with bicarbonate ion 
to form carbonic acid, thus lowering the blood’s pH. Th e condition is common 
in patients with diabetes and severe burns.

Th e concentration of hydronium ion in blood is also controlled by hemoglo-
bin, which can exist in deprotonated (basic) or protonated (acidic) forms, 
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depending on the state of protonation of several histidines on the protein’s 
surface (see Fig. 4.16 for a diagram of the fraction of protonated species in an 
aqueous solution of histidine). Th e carbonic acid/bicarbonate ion equilibrium 
and proton equilibria in hemoglobin also regulate the oxygenation of blood. 
Th e key to this regulatory mechanism is the Bohr eff ect, the observation that 
hemoglobin binds O2 strongly when it is deprotonated and releases O2 when it 
is protonated. It follows that when dissolved CO2 levels are high and the pH of 
blood falls slightly, hemoglobin becomes protonated and releases bound O2 to 
tissue. Conversely, when CO2 is exhaled and the pH rises slightly, hemoglobin 
becomes deprotonated and binds O2.
 

Checklist of key concepts

 1. Th e reaction Gibbs energy, DrG, is the slope of a plot 
of Gibbs energy against composition.

 2. Th e condition of chemical equilibrium at constant 
temperature and pressure is DrG = 0.

 3. Th e standard reaction Gibbs energy is the diff erence 
of the standard Gibbs energies of formation of the 
products and reactants weighted by the stoichiometric 
coeffi  cients in the chemical equation.

 4. Th e equilibrium constant is the value of the reaction 
quotient at equilibrium.

 5. A compound is thermodynamically stable with 
respect to its elements if DfG3 < 0.

 6. Th e equilibrium constant of a reaction is independent 
of the presence of a catalyst.

 7. Th e equilibrium constant K increases with 
temperature if DrH 3 > 0 (an endothermic reaction) 
and decreases if DrH 3 < 0 (an exothermic reaction).

 8. An endergonic reaction has a positive Gibbs 
energy; an exergonic reaction has a negative 
Gibbs energy.

 9. Th e biological standard state corresponds to 
pH = 7.

 10. An endergonic reaction may be driven forward 
by coupling it to an exergonic reaction.

 11. Th e strength of an acid HA is reported in terms of its 
acidity constant and that of a base B in terms of its 
basicity constant.

 12. Th e acid form of a species is dominant if pH < pKa, 
and the base form is dominant if pH > pKa.

 13. Th e pH of a buff er solution containing equal 
concentrations of a weak acid and its conjugate 
base is pH = pKa.
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Checklist of key equations

Property Equation Comment

Reaction quotient Q = ac
Cad

D/aa
Aab

B Dimensionless
Equilibrium constant K = (ac

Cad
D/aa

Aab
B)equilibrium

DrG = DrG3 + RT ln Q
DrG3 = ∑

Products
 nDfG3 − ∑

Reactants
 nD fG3

DrG3 = −RT ln K
ln K2 = ln K1 + (DrH3/R)(1/T1 − 1/T2)
DrG⊕ = DrG3 + 7nRT ln 10
pH = − log aH3O+

pH + pOH = pKw

Ka = aH3O+aA−/aHA

Kb = aHB+aOH−/aB

Kw = aH3O+aOH−

pKa + pKb = pKw

pH = 12(pKa1 + pKa2)

Dimensionless
Reaction Gibbs energy

Standard reaction Gibbs energy Procedure for calculation

Relation to K
van ’t Hoff  equation Assumes DrH3 constant over range
Relation between standard states
pH Defi nition
Relation between pH and pOH
Acidity constant Dilute solutions (aH2O = 1)
Basicity constant Dilute solutions (aH2O = 1)
Autoprotolysis constant
Relation between pKa and pKb

pH of amphiprotic anion solution Ka2 << Ka1, S >> Kw/Ka2, and S >> Ka1

Henderson–Hasselbalch equation pH = pKa − log[acid]/[base]

Further information

Further information 4.1 The contribution of autoprotolysis 
to pH

Some acids are so weak and undergo so little deprotonation 
that the autoprotolysis of water can contribute signifi cantly to 
the pH. We must also take autoprotolysis into account when 
we fi nd by using the procedures in Example 4.5 that the pH 
of a solution of a weak acid is greater than 6.

We begin the calculation by noting that, apart from water, 
there are four species in solution: HA, A−, H3O+, and OH−. 
Because there are four unknown quantities, we need four 
equations to solve the problem. Two of the equations are the 
expressions for Ka and Kw (eqns 4.20 and 4.24), written here 
in terms of molar concentrations:

Ka = [H3O+][A−]
[HA]

  Kw = [H3O+][OH−] (4.36)

A third equation takes charge balance, the requirement 
that the solution be electrically neutral, into account. Th at is, 
the sum of the concentrations of the cations must be equal 
to the sum of the concentrations of the anions. In our case, 
the charge balance equation is

[H3O+] = [OH−] + [A−] (4.37)

We also know that the total concentration of A groups in all 
forms in which they occur, which we denote as A, must be equal 

to the initial concentration of the weak acid. Th is condition, 
known as material balance, gives our fi nal equation:

A = [HA] + [A−] (4.38)

Now we are ready to proceed with a calculation of the 
hydronium ion concentration in the solution. First, we 
combine eqns 4.36 and 4.37 and write

[A−] = [H3O+] − Kw

[H3O+]
 (4.39)

We continue by substituting this expression into eqn 4.39 and 
solving for [HA]:

[HA] = A − [H3O+] + Kw

[H3O+]
 (4.40)

On substituting the expressions for [A−] (eqn 4.39) and [HA] 
(eqn 4.40) into the fi rst of eqn 4.36, we obtain

 [H3O+]A
C[H3O+] − Kw

[H3O+]
D
F

Ka =  (4.41)
 A − [H3O+] + Kw

[H3O+]

Rearrangement of this expression gives

[H3O+]3 + Ka[H3O+]2 − (Kw + KaA)[H3O+] − KaKw = 0 (4.42)
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and we see that [H3O+] is determined by solving this cubic 
equation, a task that is best accomplished with a calculator or 
mathematical soft ware. Figure 4.18 summarizes the outcome.

Th ere are several experimental conditions that allow us 
to simplify eqn 4.42. For example, when KaA >> Kw and 
A[H3O+] >> Kw it becomes

[H3O+]2 + Ka[H3O+] − KaA = 0 (4.43a)

which can be solved for [H3O+]. If the extent of deprotonation 
is very small, we let [H3O+] << A and write

Ka = [H3O+]2

A  
, so [H3O+] = (AKa)1/2 (4.43b)

Equations 4.43 are similar to the expressions used in 
Example 4.5, where we set [H3O+] equal to x.

Further information 4.2 The pH of an amphiprotic salt 
solution

Th e aim is to calculate the pH of a solution of a salt MHA, 
where HA− is an amphiprotic anion (HCO3

− is an example).
We consider the following two equilibria:

H2A(aq) + H2O(l) 7 H3O+(aq) + HA−(aq) 

 Ka1 = [H3O+][HA−]
[H2A]

HA−(aq) + H2O(l) 7 H3O+(aq) + A2−(aq) 

 Ka2 = [H3O+][HA2−]
[HA−]

together with the autoprotolysis equilibrium, Kw. Th e total 
concentration of the group A is the sum of the concentrations 
of the species in which it occurs, which is equal to the 
concentration of the salt that was added. If we denote the 
concentration of added salt as S,

Mass conservation: [H2A] + [HA−] + [A2−] = S  (4.44)

Th e solution is electrically neutral overall, so

Charge balance: [M+] + [H3O+] = [OH−] + [HA−] + 2[A2−]
 (4.45)

with [M+] = S. Th e diff erence of these two equations can be 
expressed as

[H3O+] = [OH−] + [A2−] − [H2A]

 = Kw

[H3O+]
 + [HA−]Ka2

[H3O+]
 − [HA−][H3O+]

Ka1
 (4.46)

Multiplication through by [H3O+]Ka1 turns this expression 
into

Ka1[H3O+]2 = KwKa1 + [HA−]Ka1Ka2 − [H3O+]2[HA−] (4.47)

Th e mass conservation expression can also be written in terms 
of [H3O+]:

S = [H3O+][HA−]
Ka1

 + [HA−] + [HA−]Ka2

[H3O+]

 = !@1 + [H3O+]
Ka1

 + Ka2

[H3O+]
#
$ [HA−] = H[HA−]

When this expression is rearranged for [HA−] in terms of S 
and substituted into eqn 4.46 we fi nd

[H3O+] = Kw

[H3O+]
 + AC

Ka2

[H3O+]
 − [H3O+]

Ka1

D
F  

S
H

 (4.48)

To simplify this expression we multiply through by [H3O+]H:

H[H3O+]2 = HKw + Ka2S − [H3O+]2S
Ka1

and then collect terms in [H3O+]2:

A
CH + S

Ka1

D
F  [H3O+]2 = HKw + Ka2S (4.49)

Of course, H depends on [H3O+], but we take care of that 
feature later (it will turn out that under the conditions to be 
specifi ed, H ≈ 1). Th e solution is

[H3O+] = AC
HKw + Ka2S
H + S/Ka1

D
F

1/2

 = AC
HKwKa1 + Ka1Ka2S

HKa1 + S
D
F

1/2

 = AC
HKwKa1/S + Ka1Ka2

HKa1/S + 1
D
F

1/2

 = (Ka1Ka2)1/2 !
@

1 + HKw/SKa2

1 + HKa1/S
#
$

1/2

 (4.50)

On taking the negative logarithm, we obtain

pH = 12(pKa1 + pKa2) − 12 log f(H) (4.51a)

where

f(H) = 1 + HKw/SKa2

1 + HKa1/S
 (4.51b)

Provided HKw/SKa2 <<1 and HKa1/S <<1, f(H) ≈ 1, eqn 4.8a 
simplifi es to

pH = 12(pKa1 + pKa2) (4.52)

which is the form quoted in the text.
Th e conditions for the validity of eqn 4.52 may be expressed 

more simply because if eqn 4.52 is a good approximation, we 

Fig. 4.18 Th e orange lines are the exact solutions of eqn 4.41 for 
a series of values of A (expressed as 10−x, with −x displayed). 
Th e dotted lines are the corresponding approximate solutions 
obtained from eqn 4.42b.
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may use it in the form [H3O+] = (Ka1Ka2)1/2 to estimate the 
value of f by noting that

H = 1 + [H3O+]
Ka1

 + Ka2

[H3O+]
 ≈ 1 + 2(Ka2/Ka1)1/2 (4.53)

For small polyprotic species, Ka2 << Ka1 (this is not always the 
case for polyprotic enzymes), so H ≈ 1 and so

f(H) ≈ 1 + Kw/SKa2

1 + Ka1/S
 (4.54)

Th erefore, eqn 4.52 is valid provided Ka2 << Ka1, S >> Kw/Ka2, 
and S >> Ka1.  If these conditions are not fulfi lled, then eqn 4.51 
must be solved iteratively.

pKa2 = 14.15), we test whether we can use eqn 4.52 by 
forming Kw/Ka2 = 1.4. Th is ratio is not small compared to 
S = 0.010, so eqn 4.52 cannot be used to obtain the fi nal pH. 
However, it can be used as a fi rst approximation, and we 
fi nd pH = 10.52, which corresponds to [H3O+] = 3.0 × 10−11. 
Th is value corresponds to f(H) = 142.318, which gives the 
following improved estimate of the pH:

pH = 12(6.89 + 14.15) − 12 log 142.318 = 9.44

Next, we use this value to calculate an improved value of f, 
namely f(H) = 142.650, so

pH = 12(6.89 + 14.15) − 12 log 142.650 = 9.44

Th is value is unchanged from the previous estimate, so we 
accept it as the fi nal value. Note that the estimate from 
eqn 4.51 is signifi cantly diff erent but that only one round 
of improvement is necessary in this case.

Discussion questions

4.1 Explain how the mixing of reactants and products aff ects the 
position of chemical equilibrium.

4.2 Explain how a reaction that is not spontaneous may be driven 
forward by coupling to a spontaneous reaction.

4.3 At blood temperature, DrG⊕ = −218 kJ mol−1 and DrH ⊕ = −120 kJ 
mol−1 for the production of lactate ion during glycolysis. Provide a 
molecular interpretation for the observation that the reaction is more 
exergonic than it is exothermic.

4.4 Explain Le Chatelier’s principle in terms of thermodynamic 
quantities.

4.5 Use the Boltzmann distribution to describe the molecular 
features that determine the magnitudes of equilibrium constants 
and their variation with temperature. 

4.6 Describe the basis of buff er action.

4.7 State the limits to the generality of the following expressions: 
(a) pH = 12(pKa1 + pKa2), (b) pH = pKa − log([acid]/[base]), 
and (c) the van ’t Hoff  equation, written as 
ln K2 = ln K1 + (DrH 3/R)(1/T1 − 1/T2).

Exercises

4.8 Write the expressions for the equilibrium constants for the 
following reactions, making the approximation of replacing activities 
by molar concentrations or partial pressures:

(a) G6P(aq) + H2O(l) 7 G(aq) + Pi(aq), where G6P is glucose-6-
phosphate, G is glucose, and Pi is inorganic phosphate.

(b) Gly(aq) + Ala(aq) 7 Gly–Ala(aq) + H2O(l)
(c) Mg2+ (aq) + ATP4−(aq) 7 MgATP2−(aq)
(d) 2 CH3COCOOH(aq) + 5 O2(g) 7 6 CO2(g) + 4 H2O(l)

4.9 Th e equilibrium constant for the reaction A + B 7 2 C is 
reported as 3.4 × 104. What would it be for the reaction written as 
(a) 2 C 7 A + B, (b) 2 A + 2 B 7 4 C, and (c) 12 A + 12  B 7 C?

4.10 Th e equilibrium constant for the hydrolysis of the dipeptide 
alanylglycine by a peptidase enzyme is K = 8.1 × 102 at 310 K. 
Calculate the standard reaction Gibbs energy for the hydrolysis.

4.11 One enzyme-catalyzed reaction in a biochemical cycle has an 
equilibrium constant that is 10 times the equilibrium constant of a 
second reaction. If the standard Gibbs energy of the former reaction 
is −300 kJ mol−1, what is the standard reaction Gibbs energy of the 
second reaction?

4.12 What is the value of the equilibrium constant of a reaction for 
which DrG3 = 0?

4.13 Th e standard reaction Gibbs energies (at pH = 7) for the 
hydrolysis of glucose-1-phosphate, glucose-6-phosphate, and 
glucose-3-phosphate are −21, −14, and −9.2 kJ mol−1, respectively. 
Calculate the equilibrium constants for the hydrolyses at 37°C.

4.14 Th e standard Gibbs energy for the hydrolysis of ATP to ADP is 
−31 kJ mol−1. What is the Gibbs energy of reaction in an environment 
at 37°C in which the ATP, ADP, and Pi concentrations are all 
(a) 1.0 mmol dm−3 and (b) 1.0 mmol dm−3?

A brief illustration

Suppose we want to know the pH of 0.010 m KHS(aq). 
Because Ka1 = 1.3 × 10−7 and Ka2 = 7.1 × 10−15 (pKa1 = 6.89, 
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4.15 Th e distribution of Na+ ions across a typical biological 
membrane is 10 mmol dm−3 inside the cell and 140 mmol dm−3 
outside the cell. At equilibrium the concentrations are equal. What 
is the Gibbs energy diff erence across the membrane at 37°C? Th e 
diff erence in concentration must be sustained by coupling to reactions 
that have at least that diff erence of Gibbs energy.

4.16 For the hydrolysis of ATP at 37°C, DrH ⊕ = −20 kJ mol−1 and 
DrS⊕ = +34 J K−1 mol−1. Assuming that these quantities remain 
constant, estimate the temperature at which the equilibrium 
constant for the hydrolysis of ATP becomes greater than 1.

4.17 Calculate the standard biological Gibbs energy for the reaction

pyruvate−(aq) + NADH(aq) + H+(aq) → lactate−(aq) + NAD+(aq)

at 310 K given that DrG3 = −66.6 kJ mol−1. (NAD+ is the oxidized form 
of nicotinamide dinucleotide.) Th is reaction occurs in muscle cells 
deprived of oxygen during strenuous exercise and can lead to 
cramping.

4.18 Th e standard biological reaction Gibbs energy for the removal of 
the phosphate group from adenosine monophosphate is −14 kJ mol−1 
at 298 K. What is the value of the thermodynamic standard reaction 
Gibbs energy?

4.19 Estimate the values of the biological standard Gibbs energies of 
the following phosphate transfer reactions:

(a) GTP(aq) + ADP(aq) → GDP(aq) + ATP(aq) 
(b) Glycerol(aq) + ATP(aq) → glycerol-1-phosphate + ADP(aq) 

+ H+(aq)
(c) 3-Phosphoglycerate(aq) + ATP(aq) → 1,3-bis(phospho)

glycerate(aq) + ADP(aq) 

4.20 Two polynucleotides with sequences AnUn (where A and U 
denote adenine and uracil, respectively) interact through A–U base 
pairs, forming a double helix. When n = 5 and n = 6, the equilibrium 
constants for formation of the double helix are 5.0 × 103 and 2.0 × 105, 
respectively. (a) Suggest an explanation for the increase in the value of 
the equilibrium constant with n. (b) Calculate the contribution of a 
single A–U base pair to the Gibbs energy of formation of a double 
helix between AnUn polypeptides.

4.21 Under biochemical standard conditions, aerobic respiration 
produces approximately 38 molecules of ATP per molecule of glucose 
that is completely oxidized. (a) What is the percentage effi  ciency of 
aerobic respiration under biochemical standard conditions? (b) Th e 
following conditions are more likely to be observed in a living cell: 
pCO2

 = 53 mbar, pO2
 = 132 mbar, [glucose] = 5.6 × 10−2 mol dm−3, 

[ATP] = [ADP] = [Pi] = 1.0 × 10−4 mol dm−3, pH = 7.4, T = 310 K. 
Assuming that activities can be replaced by the numerical values of 
molar concentrations, calculate the effi  ciency of aerobic respiration 
under these physiological conditions.

4.22 Th e second step in glycolysis is the isomerization of glucose-6-
phosphate (G6P) to fructose-6-phosphate (F6P). Example 4.3 
considered the equilibrium between F6P and G6P. Draw a graph to 
show how the reaction Gibbs energy varies with the fraction f of F6P 
in solution. Label the regions of the graph that correspond to the 
formation of F6P and G6P being spontaneous, respectively.

4.23 Th e saturation curves shown in Fig. 4.9 may also be modeled 
mathematically by the equation

log s
1 − s

 = n log p − n log K

where s is the saturation, p is the partial pressure of O2, K is a constant 
(not the equilibrium constant for binding of one ligand), and n is the 
Hill coeffi  cient, which varies from 1, for no cooperativity, to N for 
all-or-none binding of N ligands (N = 4 in Hb). Th e Hill coeffi  cient for 
Mb is 1, and for Hb it is 2.8. (a) Determine the constant K for both Mb 
and Hb from the graph of fractional saturation (at s = 0.5) and then 
calculate the fractional saturation of Mb and Hb for the following 
values of p/kPa: 1.0, 1.5, 2.5, 4.0, 8.0. (b) Calculate the value of s at the 
same p values assuming ν has the theoretical maximum value of 4.

4.24 Classify the following compounds as endergonic or exergonic: 
(a) glucose, (b) urea, (c) octane, and (d) ethanol.

4.25 Consider the combustion of sucrose:

C12H22O11(aq) + 12 O2(g) 7 12 CO2(g) + 11 H2O(l)

(a) Combine the standard reaction entropy with the standard reaction 
enthalpy and calculate the standard reaction Gibbs energy at 298 K. 
(b) In assessing metabolic processes, we are usually more interested in 
the work that may be performed for the consumption of a given mass 
of compound than the heat it can produce (which merely keeps the 
body warm). Recall from Chapter 2 that the change in Gibbs energy 
can be identifi ed with the maximum nonexpansion work that can be 
extracted from a process. What is the maximum energy that can be 
extracted as (i) heat and (ii) nonexpansion work when 1.0 kg of 
sucrose is burned under standard conditions at 298 K?

4.26 Is it more energy eff ective to ingest sucrose or glucose? Calculate 
the nonexpansion work, the expansion work, and the total work that 
can be obtained from the combustion of 1.0 kg of glucose under 
standard conditions at 298 K when the product includes liquid 
water. Compare your answer with your results from Exercise 4.25b.

4.27 Th e oxidation of glucose in the mitochondria of energy-hungry 
brain cells leads to the formation of pyruvate ions, which are then 
decarboxylated to ethanal (acetaldehyde, CH3CHO) in the course of 
the ultimate formation of carbon dioxide. (a) Th e standard Gibbs 
energies of formation of pyruvate ions in aqueous solution and 
gaseous ethanal are −474 and −133 kJ mol−1, respectively. Calculate the 
Gibbs energy of the reaction in which pyruvate ions are converted to 
ethanal by the action of pyruvate decarboxylase with the release of 
carbon dioxide. (b) Ethanal is soluble in water. Would you expect the 
standard Gibbs energy of the enzyme-catalyzed decarboxylation of 
pyruvate ions to ethanal in solution to be larger or smaller than the 
value for the production of gaseous ethanal?

4.28 Show that if the logarithm of an equilibrium constant is plotted 
against the reciprocal of the temperature, then the standard reaction 
enthalpy may be determined.

4.29 Th e conversion of fumarate ion to malate ion is catalyzed by the 
enzyme fumarase:

fumarate2−(aq) + H2O(l) → malate2−(aq)

Use the following data to determine the standard reaction enthalpy:

q/°C 15 20 25 30 35 40 45 50
K 4.786 4.467 4.074 3.631 3.311 3.090 2.754 2.399

4.30 What is the standard enthalpy of a reaction for which the 
equilibrium constant is (a) doubled and (b) halved when the 
temperature is increased by 10 K at 298 K?

4.31 Numerous acidic species are found in living systems. Write the 
proton transfer equilibria for the following biochemically important 
acids in aqueous solution: (a) H2PO4

− (dihydrogenphosphate ion), 
(b) lactic acid (CH3CHOHCOOH), (c) glutamic acid 
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(HOOCCH2CH2CH(NH2)COOH), (d) glycine (NH2CH2COOH), 
and (e) oxalic acid (HOOCCOOH).

4.32 For biological and medical applications we oft en need to 
consider proton transfer equilibria at body temperature (37°C). Th e 
value of Kw for water at body temperature is 2.5 × 10−14. (a) What is 
the value of [H3O+] and the pH of neutral water at 37°C? (b) What 
is the molar concentration of OH− ions and the pOH of neutral 
water at 37°C?

4.33 Suppose that something had gone wrong in the Big Bang, 
and instead of ordinary hydrogen there was an abundance of 
deuterium in the Universe. Th ere would be many subtle changes 
in equilibria, particularly the deuteron transfer equilibria of heavy 
atoms and bases. Th e Kw for D2O, heavy water, at 25°C is 1.35 × 10−15. 
(a) Write the chemical equation for the autoprotolysis (more 
precisely, autodeuterolysis) of D2O. (b) Evaluate pKw for D2O at 25°C. 
(c) Calculate the molar concentrations of D3O+ and OD− in neutral 
heavy water at 25°C. (d) Evaluate the pD and pOD of neutral heavy 
water at 25°C. (e) Formulate the relation between pD, pOD, and 
pKw(D2O).

4.34 Th e molar concentration of H3O+ ions in the following solutions 
was measured at 25°C. Calculate the pH and pOH of the solutions: 
(a) 15 μmol dm−3 (a sample of rainwater), (b) 1.5 mmol dm−3, 
(c) 5.1 × 10−14 mol dm−3, and (d) 5.01 × 10−5 mol dm−3.

4.35 Calculate the molar concentration of H3O+ ions and the pH of 
the following solutions: (a) 25.0 cm3 of 0.144 m HCl(aq) was added 
to 25.0 cm3 of 0.125 m NaOH(aq), (b) 25.0 cm3 of 0.15 m HCl(aq) 
was added to 35.0 cm3 of 0.15 m KOH(aq), and (c) 21.2 cm3 of 0.22 m 
HNO3(aq) was added to 10.0 cm3 of 0.30 m NaOH(aq).

4.36 Determine whether aqueous solutions of the following salts have 
a pH equal to, greater than, or less than 7; if pH > 7 or pH < 7, write 
a chemical equation to justify your answer: (a) NH4Br, (b) Na2CO3, 
(c) KF, (d) KBr.

4.37 (a) A sample of potassium acetate, KCH3CO2, of mass 8.4 g is 
used to prepare 250 cm3 of solution. What is the pH of the solution? 
(b) What is the pH of a solution when 3.75 g of ammonium bromide, 
NH4Br, is used to make 100 cm3 of solution? (c) An aqueous solution 
of volume 1.0 dm3 contains 10.0 g of potassium bromide. What is the 
percentage of Br− ions that are protonated?

4.38 Th ere are many organic acids and bases in our cells, and their 
presence modifi es the pH of the fl uids inside them. It is useful to be 
able to assess the pH of solutions of acids and bases and to make 
inferences from measured values of the pH. A solution of equal 
concentrations of lactic acid and sodium lactate was found to have 
pH = 3.08. (a) What are the values of pKa and Ka of lactic acid? 
(b) What would the pH be if the acid had twice the concentration 
of the salt?

4.39 Calculate the pH, pOH, and fraction of solute protonated or 
deprotonated in the following aqueous solutions: (a) 0.120 m 
CH3CH(OH)COOH(aq) (lactic acid), (b) 1.4 × 10−4 m CH3CH(OH)
COOH(aq), (c) 0.15 m NH4Cl(aq), (d) 0.15 m NaCH3CO2(aq), and 
(e) 0.112 m (CH3)3N(aq) (trimethylamine).

4.40 Show graphically the variation with pH of the composition of the 
following aqueous solutions: (a) 0.010 m glycine(aq) and (b) 0.010 m 
tyrosine(aq).

4.41 Calculate the pH of the following acid solutions at 25°C; ignore 
second deprotonations only when that approximation is justifi ed: 
(a) 1.0 × 10−4 m H3BO3(aq) (boric acid acts as a monoprotic acid), 
(b) 0.015 m H3PO4(aq), and (c) 0.10 m H2SO3(aq).

4.42 Th e amino acid tyrosine has pKa = 2.20 for deprotonation of its 
carboxylic acid group. What are the relative concentrations of tyrosine 
and its conjugate base at a pH of (a) 7, (b) 2.2, and (c) 1.5?

4.43 Appreciable concentrations of the potassium and calcium 
salts of oxalic acid, (COOH)2, are found in many leafy green 
plants, such as rhubarb and spinach. (a) Calculate the molar 
concentrations of HOOCCO2

−, (CO2)2
2−, H3O+, and OH− in 0.15 m 

(COOH)2(aq). (b) Calculate the pH of a solution of 0.15 m potassium 
hydrogenoxalate.

4.44 In green sulfur bacteria, hydrogen sulfi de, H2S, is the agent 
that brings about the reduction of CO2 to carbohydrates during 
photosynthesis. Calculate the molar concentrations of H2S, HS−, 
S2−, H3O+, and OH− in 0.065 m H2S(aq).

4.45 Th e isoelectric point, pI, of an amino acid is the pH at which 
the predominant species in solution is the zwitterionic form of the 
amino acid and only small but equal concentrations of positively and 
negatively charged forms of the amino acid are present. It follows that 
at the isoelectric point, the average charge on the amino acid is zero. 
Show that (a) pI = 12(pKa1 + pKa2) for amino acids with side chains 
that are neither acidic nor basic (such as glycine and alanine), 
(b) pI = 12(pKa1 + pKa2) for amino acids with acidic side chains 
(such as aspartic acid and glutamic acid), and (c) pI = 12(pKa2 + pKa3) 
for amino acids with basic side chains (such as lysine and histidine), 
where pKa1, pKa2, and pKa3 are given in Table 4.6. Hint: See 
Case study 4.4 and Section 4.10.

4.46 Predict the pH region in which each of the following buff ers 
will be eff ective, assuming equal molar concentrations of the acid 
and its conjugate base: (a) sodium lactate and lactic acid, (b) sodium 
benzoate and benzoic acid, (c) potassium hydrogenphosphate and 
potassium phosphate, (d) potassium hydrogenphosphate and 
potassium dihydrogenphosphate, and (e) hydroxylamine and 
hydroxylammonium chloride.

4.47 From the information in Tables 4.4 and 4.5, select suitable 
buff ers for (a) pH = 2.2 and (b) pH = 7.0.

4.48 Th e weak base colloquially known as Tris, and more precisely 
as tris(hydroxymethyl)aminomethane, has pKa = 8.3 at 20°C and is 
commonly used to produce a buff er for biochemical applications. 
(a) At what pH would you expect Tris to act as a buff er in a solution 
that has equal molar concentrations of Tris and its conjugate acid? 
(b) What is the pH aft er the addition of 3.3 mmol NaOH to 100 cm3 
of a buff er solution with equal molar concentrations of Tris and its 
conjugate acid form? (c) What is the pH aft er the addition of 6.0 mmol 
HNO3 to 100 cm3 of a buff er solution with equal molar concentrations 
of Tris and its conjugate acid?
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Projects

4.49 Th e denaturation of a biological macromolecule can be 
described by the equilibrium

macromolecule in native form 7 macromolecule in denatured 
form

(a) Show that the fraction q of denatured macromolecules is related 
to the equilibrium constant Kd for the denaturation process by

q = Kd

1 + Kd

(b) Write an expression for the temperature dependence of Kd in 
terms of the standard enthalpy and standard entropy of denaturation. 

(c) At pH = 2, the standard enthalpy and entropy of denaturation of 
the enzyme chymotrypsin are +418 kJ mol−1 and +1.32 kJ K−1 mol−1, 
respectively. Using these data and your results from parts (a) and (b), 
plot q against T. Compare the shape of your plot with that of the plot 
shown in Fig. 3.16. 

(d) Th e ‘melting temperature’ of a biological macromolecule is the 
temperature at which q = 12. Use your results from part (c) to calculate 
the melting temperature of chymotrypsin at pH = 2.

(e) Calculate the standard Gibbs energy and the equilibrium constant 
for the denaturation of chymotrypsin at pH = 2.0 and T = 310 K 
(body temperature). Is the protein stable under these conditions?

4.50 Th e unfolding of a protein may be brought about by treatment 
with denaturants, substances such as guanidinium hydrochloride 
(GuHCl; the guanidinium ion is (NH2)2C=NH+

2) that disrupt the 
intermolecular interactions responsible for the native three- 
dimensional conformation of a biological macromolecule. Data for a 
number of proteins denatured by urea or guanidinium hydrochloride 
suggest a linear relationship between the Gibbs energy of denaturation 
of a protein, DGd, and the molar concentration of a denaturant [D]:

DGd
3 = DGd

3
,water − m[D]

where m is an empirical parameter that measures the sensitivity of 
unfolding to denaturant concentration and DGd

3
,water is the Gibbs 

energy of denaturation of the protein in the absence of denaturant 
and is a measure of the thermal stability of the macromolecule. 

(a) At 27°C and pH 6.5, the fraction q of native chymotrypsin 
molecules varies with the concentration of GuHCl as follows:

q 1.00 0.99 0.78 0.44 0.23 0.08 0.06 0.01
[GuHCl]/
(mol dm−3)

0.00 0.75 1.35 1.70 2.00 2.35 2.70 3.00

Calculate m and DGd
3

,water for chymotrypsin under these experimental 
conditions. 

(b) Using the same data and the expression for q from Exercise 4.49, 
plot q against [GnHCl]. Comment on the shape of the curve. 

(c) To gain insight into your results from part (b), you will now 
derive an equation that relates q to [D]. Begin by showing that 
DGd

3
,water = m[D]1/2, where [D]1/2 is the concentration of denaturant 

corresponding to q = 12. Th en write an expression for q as a function of 
[D], [D]1/2, m, and T. Finally, plot the expression using the values of 
[D]1/2, m, and T from part (a). Is the shape of your plot consistent with 
your results from part (b)?

4.51 In Case study 4.5 we discussed the role of hemoglobin in 
regulating the pH of blood. Now we explore the mechanism of 
regulation in detail. 

(a) If we denote the protonated and deprotonated forms of 
hemoglobin as HbH and Hb−, respectively, then the proton transfer 
equilibria for deoxygenated and fully oxygenated hemoglobin can 
be written as:

HbH 7 Hb− + H+ pKa = 8.18
HbHO2 7 HbO2

− + H+  pKa = 6.62

where we take the view (for the sake of simplicity) that the protein 
contains only one acidic proton. (i) What fraction of deoxygenated 
hemoglobin is deprotonated at pH = 7.4, the value for normal blood? 
(ii) What fraction of oxygenated hemoglobin is deprotonated at 
pH = 7.4? (iii) Use your results from parts (a.i) and (a.ii) to show 
that deoxygenation of hemoglobin is accompanied by the uptake of 
protons by the protein.

(b) It follows from the discussion in Case study 4.4 and part (a) that 
the exchange of CO2 for O2 in tissue is accompanied by complex 
proton transfer equilibria: the release of CO2 into blood produces 
hydronium ions that can be bound tightly to hemoglobin once it 
releases O2. Th ese processes prevent changes in the pH of blood. 
To treat the problem more quantitatively, let us calculate the amount 
of CO2 that can be transported by blood without a change in pH 
from its normal value of 7.4. (i) Begin by calculating the amount of 
hydronium ion bound per mole of oxygenated hemoglobin molecules 
at pH = 7.4. (ii) Now calculate the amount of hydronium ion bound 
per mole of deoxygenated hemoglobin molecules at pH = 7.4. 
(iii) From your results for parts (b.i) and (b.ii), calculate the amount of 
hydronium ion that can be bound per mole of hemoglobin molecules 
as a result of the release of O2 by the fully oxygenated protein at 
pH = 7.4. (iv) Finally, use the result from part (b.iii) to calculate the 
amount of CO2 that can be released into the blood per mole of 
hemoglobin molecules at pH = 7.4.
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Measurements such as the ones we describe in this chapter lead to collections of data 
that are very useful for discussing the characteristics of electrolyte solutions and the 
migration of ions across biological membranes. They are used to discuss the details of 
the propagation of signals in neurons and of the synthesis of ATP.

We shall also see that such apparently unrelated processes as oxidation of fuels, 
respiration, and photosynthesis are actually all closely related, for in each of them 
an electron, sometimes accompanied by a group of atoms, is transferred from one 
species to another. Indeed, together with the proton transfer typical of acid–base 
reactions, processes in which electrons are transferred, the so-called redox reactions,
account for many of the reactions encountered in chemistry and biology.

Transport of ions across biological 
membranes

Th e cell membrane may be regarded as a barrier that slows down the transfer of 
material into or out of the cell. Here we focus on the transport of ions across bio-
logical membranes. We begin by developing some general ideas about solutions 
of electrolytes. Th en we describe the thermodynamics of ion transport mediated 
by special membrane-spanning proteins. In Section 5.10 we shall see how elec-
tron transfer reactions during the later stages of aerobic metabolism of glucose 
couple to the movement of protons across biological membranes and contribute 
to the synthesis of ATP.

5.1 Ions in solution
To prepare for the discussion of biological redox reactions and the role of ions in 
physiological processes, we need to describe the factors that influence the activities 
of ions in aqueous solutions.

Th e most signifi cant diff erence between the solution of an electrolyte and a non- 
electrolyte is that there are long-range Coulombic interactions between the ions 
in the former. As a result, electrolyte solutions exhibit nonideal behavior even at 
very low concentrations because the solute particles, the ions, do not move inde-
pendently of one another. Some idea of the importance of ion–ion interactions 
is obtained by noting their average separations in solutions of diff erent molar 
concentration c and, to appreciate the scale, the typical number of H2O molecules 
that can fi t between them:

Thermodynamics
of ion and electron 
transport

5
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c/mol dm−3 0.001 0.01 0.1 1 10
Separation/nm 90 40 20 9  4
Number of H2O molecules 30 14  6 3  1

(a) Activity coefficients

To take the interactions into account—which become very serious for con-
centrations of 0.01 mol dm−3 and more—we work with the activities of the charged 
solutes. We saw in Section 3.8 that the activity, aJ, is a kind of eff ective concentra-
tion and is related to concentrations by multiplication by an activity coeffi  cient, 
gJ. Th ere are various ways of expressing concentration; in the fi rst part of this 
chapter we use the molality, bJ, and write

aJ = gJbJ/b3 (5.1a)

with b3 = 1 mol kg−1. For notational simplicity, we oft en replace bJ/b3 by bJ, inter-
pret bJ as the numerical value of the molality, and write

aJ = gJbJ (5.1b)

Because the solution becomes more ideal as the molality approaches zero, we 
know that gJ → 1 as bJ → 0. Once we know the activity of the species J, we can 
write its chemical potential by using

mJ = m J
3 + RT ln aJ  (5.2)

  Mathematical tookit 5.1 Exponentials and logarithms

Th e exponential function, ex (where e = 2.718 . . .) has 
the following important properties:

ex × ey = ex+y

ex

ey
 = ex−y

(ex)a = eax

Th e natural logarithm of a number x is denoted as ln x 
and is defi ned as the power to which e must be raised 
for the result to be equal to x. It follows from the 
defi nition of logarithms that

ln x + ln y = ln xy

ln x − ln y = ln x
y

a ln x = ln xa

Useful points about logarithms are summarized in the 
graph below: 

• Logarithms increase only very slowly as x 
increases. 

• Th e logarithm of 1 is 0: ln 1 = 0. 
• Th e logarithms of numbers less than 1 are 

negative.
• In elementary mathematics the logarithms of 

negative numbers are not defi ned.

Th e common logarithm of a number is the logarithm 
compiled with 10 in place of e; common logarithms 
are denoted log x. Common logarithms follow the 
same rules of addition and subtraction as natural 
logarithms. Common and natural logarithms (log and 
ln, respectively) are related by

ln x = ln 10 × log x ≈ 2.303 log x
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Th e thermodynamic properties of the solution—such as the equilibrium con-
stants of reactions involving ions—can then be derived in the same way as for 
ideal solutions but with activities in place of concentrations. However, when we 
want to relate the results we derive, we need to know how to relate activities 
to concentrations. We ignored that problem when discussing acids and bases 
and simply assumed that all activity coeffi  cients were 1. Th e cytoplasm and other 
fl uids in organisms have ion concentrations that are far too high to behave 
ideally, so g = 1 is a poor approximation; in this chapter, we see how to improve 
that approximation.

One problem that confronts us from the outset is that cations and anions always 
occur together in solution. As a result, there is no experimental procedure for 
distinguishing the deviations from ideal behavior due to the cations from those 
of the anions: we cannot measure the activity coeffi  cients of cations and anions 
separately. Th e best we can do experimentally is to ascribe deviations from 
ideal behavior equally to each kind of ion and to talk in terms of a mean activity 
coeffi  cient, g±. For a salt MX, such as NaCl, we show in the following Justifi cation 
that the mean activity coeffi  cient is related to the activity coeffi  cients of the indi-
vidual ions as follows:

g± = (g+g−)1/2 Mean activity coefficient 
for a salt MX  

(5.3a)

For a salt MpXq, the mean activity coeffi  cient is related to the activity coeffi  cients 
of the individual ions as follows:

g± = (g+
pg−

q)1/s s = p + q Mean activity coefficient 
for a salt MpXq  

(5.3b)

Justification 5.1 Mean activity coefficients

In this Justifi cation, we use the relation ln xy = ln x + ln y several times (some-
times as ln x + ln y = ln xy) and its implication (by setting y = x) that ln x2 = 2 ln x 
(see Mathematical toolkit 5.1). For a salt MX that dissociates completely in 
solution, the molar Gibbs energy of the ions is 

Gm = m+ + m−

where m+ and m− are the chemical potentials of the cations and anions, respec-
tively. Each chemical potential can be expressed in terms of a molality b and 
an activity coeffi  cient g by using eqn 5.2 (m = m3 + RT ln a) and then eqn 5.1 
(a = gb) together with ln gb = ln g + ln b, which gives 

Gm = (m+
3 + RT ln g+b+ ) + (m−

3 + RT ln g−b−)
 = (m+

3 + RT ln g+ + RT ln b+) + (m−
3 + RT ln g− + RT ln b−)

We now use ln x + ln y = ln xy again to combine the two terms involving the 
activity coeffi  cients as 

RT ln g+ + RT ln g− = RT(ln g+ + ln g−) = RT ln g+g− 

and write 

Gm = (m+
3 + RT ln b+) + (m−

3 + RT ln b−) + RT ln g+g−
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We now write the term inside the logarithm as g±
2 and use ln x2 = 2 ln x to 

obtain 

Gm = (m+
3 + RT ln b+) + (m−

3 + RT ln b−) + 2RT ln g± 
 = (m+

3 + RT ln b+ + RT ln g±) + (m−
3 + RT ln b− + RT ln g±)

 = (m+
3 + RT ln g±b+) + (m−

3 + RT ln g±b−)

We see that, with the mean activity coeffi  cient defi ned as in eqn 5.3a, the devi-
ation from ideal behavior (as expressed by the activity coeffi  cient) is now shared 
equally between the two types of ion. In exactly the same way, the Gibbs energy 
of a salt MpXq can be written 

Gm = p(m+
3 + RT ln g±b+) + q(m−

3 + RT ln g±b−)

with the mean activity coeffi  cient defi ned as in eqn 5.3b.1

1 For the details of this general case, see our Physical chemistry (2010).

A brief illustration

Suppose that we have devised a method for determining the activity coeffi  -
cients of Na+ and SO4

2− ions in 0.010 m Na2SO4(aq) and found them to be 
0.98 and 0.84, respectively. It follows from eqn 5.3b that the mean activity 
coeffi  cient is

g± = {(0.98)2 × (0.84)}1/3 = 0.93

because p = 2, q = 1, and s = 3. From eqn 5.1b, the activities of the two ions are 

a+ = g±b+ = 0.93 × (2 × 0.010) = 0.019
a− = g±b− = 0.93 × (0.010) = 0.0093

Self-test 5.1 Write an expression for the mean activity coeffi  cient of Mg2+ 
and PO4

3− in an aqueous solution of Mg3(PO4)2.
Answer: g± = (g+

3g−
2)1/5

(b) Debye–Hückel theory

Th e question still remains about how the mean activity coeffi  cients can be 
estimated. A theory that accounts for their values in very dilute solutions was 
developed by Peter Debye and Erich Hückel in 1923. Th ey supposed that each ion 
in solution is surrounded by an ionic atmosphere of counter-charge. Th is ‘atmo-
sphere’ is actually the slight imbalance of charge arising from the competition 
between the stirring eff ect of thermal motion, which tends to keep all the ions 
distributed uniformly throughout the solution, and the Coulombic interaction 
between ions, which tends to attract counter-ions (ions of opposite charge) into 
each other’s vicinity and repel ions of like charge (Fig. 5.1). As a result of this 
competition, there is a slight preponderance of cations near any anion, giving a 
positively charged ionic atmosphere around the anion, and a slight preponder-
ance of anions near any cation, giving a negatively charged ionic atmosphere 
around the cation. Because each ion is in an atmosphere of opposite charge, its 

Fig. 5.1 Th e ionic atmosphere 
surrounding an ion consists of a 
slight excess of opposite charge as 
ions move through the vicinity of 
the central ion, with counter-ions 
lingering longer than ions 
of the same charge. Th e ionic 
atmosphere lowers the energy 
of the central ion.
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energy is lower than in a uniform, ideal solution, and therefore its chemical poten-
tial is lower than in an ideal solution. A lowering of the chemical potential of an 
ion below its ideal solution value is equivalent to the activity coeffi  cient of the ion 
being less than 1 (because ln g is negative when g < 1). Debye and Hückel were 
able to derive an expression that is a limiting law in the sense that it becomes 
increasingly valid as the concentration of ions approaches zero. Th e Debye–
Hückel limiting law2 is

log g± = −A | z+z− | I1/2 Debye–Hückel 
limiting law  

(5.4)

(Note the common logarithm.) In this expression, A is a constant that for water 
at 25°C works out as 0.509. Th e zJ are the charge numbers of the ions (so z+ = +1 
for Na+ and z− = −2 for SO4

2−); the vertical bars mean that we ignore the sign of 
the product. Th e quantity I is the dimensionless ionic strength of the solution, 
which is defi ned in terms of the molalities of the ions as

I = 12(z+
2b+ + z−

2b−)/b3 (5.5a)

When using this expression, we must include all the ions present in the solution, 
not just those of interest. For instance, if you are calculating the ionic strength of 
a solution of silver chloride and potassium nitrate, there are contributions to the 
ionic strength from all four types of ion. When more than two ions contribute to 
the ionic strength, we write 

I = 12 ∑
i

 z i
2bi/b3 General expression 

for the ionic strength  
(5.5b)

where the symbol ∑ denotes a sum (in this case of all terms of the form z i
2bi), zi is 

the charge number of an ion i (positive for cations and negative for anions), and bi 
is its molality.

2 For a derivation of the Debye–Hückel limiting law, see our Physical chemistry (2010).

A brief illustration

Th e sulfate ion, SO4
2−, is an important source of sulfur used in the synthesis of 

the amino acids cysteine and methionine in plants and bacteria. To estimate 
the mean activity coeffi  cient for the ions in 0.0010 m Na2SO4(aq) at 25°C, we 
begin by evaluating the ionic strength of the solution from eqn 5.5: 

I = 12{(+1)2 × (2 × 0.0010) + (−2)2 × (0.0010)} = 0.0030

Th en we use the Debye–Hückel limiting law (eqn 5.4), with A = 0.509, to cal-
culate log g±:

log g± = −0.509 × | (+1)(−2) | × (0.0030)1/2 = −2 × 0.509 × (0.0030)1/2

(Th is expression evaluates to −0.056.) On taking the antilogarithm of log g± 
(by using x = 10log x), we conclude that g± = 0.88. 

Self-test 5.2 Estimate the mean activity coeffi  cient of NaCl in a solution 
that is 0.020 m NaCl(aq) and 0.035 m Ca(NO3)2(aq). 

Answer: 0.661
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As we have stressed, eqn 5.4 is a limiting law and is reliable only in very dilute 
solutions. For solutions more concentrated than about 10−3 m, it is better to use an 
empirical modifi cation known as the extended Debye–Hückel law:

log g± = A | z+z− | I1/2

1 + BI 2
 + CI Extended

Debye–Hückel law  
(5.6)

with B and C empirically determined constants (Fig. 5.2). 

5.2 Passive and active transport of ions across 
biological membranes 

Nature has devised complex strategies for controlling the flow of ions across cell 
membranes, some of which are thermodynamic and others kinetic. Here we 
consider thermodynamic aspects of ion transport.

With a better understanding of how ions behave in solution, we are now prepared 
to discuss their behavior in cells. Th e concepts developed in the previous sections 
can be applied to the aqueous environment inside and outside cells. But we also 
need to know how ions traverse cell membranes and how such transport con-
trols important biological processes, such as the synthesis of ATP and neuronal 
activity. 

Th e thermodynamic tendency to transport a species A through a biological cell 
membrane is partially determined by an activity gradient across the membrane, 
which results in a diff erence in molar Gibbs energy between the inside and the 
outside of the cell

DGm = Gm,in − Gm,out = RT ln ain/aout (5.7)

Th e equation implies that transport into the cell of either neutral or charged 
species is thermodynamically favorable if ain < aout or, if we set the activity coeffi  -
cients to 1, if [A]in < [A]out. An ion also needs to cross a membrane potential 
diff erence Df = fin − fout that arises from diff erences in Coulomb repulsions on 
each side of the bilayer. Th is potential diff erence is measured in volts (V, where 
1 V = 1 J C−1). We show in the following Justifi cation that the Gibbs energy of 
transfer of an ion of charge number z across a potential diff erence Df adds a term 
zFDf to eqn 5.7, where F is Faraday’s constant, the magnitude of electric charge 
per mole of electrons: 

F = eNA = 96.485 kC mol−1 

Th e fi nal expression for Gm is then 

DGm = RT ln [A]in

[A]out
 + zFDf 

Gibbs energy of transfer of 
an ion across a membrane 
potential gradient  

(5.8)

Fig. 5.2 Th e variation of the mean 
activity coeffi  cient with ionic 
strength according to the 
extended Debye–Hückel theory. 
(a) Th e limiting law for a 
1,1-electrolyte. (b) Th e extended 
law with B = 0.5. (c) Th e extended 
law, extended further by the 
addition of a term CI; in this case 
with C = 0.02. Th e last form of the 
law reproduces the observed 
behavior reasonably well.

Justification 5.2 The Gibbs energy of transfer of an ion across a membrane 
potential gradient

Th e charge transferred per mole of ions of charge number z that cross a lipid 
bilayer is NA × (ze), or zF, where F = eNA. Th e work w ′ of transporting this 
charge is equal to the product of the charge and the potential diff erence Df : 

w ′ = zF × Df
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Provided the work is done reversibly at constant temperature and pressure, we 
can equate this work to the molar Gibbs energy of transfer and write 

DGm = zFDf

Adding this term to eqn 5.7 gives eqn 5.8, the total Gibbs energy of transfer of 
an ion across both an activity and a membrane potential gradient. 

Example 5.1 Estimating a membrane potential

Estimate the equilibrium membrane potential of a cell at 298 K by using the 
fact that the concentration of K+ inside the cell is about 20 times that on the 
outside. Repeat the calculation, this time using the fact that the concentration 
of Na+ outside the cell is about 10 times that on the inside.

Strategy Because the cell is at equilibrium, set DGm = 0 in eqn 5.8 and, aft er 
rearrangement, write

Df = − RT
zF

 ln [A]in

[A]out
 

where z = +1 for both K+ and Na+. Th en calculate the equilibrium membrane 
potential from the given temperature and concentration ratios. 

Solution When [K+]in/[K+]out = 20, we obtain 

Df = − (8.3145 J K−1 mol−1) × (298 K)
9.648 × 104 C mol−1

 ln 20 = −7.69 × 10−2 V = −76.9 mV

where we have used 1 V = 1 J C−1. Th e negative sign denotes that the inside has 
the lower potential. When [Na+]in/[Na+]out = 0.10, we obtain 

Df = − (8.3145 J K−1 mol−1) × (298 K)
9.648 × 104 C mol−1

 ln 0.10 = +5.91 × 10−2 V = +59.1 mV

and the positive sign denotes that the outside has the lower potential. 

Self-test 5.3 Is the transport of Na+ ions across a cell membrane spontan-
eous when [Na+]in/[Na+]out = 0.10 and Df = +50 mV? 

Answer: Yes, because DGm < 0

Equation 5.8 implies that there is a tendency, called passive transport, for a 
species to move down concentration and membrane potential gradients. In active 
transport, a species moves against these gradients and the process is driven by its 
coupling to the exergonic hydrolysis of ATP. Th at is, when the sum of RT ln([A]in/
[A]out) and zFDf is positive, the overall Gibbs energy of transport can be made 
negative (and the process becomes spontaneous) by a large and negative Gibbs 
energy of ATP hydrolysis. It follows that the overall Gibbs energy of transport 
into a cell may be written as 

DGm = RT ln [A]in

[A]out
 + zFDf + DrGATP 

Overall Gibbs energy of 
transfer of an ion across 
a biological membrane  

(5.9)
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where DrGATP is the Gibbs energy of hydrolysis of ATP at specifi c concentrations 
of ATP, ADP, Pi, and hydronium ion. 

5.3 Ion channels and ion pumps 
The mechanism of signal propagation along neurons in organisms is due to the 
migration of ions through membranes.

Th e transport of ions into or out of a cell needs to be mediated (that is, involve 
other species) because charged species do not partition well into the hydrophobic 
environment of the membrane. Th ere are two mechanisms for ion transport: 
mediation by a carrier molecule or transport through a channel former, a protein 
that creates a hydrophilic pore through which the ion can pass. An example of a 
channel former is the polypeptide gramicidin A, which increases the membrane 
permeability to cations such as H+, K+, and Na+.

Ion channels are proteins that permit the movement of specifi c ions down a 
membrane potential gradient. Th ey are highly selective, so there is a channel pro-
tein for Ca2+, another for Cl−, and so on. In a voltage-gated channel, the opening of 
the gate is triggered by a membrane potential. In a ligand-gated channel ion trans-
port is initiated by the binding of a molecule (called an ‘eff ector molecule’) to a 
specifi c receptor site on the channel.

Ions such as H+, Na+, K+, and Ca2+ are oft en transported actively across 
membranes by membrane-spanning proteins called ion pumps. Ion pumps are 
molecular machines that work by adopting conformations that are permeable to 
one type of ion but not others, depending on the state of phosphorylation of the 
protein. Because protein phosphorylation requires dephosphorylation of ATP, 
the conformational change that opens or closes the pump is endergonic and 
requires the use of energy stored during metabolism. In Sections 5.10 and 8.8 we 
discuss the ion pump H+-ATPase, which plays an important role in oxidative 
phosphorylation. 

Case study 5.1 Action potentials

A striking example of the importance of ion channels is their role in the propa-
gation of impulses by neurons, the fundamental units of the nervous system. 
Here we give a thermodynamic description of the process.

Th e cell membrane of a neuron is more permeable to K+ ions than to either 
Na+ or Cl− ions. Th e key to the mechanism of action of a nerve cell is its 
use of Na+ and K+ channels to move ions across the membrane, modulating 
its potential. For example, the concentration of K+ inside an inactive nerve 
cell is about 20 times that on the outside, whereas the concentration of 
Na+ outside the cell is about 10 times that on the inside. Th e diff erence in con-
centrations of ions results in a transmembrane potential diff erence of about 
−62 mV. Th is potential diff erence is also called the resting potential of the 
cell membrane.

To estimate the resting potential, we need to understand that the cell is never at 
equilibrium, so the approach taken in Example 5.1 is not appropriate. Ions 
continually cross the membrane, which is more permeable to some ions than 
others. To take into account membrane permeability, we use the Goldman 
equation to calculate the resting potential: 
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Df = RT

F
 ln y

y′
  Goldman equation  (5.10)

with

y = ∑
i  

Pi[M+
i ]out + ∑

j  
Pj[X−

j ]in, y′ = ∑
i  

Pi[M+
i ]in + ∑

j  
Pj[X−

j ]out

where Pi and Pj are the relative permeabilities, respectively, for the cation Mi
+ 

and the anion X j
− and the sum is over all ions. 

A brief illustration

For example, taking the permeabilities of the K+ , Na+ , and Cl− ions as PK+ = 
1.0, PNa+ = 0.04, and PCl− = 0.45, respectively, the temperature as 298 K, and the 
concentrations as [K+]in = 400 mmol dm−3, [Na+]in = 50 mmol dm−3, [Cl−]in = 
50 mmol dm−3, [K+]out = 20 mmol dm−3, [Na+]out = 500 mmol dm−3, and 
[Cl−]out = 560 mmol dm−3, we obtain

y = (1.0 × 20) + (0.04 × 500) + (0.45 × 50) mmol dm−3 = 62.5 mmol dm−3

y′ = (1.0 × 400) + (0.04 × 50) + (0.45 × 560) mmol dm−3 = 654 mmol dm−3

Df = (8.3145 J K−1 mol−1) × (298 K)
9.648 × 104 J mol−1

 × ln AC
62.5
645

D
F  

 = −6.0 × 10−2 V = −60 mV

(Th e concentration units in the logarithm all cancel.) We see that the Goldman 
equation leads to an estimate that agrees well with the experimental value of 
−62 mV.

Th e transmembrane potential diff erence plays a particularly interesting role 
in the transmission of nerve impulses. On receiving an impulse, which is called 
an action potential, a site in the nerve cell membrane becomes transiently per-
meable to Na+ and the transmembrane potential changes. To propagate along a 
nerve cell, the action potential must change the transmembrane potential by at 
least 20 mV to values that are less negative than −40 mV. Propagation occurs 
when an action potential at one site of the membrane triggers an action potential 
at an adjacent site, with sites behind the moving action potential relaxing back 
to the resting potential. 

Redox reactions
We now embark on an investigation of the thermodynamics of redox reactions. 
Our ultimate goal is a description of electron transfer in plant photosynthesis and 
in the last stages of the oxidative breakdown of glucose. However, before we can 
understand these complex processes, we must examine a very much simpler sys-
tem with a more controllable environment where precise measurements can be 
made. Th at is, we must consider electron transfer in an electrochemical cell, a 
device that consists of two electronic conductors (metal or graphite, for instance) 
dipping into an electrolyte (an ionic conductor), which may be a solution, a 
liquid, or a solid.
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5.4 Half-reactions 
A redox reaction, such as the breakdown of glucose by O2 in biological cells, is the 
outcome of the loss of electrons, and perhaps atoms, from one species and their 
gain by another species; we need to be able to write chemical equations for redox 
reactions and the corresponding reaction quotients. 

It will be familiar from introductory chemistry that we identify the loss of elec-
trons (oxidation) by noting whether or not an element has undergone an increase 
in oxidation number. We identify the gain of electrons (reduction) by noting 
whether or not an element has undergone a decrease in oxidation number. Th e 
requirement to break and form covalent bonds in some redox reactions, as in the 
conversion of H2O to O2 (during plant photosynthesis) or of N2 to NH3 (during 
nitrogen fi xation by certain microorganisms) is one of the reasons why redox 
reactions oft en achieve equilibrium quite slowly, oft en much more slowly than 
acid–base proton transfer reactions.

Any redox reaction may be expressed as the diff erence of two reduction half- 
reactions. Two examples are 

reduction of Cu2+: Cu2+(aq) + 2 e− → Cu(s)
reduction of Zn2+: Zn2+(aq) + 2 e− → Zn(s)
diff erence: Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq) (A)

A half-reaction in which atom transfer accompanies electron transfer is

reduction of MnO4
−: 

MnO4
−(aq) + 8 H+(aq) + 5 e− → Mn2+(aq) + 4 H2O(l) (B)

where oxygen atoms are transferred from MnO4
−(aq) to H2O(l). In the discussion 

of redox reactions, the hydrogen ion is commonly denoted simply H+(aq) rather 
than treated as a hydronium ion, H3O+(aq), as proton transfer is less of an issue 
and the chemical equations are simplifi ed.

Half-reactions are conceptual. Redox reactions normally proceed by a much 
more complex mechanism in which the electron is never free. Th e electrons in 
these conceptual reactions are regarded as being ‘in transit’ and are not ascribed a 
state. Th e oxidized and reduced species in a half-reaction form a redox couple, 
denoted Ox/Red. Th us, the redox couples mentioned so far are Cu2+/Cu, Zn2+/Zn, 
and MnO4

−, H+/Mn2+, H2O. In general, we adopt the notation

couple: Ox/Red
half-reaction: Ox + n e− → Red 

Example 5.2 Expressing a reaction in terms of half-reactions

Express the oxidation of nicotinamide adenine dinucleotide, which partici-
pates in aerobic metabolism, to NAD+ (Atlas N4) by oxygen, when the latter 
is reduced to H2O2, in aqueous solution as the diff erence of two reduction 
half-reactions. Th e overall reaction is NADH(aq) + O2(g) + H+(aq) → 
NAD+(aq) + H2O2(aq). 

Strategy To express a reaction as the diff erence of two reduction half-
reactions, identify one reactant species that undergoes reduction and its 
corresponding reduction product, then write the half-reaction for this pro-
cess. To fi nd the second half-reaction, subtract the fi rst half-reaction from 

A brief comment
Th e oxidation number of a 
monatomic ion is equal to its 
charge number. An oxidation 
number is assigned to an 
element in a compound by 
supposing that it is present as 
an ion with a characteristic 
charge; for instance, oxygen 
is supposed—for this 
purpose—to be present as 
O2− in most of its compounds, 
and hydrogen is supposed 
to be present as H+.
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the overall reaction and rearrange the species so that all the stoichiometric 
coeffi  cients are positive and the equation is written as a reduction. 

Solution Oxygen is reduced to H2O2, so one half-reaction is 

O2(g) + 2 H+(aq) + 2 e− → H2O2(aq) 

Subtraction of this half-reaction from the overall equation gives 

NADH(aq) − H+(aq) − 2 e− → NAD+(aq)

Addition of H+(aq) + 2 e− to both sides gives

NADH(aq) → NAD+(aq) + H+(aq) + 2 e−

Th is is an oxidation half-reaction. We reverse it to fi nd the corresponding 
reduction half-reaction: 

NAD+(aq) + H+(aq) + 2 e− → NADH(aq) 

Self-test 5.4 Express the formation of H2O from H2 and O2 in acidic solu-
tion as the diff erence of two reduction half-reactions. 

Answer: 4 H+(aq) + 4 e− → 2 H2(g), O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l)

Example 5.3 Writing the reaction quotient for a half-reaction

During the last stage of oxidative phosphorylation in mitochondria (Section 
5.10), oxygen is reduced to water with the accompanying uptake of protons. 
Write the half-reaction and the reaction quotient for the reduction of oxygen 
to water in acidic solution. 

Strategy Write the chemical equation for the half-reaction. Th en express the 
reaction quotient in terms of the activities and the corresponding stoichiomet-
ric coeffi  cients, with products in the numerator and reactants in the denomin-
ator. Pure (and nearly pure) solids and liquids do not appear in Q (because 
their activities are 1), nor does the electron. Th e activity of a gas is set equal to 
the numerical value of its partial pressure in bar (more formally: aJ = pJ/p3). 

Solution Th e equation for the reduction of O2 in acidic solution is 

O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l) 

We saw in Chapter 4 that a natural way to express the composition of a system 
is in terms of the reaction quotient Q. Th e quotient for a half-reaction is defi ned 
like the quotient for the overall reaction, but with the electrons ignored. Th us, 
for the half-reaction of the NAD+/NADH couple in Example 5.2 we would write 

NAD+(aq) + H+(aq) + 2 e− → NADH(aq)  Q = aNADH

aNAD+aH+

 ≈ [NADH]
[NAD+][H+]

 

In elementary work, and provided the solution is very dilute, the activities are 
interpreted as the numerical values of the molar concentrations (see Table 3.3). 
Th e replacement of activities by molar concentrations is very hazardous for ionic 
solutions and intracellular fl uids, as we have seen, so wherever possible we delay 
taking that fi nal step. 
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Th e reaction quotient for the half-reaction is therefore 

Q = 1
po2

a4
H+

 

Note the very strong dependence of Q on the hydrogen ion activity. 

Self-test 5.5 Write the half-reaction and the reaction quotient for the reduc-
tion of chlorine gas to chloride ion. 

Answer: Cl2(g) + 2 e− → 2 Cl−(aq), Q = a2
Cl−/pCl2

5.5 Reactions in electrochemical cells 
The electron transfer processes that occur in respiration and photosynthesis can 
be modeled by electrochemical cells in which electrons are transferred between 
proteins. 

In an electrochemical cell, the electronic conductor and its surrounding electro-
lyte is an electrode. Th e physical structure containing them is called an electrode 
compartment. Th e two electrodes may share the same compartment (Fig. 5.3). If 
the electrolytes are diff erent, then the two compartments may be joined by a salt 
bridge, which is an electrolyte solution that completes the electrical circuit by 
permitting ions to move between the compartments (Fig. 5.4). Alternatively, the 
two solutions may be in direct physical contact (for example, through a porous 
membrane) and form a liquid junction. However, a liquid junction introduces 
complications to the interpretation of measurements, and we shall not consider it 
further.

(a) Galvanic and electrolytic cells

A galvanic cell is an electrochemical cell that produces electricity as a result of the 
spontaneous reaction occurring inside it.3 An electrolytic cell is an electrochem-
ical cell in which a nonspontaneous reaction is driven by an external source of direct 
current. Th e commercially available dry cells, mercury cells, nickel–cadmium 
(‘nicad’), and lithium ion cells used to power electrical equipment are all galvanic 
cells and produce electricity as a result of the spontaneous chemical reaction 
between the substances built into them at manufacture. A fuel cell is a galvanic 
cell in which the reagents, such as hydrogen and oxygen or methane and oxygen, 
are supplied continuously from outside. Fuel cells are used on manned spacecraft , 
are beginning to be considered for use in automobiles, and gas supply companies 
hope that one day they may be used as a convenient, compact source of electricity 
in homes. Electric eels and electric catfi sh are biological versions of fuel cells in 
which the fuel is food and the cells are adaptations of muscle cells. It is hoped that 
biological versions of fuel cells will be developed to power the nanostructure-
based entities that are being devised for inclusion in organisms.

In an electrochemical cell, the anode is where oxidation takes place; the 
cathode is where reduction takes place. As the reaction proceeds in a galvanic cell, 
the electrons released at the anode travel through the external circuit (Fig. 5.5). 
Th ey re-enter the cell at the cathode, where they bring about reduction. Th is 
fl ow of current in the external circuit, from anode to cathode, corresponds to the 
cathode having a higher potential than the anode and arises from the tendency of 

Fig. 5.3 Th e arrangement for an 
electrochemical cell in which the 
two electrodes share a common 
electrolyte.

Fig. 5.4 When the electrolytes in 
the electrode compartments of 
a cell are diff erent, they need to 
be joined so that ions can travel 
from one compartment to 
another. One device for joining 
the two compartments is a salt 
bridge.

3 Th e term voltaic cell is also used.
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negatively charged electrons to travel to regions of higher potential. In an electro-
lytic cell, the anode is also the location of oxidation (by defi nition). Now, however, 
electrons must be withdrawn from the species in the anode compartment, so the 
anode must be connected to the positive terminal of an external supply. Similarly, 
electrons must pass from the cathode to the species undergoing reduction, so the 
cathode must be connected to the negative terminal of a supply (Fig. 5.6).

Th e simplest type of galvanic cell has a single electrolyte common to both 
electrodes (as in Fig. 5.3). In some cases it is necessary to immerse the electrodes 
in diff erent electrolytes, as in the Daniell cell (Fig. 5.7), in which the redox couple 
at one electrode is Cu2+/Cu and at the other is Zn2+/Zn. In an electrolyte concen-
tration cell, which would be constructed like the cell in Fig. 5.4, the electrode 
compartments are of identical composition except for the concentrations of 
the electrolytes. In an electrode concentration cell the electrodes themselves 
have diff erent concentrations, either because they are gas electrodes operating 
at diff erent pressures or because they are amalgams (solutions in mercury) with 
diff erent concentrations.

In an electrochemical cell with two diff erent electrolyte solutions in contact, 
as in the Daniell cell or an electrolyte concentration cell, the liquid junction 
potential, Ej, the potential diff erence across the interface of the two electrolytes, 
contributes to the overall potential diff erence generated by the cell. Th e contribu-
tion of the liquid junction to the potential can be decreased (to about 1 to 2 mV) 
by joining the electrolyte compartments through a salt bridge consisting of a satur-
ated electrolyte solution (usually KCl) in agar jelly (as in Fig. 5.4). Th e reason for 
the success of the salt bridge is that the liquid junction potentials at either end are 
largely independent of the concentrations of the two more dilute solutions in the 
electrode compartments and so nearly cancel each other out.

Fig. 5.7 A Daniell cell consists of copper 
in contact with copper(II) sulfate 
solution and zinc in contact with zinc 
sulfate solution; the two compartments 
are in contact through the porous pot 
that contains the zinc sulfate solution. 
Th e copper electrode is the cathode and 
the zinc electrode is the anode.

Fig. 5.5 Th e fl ow of electrons in the 
external circuit is from the anode of a 
galvanic cell, where they have been lost 
in the oxidation reaction, to the cathode, 
where they are used in the reduction 
reaction. Electrical neutrality is 
preserved in the electrolytes by the fl ow 
of cations and anions in opposite 
directions through the salt bridge.

Fig. 5.6 Th e fl ow of electrons and ions in an 
electrolytic cell. An external supply forces 
electrons into the cathode, where they are 
used to bring about a reduction, and 
withdraws them from the anode, which 
results in an oxidation reaction at that 
electrode. Cations migrate toward the 
negatively charged cathode and anions 
migrate toward the positively charged 
anode. An electrolytic cell usually consists 
of a single compartment, but a number of 
industrial versions have two compartments.
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(b) Varieties of electrodes

In a gas electrode (Fig. 5.8), a gas is in equilibrium with a solution of its ions in the 
presence of an inert metal. Th e inert metal, which is oft en platinum, acts as a 
source or sink of electrons but takes no other part in the reaction except perhaps 
to act as a catalyst. One important example is the hydrogen electrode, in which 
hydrogen is bubbled through an aqueous solution of hydrogen ions and the redox 
couple is H+/H2.

Th e term redox electrode is normally reserved for an electrode in which the 
couple consists of the same element in two nonzero oxidation states (Fig. 5.9). 
An example is an electrode in which the couple is Fe3+/Fe2+. In general, the 
reaction is 

Ox + ne−→ Red  Q = aRed

aOx
 

Fig. 5.9 Th e schematic structure of 
a redox electrode. Th e platinum 
metal acts as a source or sink 
for electrons required for the 
interconversion of (in this case) 
Fe2+ and Fe3+ ions in the 
surrounding solution.

A brief illustration

For the electrode corresponding to the Fe3+/Fe2+ couple the reduction half-
reaction and reaction quotient are

Fe3+(aq) + e− → Fe2+(aq)  Q = aFe2+

aFe3+

 

A brief illustration

Th e hydrogen electrode is denoted Pt(s) | H2(g) | H+(aq). In this electrode, the 
junctions are between the platinum and the gas and between the gas and the 
liquid containing its ions.

(c) Electrochemical cell notation

It is useful to develop a short-hand to denote the processes taking place in an elec-
trochemical cell. Th e notation scheme has a few rules:

• An interface between phases is denoted by a vertical bar, |.
• A double vertical line | | denotes an interface for which the junction potential 

has been eliminated.
• A redox electrode is denoted M | Red,Ox, where M is an inert metal (typically 

platinum) making electrical contact with the solution. 

It follows that the electrode corresponding to the Fe3+/Fe2+ couple discussed in 
the previous brief illustration is denoted Pt(s)|Fe2+(aq),Fe3+(aq). An electrochem-
ical cell in which the left -hand electrode, in an arrangement like that in Fig. 5.4, is 
zinc in contact with aqueous zinc sulfate and the right-hand electrode is copper in 
contact with aqueous copper(II) sulfate is denoted

Zn(s) | ZnSO4(aq) | | CuSO4(aq) | Cu(s) 

Th e current produced by a galvanic cell arises from the spontaneous reaction 
taking place inside it. Th e cell reaction is the reaction in the electrochemical cell 
written on the assumption that the right-hand electrode is the cathode and hence 

Fig. 5.8 Th e schematic structure 
of a hydrogen electrode, which 
is like other gas electrodes. 
Hydrogen is bubbled over a black 
(that is, fi nely divided) platinum 
surface that is in contact with a 
solution containing hydrogen 
ions. Th e platinum, as well as 
acting as a source or sink for 
electrons, speeds the electrode 
reaction because hydrogen 
attaches to (adsorbs on) the 
surface as atoms.
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that reduction is taking place in the right-hand compartment. Later we see how 
to predict if the right-hand electrode is in fact the cathode; if it is, then the cell 
reaction is spontaneous as written. If the left -hand electrode turns out to be the 
cathode, then the reverse of the cell reaction is spontaneous.

To write the cell reaction corresponding to the electrochemical cell diagram, 
we fi rst write the half-reactions at both electrodes as reductions and then subtract 
the equation for the left -hand electrode from the equation for the right-hand 
electrode. Th us, we saw in Example 5.2 that for the electrochemical cell used to 
study the reaction between NADH and O2,

Pt(s) | NADH(aq),NAD+(aq),H+(aq) | | H2O2(aq),H+(aq) | O2(g) | Pt(s)

the two reduction half-reactions are 

right (R): O2(g) + 2 H+(aq) + 2 e− → H2O2(aq) 
left  (L): NAD+(aq) + H+(aq) + 2 e− → NADH(aq) 

Th e equation for the cell reaction is the diff erence: 

overall (R − L): NADH(aq) + O2(g) + H+(aq) → NAD+(aq) + H2O2(aq)

In other cases, it may be necessary to match the numbers of electrons in the two 
half-reactions by multiplying one of the equations through by a numerical factor: 
there should be no spare electrons showing in the overall equation. 

5.6 The Nernst equation 
The concentrations of electroactive species in biological systems do not normally 
have their standard values, so we need to be able to relate the potential difference 
of a cell to the actual concentrations. 

A galvanic cell does electrical work as the reaction drives electrons through an 
external circuit. Th e work done by a given transfer of electrons depends on the 
potential diff erence between the two electrodes. When the potential diff erence 
is large (for instance, 2 V), a given number of electrons traveling between the 
electrodes can do a lot of electrical work. When the potential diff erence is small 
(such as 2 mV), the same number of electrons can do only a little work. An elec-
trochemical cell in which the reaction is at equilibrium can do no work and the 
potential diff erence between its electrodes is zero.

According to the discussion in Section 2.8, we know that the maximum non-
expansion work that a system (in this context, the electrochemical cell performing 
electrical work, w ′) can do is given by the value of DG and in particular that 

w ′max = DG Maximum non-expansion work at 
constant temperature and pressure  

(5.11)

Th erefore, by measuring the potential diff erence and converting it to the 
electrical work done by the reaction, we have a means of determining a thermo-
dynamic quantity, the reaction Gibbs energy. Conversely, if we know DG for a 
reaction, then we have a route to the prediction of the potential diff erence between 
the electrodes of an electrochemical cell. However, to use eqn 5.11, we need to 
recall that maximum work is achieved only when a process occurs reversibly. In 
the present context, reversibility means that the electrochemical cell should be 
connected to an external source of potential diff erence that opposes and exactly 
matches the potential diff erence generated by the cell. Th en an infi nitesimal 
change of the external potential diff erence will allow the reaction to proceed in 
its spontaneous direction and an opposite infi nitesimal change will drive the 



196   5 THERMODYNAMICS OF ION AND ELECTRON TRANSPORT 

reaction in its reverse direction.4 Th e potential diff erence measured when an 
electrochemical cell is balanced against an external source of potential is called 
the zero-current cell potential (or simply the cell potential) and denoted Ecell 
(Fig. 5.10).5 In practice, to determine the cell potential all we need do is to 
measure the potential diff erence with a voltmeter that draws negligible current.

As we show in the following Justifi cation, the relation between the cell potential 
and the Gibbs energy of the electrochemical cell reaction is 

−nFEcell = DrG Relation between the 
cell potential and DrG  

(5.12)

where F is Faraday’s constant and n is the stoichiometric coeffi  cient of the elec-
trons in the matching half-reactions used to construct the overall reaction. 

Justification 5.3 The electrochemical cell potential

Suppose the cell reaction can be broken down into half-reactions of the form 
A + ne− → B. Th en, when the reaction takes place, nNA electrons are transferred 
from the reducing agent to the oxidizing agent per mole of reaction events, 
so the charge transferred between the electrodes is nNA × (−e), or −nF. Now we 
proceed as in Justifi cation 5.2 and write the electrical work w′ done when this 
charge travels from the anode to the cathode as the product of the charge and 
the potential diff erence Ecell: 

w′ = −nF × Ecell 

Provided the work is done reversibly at constant temperature and pressure, we 
can equate this electrical work to the reaction Gibbs energy and obtain eqn 5.12.

Equation 5.12 shows that the sign of Ecell is opposite to that of the reaction Gibbs 
energy, which we should recall is the slope of a graph of G plotted against the com-
position of the reaction mixture (Section 4.1). When the reaction is spontaneous 
in the forward direction, DrG < 0 and Ecell > 0. When DrG > 0, the reverse reaction 
is spontaneous and Ecell < 0. At equilibrium DrG = 0 and therefore Ecell = 0 too.

Equation 5.12 provides an electrical method for measuring a reaction Gibbs 
energy at any composition of the reaction mixture: we simply measure the zero-
current cell potential and convert it to DrG. Conversely, if we know the value of 
DrG at a particular composition, then we can predict the cell potential. 

A brief illustration

Suppose DrG ≈ −1 × 102 kJ mol−1 and n = 1; then 

Ecell = −DrG
nF

 = −(−1 × 105 J mol−1)
1 × (9.6485 × 105 C mol−1)

 = 1 V

Most electrochemical cells bought commercially are indeed rated at between 
1 and 2 V. 

4 We saw in Chapter 1 that the criterion of thermodynamic reversibility is the reversal of a process 
by an infi nitesimal change in the external conditions.

5 Th is quantity was called the electromotive force, emf, of the electrochemical cell, but that name is 
deprecated by IUPAC because a potential diff erence is not a force.

Fig. 5.10 Th e zero-current cell 
potential is measured by 
balancing the cell against an 
external potential that opposes 
the reaction in the cell. When 
there is no current fl ow, the 
external potential diff erence is 
equal to the zero-current cell 
potential.
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Our next step is to see how Ecell varies with composition by combining eqn 5.12 
and eqn 4.6, showing how the reaction Gibbs energy varies with composition: 

DrG = DrG3 + RT ln Q 

In this expression, DrG3 is the standard reaction Gibbs energy and Q is the 
reaction quotient for the cell reaction. When we substitute this relation into 
eqn 5.12 written as Ecell = −DrG/nF, we obtain the Nernst equation: 

Ecell = E3
cell − RT

nF
 lnQ Nernst equation

 
(5.13)

E3
cell is the standard cell potential: 

E3
cell = − DrG3

nF
 The standard cell potential

 
(5.14)

Th e standard cell potential is oft en interpreted as the cell potential when all the 
reactants and products are in their standard states (unit activity for all solutes, 
pure gases, and solids, a pressure of 1 bar). However, because such an electro-
chemical cell is not in general attainable, it is better to regard E3

cell simply as the 
standard Gibbs energy of the reaction expressed as a potential. Note that if all the 
stoichiometric coeffi  cients in the equation for a cell reaction are multiplied by a 
factor, then DrG3 is increased by the same factor, but so too is n, so the standard 
cell potential is unchanged. Likewise, Q is raised to a power equal to the factor 
(so if the factor is 2, Q is replaced by Q2), and because ln Q2 = 2 ln Q, and likewise 
for other factors, the second term on the right-hand side of the Nernst equation 
is also unchanged. Th at is, Ecell is independent of how we write the balanced equa-
tion for the cell reaction.

A brief illustration

At 25.00°C,

RT
F

 = (8.31447 J K−1) × (298.15 K)
9.6485 × 104 C mol−1

 = 2.5693 × 10−2 J C−1

Because 1 J = 1 V C, 1 J C−1 = 1 V, and 10−3 V = 1 mV, we can write this result as 

RT
F

 = 25.693 mV

or approximately 25.7 mV. It follows from the Nernst equation that for a reac-
tion in which n = 1, if Q is decreased by a factor of 10, then the potential of the 
electrochemical cell becomes more positive by (25.7 mV) × ln 10 = 59.2 mV. 
Th e reaction has a greater tendency to form products. If Q is increased by a 
factor of 10, then the cell potential falls by 59.2 mV and the reaction has a 
lower tendency to form products.

5.7 Standard potentials 
To discuss the thermodynamics of biological processes, we need to be able to 
predict the standard reaction Gibbs energies of biological electron transfer reactions 
and their variation with pH. 
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Each electrode in a galvanic cell makes a characteristic contribution to the overall 
cell potential. Although it is not possible to measure the contribution of a single 
electrode, one electrode can be assigned a value zero and the others assigned 
relative values on that basis. Th e specially selected electrode is the standard 
hydrogen electrode (SHE): 

Pt(s) | H2(g) | H+(aq)  E3 = 0 at all temperatures

(a) Thermodynamic standard potentials

Th e (thermodynamic) standard potential, E3(Ox/Red), of a couple Ox/Red is 
measured by constructing an electrochemical cell in which the couple of interest 
forms the right-hand electrode and the standard hydrogen electrode is on the left . 
For example, the standard potential of the Ag+/Ag couple is the standard potential 
of the cell

Pt(s) | H2(g) | H+(aq) | | Ag+(aq) | Ag(s)

and is +0.80 V. Table 5.1 lists a selection of standard potentials; a longer list will be 
found in the Resource section. 

We saw in Section 4.2 that in biochemical work it is common to adopt the 
biological standard state (pH = 7, corresponding to neutral solution), rather than 
the thermodynamic standard state (pH = 0). To convert standard potentials 
to biological standard potentials, E⊕, we must fi rst consider the variation of 
potential with pH. Th e two potentials diff er when hydrogen ions are involved in 
the half-reaction, as in the fumaric acid/succinic acid couple fum/suc with fum = 
HOOCCH=CHCOOH and suc = HOOCCH2CH2COOH, which plays a role in 
the citric acid cycle (Case study 4.3):

HOOCCH=CHCOOH(aq) + 2 H+(aq) + 2 e− → HOOCCH2CH2COOH(aq)

When hydrogen ions occur as reactants, as in this example, an increase in pH, 
corresponding to a decrease in hydrogen ion activity, favors the formation of 
reactants, so the fumaric acid has a lower thermodynamic tendency to become 
reduced. We expect, therefore, the potential of the fumaric/succinic acid couple 
to decrease as the pH is increased.

(b) Variation of potential with pH

To establish the quantitative variation of reduction potential with pH for a reac-
tion as a fi rst step in determining the eff ect of changing from pH = 0 to pH = 7 
we use the Nernst equation. Th us, for fi xed fumaric acid and succinic acid con-
centrations, the potential of the fumaric/succinic redox couple is 

 E ′
 14243

E = E3 − RT
2F

 ln asuc

afuma2
H+

 = E3 − RT
2F

 ln asuc

afum
 + RT

T
 ln aH+

We then use a result from Mathematical toolkit 5.1 to write

ln aH+ = ln 10 × log aH+ = −ln 10 × pH

and obtain 

E = E′ − RT ln 10
F

 × pH (5.15a)

A brief comment
Standard potentials are also 
called standard electrode 
potentials and standard 
reduction potentials. If in an 
older source of data you come 
across a ‘standard oxidation 
potential,’ reverse its sign and 
use it as a standard reduction 
potential.
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Note that this result is valid only for a half-reaction in which ne = 2 and the 
stoichiometric coeffi  cient of H+(aq) is 2 and appears as a reactant. In general:

E = E′ − nH+RT ln 10
neF

 × pH Variation of potential 
with pH  

(5.15b)

Table 5.1 Standard potentials at 25°C

Reduction half-reaction E9/V

Oxidizing agent Reducing agent

Strongly oxidizing
F2 + 2 e− → 2 F− +2.87
S2O8

2− + 2 e− → 2 SO4
2− +2.05

Au+ + e− → Au +1.69
Pb4+ + 2 e− → Pb2+ +1.67
Ce4+ + e− → Ce3+ +1.61
MnO4

− + 8 H+ + 5 e− → Mn2+ + 4 H2O +1.51
Cl2 + 2 e− → 2 Cl− +1.36
Cr2O7

2− + 14 H+ + 6 e− → 2 Cr3+ + 7 H2O +1.33
O2 + 4 H+ + 4 e− → 2 H2O +1.23,

+0.81 at pH = 7
Br2 + 2 e− → 2 Br− +1.09
Ag+ + e− → Ag +0.80
Hg2

2+ + 2 e− → 2 Hg +0.79
Fe3+ + e− → Fe2+ +0.77
I2 + e− → 2 I− +0.54
O2 + 2 H2O + 4 e− → 4 OH− +0.40,

0.81 at pH = 7
Cu2+ + 2 e− → Cu +0.34
AgCl + e− → Ag + Cl− +0.22
2 H+ + 2 e− → H2 0, by defi nition
Fe3+ + 3 e− → Fe −0.04
O2 + H2O + 2 e− → HO2

− + OH− −0.08
Pb2+ + 2 e− → Pb −0.13
Sn2+ + 2 e− → Sn −0.14
Fe2+ + 2 e− → Fe −0.44
Zn2+ + 2 e− → Zn −0.76
2 H2O + 2 e− → H2 + 2 OH− −0.83,

−0.42 at pH = 7
Al3+ + 3 e− → Al −1.66
Mg2+ + 2 e− → Mg −2.36
Na+ + e− → Na −2.71
Ca2+ + 2 e− → Ca −2.87
K+ + e− → K −2.93
Li+ + e− → Li −3.05

Strongly reducing

For a more extensive table, see the Resource section.
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For a hydrogen electrode half-reaction, 12 H2(g) + e− → H+(aq), with E3 = 0, the 
same calculation gives

E = − RT ln 10
F

 × pH

Th is expression is the basis of a method for measuring the pKa of an acid elec-
trically. As we saw in Section 4.11, the pH of a solution containing equal amounts 
of the acid and its conjugate base is pH = pKa. Th erefore, by measuring the poten-
tial of the cell SHE | | solution | HE, where SHE is a standard hydrogen electrode 
and HE is a hydrogen electrode dipping into the solution, we can determine the 
latter’s pH and therefore the pKa of the acid. It is in fact unwieldy to use an actual 
hydrogen electrode, and a far more convenient approach is developed later (In the 
laboratory 5.1).

(c) The biological standard potential

We can now use eqn 5.15 to convert standard potentials to biological standard 
potentials. If the hydrogen ions appear as reactants in the reduction half-reaction, 
then the potential is decreased below its standard value (for the fumaric/succinic 
couple, by 7 × 59.2 mV = 414 mV, or about 0.4 V). If the hydrogen ions appear as 
products, then the biological standard potential is higher than the thermody-
namic standard potential. Th e precise change depends on the number of electrons 
and protons participating in the half-reaction, as expressed by eqn 5.15b and 
illustrated in Example 5.4. Biological standard potentials are important in the 
discussion of the electron transfer reactions of oxidative phosphorylation (Sec-
tion 5.10). Table 5.2 is a partial list of biological standard potentials for redox 
couples that participate in important biochemical electron transfer reactions. 

A brief illustration

At 25°C and when nH+ = ne, 

E = E′ − (59.2 mV) × pH

We see that an increase of 1 unit in pH decreases the potential by 59.2 mV, 
which is in agreement with the remark above, that the reduction of fumaric 
acid is discouraged by an increase in pH.

Example 5.4 Converting a standard potential to a biological standard value

Calculate the biological standard potential of the NAD/NADH couple at 25°C 
(Example 5.2) from its thermodynamic value. Th e reduction half-reaction is

NAD+(aq) + H+(aq) + 2 e− → NADH(aq)  E3 = −0.11 V 

Strategy Write the Nernst equation for the potential, and express the reaction 
quotient in terms of the activities of the species. All species except H+ are in 
their standard states, so their activities are all equal to 1. Th e remaining task is 
to express the hydrogen ion activity in terms of the pH, exactly as was done in 
the text, and set pH = 7. 

Solution Th e Nernst equation for the half-reaction, with ne = 2, is 
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 1
 8#
E = E3 − RT

2F
 ln aNADH

aH+aNAD+

 = E3 + RT
2F

 ln aH+

 #$

 1

We rearrange this expression to 

E = E3 + RT
2F

 ln aH+ = E3 − RT ln 10
2F

 × pH = E3 − (29.58 mV) × pH 

Th e biological standard potential (at pH = 7) is therefore 

E⊕ = (−0.11 V) − (29.58 × 10−3 V) × 7 = −0.32 V 

Self-test 5.6 Calculate the biological standard potential of the half-reaction 
O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l) at 25°C given its value +1.23 V under 
thermodynamic standard conditions. 

Answer: +0.82 V

In the laboratory 5.1 Ion-selective electrodes

Special electrodes can be constructed to measure concentrations of ionic 
species, such as Na+, K+, Ca2+, and hydronium ions, which are important 
in biochemical reactions. Th e potential of a hydrogen electrode is directly 

Table 5.2 Biological standard potentials at 25°C

Reduction half-reaction E⊕/V

Oxidizing agent Reducing agent

Strongly oxidizing
O2 + 4 H+ + 4 e− → 2 H2O +0.81
Fe3+ (Cyt f ) + e− → Fe2+ (Cyt f ) +0.36
O2 + 2 H2O + 4 e− → 2 H2O2 +0.30
Fe3+ (Cyt c) + e− → Fe2+ (Cyt c) +0.25
Fe3+ (Cyt b) + e− → Fe2+ (Cyt b) +0.08
Dehydroascorbic acid + 2 H+ + 2 e− → Ascorbic acid +0.08
Coenzyme Q + 2 H+ + 2 e− → Coenzyme QH2 +0.04
Oxaloacetate2− + 2 H+ + 2 e− → Malate2− −0.17
Pyruvate− + 2 H+ + 2 e− → Lactate− −0.18
FAD + 2 H+ + 2 e− → FADH2 −0.22
Glutathione (ox) + 2 H+ + 2 e− → Glutathione (red) −0.23
Lipoic acid (ox) + 2 H+ + 2 e− → Lipoic acid (red) −0.29
NAD+ + H+ + 2 e− → NADH −0.32
2 H2O + 2 e− → H2 + 2 OH− −0.42
Ferredoxin (ox) + e− → Ferredoxin (red) −0.43
O2 + e− → O2

− −0.45
Strongly reducing

For a more extensive table, see the Resource section.

A note on good practice 
Whenever possible, avoid 
replacing activities by 
concentrations, especially 
when aiming to relate the 
electrode potential to pH, for 
the latter is defi ned in terms of 
the activity of hydrogen ions.
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proportional to the pH of the solution. However, in practice, indirect methods 
are much more convenient to use than one based on the standard hydro-
gen electrode, and the hydrogen electrode is replaced by a glass electrode 
(Fig. 5.11). A glass electrode is an example of an ion-selective electrode, an 
electrode that generates a potential in response to the presence of a solution of 
specifi c ions. 

Th e glass of a glass electrode is based on lithium silicate doped with heavy-
metal oxides; it is fi lled with a phosphate buff er solution containing Cl− ions. 
Conveniently, the electrode has Ecell ≈ 0 when the external medium is at 
pH = 7. Th e electrode is calibrated using solutions of known pH (for example, 
one of the buff er solutions described in Section 4.11).

Self-test 5.7 What range should a voltmeter have (in volts) to display 
changes of pH from 1 to 14 at 25°C if it is arranged to give a reading of zero 
when pH = 7? 

Answer: From −0.42 V to +0.35 V, a range of 0.77 V

Glass electrodes can be made responsive to Na+, K+, and NH4
+ ions by using 

glasses doped with Al2O3 and B2O3. More sophisticated devices can extend 
the range of ions that can be detected in a test solution. For example, a porous 
hydrocarbon-attracting membrane can be attached to a small reservoir of 
a hydrophobic liquid, such as dioctylphenylphosphonate, that saturates it 
(Fig. 5.12). Th e liquid contains a compound, such as (RO)2PO2

− with R a C8 to 
C18 chain, which binds to the ion. Th e bound ions traverse the membrane and 
give rise to a transmembrane potential, which is detected by an electrode in 
the assembly. Electrodes of this construction can be designed to be sensitive to 
a variety of ionic species, including Ca2+ ions.

Applications of standard potentials

Th e measurement of the potential of an electrochemical cell is a convenient source 
of thermodynamic information on reactions. In practice the standard values 
(and the biological standard values) of these quantities are the ones normally 
determined. 

5.8 The determination of thermodynamic functions 
Calorimetry is not always practicable, especially for biochemically important 
reactions, but in some cases their thermodynamic properties can be measured 
electrochemically.

We have seen that the standard potential of an electrochemical cell is related to 
the standard reaction Gibbs energy by eqn 5.14 (DrG3 = −nFE3

cell), therefore, by 
measuring the standard potential of a cell driven by the reaction of interest, 
we can obtain the standard reaction Gibbs energy. If we were interested in the 
biological standard state, then we would use the same expression but with the 
standard potential at pH = 7 (DrG⊕ = −nFE⊕

cell). From the standard reaction Gibbs 

Fig. 5.11 A glass electrode has a 
potential that varies with the 
hydrogen ion concentration 
in the medium in which it is 
immersed. It consists of a thin 
glass membrane containing an 
electrolyte and a silver chloride 
electrode, Ag(s) | AgCl(s) | Cl−(aq). 
Th e electrode is used in 
conjunction with a 
reference electrode, 
such as a calomel electrode, 
Hg(l) | Hg2Cl2(s) | Cl−(aq), that 
makes contact with the test 
solution through a salt bridge.

Fig. 5.12 Th e structure of 
an ion-selective electrode. 
Ions bound to a compound, 
the chelating agent, in the 
hydrophilic liquid are able 
to migrate through the 
lipophilic membrane.
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energy, the equilibrium constant, standard entropy, and standard enthalpy can 
be calculated.

(a) Calculation of the equilibrium constant

A special case of the Nernst equation has great importance in chemistry. Suppose 
the reaction has reached equilibrium; then Q = K, where K is the equilibrium 
constant of the cell reaction. However, because a chemical reaction at equilibrium 
cannot do work, it generates zero potential diff erence between the electrodes. 
Setting Q = K and Ecell = 0 in the Nernst equation gives

ln K = nFE3
cell

RT
  The equilibrium constant in terms 

of the standard cell potential  
(5.16)

Th is very important equation—which is simply eqn 4.10 expressed electrochemic-
ally—lets us predict equilibrium constants from the standard potential of an 
electrochemical cell. Note that

• If E 3
cell > 0, then K > 1 and at equilibrium the cell reaction lies in favor of 

products.
• If E 3

cell < 0, then K < 1 and at equilibrium the cell reaction lies in favor of 
reactants. 

A brief illustration

Because the standard potential of the Daniell cell is +1.10 V, the equilibrium 
constant for the cell reaction (reaction A) is

ln K = 2 × (9.6485 × 104 C mol−1) × (1.10 V)
(8.3145 J K−1 mol−1) × (298.15 K)

 = 2 × 9.6485 × 1.10 × 104

8.3145 × 298.15

(where we have used 1 C V = 1 J to cancel units) and therefore K = 1.5 × 1037. 
Hence, the displacement of copper by zinc goes virtually to completion in the 
sense that the ratio of concentrations of Zn2+ ions to Cu2+ ions at equilibrium is 
about 1037. Th is value is far too large to be measured by classical analytical 
techniques, but its electrochemical measurement is straightforward. Note 
that a standard cell potential of +1 V corresponds to a very large equilibrium 
constant (and −1 V would correspond to a very small one).

It is also possible to use the data in Tables 5.1 and 5.2 to calculate the standard 
potential of an electrochemical cell formed from any pair of electrodes and, from 
the standard cell potential, the equilibrium constant of the cell reaction. To cal-
culate the standard potential of an electrochemical cell, we take the diff erence of 
the standard potentials of the appropriate electrodes: 

E3
cell = ER

3 − E L
3 The standard cell potential 

from standard potentials  
(5.17a)

where ER
3 is the standard potential of the right-hand electrode and E L

3 is that of 
the left . Th e analogous expression for the biological standard state is 
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E⊕

cell = E R
⊕ − E L

⊕ The biological standard cell potential 
from biological standard potentials  

(5.17b)

When dealing with biological systems, the focus is not necessarily on reactions 
occurring at electrodes but on electron transfer processes in the cytosol or mem-
branes of biological cells. We can still estimate the standard reaction Gibbs energy 
(and hence the equilibrium constant) of biological electron transfer reactions by 
using eqn 5.14 (written as DrG3 = −nFE3

cell) if we express the chemical equation 
for the redox reaction as the diff erence of two reduction half-reactions with 
known standard potentials. We then fi nd E3

cell or E⊕
cell from eqn 5.17 and use 

eqn 5.14 for the calculation of the standard reaction Gibbs energy or eqn 5.16 for 
the calculation of the equilibrium constant. Th e approach is illustrated in the 
following example. 

Example 5.5 Calculating the equilibrium constant of a biological electron 
transfer reaction

Th e reduced and oxidized forms of ribofl avin form a couple with E⊕ = −0.21 V 
and the acetate/acetaldehyde couple has E⊕ = −0.60 V under the same condi-
tions. What is the equilibrium constant for the reduction of ribofl avin (Rib) by 
acetaldehyde (ethanal) in neutral solution at 25°C? Th e reaction is

RibO(aq) + CH3CHO(aq) 7 Rib(aq) + CH3COOH(aq) 

where RibO is the oxidized form of ribofl avin and Rib is the reduced form. 

Strategy Th e aim is to fi nd the values of E⊕
cell and n corresponding to the reac-

tion, for then we can use a modifi ed form of eqn 5.16 to calculate the value 
of K in neutral solution from E⊕

cell. To do so, we express the equation as the 
diff erence of two reduction half-reactions. Th e stoichiometric number of 
the electron in these matching half-reactions is the value of n we require. We 
then look up the biological standard potentials for the couples corresponding 
to the half-reactions and calculate their diff erence to fi nd E⊕

cell. 

Solution Th e two reduction half-reactions are 

right: RibO(aq) + 2 H+(aq) + 2 e− → Rib(aq) + H2O(l) E⊕ = −0.21 V 

left : CH3COOH(aq) + 2 H+(aq) + 2 e− → CH3CHO(aq) + H2O(l) 
 E⊕ = −0.60 V

and their diff erence is the redox reaction required. Note that n = 2. Th e corres-
ponding standard cell potential is 

E⊕
cell = (−0.21 V) − (−0.60 V) = +0.39 V 

It follows that

ln K = 2FE⊕
cell

RT
 = 2 × (9.6485 × 104 C mol−1) × (0.39 V)

(8.3145 J K−1 mol−1) × (298.15 K)

  = 2 × 9.6485 × 0.39 × 104

8.3145 × 298.15

Th erefore, because K = eln K, 

K = e(2×9.6485×0.39×104)/(8.3145×298.15) = 1.5 × 1013 

We conclude that ribofl avin can be reduced by acetaldehyde in neutral solu-
tion. However, there may be mechanistic reasons—the energy required to 
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break covalent bonds, for instance—that make the reduction too slow to be 
feasible in practice. Note that, because hydrogen ions do not appear in the 
chemical equation, the equilibrium constant is independent of pH. 

Self-test 5.8 What is the equilibrium constant for the reduction of ribofl a-
vin with rubredoxin, a bacterial iron–sulfur protein, in the reaction

ribofl avin(ox) + rubredoxin(red) 7 ribofl avin(red) + rubredoxin(ox) 

given that the biological standard potential of the rubredoxin couple is 
−0.06 V? 

Answer: 8.5 × 10−6; the reactants are favored

Example 5.6 Calculating a standard potential from two other standard 
potentials

Th e superoxide ion (O2
−) is an undesirable by-product of some enzyme-

catalyzed reactions. It is metabolized by the enzyme superoxide dismutase 
(SOD) in a disproportionation (or dismutation), a reaction that both oxidizes 
and reduces a species. Th e reaction catalyzed by SOD is 

2 O2
−(aq) + 2 H+(aq) → H2O2(aq) + O2(g)

where O2
− is oxidized to O2 and reduced to O2

2− (in H2O2). Hydrogen peroxide, 
H2O2, is also produced by other biochemical reactions. It is a toxic substance 
that is metabolized by catalases and peroxidases. Th e disproportionation cata-
lyzed by catalase is

2 H2O2(aq) → 2 H2O(l) + O2(g)

Given the standard potentials E⊕(O2,O2
−) = −0.45 V and E⊕(O2,H2O2) = 

+0.30 V, calculate E⊕(O2
−,H2O2), the biological standard potential for the 

SOD-catalyzed reduction of O2
− to H2O2. 

Strategy We need to convert the two E⊕ to DrG⊕ by using eqn 5.14 modifi ed 
for the biological standard state, add them appropriately, and then convert the 
overall DrG⊕ so obtained to the required E⊕ by using eqn 5.14 again. Because 
the Fs cancel at the end of the calculation, carry them through. 

Solution Th e electrode reactions are as follows: 

(a) O2(g) + e− → O2
−(aq) 

E⊕ = −0.45 V  DrG⊕(a) = −F × (−0.45 V) = (+0.45 V) × F 

(b) O2(g) + 2 H+(aq) + 2 e− → H2O2(aq) 
E⊕ = +0.30 V  DrG⊕(b) = −2F × (0.30 V) = (−0.60 V) × F 

(b) Calculation of standard potentials

Th e relation between the standard cell potential and the standard reaction Gibbs 
energy is a convenient route for the calculation of the standard potential of a 
couple from two other standard potentials. We make use of the fact that G is 
a state function and that the Gibbs energy of an overall reaction is the sum of 
the Gibbs energies of the reactions into which it can be divided. In general, we 
cannot combine the E values directly because they depend on the value of n, 
which may be diff erent for the two couples. 
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Th e required reaction is 

(c) O2
−(aq) + 2 H+(aq) + e− → H2O2(aq)  DrG⊕(c) = −FE⊕ 

Because (c) = (b) − (a), it follows that 

DrG⊕(c) = DrG⊕(b) − DrG⊕(a)

Th erefore, from eqn 5.14,

FE⊕(c) = −{(−0.60 V)F − (+0.45 V)F}

Th e Fs cancel, and we are left  with E⊕(c) = +1.05 V. 

Self-test 5.9 Given the standard potentials E3(Fe3+,Fe) = −0.04 V and 
E3(Fe2+,Fe) = −0.44 V, calculate E3(Fe3+,Fe2+).

Answer: +0.76 V

(c) Calculation of the standard reaction entropy and enthalpy

Once DrG3 has been measured, we can use thermodynamic relations to deter-
mine other properties. For instance, the entropy of the cell reaction can be 
obtained from the change in the potential with temperature: 

DrS3 = nF dE3
cell

dT
 The standard reaction entropy 

from the standard cell potential  
(5.18)

Justification 5.4 The reaction entropy from the electrochemical cell potential

In Section 3.3 we used the fact that, at constant pressure, when the temperature 
changes by dT, the Gibbs energy changes by dG = −SdT. Because this equation 
applies to the reactants and the products, it follows that

d(DrG3) = −DrS3 × dT

Substitution of DrG3 = −nFE3
cell then gives 

nF × dE3
cell = DrS3 × dT 

which rearranges into eqn 5.18.

We see from eqn 5.18 that the standard cell potential increases with tempera-
ture if the standard reaction entropy is positive and that the slope of a plot of 
potential against temperature is proportional to the reaction entropy (Fig. 5.13). 
An implication is that if the cell reaction produces a lot of gas (corresponding to a 
positive reaction entropy), then its potential will increase with temperature. Th e 
opposite is true for a reaction that consumes gas.

Finally, we can combine the results obtained so far by using G = H − TS in the 
form H = G + TS to obtain the standard reaction enthalpy:

DrH3 = DrG3 + TDrS3 
The standard reaction enthalpy 
from the standard reaction 
Gibbs energy and entropy  

(5.19)

with DrG3 determined from the cell potential and DrS3 from its temperature vari-
ation. Th us, we now have a noncalorimetric method of measuring a reaction 
enthalpy. 

A note on good practice 
Whenever combining 
standard potentials to obtain 
the standard potential of a 
third couple, always work via 
the Gibbs energies because 
they are additive, whereas in 
general standard potentials 
are not. 

 

A brief comment
Infi nitesimally small 
quantities may be treated like 
any other quantity in algebraic 
manipulations. Th us, the 
expression dy = adx may be 
rewritten as dy/dx = a, 
dx/dy = 1/a, and so on.

Fig. 5.13 Th e variation of the 
standard potential of a cell with 
temperature depends on the 
standard entropy of the cell 
reaction.
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5.9 The electrochemical series 
Some organic co-factors and metal centers in proteins act as electron transfer agents 
in a number of biological processes; we need to be able to predict which species is 
reduced or oxidized in a redox reaction. 

We have seen that a cell reaction has K > 1 if E3
cell > 0 and that E3

cell > 0 corresponds 
to reduction at the right-hand electrode. We have also seen that E3

cell may be 
written as the diff erence of the standard potentials of the redox couples in the 
right and left  electrodes (eqn 5.17, E3

cell = ER
3 − E L

3). A reaction corresponding to 
reduction at the right-hand electrode therefore has K > 1 if E L

3 < ER
3, and we can 

conclude that

A couple with a low standard potential has a thermodynamic tendency to 
reduce a couple with a high standard potential.

More briefl y: low reduces high and, equivalently, high oxidizes low. Th e same 
arguments apply to the biological standard values of the potentials. 

A brief illustration

Consider the iron-containing protein ferredoxin, which participates in plant 
photosynthesis (Section 5.11), and cytochrome c, which participates in the last 
steps of respiration (Section 5.10). It follows from Table 5.2 that 

E⊕(ferredoxinox,ferredoxinred) = −0.43 V < E⊕(cyt cox,Cyt cred) = +0.25 V

and ferredoxin has a thermodynamic tendency to reduce cytochrome c at 
pH = 7. Hence, K > 1 for the reaction

Cyt cox(aq) + ferredoxinred(aq) 7 Cyt cred(aq) + ferredoxinox(aq) 
 

Self-test 5.10 Does NAD+ have a thermodynamic tendency to oxidize the 
pyruvate ion at pH = 7? 

Answer: No

Electron transfer in bioenergetics
Electron transfer between protein-bound cofactors or between proteins plays 
a role in a number of biological processes, such as the oxidative breakdown of 
foods, photosynthesis, nitrogen fi xation, the reduction of atmospheric N2 to NH3 
by certain microorganisms, and the mechanisms of action of oxidoreductases, 
which are enzymes that catalyze redox reactions. Here, we examine the redox 
reactions associated with photosynthesis and the aerobic oxidation of glucose. 
Th ese processes are related by the reactions 

C6H12O6(s) + 6 O2(g) 
aerobic oxidationfffffgbccccc

photosynthesis
 6 CO2(g) + 6 H2O(l) 

5.10 The respiratory chain 
The centrally important processes of biochemistry include the electrochemical 
reactions between proteins in the mitochondrion of the cell, for they are responsible 
for delivering the electrons extracted from glucose to water. 
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Th e half-reactions for the oxidation of glucose and the reduction of O2 are 

C6H12O6(s) + 6 H2O(l) → 6 CO2(g) + 24 H+(aq) + 24 e−

6 O2(g) + 24 H+(aq) + 24 e− → 12 H2O(l)

We see that the exergonic oxidation of one C6H12O6 molecule requires the transfer 
of 24 electrons to six O2 molecules. However, the electrons do not fl ow directly 
from glucose to O2. In biological cells, glucose is oxidized to CO2 by NAD+ and 
FAD during glycolysis and the citric acid cycle (Case study 4.3):

C6H12O6(s) + 10 NAD+ + 2 FAD + 4 ADP + 4 Pi + 2 H2O 
 → 6 CO2 + 10 NADH + 2 FADH2 + 4 ATP + 6 H+

In the respiratory chain, electrons from the powerful reducing agents NADH 
and FADH2 pass through four membrane-bound protein complexes and two 
mobile electron carriers before reducing O2 to H2O. We shall see that the electron 
transfer reactions drive the synthesis of ATP at three of the membrane protein 
complexes.

(a) Electron transfer reactions 

Th e respiratory chain begins in complex I (NADH-Q oxidoreductase), where 
NADH is oxidized by coenzyme Q (Q, Atlas M5) in a two-electron reaction: 

H+ + NADH + Q    complex Ifffg NAD+ + QH2

E⊕
cell = +0.42 V, DrG⊕ = −81 kJ mol−1 

where the reduction of Q to Q2− is accompanied by uptake of two H+ ions to yield 
QH2. Additional Q molecules are reduced by FADH2 in complex II (succinate-Q 
reductase): 

FADH2 + Q   complex IIfffg FAD + QH2

E⊕
cell = +0.32 V, DrG⊕ = −62 kJ mol−1 

Reduced Q migrates to complex III (Q-cytochrome c oxidoreductase), which 
catalyzes the reduction of the protein cytochrome c (Cyt c). Cytochrome c 
contains the heme c group, the central iron ion of which can exist in oxidation 
states +3 and +2. Th e net reaction catalyzed by complex III is 

QH2 + 2 Fe3+(Cyt c)   complex IIIfffg Q + 2 Fe2+(Cyt c) + 2 H+

E⊕
cell = +0.15 V, DrG⊕ = −29 kJ mol−1

Reduced cytochrome c carries electrons from complex III to complex IV (cyto-
chrome c oxidase), where O2 is reduced to H2O: 

2 Fe2+(Cyt c) + 2 H+ + 12 O2 
 complex IVfffg 2 Fe3+(Cyt c) + H2O

E⊕
cell = +0.56 V, DrG⊕ = −108 kJ mol−1

(b) Oxidative phosphorylation

Th e reactions that occur in complexes I, II, III, and IV are exergonic and together 
could drive the synthesis of ATP:

ADP + Pi + H+ → ATP  DrG⊕ = +31 kJ mol−1 

We saw in Case study 4.2 that the phosphorylation of ADP to ATP can be 
coupled to the exergonic dephosphorylation of other molecules. Indeed, this is 
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the mechanism by which ATP is synthesized during glycolysis and the citric acid 
cycle (Case study 4.3). However, the process of oxidative phosphorylation taking 
place in mitochondria operates by a diff erent mechanism.

Th e structure of a mitochondrion is shown in Fig 5.14. Th e protein complexes 
associated with the electron transport chain span the inner membrane, and phos-
phorylation takes place in the intermembrane space. Th e Gibbs energy of the 
reactions in complexes I, III, and IV is fi rst used to do the work of moving protons 
across the mitochondrial membrane. Th e complexes are oriented asymmetrically 
in the inner membrane so that the protons abstracted from one side of the mem-
brane can be deposited on the other side. For example, the oxidation of NADH by 
Q in complex I is coupled to the transfer of four protons across the membrane. 
Th e coupling of electron transfer and proton pumping in complexes III and IV 
contribute further to a gradient of proton concentration across the membrane. 
Th en the enzyme H+-ATPase uses the energy stored in the proton gradient to 
phosphorylate ADP to ATP. Experiments show that 11 molecules of ATP are 
made for every three molecules of NADH and one molecule of FADH2 that are 
oxidized by the respiratory chain. Th e ATP is then hydrolyzed on demand to 
perform useful biochemical work throughout the cell. Complex II does not con-
tribute to oxidative phosphorylation because it does not have a proton pump.

Th e chemiosmotic theory proposed by Peter Mitchell explains how H+-ATPases 
use the energy stored in a transmembrane proton gradient to synthesize ATP 
from ADP. It follows from eqn 5.8 that we can estimate the Gibbs energy available 
for phosphorylation by writing 

 DGm = RT ln [H+]in

[H+]out
 + FDf 

The Gibbs energy available for 
phosphorylation according to 
the chemiosmotic theory  

(5.20)

where Df = fin − fout is the membrane potential diff erence and we have used z = +1. 
Aft er using ln [H+] = (ln 10) log [H+] and substituting DpH = pHin − pHout = 
−log [H+]in + log [H+]out, it follows that 

DGm = FDf − (RT ln 10)DpH (5.21)

Fig. 5.14 Th e general structure of a 
mitochondrion.

A brief illustration

In the mitochondrion, DpH ≈ −1.4 and Df ≈ 0.14 V, so it follows from eqn 5.20 
that DGm ≈ +21.5 kJ mol−1. Because 31 kJ mol−1 is needed for phosphorylation 
(Case study 4.2), we conclude that at least 2 mol H+ (and probably more) must 
fl ow through the membrane for the phosphorylation of 1 mol ADP. 

5.11 Plant photosynthesis 
We need to appreciate that the mechanism of formation of glucose from carbon 
dioxide and water in photosynthetic organisms is distinctly different from the 
mechanism of glucose breakdown. 

In plant photosynthesis, solar energy drives the endergonic reduction of CO2 to 
glucose, with concomitant oxidation of water to O2 (DrG⊕ = +2880 kJ mol−1). Th e 
process takes place in the chloroplast, a special organelle of the plant cell. Electrons 
fl ow from reductant to oxidant via a series of electrochemical reactions that are 
coupled to the synthesis of ATP. First, the leaf absorbs solar energy and transfers 
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it to membrane protein complexes known as photosystem I and photosystem II.6 
Th e absorption of energy from light decreases the reduction potential of special 
dimers of chlorophyll a molecules (Atlas R3) known as P700 (in photosystem I) 
and P680 (in photosystem II). In their high-energy or excited states, P680 and 
P700 initiate electron transfer reactions that culminate in the oxidation of water 
to O2 and the reduction of NADP+ (Atlas N5) to NADPH: 

2 NADP+ + 2 H2O  lightfg O2 + 2 NADPH + 2 H+

It is clear that energy from light is required to drive this reaction because, in the 
dark, E⊕

cell = −1.135 V and DrG⊕ = +438.0 kJ mol−1.
Working together, photosystem I and the enzyme ferredoxin:NADP+ oxido-

reductase catalyze the light-induced reduction of NADP+ to NADPH. Th e 
electrons required for this process come initially from P700 in its excited state. 
Th e resulting P700 is then reduced by the mobile carrier plastocyanin (Pc), a 
protein in which the bound copper ion can exist in oxidation states +2 and +1. 
Th e net reaction is 

NADP+ + 2 Cu+(Pc) + H+   light, photosystem Iffffffg NADPH + 2 Cu2+(Pc) 

Oxidized plastocyanin accepts electrons from reduced plastoquinone (PQ). 
Th e process is catalyzed by the cytochrome b6 f complex, a membrane protein 
complex that resembles complex III of mitochondria: 

PQH2 + 2 Cu2+(Pc)  Cyt b6 f complexffffg PQ + 2 H+ + 2 Cu+(Pc)
E⊕

cell = +0.370 V, DrG⊕ = −71.4 kJ mol−1

Plastoquinone is reduced by water in a process catalyzed by light and photo- 
system II. Th e electrons required for the reduction of plastoquinone come ini-
tially from P680 in its excited state. Th e resulting P680 is then reduced ultimately 
by water. Th e net reaction is 

H2O + PQ  light, photosystem IIffffffg 12 O2 + PQH2 

Electron transfer reactions are coupled to the movement of protons across 
membranes. Photophosphorylation uses the energy stored in the transmem-
brane proton gradient to phosphorylate ADP to ATP in H+-ATPases (Fig. 5.15). 
We see that plant photosynthesis uses an abundant source of electrons (water) 
and of energy (the Sun) to drive the endergonic reduction of NADP+, with con-
comitant synthesis of ATP. Experiments show that for each molecule of NADPH 
formed in the chloroplast of green plants, one molecule of ATP is synthesized.

Th e ATP and NADPH molecules formed by the light-induced electron transfer 
reactions of plant photosynthesis participate directly in the reduction of CO2 
to glucose in the chloroplast:

6 CO2 + 12 NADPH + 12 ATP + 12 H+

→ C6H12O6 + 12 NADP+ + 12 ADP + 12 Pi + 6 H2O

In summary, electrochemical reactions mediated by membrane protein com-
plexes harness energy in the form of ATP. Plant photosynthesis uses solar energy 
to transfer electrons from a poor reductant (water) to carbon dioxide. In the 
process, high-energy molecules (carbohydrates, such as glucose) are synthesized 
in the cell. Animals feed on the carbohydrates derived from photosynthesis. 

6 See Chapter 13 for details of the energy transfer process.
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During aerobic metabolism, the O2 released by photosynthesis as a waste product 
is used to oxidize carbohydrates to CO2, driving biological processes such as 
biosynthesis, muscle contraction, cell division, and nerve conduction. Hence, the 
sustenance of life on Earth depends on a tightly regulated carbon–oxygen cycle 
that is driven by solar energy.

Fig. 5.15 In plant photosynthesis, 
light-induced electron transfer 
processes lead to the oxidation 
of water to O2 and the reduction 
of NADP+ to NADPH, with 
concomitant production of ATP. 
Th e energy stored in ATP and 
NADPH is used to reduce CO2 
to carbohydrate in a separate 
set of reactions. Th e scheme 
summarizes the general patterns 
of electron fl ow and does not 
show all the intermediate 
electron carriers in photosystems 
I and II, the cytochrome b6 f 
complex, and ferredoxin:NADP+ 
oxidoreductase.

Checklist of key concepts

 1. Deviations from ideal behavior in ionic solutions are 
ascribed to the interaction of an ion with its ionic 
atmosphere.

 2. According to the Debye–Hückel limiting law, the 
mean activity coeffi  cient of ions in a solution is related 
to the ionic strength of the solution.

 3. Th e Gibbs energy of transfer of an ion across a cell 
membrane is determined by an activity gradient and 
a membrane potential diff erence that arises from 
diff erences in Coulomb repulsions on each side 
of the bilayer.

 4. A galvanic cell is an electrochemical cell in which a 
spontaneous chemical reaction produces a potential 
diff erence. 

 5. An electrolytic cell is an electrochemical cell in which 
an external source of current is used to drive a 
non-spontaneous chemical reaction.

 6. A redox reaction is expressed as the diff erence of two 
reduction half-reactions.

 7. In an electrochemical cell, a cathode is the site of 
reduction; an anode is the site of oxidation.

 8. Th e cell potential is the potential diff erence that the 
cell produces when operating reversibly.

 9. Th e standard potential of a couple is the standard 
potential of a cell in which it forms the right-hand 
electrode and a hydrogen electrode is on the left . 

 10. Biological standard potentials are measured in neutral 
solution (pH = 7).

 11. A couple with a low standard potential has a 
thermodynamic tendency (in the sense K > 1) to 
reduce a couple with a high standard potential.

 12. In the respiratory chain, electrons from NADH and 
FADH2 pass through four membrane-bound protein 
complexes and two mobile electron carriers before 
reducing O2 to H2O.

 13. Th e chemiosmotic theory explains how H+-ATPases 
use the energy stored in a transmembrane proton 
gradient to synthesize ATP from ADP.

 14. Plant photosynthesis uses solar energy to transfer 
electrons from a poor reductant (water) to carbon 
dioxide.
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Checklist of key equations

Property Equation Comment

Mean activity coeffi  cient g± = (g+g−)1/2 MX salt

g± = (g+
pg−

q)1/s s = p + q
log g± = −A | z+z− | I1/2

I = 12 ∑
i

 zi
2bi/b3

log g± = −{A | z+z− | I1/2/(1 + BI2)} + CI
DGm = RT ln([A]in/[A]out) + zF Df + DrGATP

 

w ′max = DG
−nFEcell = DrG

Ecell = E3
cell − (RT/nF) ln Q

E3
cell = −DrG3/nF

ln K = nFE3
cell/RT

DrS3 = nF(dE3
cell/dT)

DrH3 = DrG3 + TDrS3

MpXq salt
Debye–Hückel limiting law Valid as I → 0
Ionic strength Defi nition
Extended Debye–Hückel law
Gibbs energy of transfer of an ion across a biological 
membrane
Maximum non-expansion work Constant pressure and temperature
Relation between the cell potential and the reaction 
Gibbs energy
Nernst equation
Standard cell potential
Equilibrium constant in terms of the standard cell potential
Standard reaction entropy from the standard cell potential
Standard reaction enthalpy
Gibbs energy available for phosphorylation DGm = RT ln ([H+]in/[H+]out) + FDf Chemiosmotic theory

Discussion questions

5.1 Describe the general features of the Debye–Hückel theory of 
electrolyte solutions.

5.2 Describe the mechanism of proton conduction in water.

5.3 Distinguish between galvanic, electrolytic, and fuel cells.

5.4 Explain why some reactions that are not redox reactions may be 
used to generate an electric current.

5.5 Describe a method for the determination of the standard potential 
of an electrochemical cell. 

5.6 Review the concepts in Chapters 1 through 5 and prepare a 
summary of the experimental and calculational methods that can be 
used to measure or estimate the Gibbs energies of phase transitions 
and chemical reactions.

5.7 Review the concepts in Chapters 1 through 5 and discuss how 
ATP is formed during the metabolism of glucose.

Exercises

5.8 Relate the ionic strengths of (a) KCl, (b) FeCl3, and (c) CuSO4 
solutions to their molalities, b.

5.9 Calculate the ionic strength of a solution that is 0.10 mol kg−l in 
KCl(aq) and 0.20 mol kg−1 in CuSO4(aq).

5.10 Calculate the masses of (a) Ca(NO3)2 and, separately, (b) NaCl 
to add to a 0.150 mol kg−1 solution of KNO3(aq) containing 500 g of 
solvent to raise its ionic strength to 0.250.

5.11 Express the mean activity coeffi  cient of the ions in a solution of 
CaCl2 in terms of the activity coeffi  cients of the individual ions.

5.12 Estimate the mean ionic activity coeffi  cient and activity of a 
solution that is 0.010 mol kg−1 CaCl2(aq) and 0.030 mol kg−1 NaF(aq).

5.13 Th e mean activity coeffi  cients of HBr in three dilute aqueous 
solutions at 25°C are 0.930 (at 5.0 mmol kg−1), 0.907 (at 10.0 mmol kg−1), 
and 0.879 (at 20.0 mmol kg−1). Estimate the value of B in the extended 
Debye–Hückel law, with C = 0.

5.14 Th e addition of a small amount of a salt, such as (NH4)2SO4, to 
a solution containing a charged protein increases the solubility of 
the protein in water. Th is observation is called the salting-in eff ect. 
However, the addition of large amounts of salt can decrease the 
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solubility of the protein to such an extent that the protein precipitates 
from solution. Th is observation is called the salting-out eff ect and is 
used widely by biochemists to isolate and purify proteins. Consider 
the equilibrium PXn(s) 7 Pn+ (aq) + nX−(aq), where Pn+ is a 
polycationic protein of charge +n and X− is its counter-ion. Use Le 
Chatelier’s principle and the physical principles behind the Debye–
Hückel theory to provide a molecular interpretation for the salting-in 
and salting-out eff ects.

5.15 Th e overall reaction for the active transport of Na+ and K+ ions 
by the Na+/K+ pump is

3 Na+(aq,inside) + 2 K+(aq,outside) + ATP 
→ ADP + Pi + 3 Na+(aq,outside) + 2 K+(aq,inside)

At 310 K, DrG⊕ for the hydrolysis of ATP is −31.3 kJ mol−1. Given that 
the [ATP]/[ADP] ratio is of the order of 100, is the hydrolysis of 
1 mol ATP suffi  cient to provide the energy for the transport of Na+ 
and K+ according to the equation above? Take [Pi] = 1.0 mol dm−3.

5.16 Vision begins with the absorption of light by special cells in 
the retina. Ultimately, the energy is used to close ligand-gated ion 
channels, causing sizable changes in the transmembrane potential. 
Th e pulse of electric potential travels through the optical nerve 
and into the optical cortex, where it is interpreted as a signal and 
incorporated into the web of events we call visual perception (see 
Chapter 13). Taking the resting potential as −30 mV, the temperature 
as 310 K, permeabilities of the K+ and Cl− ions as PK+ = 1.0 and PCl− =  0.45, 
respectively, and the concentrations as [K+]in = 100 mmol dm−3, 
[Na+]in = 10 mmol dm−3, [Cl−]in = 10 mmol dm−3, [K+]out = 5 mmol dm−3, 
[Na+]out = 140 mmol dm−3, and [Cl−]out = 100 mmol dm−3, calculate the 
relative permeability (Case study 5.1) of the Na+ ion. 

5.17 Is the conversion of pyruvate ion to lactate ion

CH3COCO2
−(aq) + NADH(aq) + H+(aq) 

→ CH3CH2(OH)CO2
−(aq) + NAD+(aq) 

a redox reaction? 

5.18 Express the reaction in Exercise 5.17 as the diff erence of two 
half-reactions.

5.19 Express the reaction in which ethanol is converted to 
acetaldehyde (propanal) by NAD+ in the presence of alcohol 
dehydrogenase as the diff erence of two half-reactions and write 
the corresponding reaction quotients for each half-reaction 
and the overall reaction.

5.20 Express the oxidation of cysteine, HSCH2CH(NH2)COOH, 
to cystine, HOOCCH(NH2)CH2SSCH2CH(NH2)COOH, as the 
diff erence of two half-reactions, one of which is O2(g) + 4 H+(aq) 
+ 4 e− → 2 H2O(l).

5.21 One of the steps in photosynthesis is the reduction of NADP+ by 
ferredoxin (fd) in the presence of ferredoxin:NADP oxidoreductase: 
2 fdred(aq) + NADP+(aq) + 2 H+(aq) → 2 fdox(aq) + NADPH(aq). 
Express this reaction as the diff erence of two half-reactions. How 
many electrons are transferred in the reaction event?

5.22 From the biological standard half-cell potentials E⊕
cell(O2,H+,H2O) 

= +0.82 V and E⊕
cell(NAD,H+,NADH) = −0.32 V, calculate the standard 

potential arising from the reaction in which NADH is oxidized to 
NAD+ and the corresponding biological standard reaction Gibbs 
energy.

5.23 Cytochrome c oxidase receives electrons from reduced 
cytochrome c (cyt-cred) and transmits them to molecular oxygen, 
with the formation of water. (a) Write a chemical equation for this 

process, which occurs in an acidic environment. (b) Estimate the 
values of E⊕

cell, DrG⊕, and K for the reaction at 25°C. 

5.24 A fuel cell develops an electric potential from the chemical 
reaction between reagents supplied from an outside source. What is 
the cell potential of a cell fuelled by (a) hydrogen and oxygen, each 
at 1 bar and 298 K, and (b) the combustion of butane at 1.0 bar and 
298 K?

5.25 Consider a hydrogen electrode in HBr(aq) at 25°C operating 
at 1.45 bar. Estimate the change in the electrode potential when the 
solution is changed from 5.0 mmol dm−3 to 25.0 mmol dm−3. 

5.26 A hydrogen electrode can, in principle, be used to monitor 
changes in the molar concentrations of weak acids in biologically 
active solutions. Consider a hydrogen electrode in a solution of lactic 
acid as part of an overall galvanic cell at 25°C and 1 bar. Estimate the 
change in the electrode potential when the concentration of lactic acid 
in the solution is changed from 5.0 mmol dm−3 to 25.0 mmol dm−3.

5.27 Write the cell reactions and electrode half-reactions for the 
following cells: 

(a) Pt(s) | H2(g, pL) | HCl(aq) | H2(g, pR) | Pt(s) 
(b) Pt(s) | Cl2(g) | HCl(aq) | | HBr(aq) | Br2(l) | Pt(s)
(c) Pt(s) | NAD+(aq), H+(aq),NADH(aq) | | oxaloacetate2−(aq), 

H+(aq),malate2−(aq) | Pt(s)
(d) Fe(s) | Fe2+(aq) | | Mn2+(aq), H+(aq) | MnO2(s) | Pt(s)

5.28 Write the Nernst equations for the cells in the preceding exercise.

5.29 Devise cells to study the following biochemically important 
reactions. In each case state the value for n to use in the Nernst 
equation. 

(a) CH3CH2OH(aq) + NAD+(aq) 
→ CH3CHO(aq) + NADH(aq) + H+(aq) 

(b) ATP4−(aq) + Mg2+(aq) → MgATP2−(aq) 
(c) 2 cyt-c(red, aq) + CH3COCO2

−(aq) + 2 H+(aq) 
→ 2 cyt-c(ox, aq) + CH3CH(OH)CO2

−(aq) 

5.30 Use the standard potentials of the electrodes to calculate the 
standard potentials of the cells devised in Exercise 5.29.

5.31 Th e permanganate ion is a common oxidizing agent. What is the 
standard potential of the MnO4

−,H+/Mn2+ couple at (a) pH = 6.00 and 
(b) general pH?

5.32 State what you would expect to happen to the cell potential 
when the following changes are made to the corresponding cells 
in Exercise 5.27. Confi rm your prediction by using the Nernst 
equation in each case. (a) Th e pressure of hydrogen in the left -hand 
compartment is increased. (b) Th e concentration of HCl is increased. 
(c) Acid is added to both compartments. (d) Acid is added to the 
right-hand compartment. 

5.33 State what you would expect to happen to the cell potential when 
the following changes are made to the corresponding cells devised in 
Exercise 5.29. Confi rm your prediction by using the Nernst equation 
in each case. (a) Th e pH of the solution is raised. (b) A solution of 
Epsom salts (magnesium sulfate) is added. (c) Sodium lactate is added 
to the solution. 

5.34 (a) Calculate the standard potential of the cell 
Hg(l) | HgCl2(aq) | | TlNO3(aq) | Tl(s) at 25°C. (b) Calculate 
the cell potential when the molar concentration of the Hg2+ ion 
is 0.150 mol dm−3 and that of the Tl+ ion is 0.93 mol dm−3.
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5.35 Calculate the biological standard Gibbs energies of reactions of 
the following reactions and half-reactions: 

(a) 2 NADH(aq) + O2(g) + 2 H+(aq) → 2 NAD+(aq) + 2 H2O(l) 
         E⊕

cell = +1.14 V
(b) Malate2−(aq) + NAD+(aq) 

→ oxaloacetate2−(aq) + NADH(aq) + H+(aq) E⊕
cell = −0.154 V 

(c) O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l)      E⊕
cell = +0.81 V 

5.36 Th e silver–silver chloride electrode, Ag(s) | AgCl(s) | Cl−(aq), 
consists of metallic silver coated with a layer of silver chloride (which 
does not dissolve in water) in contact with a solution containing 
chloride ions. (a) Write the half-reaction for the silver–silver 
chloride half-electrode. (b) Estimate the potential of the cell 
Ag(s) | AgCl(s) | KCl(aq, 0.025 mol kg−1) | | AgNO3(aq, 
0.010 mol kg−1) | Ag(s) at 25°C.

5.37 (a) Calculate the standard potential of the cell Pt(s) | cysteine(aq), 
cystine(aq) | | H+(aq) | O2(g) | Pt(s) and the standard Gibbs energy and 
enthalpy of the cell reaction at 25°C. (b) Estimate the value of DrG3 at 
35°C. Use E3 = −0.34 V for the cystine/cysteine couple.

5.38 Th e biological standard potential of the couple pyruvic acid/
lactic acid is −0.19 V. What is the thermodynamic standard potential 
of the couple? Pyruvic acid is CH3COCOOH and lactic acid is 
CH3CH(OH)COOH. 

5.39 Calculate the biological standard values of the potentials (the 
two potentials and the cell potential) for the system in Exercise 5.37 
at 310 K.

5.40 (a) Does FADH2 have a thermodynamic tendency to reduce 
coenzyme Q at pH = 7? (b) Does oxidized cytochrome b have a 
thermodynamic tendency to oxidize reduced cytochrome f at 
pH = 7?

5.41 Radicals, very reactive species containing one or more unpaired 
electrons, are among the by-products of metabolism. Evidence is 
accumulating that radicals are involved in the mechanism of aging 
and in the development of a number of conditions, ranging from 
cardiovascular disease to cancer. Antioxidants are substances that 
reduce radicals readily. Which of the following known antioxidants 
is the most effi  cient (from a thermodynamic point of view): ascorbic 
acid (vitamin C), reduced glutathione, reduced lipoic acid, or reduced 
coenzyme Q? 

5.42 Th e biological standard potential of the redox couple pyruvic 
acid/lactic acid is −0.19 V and that of the fumaric acid/succinic acid 
couple is +0.03 V at 298 K. What is the equilibrium constant at pH = 7 
for the reaction

pyruvic acid + succinic acid 7 lactic acid + fumaric acid

5.43 Tabulated thermodynamic data can be used to predict the 
standard potential of a cell even if it cannot be measured directly. 
Th e presence of glyoxylate ion produced by the action of the enzyme 
glycolate oxidase on glycolate ion can be monitored by the following 
redox reaction:

2 cyt-c(ox,aq) + glycolate−(aq) 
7 2 cyt-c(red,aq) + glyoxylate−(aq) + 2 H+(aq)

Th e equilibrium constant for the reaction above is 2.14 × 1011 at 
pH = 7.0 and 298 K. (a) Calculate the biological standard potential 
of the corresponding galvanic cell and (b) the biological standard 
potential of the glyoxylate−/glycolate− couple. 

5.44 One ecologically important equilibrium is that between 
carbonate and hydrogencarbonate (bicarbonate) ions in natural 
water. (a) Th e standard Gibbs energies of formation of CO3

2−(aq) and 
HCO3

−(aq) are −527.81 kJ mol−1 and −586.77 kJ mol−1, respectively. 
What is the standard potential of the HCO3

−/CO3
2−,H2 couple? 

(b) Calculate the standard potential of a cell in which the cell reaction 
is Na2CO3(aq) + H2O(l) → NaHCO3(aq) + NaOH(aq). (c) Write the 
Nernst equation for the cell, (d) Predict and calculate the change in 
potential when the pH is changed to 7.0. (e) Calculate the value of pKa 
for HCO3

−(aq).

5.45 Th e dichromate ion in acidic solution is a common oxidizing 
agent for organic compounds. Derive an expression for the potential 
of an electrode for which the half-reaction is the reduction of 
Cr2O7

2− ions to Cr3+ ions in acidic solution. 

5.46 Th e potential of the cell Pt(s) | H2(g) | HCl(aq) | AgCl(s) | Ag(s) 
is +0.312 V at 25°C. What is the pH of the electrolyte solution?

5.47 Th e standard potential of the AgCl/Ag,Cl− couple fi ts the 
expression

E3/V = 0.23659 − 4.8564 × 10−4(q/°C) − 3.4205 × 10−6 (q/°C)2 
 + 5.869 × 10−9(q/°C)3

Calculate the standard Gibbs energy and enthalpy of formation of 
Cl−(aq) and its entropy (relative to H+) at 298 K.

5.48 If the mitochondrial electric potential between the matrix 
and the intermembrane space were 70 mV, as is common for other 
membranes, how much ATP could be synthesized from the transport 
of 4 mol H+, assuming the pH diff erence remains the same? 

5.49 Under certain stress conditions, such as viral infection 
or hypoxia, plants have been shown to have an intercellular pH 
increase of about 0.1 pH. Suppose this pH change also occurs in the 
mitochondrial intermembrane space. How much ATP can now be 
synthesized for the transport of 2 mol H+, assuming no other changes 
occur? 

5.50 In anaerobic bacteria, the source of carbon may be a molecule 
other than glucose and the fi nal electron acceptor some molecule 
other than O2. Could a bacterium evolve to use the ethanol/nitrate 
pair instead of the glucose/O2 pair as a source of metabolic energy? 

5.51 Th e following reaction occurs in the cytochrome b6 f complex, 
a component of the electron transport chain of plant photosynthesis:

cyt-b(red) + cyt-f(ox) 7 cyt-b(ox) + cyt-f(red) 

(a) Calculate the biological standard Gibbs energy of this reaction. 
(b) Th e Gibbs energy for hydrolysis of ATP under conditions found 
in the chloroplast is −50 kJ mol−1 and the synthesis of ATP by ATPase 
requires the transfer of four protons across the membrane. How many 
electrons must pass through the cytochrome b6 f complex to lead to 
the generation of a transmembrane proton gradient that is large 
enough to drive ATP synthesis in the chloroplast?
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Project

5.52 Th e standard potentials of proteins are not commonly measured 
by the methods described in this chapter because proteins oft en lose 
their native structure and their function when they react on the 
surfaces of electrodes. In an alternative method, the oxidized protein 
is allowed to react with an appropriate electron donor in solution. Th e 
standard potential of the protein is then determined from the Nernst 
equation, the equilibrium concentrations of all species in solution, 
and the known standard potential of the electron donor. We shall 
illustrate this method with the protein cytochrome c.

(a) Th e one-electron reaction between cytochrome c, cyt-c, and 
2,6-dichloroindophenol, D, can be written as 

cyt-cox + Dred 7 cyt-cred + Dox

Consider E3
cyt and ED

3 to be the standard potentials of cytochrome c and 
D, respectively. Show that, at equilibrium (eq), a plot of ln([Dox]eq/
[Dred]eq) against ln([cyt-cox]eq/[cyt-cred]eq) is linear with a slope of 1 and 

y-intercept F(E3
cyt − ED

3)/RT, where equilibrium activities are replaced 
by the numerical values of equilibrium molar concentrations.

(b) Th e following data were obtained for the reaction between 
oxidized cytochrome c and reduced D at pH 6.5 buff er and 298 K. 
Th e ratios [Dox]eq/[Dred]eq and [cyt-cox]eq/[cyt-cred]eq were adjusted by 
adding known volumes of a solution of sodium ascorbate, a reducing 
agent, to a solution containing oxidized cytochrome c and reduced D. 
From the data and the standard potential of D of +0.237 V, determine 
the standard potential of cytochrome c at pH = 6.5 and 298 K. 

[Dox]eq/
[Dred]eq

0.002 79 0.008 43 0.0257 0.0497 0.0748 0.238 0.534

[cyt-cox]eq/
[cyt-cred]eq

0.0106 0.0230 0.0894 0.197 0.335 0.809 1.39
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PART 2 The kinetics of 
life processes

The branch of physical chemistry called chemical kinetics is concerned 

with the rates of chemical reactions. Chemical kinetics deals with how 

rapidly reactants are consumed and products formed, how reaction rates 

respond to changes in the conditions or the presence of a catalyst, and 

the identification of the steps by which a reaction takes place.

One reason for studying the rates of reactions is the practical importance 

of being able to predict how quickly a reaction mixture approaches 

equilibrium. The rate might depend on variables under our control, such as 

the temperature and the presence of a catalyst, and we might be able to 

optimize it by the appropriate choice of conditions. Another reason is that 

the study of reaction rates leads to an understanding of the mechanism of 

a reaction, its analysis into a sequence of elementary steps. For example, 

by analyzing the rates of biochemical reactions, we may discover how they 

take place in an organism and contribute to the activity of a cell. Enzyme 

kinetics, the study of the effect of enzymes on the rates of reactions, is also 

an important window on how these macromolecules work and is treated in 

Chapter 8 using the concepts developed in Chapters 6 and 7.
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When dealing with physical and chemical changes, we need to cope with a wide 
variety of different rates. Even a process that appears to be slow may be the outcome 
of many faster steps. This is particularly true in the chemical reactions that underlie life. 
Some of the earlier steps in photosynthesis may take place in about 1–100 ps. The 
binding of a neurotransmitter can have an effect after about 1 s. Once a gene has been 
activated, a protein may emerge in about 100 s, but even that timescale incorporates 
many others, including the wriggling of a newly formed polypeptide chain into its work-
ing conformation, each step of which may take about 1 ps. On a grander view, some of 
the equations of chemical kinetics are applicable to the behavior of whole populations 
of organisms: such societies change on timescales of 107–109 s.

Reaction rates

Th e raw data from experiments to measure reaction rates are the concentrations 
or (for gases) partial pressures of reactants and products at a series of times aft er 
the reaction is initiated. Ideally, information on any intermediates should also be 
obtained, but oft en intermediates cannot be studied because their existence is too 
fl eeting or their concentration too low. More information about the reaction can 
be extracted if data are obtained at a series of diff erent temperatures.

Th e fi rst step in the investigation of the rate and mechanism of a reaction is the 
determination of the overall stoichiometry of the reaction and the identifi cation 
of any side reactions. Th e next step is to determine how the concentrations of the 
reactants and products change with time aft er the reaction has been initiated. 
Because the rates of chemical reactions are sensitive to temperature, the tempera-
ture of the reaction mixture must be held constant throughout the course of the 
reaction, for otherwise the observed rate would be a meaningless average of the 
rates for diff erent temperatures. Th e next few sections look at these observations 
in more detail.

The rates of 
reactions 6

In the laboratory 6.1 Experimental techniques

Some of the more common methods for investigations of reaction kinetics are 
listed in Table 6.1.

(a) The determination of concentration

Spectrophotometry, the measurement of the absorption of light by a material, 
is used widely to monitor concentration. Th e technique is based on Beer’s law 
(see Chapter 12), which states that the incident and transmitted intensities 



220   6 THE RATES OF REACTIONS

I and I0, respectively, of light passing through a sample of length L are related to 
the molar concentration [J] of the absorbing species J by

I = I010−ε[J]L Beer’s law  (6.1a)

Th e molar absorption coeffi  cient ε (epsilon) depends on the wavelength of the 
radiation. Once the value of ε has been measured (in a separate experiment) 
for an absorbing species taking part in a reaction, either as a reactant or a prod-
uct, its concentration may be monitored by using eqn 6.1a in the form

[J] = 1
εL

 log I0

I
  (6.1b)

Note that log denotes a logarithm to the base 10.

Reactions that change the concentration of hydrogen ions can be studied by 
monitoring the pH of the solution with a glass electrode. Other methods of 
monitoring the composition include the detection of light emission, micro-
scopy, mass spectrometry, gas chromatography, and magnetic resonance (both 
EPR and NMR; Chapter 13). Polarimetry and circular dichroism (Chapter 12), 
which monitor the optical activity of a reaction mixture, are occasionally 
applicable.

(b) Monitoring the time dependence

In a real-time analysis, the composition of a system is analyzed while the reac-
tion is in progress by direct spectrophotometric observation of the reaction 
mixture. In the fl ow method, the reactants are mixed as they fl ow together in a 
chamber (Fig. 6.1). Th e reaction continues as the thoroughly mixed solutions 
fl ow through a capillary outlet tube at about 10 m s−1, and diff erent points 
along the tube correspond to diff erent times aft er the start of the reaction. 
Spectrophotometric determination of the composition at diff erent positions 
along the tube is equivalent to the determination of the composition of the 
reaction mixture at diff erent times aft er mixing. Th is technique was originally 
developed in connection with the study of the rate at which oxygen combines 
with hemoglobin (Case study 4.1). Its disadvantage is that a large volume of 
reactant solution is necessary because the mixture must fl ow continuously 
through the apparatus. Th is disadvantage is particularly important for reac-
tions that take place very rapidly, because the fl ow must be rapid if it is to 
spread the reaction over an appreciable length of tube.

Th e stopped-fl ow technique avoids this disadvantage (Fig. 6.2). Th e two solu-
tions are mixed very rapidly (in less than 1 ms) by injecting them into a mixing 
chamber designed to ensure that the fl ow is turbulent and that complete mix-
ing occurs very quickly. Behind the reaction chamber there is an observation 
cell fi tted with a plunger that moves back as the liquids fl ood in, but that comes 
up against a stop aft er a certain volume has been admitted. Th e fi lling of that 
chamber corresponds to the sudden creation of an initial sample of the reac-
tion mixture. Th e reaction then continues in the thoroughly mixed solution 
and is monitored spectrophotometrically. Because only a small, single charge 
of the reaction chamber is prepared, the technique is much more economical 
than the fl ow method. Modern techniques of monitoring composition spectro-
photometrically can span repetitively a wavelength range of 300 nm at 1 ms 
intervals. Th e suitability of the stopped-fl ow technique to the study of small 
samples means that it is appropriate for biochemical reactions, and it has been 
widely used to study the kinetics of protein folding and unfolding. In a typical 

Table 6.1 Kinetic techniques

Technique Range of 
timescales/s 

Flash photolysis 10−15

Fluorescence decaya 10−10–10−6

Ultrasonic absorption 10−10–10−4

EPRb 10−9–10−4

Electric fi eld jumpc 10−7–1
Temperature jumpc 10−6–1
Phosphorescence 
decaya

10−6–10

NMRb 10−5–1
Pressure jumpc >10−5

Stopped fl ow >10−3

a Fluorescence and phosphorescence are 
modes of emission of radiation from a 
material; see Chapter 12.
b EPR is electron paramagnetic resonance 
(or electron spin resonance, ESR); NMR 
is nuclear magnetic resonance; see 
Chapter 13.
c Th ese techniques are discussed in In the 
laboratory 7.1.

Fig. 6.1 Th e arrangement used in 
the fl ow technique for studying 
reaction rates. Th e reactants are 
squirted into the mixing chamber 
at a steady rate from the syringes 
or by using peristaltic pumps 
(pumps that squeeze the fl uid 
through fl exible tubes, like in 
our intestines). Th e location of 
the spectrometer (acting as a 
detector) corresponds to diff erent 
times aft er initiation.
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experiment, a sample of the protein with a high concentration of a chemical 
denaturant, such as urea or guanidinium hydrochloride, is mixed with a 
solution containing a much lower concentration of the same denaturant. 
On entering the mixing chamber, the denaturant is diluted and the protein 
re-folds. Unfolding is observed by mixing a sample of folded protein with a 
solution containing a high concentration of denaturant. Th ese experiments 
probe conformational changes that occur on a millisecond timescale, such as 
the formation of contacts between helical segments in a large protein.

Very fast reactions can be studied by fl ash photolysis, in which the sample is 
exposed to a brief fl ash of light that initiates the reaction and then the contents 
of the reaction chamber are monitored spectrophotometrically. Biological 
processes that depend on the absorption of light, such as photosynthesis and 
vision, can be studied in this way. Lasers can be used to generate nanosecond 
fl ashes routinely, picosecond fl ashes quite readily, and fl ashes as brief as a few 
femtoseconds in special arrangements. Spectra are recorded at a series of times 
following the fl ash, using instrumentation described in Chapter 12.

In a relaxation technique the reaction mixture is initially at equilibrium but 
is then disturbed by a rapid change in conditions, such as a sudden increase 
in temperature. Th e equilibrium composition before the application of the 
perturbation becomes the initial state for the return of the system to its equi-
librium composition at the new temperature, and the return to equilibrium—
the ‘relaxation’ of the system—is monitored spectroscopically. Relaxation 
techniques are described in more detail in In the laboratory 7.1.

In contrast to real-time analysis, quenching methods are based on stopping, 
or quenching, the reaction aft er it has been allowed to proceed for a certain 
time and the composition is analyzed at leisure. In the chemical quench fl ow 
method, the reactants are mixed in much the same way as in the fl ow method, 
but the reaction is quenched by another reagent, such as a solution of acid or 
base, aft er the mixture has traveled along a fi xed length of the outlet tube. 
Diff erent reaction times can be selected by varying the fl ow rate along the 
outlet tube. An advantage of the chemical quench fl ow method over the 
stopped-fl ow method is that spectroscopic fi ngerprints are not needed in order 
to measure the concentration of reactants and products. Once the reaction has 
been quenched, the solution may be examined by rather ‘slow’ techniques, 
such as gel electrophoresis, mass spectrometry, and chromatography. In the 
freeze quench method, the reaction is quenched by cooling the mixture within 
milliseconds, and the concentrations of reactants, intermediates, and products 
are measured spectroscopically.

Fig. 6.2 In the stopped-fl ow 
technique the reagents are driven 
quickly into the mixing chamber 
and then the time dependence of 
the concentrations is monitored.

6.1 The definition of reaction rate
The concepts introduced here for the description of reaction rates are used whenever 
we explore such biological processes as enzymatic transformations, electron transfer 
reactions in metabolism, and the transport of molecules and ions across membranes.

Th e average rate of a reaction is defi ned in terms of the rate of change of the con-
centration of a designated species:

average rate = | D[J] |
Dt

 Definition of 
average rate

 (6.2a)
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where D[J] is the change in the molar concentration of the species J that occurs 
during the time interval Dt. We have put the change in concentration between 
modulus signs (that is, the instruction to disregard the sign of the change) to 
ensure that all rates are positive: if J is a reactant, its concentration will decrease 
and D[J] itself is negative but | D[J] | is positive. With the concentration measured 
in moles per cubic decimeter (moles per liter) and the time in seconds, the aver-
age rate is reported in moles per cubic decimeter per second (mol dm−3 s−1).

Because the rates at which reactants are consumed and products are formed 
typically change in the course of a reaction, it is necessary to consider the instan-
taneous rate, v, of the reaction, its rate at a specifi c instant. Th e instantaneous rate 
of consumption of a reactant is the slope of a graph of its molar concentration 
plotted against the time, with the slope evaluated as the tangent to the graph at the 
instant of interest (Fig. 6.3) and reported as a positive quantity. Th e instantaneous 
rate of formation of a product is also the slope of the tangent to the graph of its molar 
concentration plotted and also reported as a positive quantity. More formally:

instantaneous rate = | d[J] |
dt

 Definition of 
instantaneous rate

 (6.2b)

In general, the various reactants in a given reaction are consumed at diff erent 
rates, and the various products are also formed at diff erent rates. However, these 
rates are related by the stoichiometry of the reaction. For example, in the decom-
position of urea, (NH2)2CO, in acidic solution

(NH2)2CO(aq) + 2 H2O(l) → 2 NH4
+(aq) + CO3

2−(aq)

provided any intermediates are not present in signifi cant quantities, the rate of 
formation of NH4

+ is twice the rate of disappearance of (NH2)2CO because for 
1 mol (NH2)2CO consumed, 2 mol NH4

+ is formed:

rate of formation of NH4
+ = 2 × rate of consumption of (NH2)2CO

or, in terms of derivatives,

v = d[NH+
4]

dt
 = −2 d[(NH2)2CO]

dt
 

One consequence of this kind of relation is that we have to be careful to specify 
exactly what species we mean when we report a reaction rate.

Fig. 6.3 Th e rate of a chemical 
reaction is the slope (without 
the sign) of the tangent to the 
curve showing the variation of 
concentration of a species with 
time. Th is graph is a plot of the 
concentration of a reactant, 
which is consumed as the 
reaction progresses. Th e rate of 
consumption decreases in the 
course of the reaction as the 
concentration of reactant 
decreases.

Self-test 6.1 Th e rate of formation of NH3 in the reaction N2(g) + 3 H2(g) → 
2 NH3(g) was reported as 1.2 mmol dm−3 s−1 under a certain set of conditions. 
What is the rate of consumption of H2?

Answer: 1.8 mmol dm−3 s−1

Th e problem of having a variety of diff erent rates for the same reaction is 
avoided by bringing the stoichiometric coeffi  cients into the defi nition of the rate. 
Th us, for a reaction of the type

a A + b B → c C + d D

we write the unique reaction rate as any of the four following quantities:

v = 1
d

 d[D]
dt

 = 1
c

 d[C]
dt

 = − 1
a

 d[A]
dt

 = − 1
b

 d[B]
dt

 Definition of 
unique rate

 (6.3)

Now there is a single rate for the reaction.
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6.2 Rate laws and rate constants
The observed dependence of rate on the composition of the reaction mixture is often 
exploited for the purpose of slowing down some processes and speeding up others; 
it is also a window on the underlying mechanism of the reaction.

An empirical observation of the greatest importance is that the rate of reaction is 
oft en found to be proportional to the molar concentrations of the reactants raised to 
a simple power. For example, it may be found that the rate is directly proportional 
to the concentrations of the reactants A and B, so 

v = kr[A][B] (6.4)

Th e coeffi  cient kr, which is characteristic of the reaction being studied, is called 
the rate constant. Th e rate constant is independent of the concentrations of the 
species taking part in the reaction but depends on the temperature. An experi-
mentally determined equation of this kind is called the ‘rate law’ of the reaction. 
More formally:

A rate law is an equation that expresses the rate of reaction in terms of the 
molar concentrations (or partial pressures) of the species in the overall reac-
tion (including, possibly, the products).

Th e units of kr are always such as to convert the product of concentrations into 
a rate expressed as a change in concentration divided by time. For example, if the 
rate law is the one shown above, with concentrations expressed in moles per cubic 
decimeter (mol dm−3), then the units of kr will be cubic decimeters per mole per 
second (dm3 mol−1 s−1) because

 kr [A] [B] v
 14243  123  123  14243

dm3 mol−1 s−1 × mol dm−3 × mol dm−3 = mol dm−3 s−1

In gas-phase studies, such as those used to study reactions in planetary 
atmospheres, concentrations are commonly expressed in molecules per cubic 
centimeter (molecules cm−3), so the rate constant for the reaction above would 
be expressed in cm3 molecule−1 s−1. We can use the same approach to determine 
the units of the rate constant from rate laws of any form. For example, the rate 
constant for a reaction with a rate law of the form kr[A] is commonly expressed 
in s−1.

A brief illustration

For the decomposition of urea in the reaction specifi ed above (with a = 1, c = 2, 
and d = 1 (the water is in excess and its abundance would not be measured)), 
the unique reaction rate would be calculated from any of the following three 
quantities:

v = 1
2

 d[NH4
+]

dt
 = d[CO3

2−]
dt

 = −d[(NH2)2CO]
dt

 

Self-test 6.2 A reaction has a rate law of the form kr[A]2[B]. What are the 
units of the rate constant kr if the reaction rate is measured in mol dm−3 s−1?

Answer: dm6 mol−2 s−1
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Once the rate law and the rate constant of the reaction have been determined, 
we can predict the rate of the reaction for any given composition of the reaction 
mixture. We shall also see that we can use the observed rate law to predict 
the concentrations of the reactants and products at any time aft er the start of the 
reaction. Furthermore, a rate law is an important guide to the mechanism of 
the reaction, the individual molecular steps by which it takes place, for any pro-
posed mechanism must be consistent with the observed rate law.

6.3 Reaction order
Once a reaction has been classified according to its rate law, we can use the same 
expressions to predict the composition of the reaction mixture at any stage of the 
reaction: specifically, many enzyme-catalyzed reactions and biological electron 
transfer reactions are kinetically similar.

Many reactions can be classifi ed on the basis of their order, the power to which 
the concentration of a species is raised in the rate law:

fi rst order in A: v = kr[A] (6.5a)

fi rst order in A, fi rst order in B: v = kr[A][B] (6.5b)

second order in A: v = kr[A]2 (6.5c)

Th e overall order of a reaction is the sum of the orders of all the components. 
Th e rate laws in eqns 6.5b and 6.5c both correspond to reactions that are second 
order overall.

A brief illustration

Th e re-formation of a DNA double helix aft er the double helix has been separ-
ated into two strands by raising the temperature or the pH:

strand + complementary strand → double helix

is found to obey the rate law

v = kr[strand][complementary strand]

Th is reaction is fi rst order in each strand and second order overall. Th e reduc-
tion of nitrogen dioxide by carbon monoxide,

NO2(g) + CO(g) → NO(g) + CO2(g)

is found to obey the rate law

v = kr[NO2]2

which is second order in NO2 and, because no other species occurs in the rate 
law, second order overall. Th e rate of the latter reaction is independent of the 
concentration of CO provided that some CO is present. It is therefore zero 
order in CO because a concentration raised to the power zero is 1 ([CO]0 = 1, 
just as x0 = 1 in algebra).

A reaction need not have an integral order, and many gas-phase reactions do 
not. For example, if a reaction is found to have the rate law
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v = kr[A]1/2[B] (6.6)

then it is half order in A, fi rst order in B, and three-halves order overall.
If a rate law is not of the form [A]x[B]y[C]z . . . , then the reaction does not have 

an overall order. For example, a typical rate law for the action of an enzyme E on a 
substrate S is (see Chapter 8)

v = kr[E][S]
[S] + KM

 (6.7a)

where KM is a constant (not a rate constant). Th is rate law is fi rst order in the 
enzyme but does not have a specifi c order with respect to the substrate.

Under certain circumstances a complicated rate law without an overall order 
may simplify into a law with a defi nite order. For example, if the substrate concen-
tration in the enzyme-catalyzed reaction is so low that [S] << KM, then eqn 6.7a 
simplifi es to

v = kr

KM
 [E][S], [S] << KM  (6.7b)

which is fi rst order in S, fi rst order in E, and second order overall with rate constant 
kr′ = kr/KM. On the other hand, when [S] >> KM, the rate law in eqn 6.7a becomes

v = kr[E], [S] >> KM  (6.7c)

and the reaction is fi rst order in E and zeroth order in S.
It is very important to note that a rate law is established experimentally and can-

not in general be inferred from the chemical equation for the reaction. Th e reaction 
of an enzyme with a substrate, for example, has a very simple stoichiometry, but 
its rate law (eqn 6.7a) is moderately complicated. In some cases, however, the rate 
law does happen to refl ect the reaction stoichiometry. Th is is the case with the 
re-naturation of DNA in the brief illustration.

6.4 The determination of the rate law
Because reaction order is such an important concept for the classification and 
investigation of biochemical reactions, we need to know how it is determined 
experimentally.

At the simplest level, a quick comparison of rates with two diff erent concentra-
tions of a reactant can indicate the order of the reaction. Th us, if the rate doubles 
when the concentration is doubled, we can infer that the reaction is fi rst order in 
that reactant, and if it quadruples, then it is second order. However, to assess the 
data more fully, we need to be more systematic. Th ere are two principal approaches. 
In one, we use rate measurements directly; in the other, we use concentration 
measurements, not rates. In this section we prepare the ground for the fi rst 
approach and describe its implementation. Th e second approach needs more 
preparation and is described in Section 6.5.

(a) Isolation and pseudo-order reactions

Th e determination of a rate law is simplifi ed by the isolation method, in which all 
the reactants except one are present in large excess. Th e dependence of the rate on 
each of the reactants can be found by isolating each of them in turn—focusing 
on a single species by having all the others present in large excess—and piecing 
together a picture of the overall rate law.
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If a reactant B is in large excess it is a good approximation to take its concentra-
tion as constant throughout the reaction. Th en, although the true rate law might 
be v = kr[A][B]2, we can approximate [B] by its initial value [B]0 (from which it 
hardly changes in the course of the reaction) and write

v = kr′[A] with kr′ = kr[B]0
2 A pseudo-first-order 

reaction, B in excess
 (6.8a)

Because the true rate law has been forced into fi rst-order form by assuming a 
constant B concentration, the eff ective rate law is classifi ed as pseudo-fi rst order 
and kr′ is called the eff ective rate constant for a given, fi xed concentration of B. 
If, instead, the concentration of A were in large excess, and hence eff ectively con-
stant, then the rate law v = kr[A][B]2 would simplify to

v = kr″[B]2 with kr″ = kr[A]0 A pseudo-second-order 
reaction, A in excess

 (6.8b)

Th is pseudo-second-order rate law is also much easier to analyze and identify 
than the complete law.

In a similar manner, a reaction may appear to be zeroth order. For instance, the 
oxidation of ethanol to acetaldehyde (ethanal) by NAD+ in the liver in the pres-
ence of the enzyme liver alcohol dehydrogenase,

CH3CH2OH(aq) + NAD+(aq) + H2O(l) → 
 CH3CHO(aq) + NADH(aq) + H3O+(aq)

is zeroth order overall as the ethanol is in excess and the concentration of the 
NAD+ is maintained at a constant level by normal metabolic processes. Many 
reactions in aqueous solution that are reported as fi rst or second order are actu-
ally pseudo-fi rst or pseudo-second order: the solvent water participates in the 
reaction, but it is in such large excess that its concentration remains constant.

(b) The method of initial rates

In the method of initial rates, which is oft en used in conjunction with the isola-
tion method, the instantaneous rate is measured at the beginning of the reaction 
for several diff erent initial concentrations of reactants. If the initial rate doubles 
when the initial concentration of the isolated reactant is doubled, then the reac-
tion is fi rst order in that reactant, and so on.

To use the data more fully we suppose that the rate law for a reaction with A 
isolated is v = kr′[A]a, then the initial rate of the reaction, v0, is given by the initial 
concentration of A:

v0 = kr′[A]0
a Initial rate of an ath-order reaction  (6.9)

Taking logarithms1 gives

log v0 = log kr′ + a log [A]0 (6.10)

Th is equation has the form of the equation for a straight line:

y = intercept + slope × x

with y = log v0 and x = log [A]0. It follows that, for a series of initial concentrations, 
a plot of the logarithms of the initial rates against the logarithms of the initial 
concentrations of A should be a straight line and that the slope of the graph will be 

1 For a review of logarithms, see Mathematical toolkit 5.1.
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a, the order of the reaction with respect to the species A, and log kr′ is given by the 
intercept at log [A]0 = 0 (Fig. 6.4).

An important point to note is that the method of initial rates might not reveal 
the entire rate law, for in a complex reaction we may not be able to specify an 
order with respect to a reactant (see eqn 6.7a) or the products themselves might 
aff ect the rate.

Fig. 6.4 Th e plot of log v0 (shift ed 
by log k r′) against log [A]0 gives 
straight lines with slopes equal to 
the order of the reaction.

Example 6.1 Using the method of initial rates

Th e following data were obtained on the initial rate of binding of glucose to the 
enzyme hexokinase:

[glucose]0/(mmol dm−3)  1.00 1.54 3.12 4.02
V0/(mol dm−3 s−1) (a) 5.0 7.6 15.5 20.0
 (b) 7.0 11.0 23.0 31.0
 (c) 21.0 34.0 70.0 96.0

Th e enzyme concentrations are (a) 1.34 mmol dm−3, (b) 3.00 mmol dm−3, and 
(c) 10.0 mmol dm−3. Find the orders of reaction with respect to glucose and 
hexokinase and the rate constant.

Strategy We assume that the initial rate law has the form

v0 = kr[glucose]0
a[hexokinase]0

b

For constant [hexokinase]0, the initial rate law has the form v0 = kr′[glucose]0
a, 

with kr′ = kr[hexokinase]0
b, so

log v0 = log kr′ + a log [glucose]0

We need to make a plot of log v0 against log [glucose]0 for a given [hexokinase]0 
and fi nd the reaction order a from the slope and the value of kr′ from the inter-
cept at log [glucose]0 = 0. Th en, because

log kr′ = log kr + b log [hexokinase]0

plot log kr′ against log [hexokinase]0 to fi nd log kr from the intercept and b from 
the slope.

Solution Th e data give the following points for the graph:

log ([glucose]0/mol dm−3)  −3.00 −2.81 −2.51 −2.40
log (V0/mol dm−3 s−1) (a) 0.699 0.881 1.19 1.30
 (b) 0.844 1.04 1.36 1.49
 (c) 1.32 1.53 1.85 1.98

Th e graph of the data is shown in Fig. 6.5. Th e slopes of the lines are 1, so a = 1, 
and the eff ective rate constants kr are as follows:

[hexokinase]0/(mol dm−3) 1.34 × 10−3  3.00 × 10−3  1.00 × 10−2

log ([hexokinase]0/mol dm−3)  −2.87 −2.52 −2.00
log (kr′/dm3 mol−1 s−1) 3.69 4.04 4.56

Figure 6.6 is the plot of log kr′ against log [hexokinase]0. Th e slope is 1, so b = 1. 
Th e intercept at log [hexokinase]0 = 0 is log kr = 6.56, so kr = 3.6 × 106 dm3 mol−1 s−1. 
Th e overall (initial) rate law is

v0 = kr[glucose]0[hexokinase]0

A note on good practice 
When taking the logarithm 
of a number of the form 
x.xx × 10n, there are four 
signifi cant fi gures in the 
answer: the fi gure before 
the decimal point is simply 
the power of 10. Strictly, the 
logarithms are of the quantity 
divided by its units.

  

Fig. 6.5 Th e plots of the data in 
Example 6.1 for fi nding the 
order with respect to glucose.
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6.5 Integrated rate laws
The rate laws summarize useful information about the progress of a reaction and 
allow us to predict the composition of a reaction mixture at any time, including the 
concentrations of biochemically significant intermediates.

A rate law tells us the rate of the reaction at a given instant (when the reaction 
mixture has a particular composition). Th is is rather like being given the speed 
of a car at each point of its journey. For a car journey, we may want to know the 
distance that a car has traveled at a certain time given its varying speed. Similarly, 
for a chemical reaction, we may want to know the composition of the reaction 
mixture at a given time given the varying rate of the reaction. An integrated rate 
law is an expression that gives the concentration of a species as a function of 
the time.

Integrated rate laws have two principal uses. One is to predict the concentra-
tion of a species at any time aft er the start of the reaction. Another is to help fi nd 
the rate constant and order of the reaction. Indeed, although we have introduced 
rate laws through a discussion of the determination of reaction rates, these rates 
are rarely measured directly because slopes are so diffi  cult to determine accur-
ately. Almost all experimental work in chemical kinetics deals with integrated 
rate laws; their great advantage being that they are expressed in terms of the 
experimental observables of concentration and time. Computers can be used 
to fi nd numerical solutions of even the most complex rate laws. However, we 
now see that in a number of simple cases, solutions can be expressed as relatively 
simple functions and prove to be very useful.

(a) Zeroth-order reactions

For a chemical reaction and zeroth-order rate law of the form

A → products, v = − d[A]
dt

 = kr Zeroth-order rate law  (6.11a)

the concentration of A falls linearly until all A has been consumed:

[A] = [A]0 − krt for krt ≤ [A]0

[A] = 0 for krt > [A]0
 

Zeroth-order 
integrated
rate law

 (6.11b)

(b) First-order reactions

For a chemical reaction with a fi rst-order rate law of the form

A → products, v = − d[A]
dt

 = kr[A] First-order rate law  (6.12a)

Self-test 6.3 Th e initial rate of a certain reaction depended on concentra-
tion of a substance J as follows:

[J]0/(mmol dm−3) 5.0 10.2  17  30
V0/(10−7 mol dm−3 s−1) 3.6  9.6 41 130

Find the order of the reaction with respect to J and the rate constant.
Answer: 2; 1.6 × 10−2 dm3 mol−1 s−1

Fig. 6.6 Th e plots of the data in 
Example 6.1 for fi nding the order 
with respect to hexokinase.
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we show in the following Justifi cation that the integrated rate law is

ln [A]
[A]0

 = −krt First-order integrated rate law  (6.12b)

where [A]0 is the initial concentration of A. Two alternative forms of this expres-
sion are

ln [A] = ln [A]0 − krt (6.12c)

[A] = [A]0e−krt (6.12d)

Equation 6.12d has the form of an exponential decay (Fig. 6.7). A common 
feature of all fi rst-order reactions, therefore, is that the concentration of the reac-
tant decays exponentially with time.

Justification 6.1 First-order integrated rate laws

A fi rst-order rate equation has the form

− d[A]
dt

 = kr[A]

and is an example of a ‘fi rst-order diff erential equation’. Because the terms d[A] 
and dt may be manipulated like any algebraic quantity, we rearrange the dif-
ferential equation into

d[A]
[A]

 = −krdt

and then integrate both sides. Integration from t = 0, when the concentration of 
A is [A]0, to the time of interest, t, when the molar concentration of A is [A], is 
written as

�
[A]

[A]0

 d[A]
[A]

 = −kr �
t

0

 dt

We now use the standard integral

� dx
x

 = ln x + constant

and obtain the expression

ln [A] − ln [A]0 = −krt

which rearranges into eqn 6.12c.
 

Equation 6.12d lets us predict the concentration of A at any time aft er the start 
of the reaction. However, we can also use the result to confi rm that a reaction 
is fi rst order and to determine the rate constant: eqn 6.12c shows that if we 
plot ln [A] against t, then we will get a straight line if the reaction is fi rst order 
(Fig. 6.8). If the experimental data do not give a straight line when plotted in this 
way, then the reaction is not fi rst order. If the line is straight, then it follows from 
the same equation that its slope is −kr, so we can also determine the rate constant 
from the graph.

Fig. 6.7 Th e exponential decay 
of the reactant in a fi rst-order 
reaction. Th e greater the rate 
constant, the more rapid is the 
decay.

Fig. 6.8 Th e determination of the 
rate constant of a fi rst-order 
reaction. A straight line is 
obtained when ln c is plotted 
against t; the slope is −kr. Th e 
data are from Case study 6.1. 
Th e structure shown is that of 
propranolol, one of the fi rst 
b-blockers.
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A useful indication of the rate of a fi rst-order chemical reaction is the half-life, 
t1/2, of a reactant, which is the time it takes for the concentration of the species 
to fall to half its initial value. We can fi nd the half-life of a species A that decays 
in a fi rst-order reaction (eqn 6.12a) by substituting [A] = 1

2[A]0 and t = t1/2 into 
eqn 6.12b:

krt1/2 = −ln 
1
2[A]0

[A]0
 = −ln 12 = ln 2

it follows that

t1/2 = ln 2
kr

 Half-life of a first-order 
reaction

 (6.13)

  Mathematical toolbox 6.1 Differential equations

An ordinary diff erential equation is a relation between 
derivatives of a function of one variable and the func-
tion itself, as in

a d
2y

dx2
 + b dy

dx
 + cy + d = 0

Th e coeffi  cients a, b, etc., may be functions of x. Th e 
order of the equation is the order of the highest deriva-
tive that occurs in it, so eqn 6.12a is a fi rst-order 
equation and the expression above is a second-order 
equation. ‘Solving’ a diff erential equation is the pro-
cess of determining the function, in this case y(x), that 
satisfi es it.

In many cases it is found that various constants 
appear in the solution, such as y(x) + constant. 
Th ese constants are determined by imposing various 
boundary conditions on the solutions, values that the 
solution must have at specifi ed points. A second-order 
diff erential equation requires two boundary condi-
tions, a fi rst-order equation requires one. For time-
dependent solutions, the boundary condition is 
termed an initial condition, and is typically the value 
that the solution must have at t = 0.

A brief illustration

In acidic solution, the disaccharide sucrose (cane sugar, Atlas S5) is converted 
to a mixture of the monosaccharides glucose (Atlas S4), and fructose (Atlas 
S3) in a pseudo-fi rst-order reaction. Under certain conditions of pH, the 

A brief illustration

Because the rate constant for the fi rst-order denaturation of hemoglobin is 
2.00 × 10−4 s−1 at 60°C, the half-life of properly folded hemoglobin is 57.7 min. 
Hence, the concentration of folded hemoglobin falls to half its initial value in 
57.7 min, and then to half that concentration again in a further 57.7 min, and 
so on (Fig. 6.9).

Th e main point to note about eqn 6.13 is that for a fi rst-order reaction, the 
half-life of a reactant is independent of its concentration. It follows that if the 
concentration of A at some arbitrary stage of the reaction is [A], then the con-
centration will fall to 1

2[A] aft er an interval of (ln 2)/kr whatever the actual value 
of [A] (Fig. 6.10).

Fig. 6.9 Th e molar concentration 
of properly folded hemoglobin 
aft er a succession of half-lives.
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half-life of sucrose is 28.4 min. To calculate how long it takes for the concentra-
tion of a sample to fall from 8.0 mmol dm−3 to 1.0 mmol dm−3, we note that

molar concentration/(mmol dm−3): 8.0  28.4 minffg 4.0  28.4 minffg 2.0  28.4 minffg 1.0

Th e total time required is 3 × 28.4 min = 85.2 min.

Self-test 6.4 Th e half-life of a substrate in a certain enzyme-catalyzed fi rst-
order reaction is 138 s. How long does it take for the concentration of substrate 
to fall from 1.28 mmol dm−3 to 0.040 mmol dm−3?

Answer: 690 s

Another indication of the rate of a fi rst-order reaction is the time constant, 
t, the time required for the concentration of a reactant to fall to 1/e of its initial 
value. From eqn 6.12b it follows that

krt = −ln AC
[A]0/e
[A]0

D
F  = −ln 1

e
 = 1

Hence, the time constant is the reciprocal of the rate constant:

t = 1
 kr

 Time constant of 
a first-order decay

 (6.14)

Th e longer the time constant of a fi rst-order reaction, the slower the decay and the 
longer the reactants survive.

(c) Second-order reactions

Now we need to see how concentration varies with time for a reaction with a 
second-order rate law of the form

A → products  v = − d[A]
dt

 = kr[A]2 Second-order 
rate law

 (6.15a)

As before, we suppose that the concentration of A at t = 0 is [A]0 and, as shown in 
the following Justifi cation, fi nd that

1
[A]0

 − 1
[A]

 = −krt Second-order 
integrated rate law

 (6.15b)

Two alternative forms of eqn 6.15b are

1
[A]

 = 1
[A]0

 + krt (6.15c)

 [A] = [A]0

1 + krt[A]0
 (6.15d)

Justification 6.2 Second-order integrated rate laws I

To solve the diff erential equation

− d[A]
dt

 = kr[A]2

Fig. 6.10 In each successive period 
of duration t1/2, the concentration 
of a reactant in a fi rst-order 
reaction decays to half its value at 
the start of that period. Aft er n 
such periods, the concentration 
is (1

2)n of its initial concentration.



232   6 THE RATES OF REACTIONS

we rearrange it into

− d[A]
[A]2

 = krdt

and integrate it between t = 0, when the concentration of A is [A]0, and the time 
of interest t, when the concentration of A is [A]:

�
[A]

[A]0

 d[A]
[A]2

 = −kr �
t

0

 dt

Th e term on the right is −krt. We evaluate the integral on the left  by using the 
standard form

 �dx
x2

 = − 1
x

 + constant

which implies that

�
b

a

dx
x2

 = !@−
1
x

 + constant#
$  

b
− !@−

1
x

 + constant#
$  

a
 = − 1

b
 + 1

a

and so obtain eqn 6.15b.

Equation 6.15b shows that to test for a second-order reaction, we should plot 
1/[A] against t and expect a straight line. If the line is straight, then the reaction is 
second order in A and the slope of the line is equal to the rate constant (Fig. 6.11). 
Equation 6.15c enables us to predict the concentration of A at any time aft er the 
start of the reaction (Fig. 6.12). We see that the concentration of A approaches 
zero more slowly in a second-order reaction than in a fi rst-order reaction with the 
same initial rate (Fig. 6.13).

It follows from eqn 6.15a by substituting t = t1/2 and [A] = 12[A]0 that the half-life 
of a species A that is consumed in a second-order reaction is

t1/2 = 1
kr[A]0

 Half-life for a second-
order reaction

 (6.16)

Th erefore, unlike a fi rst-order reaction, the half-life of a substance in a second-
order reaction varies with the initial concentration. A practical consequence of 
this dependence is that species that decay by second-order reactions (which 
includes some environmentally harmful substances) may persist in low con-
centrations for long periods because their half-lives are long when their concen-
trations are low.

Another type of second-order reaction is one that is fi rst order in each of two 
reactants A and B:

d[A]
dt

 = −kr[A][B] Overall second-order 
rate law

 (6.17a)

We have already seen that the rate of formation of DNA from two complemen-
tary strands can be modeled by this rate law. We cannot integrate eqn 6.17a until 
we know how the concentration of B is related to that of A. For example, if the 

Fig. 6.11 Th e determination of the 
rate constant of a second-order 
reaction. A straight line is 
obtained when 1/[A] is plotted 
against t; the slope is kr.

Fig. 6.12 Th e variation with time 
of the concentration of a reactant 
in a second-order reaction.
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reaction is A + B → P, where P denotes products and the initial concentrations 
are [A]0 and [B]0, then we show in the following Justifi cation that at a time t aft er 
the start of the reaction, the concentrations satisfy the relation

ln AC
[B]/[B]0

[A][A]0

D
F  = ([B]0 − [A]0)krt Integrated overall 

second-order rate law
 (6.17b)

Th erefore, a plot of the expression on the left  against t should be a straight line 
from which kr can be obtained. Note that if [A]0 = [B]0, then the solutions are 
those already given in eqn 6.13b (but this solution cannot be found simply by 
setting [A]0 = [B]0 in eqn 6.17b.)

Fig. 6.13 Although the initial 
decay of a second-order reaction 
may be rapid, later the 
concentration approaches zero 
more slowly than in a fi rst-order 
reaction with the same initial rate 
(compare Fig. 6.7).

  Mathematical toolkit 6.2 Integration by the method of partial fractions

To solve an integral of the form

I = � 1
(a − x)(b − x)

 dx

where a and b are constants, we use the method of par-
tial fractions in which a fraction that is the product 
of terms (as in the denominator of this integrand) is 
written as a sum of fractions. To implement this pro-
cedure we write the integrand as

1
(a − x)(b − x)

 = 1
b − a 

A
C

1
a − x

 − 1
b − x

D
F

Th en we integrate each term on the right by using the 
standard integral already given in Justifi cation 6.1. It 
follows that

I = 1
b − a

 
⎡
⎢
⎣�

dx
a − x

 − � dx
b − x

⎤
⎥
⎦

 = 1
b − a 

A
C  

ln 1
a − x

 − ln 1
b − x

D
F  + constant

Justification 6.3 Second-order integrated rate laws II

It follows from the reaction stoichiometry that when the concentration of A 
has fallen to [A]0 − x, the concentration of B will have fallen to [B]0 − x because 
each A that disappears entails the disappearance of one B. It follows that

d[A]
dt

 = −kr([A]0 − x)([B]0 − x)

Th en, because [A] = [A]0 − x and d[A]/dt = −dx/dt, the rate law is

dx
dt

 = kr([A]0 − x)([B]0 − x)

Th e initial condition is that x = 0 when t = 0; so the integration required is

�
x

0

dx
([A]0 − x)([B]0 − x)

 = kr�
t

0

dt

Th e integral on the right is simply krt. Th e integral on the left  is evaluated by 
using the method of partial fractions (see Mathematical toolkit 6.2):

�
x

0

dx
([A]0 − x)([B]0 − x)

 = 1
[B]0 − [A]0

 !@ln AC
[A]0

[A]0 − x
D
F  − ln AC

[B]0

[B]0 − x)
D
F

#
$
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Th e two logarithms can be combined as follows:

ln AC
[A]0

[A]0 − x
D
F  − ln AC

[B]0

[B]0 − x
D
F  = ln [A]0 − ln ([A]0 − x) − ln [B]0 + ln ([B]0 − x)

 = ln [A]0 − ln [A] − ln [B]0 + ln [B]
 = {ln [B] − ln [B]0} − {ln [A] − ln [A]0}

 = ln AC
[B]
[B]0

D
F  − ln AC

[A]
[A]0

D
F

 = ln AC
[B]/[B]0

[A]/[A]0

D
F

where we have used [A] = [A]0 − x and [B] = [B]0 − x. Combining all the results 
so far gives eqn 6.17b.

Equation 6.17b can be rearranged to give the concentration of either reactant. 
To do this, we substitute [A] = [A]0 − x and [B] = [B]0 − x into the equation written 
in the form

[B][A]0

[A][B]0
 = e([B]0−[A]0)krt

and obtain

[A]0([B]0 − x)
[B]0([A]0 − x)

 = e([B]0−[A]0)krt

Th is expression is then solved for x:

x = [A]0[B]0(e([B]0−[A]0)krt − 1)
[B]0e([B]0−[A]0)krt − [A]0

At this point, we can form either [A] or [B]. For instance, from [A] = [A]0 − x 
we fi nd

[A] = [A]0([B]0 − [A]0)
[B]0e([B]0−[A]0)krt − [A]0

 (6.18)

Th e time dependence of [A] and [B] is illustrated in Fig. 6.14.

Fig. 6.14 Th e time dependence 
of the concentrations of the 
reactants in a reaction with the 
overall second-order rate law 
in eqn 6.17a. We have taken 
[B]0 = 2[A]0.

Case study 6.1 Pharmacokinetics

Pharmacokinetics is the study of the rates of absorption and elimination of 
drugs by organisms. In most cases, elimination is slower than absorption and 
is a more important determinant of availability of a drug for binding to its tar-
get. A drug can be eliminated by many mechanisms, such as metabolism in the 
liver, intestine, or kidney followed by excretion of breakdown products through 
urine or feces.

As an example of pharmacokinetic analysis, consider the elimination of 
b-adrenergic blocking agents (‘b-blockers’), drugs used in the treatment 
of hypertension. Aft er intravenous administration of a b-blocker, the blood 
plasma of a patient was analyzed for remaining drug, and the data are shown 
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below, where c is the mass concentration of the drug measured at a time t aft er 
the injection.

t/min 30 60 120 150 240 360 480
c/(ng cm−3) 699 622 413 292 152 60 24

To see if the removal is a fi rst-order process, we draw up the following table:

t/min 30 60 120 150 240 360 480
ln (c/(ng cm−3)) 6.550 6.433 6.023 5.677 5.024 4.09 3.18

Th e graph of the data is shown in Fig. 6.8. Th e plot is straight, confi rming 
a fi rst-order process. Its least-squares best-fi t slope is −7.6 × 10−3, so kr = 
7.6 × 10−3 min−1 and t1/2 = 91 min at 310 K, body temperature.

Most drugs are eliminated from the body by a fi rst-order process. An essential 
aspect of drug development is the optimization of the half-life of elimination, 
which needs to be long enough to allow the drug to fi nd and act on its target 
organ but not so long that harmful side eff ects become important.

Fig. 6.15 Th e general form of an 
Arrhenius plot of ln kr against 
1/T. Th e slope is equal to −Ea/R 
and the intercept at 1/T = 0 is 
equal to ln A.

The temperature dependence of 
reaction rates

Th e rates of most chemical reactions increase as the temperature is raised. 
Many organic reactions in solution lie somewhere in the range spanned by the 
hydrolysis of methyl ethanoate (for which the rate constant at 35°C is 1.8 times 
that at 25°C) and the hydrolysis of sucrose (for which the factor is 4.1). Reactions 
in the gas phase typically have rates that are only weakly sensitive to the tempera-
ture. Enzyme-catalyzed reactions may show a more complex temperature depend-
ence because raising the temperature may provoke conformational changes and 
even denaturation and degradation, which lower the eff ectiveness of the enzyme. 
We saw in the discussion of the hydrophobic eff ect (Section 2.7) that lowering the 
temperature can also result in denaturation, so an enzyme may lose its eff ective-
ness at low temperatures too.

6.6 The Arrhenius equation
The balance of reactions in organisms depends strongly on the temperature: that is 
one function of a fever, which modifies reaction rates in the infecting organism and 
hence destroys it. To discuss the effect quantitatively, we need to know the factors 
that make a reaction rate more or less sensitive to temperature.

As data on reaction rates were accumulated toward the end of the nineteenth 
century, the Swedish chemist Svante Arrhenius noted that almost all of them 
showed a similar dependence on temperature. In particular, he noted that a graph 
of ln kr, where kr is the rate constant for the reaction, against 1/T, where T is the 
(absolute) temperature at which kr is measured, gives a straight line with a slope 
that is characteristic of the reaction (Fig. 6.15). Th e mathematical expression of 
this conclusion is that the rate constant varies with temperature as

ln kr = intercept + slope × 1
T

 Empirical temperature 
dependence

 (6.19a)
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Th is expression is normally written as the Arrhenius equation:

ln kr = ln A − Ea

RT
 Arrhenius equation  (6.19b)

or alternatively as

kr = Ae−Ea/RT (6.19c)

Th e parameter A (which has the same units as kr) is called the pre-exponential 
factor and the parameter Ea (which is a molar energy and normally expressed as 
kilojoules per mole) is called the activation energy. Collectively, A and Ea are 
called the Arrhenius parameters of the reaction.

A practical point to note by comparing eqns 6.19a and 6.19b is that a high activ-
ation energy corresponds to a reaction rate that is very sensitive to temperature 
(the Arrhenius plot has a steep slope, Fig. 6.16). Conversely, a small activation 
energy indicates a reaction rate that varies only slightly with temperature (the 
slope is shallow). A reaction with zero activation energy (so kr = A), such as for 
some radical recombination reactions in the gas phase, has a rate that is largely 
independent of temperature. Marked deviations from a straight line at high or 
low temperature may indicate that an enzyme has lost its eff ectiveness through 
denaturation.

Fig. 6.16 Th ese Arrhenius plots 
correspond to three diff erent 
activation energies. Note the fact 
that the plot corresponding to 
the higher activation energy 
indicates that the rate of that 
reaction is more sensitive to 
temperature.

Example 6.2 Determining the Arrhenius parameters

Th e rate constant of the acid hydrolysis of sucrose discussed in Section 6.6b 
varies with temperature as follows. Find the activation energy and the pre-
exponential factor.

T/K 297 301 305 309 313
kr/(10−3 s−1)  4.8 7.8 13 20 32

Strategy We plot ln kr against 1/T and expect a straight line. Th e slope is −Ea/R 
and the intercept of the extrapolation to 1/T = 0 is ln A. It is best to do a least-
squares fi t of the data to a straight line. Note that, as remarked in the text, A has 
the same units as kr.

Solution Th e Arrhenius plot is shown in Fig. 6.17. Th e least-squares best fi t of 
the line has slope −1.10 × 104 and intercept 31.7 (which is well off  the graph), 
therefore

Ea = −R × slope
 = −(8.3145 J K−1  mol−1) × (−1.10 × 104 K) = 91.5 kJ mol−1

and

A = e31.7 s−1 = 5.8 × 1013 s−1

Self-test 6.5 Determine A and Ea from the following data:

T/K 300 350 400 450 500
kr/(dm3 mol−1 s−1) 7.9 × 106  3.0 × 107 7.9 × 107 1.7 × 108 3.2 × 108

Answer: 8 × 1010 dm3 mol−1 s−1, 23 kJ mol−1

Fig. 6.17 Th e Arrhenius plot for 
the acid hydrolysis of sucrose, 
and the best (least-squares) 
straight line fi tted to the data 
points. Th e data are from 
Example 6.2.
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Once the activation energy of a reaction is known, it is a simple matter to pre-
dict the value of a rate constant kr,2 at a temperature T2 from its value kr,1 at another 
temperature T1 that lies within the functional range of the enzyme. To do so, 
we write

ln kr,2 = ln A − Ea

RT2

and then subtract eqn 6.19b (with T identifi ed as T1 and kr as kr,1), so obtaining

ln kr,2 − ln kr,1 = − Ea

RT2
 + Ea

RT1

and therefore

ln kr,2

kr,1
 = Ea

R
 AC

1
T1

 − 1
T2

D
F  Temperature dependence 

of the rate constant
 (6.20)

A brief illustration

For a reaction with an activation energy of 50 kJ mol−1, an increase in the tem-
perature from 25°C to 37°C (body temperature) corresponds to

ln kr,2

kr,1
 = 50 × 103 J mol−1

8.3145 J K−1 mol−1
 AC

1
298 K

 − 1
310 K

D
F  = 50 × 103

8.3145
 AC

1
298

 − 1
310

D
F

By taking natural antilogarithms (that is, by forming ex), kr,2 = 2.18kr,1. Th is 
result corresponds to slightly more than a doubling of the rate constant.

Self-test 6.6 Th e activation energy of one of the reactions in the citric acid 
cycle (Case study 4.3) is 87 kJ mol−1. What is the change in rate constant when 
the temperature falls from 37°C to 15°C?

Answer: kr,2 = 0.076kr,1

6.7 Preliminary interpretation of the Arrhenius parameters
Once we know the molecular interpretation of the pre-exponential factor and 
the activation energy, we can identify the strategies that special biological 
macromolecules adopt to accelerate and regulate the rates of biochemical reactions.

Th e simplest interpretation of a chemical reaction is that it takes place when two 
molecules collide either in a gas or, more relevantly to biology, as they move 
through a solution. We shall refi ne this picture in Chapter 7, but it is adequate for 
our present purpose.

Th e pre-exponential factor A is a measure of the rate at which collisions occur, 
irrespective of their energy. More precisely, A is the constant of proportionality 
between the collision rate and the product of the molar concentrations of the 
reactants.

To interpret Ea, we consider how the energy of the reactant molecules A and B 
(specifi cally, their total molecular potential energy) changes in the course of a col-
lision. As the reaction proceeds, A and B come into contact, distort, and begin 
to exchange or discard atoms. Th e potential energy rises to a maximum and the 
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cluster of atoms that corresponds to the region close to the maximum is called 
the activated complex (Fig. 6.18). Aft er the maximum, the potential energy falls 
as the atoms rearrange in the cluster and reaches a value characteristic of the 
products. Th e climax of the reaction is at the peak of the potential energy, which 
corresponds to the activation energy, Ea. Here two reactant molecules have come 
to such a degree of closeness and distortion that a small further distortion will 
send them in the direction of products. Th is crucial confi guration is called the 
transition state of the reaction. Although some molecules entering the transi-
tion state might revert to reactants, if they pass through this confi guration it is 
inevitable that products will emerge from the encounter.2

We can infer from the preceding discussion that to react when they meet, two 
reactant molecules must have suffi  cient kinetic energy to surmount the barrier 
and pass through the transition state. It follows that the activation energy is the 
minimum relative kinetic energy that reactants must have in order to form products. 
For example, in a gas phase reaction there are numerous collisions each second, 
but only a tiny proportion are suffi  ciently energetic to lead to reaction. Hence, the 
exponential factor in eqn 6.19c can be interpreted as the fraction of collisions that 
have enough kinetic energy to lead to reaction.

An enzyme, and a catalyst in general, lowers the activation energy of the 
reaction either by providing a diff erent reaction pathway with a lower activation 
energy or by lowering the energy of the transition state to make it more accessible 
(Fig. 6.19). Enzymes are very specifi c and can have a dramatic eff ect on the reac-
tions they control. For example, the enzyme catalase reduces the activation energy 
for the decomposition of hydrogen peroxide from 76 kJ mol−1 to 8 kJ  mol−1, cor-
responding to an acceleration of the reaction by a factor of 1012 at 298 K.

Fig. 6.18 A potential energy profi le 
for an exothermic reaction. Th e 
graph depicts schematically the 
changing potential energy of two 
species that approach, collide, 
and then go on to form products. 
Th e activation energy is the 
height of the barrier above the 
potential energy of the reactants.

A brief illustration

Th e eff ect of catalase on the rate of decomposition of H2O2 can be assessed by 
evaluating the ratio of rate constants as follows:

kr,catalyzed

kr,uncatalyzed
 = Ae−Ea,catalyzed/RT

Ae−Ea,uncatalyzed/RT
 = e−(Ea,catalyzed − Ea,uncatalyzed)/RT

 = e(68 × 103 J mol−1)/(8.3145 J K−1 mol−1) × (298 K) = 8.3 × 1011

2 Th e terms activated complex and transition state are oft en used as synonyms; however, we shall 
preserve a distinction.

Fig. 6.19 A catalyst acts by 
providing a new reaction 
pathway between reactants and 
products, with a lower activation 
energy than the original pathway.
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Checklist of key concepts

 1. Th e rates of chemical reactions are measured by using 
techniques that monitor the concentrations of species 
present in the reaction mixture (Table 6.1).

 2. Techniques for the study of reactions include 
real-time and quenching procedures, fl ow and 
stopped-fl ow techniques, and fl ash photolysis.

 3. Th e instantaneous rate of a reaction is the slope of the 
tangent to the graph of concentration against time 
(expressed as a positive quantity).

 4. A rate law is an expression for the reaction rate in 
terms of the concentrations of the species that occur 
in the overall chemical reaction.

 5. For a rate law of the form rate = kr[A]a[B]b . . . , the 
order with respect to A is a and the overall order is 
a + b + · · · .

 6. An integrated rate law is an expression for the rate of 
a reaction as a function of time.

 7. Th e half-life t1/2 of a reaction is the time it takes for 
the concentration of a species to fall to half its initial 
value.

 8. Th e temperature dependence of the rate constant of 
a reaction typically follows the Arrhenius law.

 9. Th e greater the activation energy, the more sensitive 
the rate constant is to the temperature.

 10. Th e activation energy is the minimum relative kinetic 
energy that reactants must have in order to form 
products; the pre-exponential factor is a measure 
of the rate at which collisions occur irrespective of 
their energy.

Discussion questions

6.1 Consult literature sources and list the observed timescales during 
which the following processes occur: proton transfer reactions, the 
initial event of vision, energy transfer in photosynthesis, the initial 
electron transfer events of photosynthesis, and the helix-to-coil 
transition in polypeptides.

6.2 Write a brief report on a recent research article in which at least 
one of the following techniques was used to study the kinetics of a 
biochemical reaction: stopped-fl ow techniques, fl ash photolysis, 
chemical quench-fl ow methods, or freeze-quench methods. Your 
report should be similar in content and extent to one of the Case 
studies found throughout this book.

6.3 Describe the main features, including advantages and 
disadvantages, of the following experimental methods for determining 
the rate law of a reaction: the isolation method, the method of initial 
rates, and fi tting data to integrated rate law expressions.

6.4 Distinguish between zeroth-order, fi rst-order, second-order, and 
pseudo-fi rst-order reactions.

6.5 Defi ne the terms in and limit the generality of the expression 
ln kr = ln A − Ea/RT.

6.6 Provide molecular interpretations of the activation energy and 
the pre-exponential factor.

Checklist of key equations

Property Equation Comment

Half-life t1/2 = (ln 2)/kr First-order reaction

t1/2 = 1/kr[A]0 Second-order reaction
Arrhenius equation ln kr = ln A − Ea/RT
Integrated rate laws Zeroth order [A] = [A]0 − krt for krt ≤ [A]0 A → P v = kr

First order [A] = [A]0e−krt A → P v = kr[A]
Second order [A] = [A]0/(1 + krt[A]0) A → P v = kr[A]2

[A] = [A]0([B]0 − [A]0)/f(t) A + B → P v = kr[A][B]
f(t) = [B]0e([B]0−[A]0)krt − [A]0
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Exercises

6.7 Th e molar absorption coeffi  cient of a substance dissolved in water 
is known to be 855 dm3 mol−1 cm−1 at 270 nm. To determine the rate 
of decomposition of this substance, a solution with a concentration of 
3.25 mmol dm−3 was prepared. Calculate the percentage reduction in 
intensity when light of that wavelength passes through 2.5 mm of this 
solution.

6.8 Th e molar absorption coeffi  cient of cytochrome P450, an enzyme 
involved in the breakdown of harmful substances in the liver and 
small intestine, at 522 nm is 291 dm3 mol−1 cm−1. In a study of its 
enzymatic activity, a solution of cytochrome P450 was prepared in a 
cell of length 6.5 mm. When light of 522 nm passes through this cell, 
39.8 per cent of the light is absorbed. What is the molar concentration 
of cytochrome P450 in the solution?

6.9 (a) Th e rate of formation of C in the reaction 2 A + B → 3 C + 2 D 
is 2.2 mol dm−3 s−1. State the rates of formation and consumption of 
A, B, and D. (b) Th e rate law for this reaction was reported as rate = 
kr[A][B][C] with the molar concentrations in mol dm−3 and the time 
in seconds. What are the units of kr?

6.10 If the rate laws are expressed with (a) concentrations in numbers 
of molecules per cubic meter (molecules m−3) and (b) pressures in 
kilopascals, what are the units of the second-order and third-order 
rate constants?

6.11 Th e growth of microorganisms may be described in general 
terms as follows: (a) initially, cells do not grow appreciably; (b) aft er 
the initial period, cells grow rapidly with fi rst-order kinetics; (c) aft er 
this period of growth, the number of cells reaches a maximum level 
and then begins to decrease. Sketch a plot of log(number of 
microorganisms) against t that refl ects the kinetic behavior just 
described.

6.12 Laser fl ash photolysis is oft en used to measure the binding 
rate of CO to heme proteins, such as myoglobin (Mb), because CO 
dissociates from the bound state relatively easily on absorption of 
energy from an intense and short pulse of light. Th e reaction is usually 
run under pseudo-fi rst-order conditions. For a reaction in which 
[Mb]0 = 10 mmol dm−3, [CO] = 400 mmol dm−3, and the rate constant 
is 5.8 × 105 dm3 mol−1 s−1, plot a curve of [Mb] against time. Th e 
observed reaction is Mb + CO → MbCO.

6.13 Th e oxidation of ethanol to acetaldehyde (ethanal) by NAD+ in 
the liver in the presence of the enzyme liver alcohol dehydrogenase:

CH3CH2OH(aq) + NAD+(aq) + H2O(l) →
 CH3CHO(aq) + NADH(aq) + H3O+(aq)

is eff ectively zeroth order overall as the ethanol is in excess and the 
concentration of the NAD+ is maintained at a constant level by normal 
metabolic processes. Calculate the rate constant for the conversion of 
ethanol to ethanal in the liver if the concentration of ethanol in body 
fl uid drops by 50 per cent from 1.5 g dm−3, a level that results in lack of 
coordination and slurring of speech, in 49 min at body temperature. 
Express your answer in units of g dm−3 h−1.

6.14 In a study of the alcohol dehydrogenase catalyzed oxidation of 
ethanol, the molar concentration of ethanol decreased in a fi rst-order 
reaction from 220 mmol dm−3 to 56.0 mmol dm−3 in 1.22 × 104 s. 
What is the rate constant of the reaction?

6.15 Th e elimination of carbon dioxide from pyruvate ions by a 
decarboxylase enzyme was monitored by measuring the partial 
pressure of the gas as it was formed in a 250 cm3 fl ask at 293. In one 
experiment, the partial pressure increased from 0 to 100 Pa in 522 s in 
a fi rst-order reaction when the initial concentration of pyruvate ions 
in 100 cm3 of solution was 3.23 mmol dm−3. What is the rate constant 
of the reaction?

6.16 Carbonic anhydrase is a zinc-based enzyme that catalyzes the 
conversion of carbon dioxide to carbonic acid. In an experiment 
to study its eff ect, it was found that the molar concentration of 
carbon dioxide in solution decreased from 220 mmol dm−3 to 
56.0 mmol dm−3 in 1.22 × 104 s. What is the rate constant of the 
fi rst-order reaction?

6.17 Th e formation of NOCl from NO in the presence of a large 
excess of chlorine is pseudo-second order in NO. When the 
initial pressure of NO was 300 Pa, the partial pressure of NOCl 
increased from zero to 100 Pa in 522 s. What is the rate constant 
of the reaction?

6.18 Th e following data were obtained on the initial rate of 
isomerization of a compound S catalyzed by an enzyme E:

[S]0/(mmol dm−3)  1.00 2.00 3.00 4.00
V0/(mmol dm−3 s−1) (a) 4.5 9.0 15.0 18.0
 (b) 14.8 25.0 45.0 59.7
 (c) 58.9 120.0 180.0 238.0

Th e enzyme concentrations are (a) 1.00 mmol dm−3, (b) 3.00 mol 
dm−3, and (c) 10.0 mmol dm−3. Find the orders of reactions with 
respect to S and E, and the rate constant.

6.19 Sucrose is readily hydrolyzed to glucose and fructose in acidic 
solution. An experiment on the hydrolysis of sucrose in 0.50 m 
HCl(aq) produced the following data:

t/min 0 14 39 60 80
[sucrose]/(mol dm−3) 0.316 0.300 0.274 0.256 0.238
t/min  110 140 170 210 
[sucrose]/(mol dm−3) 0.211 0.190 0.170 0.146 

Determine the order of the reaction with respect to sucrose and the 
rate constant of the reaction.

6.20 Iodoacetamide and N-acetylcysteine react with 1:1 
stoichiometry. Th e following data were collected at 298 K for the 
reaction of 1.00 mmol dm−3 N-acetylcysteine with 1.00 mmol dm−3 
iodoacetamide:

t/s 10 20 40
[N-acetylcysteine]/(mmol dm−3) 0.770 0.580 0.410
t/s 60 100 150
[N-acetylcysteine]/(mmol dm−3) 0.315 0.210 0.155

(a) Explain why analysis of these data yield the overall order of 
the reaction and not the order with respect to N-acetylcysteine 
(or iodoacetamide). (b) Plot the data in an appropriate fashion to 
determine the overall order of the reaction. (c) From the graph, 
determine the rate constant.

6.21 Th e following data were collected at 298 K for the reaction 
of 1.00 mmol dm−3 N-acetylcysteine with 2.00 mmol dm−3 
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iodoacetamide under conditions that are diff erent from those 
in Exercise 6.20:

t/s 5 10 25 35 50 60
[N-acetylcysteine]/(mmol dm−3) 0.74  0.58 0.33 0.21 0.12 0.09

(a) Use these data and your result from Exercise 6.20a to determine 
the order of the reaction with respect to each reactant. (b) Determine 
the rate constant.

6.22 Th e composition of a liquid phase reaction 2 A → B was followed 
spectrophotometrically with the following results:

t/min 0 10 20 30 40 ∞
[B]/(mol dm−3) 0 0.089 0.153 0.200 0.230 0.312

Determine the order of the reaction with respect to sucrose and the 
rate constant of the reaction.

6.23 Establish the integrated form of a third-order rate law of the 
form v = kr[A]3. What would it be appropriate to plot to confi rm that 
a reaction is third order?

6.24 Derive an integrated expression for a second-order rate law 
v = kr[A][B] for a reaction of stoichiometry 2 A + 3 B → P.

6.25 Derive the integrated form of a third-order rate law v = kr[A]2[B] 
in which the stoichiometry is 2 A + B → P and the reactants are 
initially present in (a) their stoichiometric proportions and (b) with 
B present initially in twice the amount.

6.26 Th e half-life of pyruvic acid in the presence of an 
aminotransferase enzyme (which converts it to alanine) was 
found to be 221 s. How long will it take for the concentration of 
pyruvic acid to fall to 1

64 of its initial value in this fi rst-order reaction?

6.27 Radioactive decay of unstable atomic nuclei is a fi rst-order 
process. Th e half-life for the (fi rst-order) radioactive decay of 14C is 
5730 a (1 a is the SI unit 1 annum, for 1 year; the nuclide emits b 
particles, high-energy electrons, with an energy of 0.16 MeV). 
An archaeological sample contained wood that had only 69 per 
cent of the 14C found in living trees. What is its age?

6.28 One of the hazards of nuclear explosions is the generation of 
90Sr and its subsequent incorporation in place of calcium in bones. 
Th is nuclide emits b particles of energy 0.55 MeV and has a half-life 
of 28.1 a (1 a is the SI unit 1 annum, for 1 year). Suppose 1.00 mg was 
absorbed by a newborn child. How much will remain aft er (a) 19 a 
and (b) 75 a if none is lost metabolically?

6.29 Th e estimated half-life for P–O bonds is 1.3 × 105 a (1 a is the SI 
unit 1 annum, for 1 year). Approximately 109 such bonds are present 
in a strand of DNA. How long (in terms of its half-life) would a single 
strand of DNA survive with no cleavage in the absence of repair 
enzymes?

6.30 To prepare a dog for surgery, about 30 mg (kg body mass)−1 of 
phenobarbital must be administered intravenously. Th e anesthetic is 
metabolized with fi rst-order kinetics and a half-life of 4.5 h. Aft er 
about 2 h, the drug begins to lose its eff ect in a 15-kg dog. What mass 

of phenobarbital must be re-injected to restore the original level of 
anesthetic in the dog?

6.31 Th e second-order rate constant for the reaction 
CH3COOC2H5(aq) + OH−(aq) → CH3CO2

−(aq) + CH3CH2OH(aq) 
is 0.11 dm3 mol−1 s−1. What is the concentration of ester aft er (a) 15 s 
and (b) 15 min when ethyl acetate is added to sodium hydroxide so 
that the initial concentrations are [NaOH] = 0.055 mol dm−3 and 
[CH3COOC2H5] = 0.150 mol dm−3?

6.32 A reaction 2 A → P has a second-order rate law with 
kr = 1.24 cm3 mol−1 s−1. Calculate the time required for the 
concentration of A to change from 0.260 mol dm−3 to 0.026 mol dm−3.

6.33 Show that the ratio t1/2/t3/4, where t1/2 is the half-life and t3/4 is 
the time for the concentration of A to decrease to 3

4 of its initial value 
(implying that t3/4 < t1/2), can be written as a function of n alone and 
can therefore be used as a rapid assessment of the order of a reaction.

6.34 (a) Show that, for a reaction that is n-order in A, t1/2 is given by

t1/2 = 2n−1 − 1
(n − 1)kr[A]o

n−1

(b) Deduce an expression for the time it takes for the concentration 
of a substance to fall to one-third the initial value in an nth-order 
reaction.

6.35 A rate constant is 1.78 × 104 dm3 mol−1 s−1 at 19°C and 
1.38 × 10−3 dm3 mol−1 s−1 at 37°C. Evaluate the Arrhenius 
parameters of the reaction.

6.36 Th e activation energy for the denaturation of the O2-binding 
protein hemocyanin is 408 kJ mol−1. At what temperature will the 
rate be 10 per cent greater than its rate at 25°C?

6.37 Which reaction responds more strongly to changes of 
temperature, one with an activation energy of 52 kJ mol−1 or one 
with an activation energy of 25 kJ mol−1?

6.38 Th e rate constant of a reaction increases by a factor of 1.23 when 
the temperature is increased from 20°C to 27°C. What is the activation 
energy of the reaction?

6.39 Make an appropriate Arrhenius plot of the following data for 
the binding of an inhibitor to the enzyme carbonic anhydrase and 
calculate the activation energy for the reaction.

T/K 289.0 293.5 298.1 303.2 308.0 313.5
kr/(106 dm3 mol−1 s−1) 1.04 1.34 1.53 1.89 2.29 2.84

6.40 Food rots about 40 times more rapidly at 25°C than when it is 
stored at 4°C. Estimate the overall activation energy for the processes 
responsible for its decomposition.

6.41 Th e enzyme urease catalyzes the reaction in which urea is 
hydrolyzed to ammonia and carbon dioxide. Th e half-life of urea 
in the pseudo-fi rst-order reaction for a certain amount of urease 
doubles when the temperature is lowered from 20°C to 10°C and the 
equilibrium constant for binding of urea to the enzyme is largely 
unchanged. What is the activation energy of the reaction?
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Project

6.42* Prebiotic reactions are reactions that might have occurred 
under the conditions prevalent on the Earth before the fi rst living 
creatures emerged and can lead to analogs of molecules necessary 
for life as we now know it. To qualify, a reaction must proceed with 
a favorable rate and have a reasonable value for the equilibrium 
constant. An example of a prebiotic reaction is the formation of 
5-hydroxymethyluracil (HMU) from uracil and formaldehyde 
(HCHO). Amino acid analogs can be formed from HMU under 
prebiotic conditions by reaction with various nucleophiles, such as 
H2S, HCN, indole, and imidazole. For the synthesis of HMU at 
pH = 7, the temperature dependence of the rate constant is given by

log kr/(dm3 mol−1 s−1) = 11.75 − 5488/(T/K)

and the temperature dependence of the equilibrium constant is given by

log K = −1.36 + 1794/(T/K)

(a) Calculate the rate constants and equilibrium constants over a 
range of temperatures corresponding to possible prebiotic conditions, 
such as 0–50°C, and plot them against temperature.

(b) Calculate the activation energy and the standard reaction Gibbs 
energy and enthalpy at 25°C.

(c) Prebiotic conditions are not likely to be standard conditions. 
Speculate about how the actual values of the reaction Gibbs energy 
and enthalpy might diff er from the standard values. Do you expect 
that the reaction would still be favorable?

* Adapted from an exercise provided by Charles Trapp, Carmen 
Giunta, and Marshall Cady.
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Even quite simple rate laws can give rise to complicated behavior. The observation 
that the heart maintains a steady pulse throughout a lifetime, but may break into fibril-
lation during a heart attack, is one sign of that complexity. On a less personal scale, 
intermediates come and go in the course of reactions, and all reactions approach 
equilibrium with the forward and reverse reactions proceeding at the same rate. 
However, the complexity of the behavior of reaction rates means that the study of 
reaction rates can give deep insight into the way that reactions actually take place. As 
we remarked in Chapter 6, rate laws are a window on to the mechanism, the sequence 
of elementary molecular events that leads from the reactants to the products, of the 
reactions they summarize. In this chapter, we see how to interpret an observed rate 
law in terms of a proposed mechanism in preparation for dealing with biological sys-
tems in Chapter 8.

Reaction mechanisms

So far, we have considered very simple rate laws, in which reactants are consumed 
or products formed. However, all reactions actually proceed toward a state of 
equilibrium in which the reverse reaction becomes increasingly important. 
Moreover, many reactions—particularly those in organisms—proceed to prod-
ucts through a series of intermediates. In organisms (and in chemical plants), one 
of these intermediates may be of crucial importance and the ultimate products 
may represent waste.

7.1 The approach to equilibrium
Many biochemical reactions take place in steps that reach equilibrium quickly, and 
to understand their role we need to understand the relation between their kinetic 
behavior and their equilibrium composition.

All forward reactions are accompanied by their reverse reactions. At the start of 
a reaction, when little or no product is present, the rate of the reverse reaction 
is negligible. However, as the concentration of products increases, the rate at 
which they decompose into reactants becomes greater. At equilibrium, the reverse 
rate matches the forward rate and the reactants and products are present in 
abundances given by the equilibrium constant for the reaction.

(a) The relation between equilibrium constants and rate constants

We can analyze the relation between rates and equilibrium by thinking of a very 
simple reaction of the form

Accounting for the 
rate laws 7
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Forward: A → B Rate of formation of B = kr[A]
Reverse: B → A Rate of decomposition of B = k r′[B]

For instance, we could envisage this scheme as the interconversion of coiled (A) 
and uncoiled (B) DNA molecules. Th e net rate of formation of B, the diff erence 
of its rates of formation and decomposition, is

Net rate of formation of B = d[B]
dt

 = kr[A] − k r′[B] 

When the reaction has reached equilibrium, the concentrations of A and B are 
[A]eq and [B]eq and there is no net formation of either substance. It follows that 
d[B]/dt = 0 and hence that kr[A]eq = k r′[B]eq. Th erefore, the equilibrium constant 
for the reaction is related to the forward and reverse rate constants by

K = [B]eq

[A]eq
 = kr

k r′
 The equilibrium constant 

in terms of rate constants
 (7.1)

If the forward rate constant is much larger than the reverse rate constant, then 
K >> 1. If the opposite is true, then K << 1. Equation 7.1 provides a crucial connec-
tion between the kinetics of a reaction and its equilibrium properties. It is also 
very useful in practice, for we may be able to measure the equilibrium constant 
and one of the rate constants and can then calculate the missing rate constant 
from eqn 7.1. Alternatively, we can use the relation to calculate the equilibrium 
constant from kinetic measurements. Equation 7.1 is not valid when the forward 
and reverse reactions have diff erent orders; we introduce a more general version 
of eqn 7.1 in Section 7.2.

Equation 7.1 also gives us insight into the temperature dependence of equilib-
rium constants. First, we suppose that both the forward and reverse reactions 
show Arrhenius behavior (Section 6.6). As we see from Fig. 7.1, for an exothermic 
reaction the activation energy of the forward reaction is smaller than that of the 
reverse reaction. Th erefore, the forward rate constant increases less sharply with 

  Mathematical toolkit 7.1 Differential equations for kinetics

We need two types of diff erential equations in this 
chapter. One has the form

dy
dx

 + ay = b

where a and b are constants. We encounter an equa-
tion of this form in Justifi cation 7.1. Th e solution is

y = ce−ax + b/a

where c is a constant. To verify this solution you should 
use the relation

d
dx

 e±ax = ±ae±ax

Th e second type has the more complicated form

dy
dx

 + a(x)y = f(x)

Th is equation has the solution

y = e−F(x)�eF(x)f(x)dx + ce−F(x)

where c is a constant and

F(x) = �a(x)dx

We encounter an equation of this type in Section 
7.3(a), where a is a constant (so F(x) = ax) and where 
f(x) = be−b′x with b and b′ constants. In that special case, 
the solution is

y = be−b′x

a − b′
 + ce−ax

Fig. 7.1 Th e reaction profi le for 
an exothermic reaction. Th e 
activation energy is greater for 
the reverse reaction than for the 
forward reaction, so the rate of 
the forward reaction increases 
less sharply with temperature. As 
a result, the equilibrium constant 
shift s in favor of the reactants as 
the temperature is raised.
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temperature than the reverse reaction does (recall Fig. 6.18). Consequently, when 
we increase the temperature of a system at equilibrium, k r′ increases more steeply 
than kr does, and the ratio kr/k r′, and therefore K, decreases. Th is is exactly the 
conclusion we drew from the van ’t Hoff  equation (eqn 4.14), which was based on 
thermodynamic arguments.

(b) The time dependence of the approach to equilibrium

Equation 7.1 tells us the ratio of concentrations aft er a long time has passed and 
the reaction has reached equilibrium. To fi nd the concentrations at an intermedi-
ate stage, we need the integrated rate equation. If no B is present initially, we show 
in the following Justifi cation that

[A] = (k r′ + kre−(kr+kr′)t)[A]0

kr + k r′
 (7.2a)

 [B] = kr(1 − e−(kr+kr′)t)[A]0

kr + k r′
 (7.2b)

where [A]0 is the initial concentration of A.

Justification 7.1 The approach to equilibrium

Th e concentration of A is reduced by the forward reaction (at a rate kr[A]), but 
it is increased by the reverse reaction (at a rate k r′[B]). Th erefore, the net rate 
of change is

d[A]
dt

 = −kr[A] + k r′[B] 

If the initial concentration of A is [A]0 and no B is present initially, then at all 
times [A] + [B] = [A]0. Th erefore,

d[A]
dt

 = −kr[A] + k r′([A]0 − [A]) = −(kr + k r′)[A] + k r′[A]0

Th e solution of this diff erential equation is eqn 7.2a (it is an example of the fi rst 
type of diff erential equation in Mathematical toolkit 7.1, with a = kr + k r′ and 
b = k r′[A]0). To obtain eqn 7.2b, we use eqn 7.2a and [B] = [A]0 − [A].

As we see in Fig. 7.2, the concentrations start from their initial values and 
approach their fi nal equilibrium values as t approaches infi nity. We fi nd the latter 
by letting t approach infi nity in eqn 7.2 and using e−x = 0 at x = ∞:

[B]eq = kr[A]0

kr + k r′
  [A]eq = k r′[A]0

kr + k r′
 (7.3)

As may be verifi ed, the ratio of these two expressions is the equilibrium constant 
in eqn 7.1.

Fig. 7.2 Th e approach to 
equilibrium of a reaction that is 
fi rst order in both directions. 
Here we have taken kr = 2kr′. 
Note how, at equilibrium, the 
ratio of concentrations is 2:1, 
corresponding to K = 2.

In the laboratory 7.1 Relaxation techniques in biochemistry

Because many biochemical reactions are fast, we need to know how to 
measure their rates. Rapid mixing and stopped-fl ow techniques (In the labora-
tory 6.1) are ideal for studying events on a millisecond timescale, such as some 
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enzyme-catalyzed reactions and the formation of contacts between helical 
segments in a large protein. However, many biochemical processes occur in 
less than 1 ms, a timescale not accessible by the stopped-fl ow technique. For 
example, the formation of a loop between helical or sheet segments in a pro-
tein may take as little as 1 ms, and the formation of tightly packed cores with 
signifi cant tertiary structure occurs in 10–100 ms. Here we explore additional 
experimental techniques that extend the range of investigations in biochem-
ical kinetics.

We noted in In the laboratory 6.1 that the term ‘relaxation’ denotes the return 
of a system to equilibrium. It is used in chemical kinetics to indicate that an 
externally applied infl uence has shift ed the equilibrium position of a reaction, 
usually suddenly, and that the reaction is adjusting to the equilibrium com-
position characteristic of the new conditions (Fig. 7.3). We shall consider the 
response of reaction rates to a temperature jump, a sudden change in tem-
perature. We know from Section 4.6 that the equilibrium composition of a 
reaction depends on the temperature (provided DrH 3 is nonzero), so a change 
of temperature acts as a perturbation. Temperature jumps of between 5 K and 
10 K can be achieved in about 1 ms with electrical discharges. Th e high energy 
output of pulsed lasers is suffi  cient to generate temperature jumps of between 
10 K and 30 K within nanoseconds in aqueous samples. Th e laser-induced 
temperature-jump technique is very useful in studies of protein unfolding 
because a protein unfolds, or ‘melts’, at a characteristic temperature (In the 
laboratory 1.1 and Section 3.5). Proteins also lose their native structures at very 
low temperatures, a process known as cold denaturation, and re-fold when 
the temperature is increased but kept signifi cantly below the melting tempera-
ture. Hence, a temperature-jump experiment can be confi gured to monitor 
either folding or unfolding of a polypeptide, depending on the initial and fi nal 
temperatures of the sample.

When a sudden temperature increase is applied to a simple A 7 B equilibrium 
that is fi rst order in each direction, we show in the following Justifi cation that 
the composition relaxes exponentially to the new equilibrium composition:

x = x0e−t/t  1
t

 = kr + k r′ Relaxation time  (7.4)

where x is the departure from equilibrium at the new temperature, x0 is the 
departure from equilibrium immediately aft er the temperature jump, and t is 
the relaxation time, the time constant characteristic of the return to the new 
equilibrium composition.
 

Fig. 7.3 Th e relaxation to the new 
equilibrium composition when 
a reaction initially at equilibrium 
at a temperature T1 is subjected to 
a sudden change of temperature, 
which takes it to T2.

Justification 7.2 Relaxation to equilibrium

When the temperature of a system at equilibrium is increased suddenly, 
the rate constants change from their earlier values to the new values kr and k r′ 
characteristic of that temperature, but the concentrations of A and B remain 
for an instant at their old equilibrium values. As the system is no longer at 
equilibrium, it readjusts to the new equilibrium concentrations at a rate that 
depends on the new rate constants. We write the deviation of [A] from its new 
equilibrium value as x, so [A] = [A]eq + x and [B] = [B]eq − x. Th e net rate of 
change of the concentration of A is



 7.2 ELEMENTARY REACTIONS   247

 d[A]
dt

 = −kr[A] + k r′[B]

 = −kr([A]eq + x) + k r′([B]eq − x)
 = −(kr + k r′)x

We have used the equilibrium relation kr[A]eq = k r′[B]eq to cancel the two terms 
involving the equilibrium concentrations. From [A] = [A]eq + x it follows that 
d[A]/dt = dx/dt and therefore

dx
dt

 = −(kr + k r′)x

To solve this equation, we divide both sides by x and multiply by dt:

dx
x

 = −(kr + k r′)dt

Now integrate both sides. When t = 0, x = x0, its initial value, so the integrated 
equation has the form

�
x

x0

dx
x

 = −(kr + k r′)�
t

0

 dt

Th e integral on the left  is ln(x/x0) (see Mathematical toolkit 3.1) and that on the 
right is t. Th e integrated equation is therefore

ln x
x0

 = −(kr + k r′)t

When antilogarithms are taken of both sides, the result is eqn 7.4.

Equation 7.4 shows that the concentrations of A and B relax into the new equi-
librium at a rate determined by the sum of the two new rate constants. Because 
the equilibrium constant under the new conditions is K = kr/k r′, its value may be 
combined with the relaxation time measurement to fi nd the individual kr and k r′:

kr = K
(1 + K)t

  k r′ = 1
(1 + K)t

 (7.5)

Th e mathematical strategies described in Justifi cation 7.2 can be used to write 
expressions for the relaxation time as a function of rate constants for more com-
plex processes. In Exercise 7.13 you are invited to show that for the equilibrium 
2A 7 A2, with second-order forward rate constant kr and fi rst-order reverse 
rate constant k r′, the relaxation time is

 t = 1
k r′ + 4kr[A]eq

  (7.6)

7.2 Elementary reactions
To relate kinetic data on biochemical processes to a proposed reaction mechanism, 
we need to know how to write the rate law for each of the reaction steps.

Many reactions occur in a series of steps called elementary reactions, each of 
which involves only one or two molecules. We shall denote an elementary reac-
tion by writing its chemical equation without displaying the physical state of the 
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species or using stoichiometric coeffi  cients, as in a reaction that takes place in the 
upper atmosphere:

O + O3 → O2 + O2

Th is equation signifi es that a specifi c O atom attacks a specifi c O3 molecule to 
produce two O2 molecules. Ordinary chemical equations summarize the overall 
stoichiometry of the reaction and do not imply any specifi c mechanism.

Th e molecularity of an elementary reaction is the number of molecules com-
ing together to react. In a unimolecular reaction a single molecule shakes itself 
apart or its atoms into a new arrangement. An example is the isomerization of 
energetically excited retinal, a process that initiates the biochemical cascade 
involved in vision (Fig. 7.4). Th e radioactive decay of nuclei (for example, the 
emission of a b-particle from the nucleus of a tritium atom, which is used in 
mechanistic studies of biochemical reactions to follow the course of particular 
groups of atoms) is ‘unimolecular’ in the sense that a single nucleus shakes itself 
apart. In a bimolecular reaction, two molecules collide and exchange energy, 
atoms, or groups of atoms, or undergo some other kind of change (Fig. 7.5). Th e 
reaction between O and O3, for instance, is bimolecular.

It is important to distinguish molecularity from order:

Th e order of a reaction is an empirical quantity and is obtained by inspection of 
the experimentally determined rate law.
Th e molecularity of a reaction refers to an individual elementary reaction that 
has been postulated as a step in a proposed mechanism.

Many substitution reactions in organic chemistry (for instance, SN2 nucleophilic 
substitutions) are bimolecular and involve an activated complex that is formed 
from two reactant species. Many enzyme-catalyzed reactions can be regarded, 
to a good approximation, as bimolecular in the sense that they depend on the 
encounter of a substrate molecule and an enzyme molecule.

We can write down the rate law of an elementary reaction from its chemical 
equation. First, consider a unimolecular reaction. In a given interval, 10 times as 
many A molecules decay when there are initially 1000 A molecules as when there 
are only 100 A molecules present. Th erefore the rate of decomposition of A is 
proportional to its concentration and we can conclude that a unimolecular reac-
tion is fi rst order:

A → products  Rate of formation of products = kr[A] (7.7)

Th e rate of a bimolecular reaction is proportional to the rate at which the 
reactants meet, which in turn is proportional to both their concentrations. 
Th erefore, the rate of the reaction is proportional to the product of the two con-
centrations and an elementary bimolecular reaction is second order overall. Two 
possibilities are:

A + B → products  Rate of formation of products = kr[A][B] (7.8a)
A + A → products  Rate of formation of products = kr[A]2 (7.8b)

Th e relation between the rate constants and the equilibrium constant 
developed in Section 7.1 for overall reactions of the same order applies to ele-
mentary reactions of any order, because we can use the reaction stoichiometry 
to write down both the rate laws and the equilibrium constant. (Recall that in 
general although we can write down the equilibrium constant from the reaction 

Fig. 7.4 In a unimolecular 
elementary reaction, an 
energetically excited species 
decomposes into products or 
undergoes a conformational 
change. Shown is an example 
of the latter process: the 
isomerization of energetically 
excited retinal (denoted with 
an asterisk). In the protein 
rhodopsin, bound retinal 
undergoes a similar 
isomerization when excited by 
light, initiating the cascade 
involved in vision.

Fig. 7.5 In a bimolecular 
elementary reaction, two species 
are involved in the process.
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stoichiometry, we cannot write down the rate law of an overall reaction simply by 
inspecting its stoichiometry.) However, we need to be careful about the units 
of concentration. For example, suppose a reaction takes place by the following 
elementary steps:

A + A → B  Rate of formation of B = kr[A]2

B → A + A  Rate of formation of A = k r′[B]

Th en the net rate of formation of B is

Net rate of formation of B = kr[A]2 − k r′[B]

It follows that at equilibrium kr[A]2
eq = k r′[B]eq. Th e (dimensionless) equilibrium 

constant for this pair of elementary steps is

K = [B]eq/c3

([A]eq/c3)2
 = [B]eqc3

[A]2
eq

 = krc3

k r′
 (7.9)

(where c3 = 1 mol dm−3; see Section 3.8). We see that the criterion for K >> 1 is now 
krc3 >> k r′, and the units of each term match.

A brief illustration

Th e rates of the forward and reverse reactions for the dimerization of profl avin 
(1), an antibacterial agent that inhibits the biosynthesis of DNA by intercalating 
between adjacent base pairs, were found to be 8.1 × 108 dm3 mol−1 s−1 (second 
order) and 2.0 × 106 s−1 (fi rst order), respectively. Th e equilibrium constant for 
the dimerization is therefore

K = (8.1 × 108 dm3 mol−1 s−1) × (1 mol dm−3)
2.0 × 106 s−1

 = 4.0 × 102

7.3 Consecutive reactions
In general, biological processes have complex mechanisms and we need to know 
how to build an overall rate law from the rate law of each step of a proposed 
mechanism.

A reactant commonly produces an intermediate, a species that does not appear in 
the overall chemical equation for the reaction but which has been invoked in the 
mechanism. Biochemical processes are oft en elaborate versions of this simple 
model. For instance, the restriction enzyme EcoRI catalyzes the cleavage of DNA 
at a specifi c sequence of nucleotides (at GAATTC, making the cut between G 
and A on both strands). Th e reaction sequence it brings about is

supercoiled DNA → open-circle DNA → linear DNA

We can discover the characteristics of this type of reaction by setting up the rate 
laws for the net rate of change of the concentration of each substance.

(a) The variation of concentration with time

To illustrate the kinds of considerations involved in dealing with a mechanism, 
let’s suppose that a reaction takes place in two fi rst-order steps, in one of which 
the intermediate I (the open-circle DNA, for instance) is formed from the 
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reactant A (the supercoiled DNA) in a fi rst-order reaction, and then I decays in a 
fi rst-order reaction to form the product P (the linear DNA):

A → I  Rate of formation of I = ka[A]
I → P  Rate of formation of P = kb[I]

For simplicity, we are ignoring the reverse reactions, which is permissible if they 
are slow. Th e fi rst of these rate laws implies that A decays with a fi rst-order rate 
law and therefore that

[A] = [A]0e−kat (7.10)

Th e net rate of formation of I is the diff erence between its rate of formation and its 
rate of consumption, so we can write

Net rate of formation of I = d[I]
dt

 = ka[A] − kb[I] (7.11)

with [A] given by eqn 7.10. Th is equation is more diffi  cult to solve, but has the 
form of the second example in Mathematical toolkit 7.1 and the solution is

[I] = ka

kb − ka
 (e−kat − e−kbt)[A]0 (7.12)

Fig. 7.6 Th e concentrations of 
the substances involved in a 
consecutive reaction of the 
form A → I → P, where I is an 
intermediate and P a product. We 
have used k1 = 5k2. Note how at 
each time the sum of the three 
concentrations is a constant.

A brief illustration

Consider a manufacturing process of a pharmaceutical in which ka = 0.120 h−1 
and kb = 0.012 h−1. It follows that the intermediate is at a maximum at t = 21 h 
aft er the start of the process. Th is is the optimum time for a manufacturer 
trying to make the intermediate in a batch process to extract it.
 

Self-test 7.1 Show that eqn 7.12 follows from eqn 7.11 by (i) recasting 
eqn 7.11 so that it resembles the standard form in the second example of 
Mathematical toolkit 7.1 and (ii) showing that the solution to the standard 
form can be rearranged into eqn 7.12 with the following substitutions: x = t, 
f(x) = ka[A] (with [A] given by eqn 7.10), F(x) = kbt, a = kb, b = ka[A]0, b′ = ka, 
and c = ka[A]0/(ka − kb).

Finally, because [A] + [I] + [P] = [A]0 at all stages of the reaction, the concentra-
tion of P is

 [P] = AC1 + kae−kbt − kbe−kat

kb − ka

D
F [A]0 (7.13)

Th ese solutions are illustrated in Fig. 7.6. We see that the intermediate grows in 
concentration initially, then decays as A is exhausted. Meanwhile, the concentra-
tion of P rises smoothly to its fi nal value. As we see in the following Justifi cation, 
the intermediate reaches its maximum concentration at

t = 1
ka − kb

 ln ka

kb
 Time of maximum 

concentration
 (7.14)
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Justification 7.3 The time of maximum concentration

To fi nd the time corresponding to the maximum concentration of intermedi-
ate, we diff erentiate eqn 7.12 and look for the time at which d[I]/dt = 0. First 
we obtain

d[I]
dt

 = ka

kb − ka
 (−kae−kat + kbe−kbt)[A]0 = 0

Th is equation is satisfi ed if

kae−kat = kbe−kbt

Because eatebt = e(a+b)t, this relation can be written as

ka

kb
 = e(ka−kb)t

Taking logarithms of both sides leads to eqn 7.14.

(b) The rate-determining step

We now suppose that the second step in the reaction we are considering is very 
fast, so that whenever an I molecule is formed, it decays rapidly into P. We can use 
the condition kb >> ka to write e−kbt << e−kat and kb − ka ≈ kb. Equation 7.13 then 
becomes

[P] ≈ (1 − e−kat)[A]0 (7.15)

Th is equation shows that the formation of the fi nal product P depends on only 
the smaller of the two rate constants, ka. Th at is, the rate of formation of P depends 
on the rate at which I is formed, not on the rate at which I changes into P. For 
this reason, the step A → I is called the ‘rate-determining step’ of the reactions. 
Similar remarks apply to more complicated reactions mechanisms, and in general 
the rate-determining step is the slowest step in a mechanism on a pathway that 
controls the overall rate of the reaction. Th e rate-determining step is not just 
the slowest step: it must be slow and be a crucial gateway for the formation of 
products. If a faster reaction can also lead to products, then the slowest step is 
irrelevant because the slow reaction can then be sidestepped (Fig. 7.7). Th e 
rate-determining step is like a slow ferry crossing between two fast highways: 
the overall rate at which traffi  c can reach its destination is determined by the rate 
at which it can make the ferry crossing. If a bridge is built that avoids the ferry, 
the ferry remains the slowest step, but it is no longer rate-determining.

Th e rate law of a reaction that has a rate-determining step can oft en be written 
down almost by inspection. If the fi rst step in a mechanism is rate determining, 
then the rate of the overall reaction is equal to the rate of the fi rst step because all 
subsequent steps are so fast that once the fi rst intermediate is formed, it results 
immediately in the formation of products. Figure 7.8 shows the reaction profi le 
for a mechanism of this kind in which the slowest step is the one with the highest 
activation energy. Once over the initial barrier, the intermediates cascade into 
products.

However, we need to be alert to the possibility that a rate-determining step may 
also stem from the low concentration of a crucial reactant or catalyst and need not 
correspond to the step with the highest activation barrier. A rate-determining 

Fig. 7.7 Th e rate-determining step 
is the slowest step of a reaction 
and acts as a bottleneck. In this 
schematic diagram, fast reactions 
are represented by heavy lines 
(freeways) and slow reactions by 
thin lines (country roads). Circles 
represent substances. (a) Th e 
fi rst step is rate determining. 
(b) Although the second step 
is the slowest, it is not rate 
determining because it does not 
act as a bottleneck (there is a 
faster route that circumvents it).

Fig. 7.8 Th e reaction profi le for a 
mechanism in which the fi rst step 
is rate determining.
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step arising from the low activity of a crucial enzyme can sometimes be identifi ed 
by determining whether or not the reactants and products for that step are in 
equilibrium: if the reaction is not at equilibrium, it suggests that the step may be 
slow enough to be rate determining.

Example 7.1 Identifying a rate-determining step

Th e following reaction is one of the early steps of glycolysis (Case study 4.3):

F6P + ATP 
  phosphofructokinaseffffff→bcccccc  F16bP + ADP

where F6P is fructose-6-phosphate and F16bP is fructose-1,6-bis(phosphate). 
Th e equilibrium constant for this step is 1.2 × 103. An analysis of the composi-
tion of heart tissue gave the following results:

 F16bP F6P ADP ATP
Concentration/(mmol dm−3) 0.019 0.089 1.30 11.4

Might the phosphorylation of F6P be rate determining under these 
conditions?

Strategy Compare the value of the reaction quotient, Q (Section 4.2), with the 
equilibrium constant. If Q << K, the reaction step is far from equilibrium and it 
is so slow that it may be rate determining.

Solution From the data, the reaction quotient is

Q = [F16bP][ADP]
[F6P][ATP]

 = (1.9 × 10−5) × (1.30 × 10−3)
(8.9 × 10−5) × (1.14 × 10−2)

 = 0.024

Because Q << K, we conclude that the reaction step is not at equilibrium and so 
may be rate determining.

Self-test 7.2 Consider the reaction of Example 7.1. When the ratio 
[ADP]/[ATP] is equal to 0.10, what value should the ratio [F16bP]/[F6P] have 
for phosphorylation of F6P not to be a likely rate-determining step in glycolysis?

Answer: 1.2 × 104

(c) The steady-state approximation

One feature of the calculation so far has probably not gone unnoticed: there is a 
considerable increase in mathematical complexity as soon as the reaction mechan-
ism has more than a couple of steps. A reaction mechanism involving many 
steps is nearly always unsolvable analytically and alternative methods of solution 
are necessary. One approach is to integrate the rate laws numerically with a com-
puter. An alternative approach, which continues to be widely used because it 
leads to convenient expressions and more readily digestible results, is to make an 
approximation.

Th e steady-state approximation assumes that aft er an initial induction period, 
an interval during which the concentrations of intermediates, I, rise from zero, 
and during the major part of the reaction, the rates of change of concentrations of 
all reaction intermediates are negligibly small (Fig. 7.9):

d[I]
dt

 ≈ 0 Condition for the steady-
state approximation

 (7.16)

Fig. 7.9 Th e basis of the steady-
state approximation. It is 
supposed that the concentrations 
of intermediates remain small 
and hardly change during most 
of the course of the reaction.
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Th is approximation greatly simplifi es the discussion of reaction mechanisms. 
For example, when we apply the approximation to the consecutive fi rst-order 
mechanism, we set d[I]/dt = 0 in eqn 7.11, which then becomes

ka[A] − kb[I] ≈ 0

Th en

 [I] ≈ (ka/kb)[A] (7.17)

Th e product P is formed by unimolecular decay of I, so it follows that

Rate of formation of P = d[P]
dt

 = kb[I] ≈ ka[A] (7.18)

We see that P is formed by a fi rst-order decay of A, with a rate constant ka, the 
rate constant of the slower, rate-determining, step. We can write down the solu-
tion of this equation at once by substituting the solution for [A], eqn 7.10, and 
integrating:

[P] = ka[A]0�
t

0

 e−katdt = ka[A]0 
A
C−

1
ka

 e−kat + 1
ka

D
F  = [A]0(1 − e−kat) (7.19)

Th is equation is the same (approximate) result as before, eqn 7.15, but obtained 
more quickly.

(d) Pre-equilibria

From a simple sequence of consecutive reactions we now turn to a slightly more 
complicated mechanism proposed to account for the assembly of a DNA molecule 
from two polynucleotide chains, A and B. Th e fi rst step in the mechanism is the 
formation of an intermediate that may be thought of as an unstable double helix:

A + B → unstable double helix

We must also allow for the reverse process:

unstable double helix → A + B

Competing with the latter process is the decay of the intermediate into a stable 
double helix:

unstable double helix → stable double helix

Th is sequence of steps is an example of the general mechanism

A + B → I Rate of formation of I = ka[A][B] (7.20a)
I → A + B Rate of decomposition of I = ka′[I] (7.20b)
I → P Rate of formation of P = kb[I] (7.20c)

When the rates of formation of the intermediate and its decay back into react-
ants are much faster than its rate of formation of products, we are justifi ed in 
assuming that A, B, and I are in equilibrium through the course of the reaction. 
Th is condition, called a pre-equilibrium, is possible when ka[A][B] >> kb[I] but 
not when kb[I] >> ka′[I]. For the equilibrium between the intermediate and the 
reactants, we write (see Section 7.2)

K = [I]c3

[A][B]
  K = kac3

ka′
 (7.21)

A brief comment
For the integration we have 
used the standard result

� e−kxdx = −− 
1
k

 e−kx + constant
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In writing these equations, we are presuming that the rate of reaction of I 
to form P is too slow to aff ect the maintenance of the pre-equilibrium (see the 
example below). Th e rate of formation of P may now be written

d[P]
dt

 = kb[I] = (kbK/c3)[A][B] (7.22)

Th is rate law has the form of a second-order rate law with a composite rate 
constant:

d[P]
dt

 = kr[A][B]  kr = kbK
c3

 = kakb

ka′
 (7.23)

One feature to note is that although each of the rate constants in eqn 7.23 
increases with temperature, that might not be true of kr itself. Thus, if the rate 
constant ka′ increases more rapidly than the product kakb increases, then kr will 
decrease with increasing temperature and the reaction will go more slowly as the 
temperature is raised. Mathematically, we would say that the composite reaction 
had a ‘negative activation energy’. For example, suppose that each rate constant 
in eqn 7.23 exhibits an Arrhenius temperature dependence. It follows from the 
Arrhenius equation (eqn 6.19, kr = Ae−Ea/RT) that

kr = (Aae−Ea,a/RT)(Abe−Ea,b/RT)
Aa′e−E′a,a/RT

 = AaAb

Aa′
 e

−Ea,a/RTe−Ea,b/RT

e−E′a,a/RT

 = AaAb

Aa′
 e−(Ea,a+Ea,b−E′a,a)/RT

where we have used the relations: ex+y = exey and ex−y = ex/ey. Th e eff ective activa-
tion energy of the reaction is therefore

Ea = Ea,a + Ea,b − E ′a,a (7.24)

Th is activation energy is positive if Ea,a + Ea,b > E ′a,a (Fig. 7.10a) but negative if 
E ′a,a > Ea,a + Ea,b (Fig. 7.10b). An important consequence of this discussion is that 
we have to be very cautious about making predictions about the eff ect of tem-
perature on reactions that are the outcome of several steps. Enzyme-catalyzed 
reactions may also exhibit strongly non-Arrhenius temperature dependence if 
the enzyme denatures at high temperatures and ceases to function.

Fig. 7.10 For a reaction with a 
pre-equilibrium, there are three 
activation energies to take into 
account, two referring to the 
reversible steps of the pre-
equilibrium and one for the fi nal 
step. Th e relative magnitudes of 
the activation energies determine 
whether the overall activation 
energy is (a) positive or (b) 
negative.

Case study 7.1 Mechanisms of protein folding and unfolding

Much of the kinetic work on the mechanism of unfolding of a helix into a ran-
dom coil has been conducted on small synthetic polypeptides rich in alanine, 
an amino acid known to stabilize helical structures. Experimental and theor-
etical results suggest that the mechanism of unfolding consists of at least two 
steps: a very fast step, in which amino acids at either end of a helical segment 
undergo transitions to coil regions, and a slower rate-determining step, which 
corresponds to the cooperative melting of the rest of the chain and loss of 
helical content. Using h and c to denote an amino acid residue belonging to a 
helical and coil region, respectively, the mechanism may be summarized as 
follows:

hhhh . . . 7 chhh very fast
chhh . . . → cccc rate-determining step
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Th e rate-determining step is thought to account for the relaxation time of 
160 ns measured with a laser-induced temperature jump from 280 K to 300 K 
in an alanine-rich polypeptide containing 21 residues. It is thought that the 
limitation on the rate of the helix–coil transition in this peptide arises from an 
activation energy barrier of 1.7 kJ mol−1 associated with initial events of the form 
. . . hhhh . . . → . . . hhch . . . in the middle of the chain. Th erefore, initiation is 
not only thermodynamically unfavorable but also kinetically slow. Th eoretical 
models also suggest that a hhhh . . . → chhh . . . transition at either end of a 
helical segment has a signifi cantly lower activation energy on account of the 
converting residue not being fl anked by h regions.

Th e kinetics of unfolding have also been measured in naturally occurring 
proteins. In the engrailed homeodomain (En-HD) protein, which contains 
three short helical segments (Fig. 7.11), unfolding occurs with a half-life of 
about 630 ms at 298 K. It is diffi  cult to interpret these results because we do not 
yet know how the amino acid sequence or interactions between helices in a 
folded protein aff ect the helix–coil relaxation time.

As remarked in the Prologue, a protein does not fold into its active conforma-
tion by sampling every possible three-dimensional arrangement of the chain, 
as the process would take far too long—up to 1021 years for a protein with 
100 amino acids. Moreover, folding times have been measured in synthetic 
peptides and naturally occurring proteins and have been found to be very fast. 
For example, the En-HD protein folds with a half-life of 18 ms at 298 K. In fact, 
Nature’s search for the active conformation of a large polypeptide appears to 
be highly streamlined, and the identifi cation of specifi c mechanisms of protein 
folding is a major focus of current research in biochemistry. Although it is 
unlikely that a single model can describe the folding of every protein, progress 
has been made in the identifi cation of some general mechanistic features.

Two models have received attention. In the framework model, regions with 
well-defi ned and stable secondary structure form independently and then 
coalesce to yield the correct tertiary structure. Th e En-HD protein and other 
proteins that are predominantly helical fold according to the framework 
model. In the nucleation–condensation model, rather loose and unstable 
helices and sheets are thought to form early in the folding process. However, 
the molecule can be stabilized by interactions that also give rise to some degree 
of tertiary structure. Th at is, formation of secondary structure is fostered by 
the formation of tertiary structure and vice versa. It is easy to imagine that 
some regions, called ‘nuclei’, of the loosely packed protein resemble the active 
conformation of the protein rather closely, whereas other regions do not. 
Far away from the nuclei, similarities to the active conformation are thought 
to be less prominent, but these regions eventually coalesce, or ‘condense,’ 
around nuclei to give the properly folded protein. Proteins containing mostly 
a-helices, mostly b-sheets, or a mixture of the two have been observed to fold 
in a manner consistent with the nucleation condensation model.

A key feature of the framework and nucleation–condensation models is the 
formation of secondary structure—which might or might not be coupled 
to the formation of tertiary structure—early in the folding process. It follows 
that a full description of the mechanism of protein folding also requires an 
understanding of the rules that stabilize molecular interactions in poly-
peptides. We consider these rules in Chapter 11.

Fig. 7.11 Th e engrailed 
homeodomain (En-HD) protein 
contains three short helical 
segments.
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7.4 Diffusion control
Most biochemical processes require that two or more molecules encounter each 
other as they travel through the aqueous environment of the cell, so one contribution 
to the overall rate of enzyme-catalyzed reactions that we need to analyze is the rate at 
which species diffuse through a solution.

Th e concept of the rate-determining step plays an important role for reactions 
in solution, where it leads to the distinction between ‘diff usion control’ and 
‘activation control.’ To develop this point, let’s suppose that a reaction between 
two solute molecules A and B occurs by the following mechanism. First, we 
assume that A and B drift  into each other’s vicinity by diff usion,1 the process by 
which the molecules of diff erent substances mingle with each other, and form an 
encounter pair, AB:

A + B → AB  Rate of formation of AB = kd[A][B]

Th e subscript d reminds us that this process is diff usional. Th e encounter pair 
persists for some time as a result of the cage eff ect, the trapping of A and B near 
each other by their inability to escape rapidly through the surrounding solvent 
molecules. However, the encounter pair can break up when A and B have the 
opportunity to diff use apart, and so we must allow for the following process:

AB → A + B  Rate of loss of AB = kd′[AB]

We have supposed that this process is fi rst order in AB. Competing with this 
process is the reaction between A and B while they exist as an encounter pair. Th is 
process depends on their ability to acquire suffi  cient energy to react. Th at energy 
might come from the jostling of the thermal motion of the solvent molecules. We 
shall assume that the reaction of the encounter pair is fi rst order in AB, but if the 
solvent molecules are involved, it is more accurate to regard it as pseudo fi rst 
order with the solvent molecules in great and constant excess. In any event, we 
can suppose that the reaction is

AB → products  Rate of reactive loss of AB = ka[AB]

Th e subscript a on k reminds us that this process is activated in the sense that it 
depends on the acquisition by AB of at least a minimum energy.

Now we use the steady-state approximation to set up the rate law for the forma-
tion of products and deduce in the following Justifi cation that the rate v = d[P]/dt 
and rate constant kr of formation of products are given by

v = kr[A][B]  kr = kakd

ka + kd′
 Rate constant in the presence 

of diffusion and activation
 (7.25)

Justification 7.4 Rate in the presence of diffusion and activation

Th e net rate of formation of AB is

d[AB]
dt

 = kd[A][B] − kd′[AB] − ka[AB]

In a steady state, this rate is zero, so we can write

kd[A][B] − kd′[AB] − ka[AB] = 0

1 Diff usion is treated in more detail in Chapter 8.
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which we can rearrange to fi nd [AB]:

[AB] = kd[A][B]
ka + kd′

Th e rate of formation of products (which is the same as the rate of reactive loss 
of AB) is therefore

v = ka[AB] = kakd[A][B]
ka + kd′

which is eqn 7.25.

2 See our Physical chemistry (2010).

Now we distinguish two limits. Suppose the rate of reaction is much faster than 
the rate at which the encounter pair breaks up. In this case, ka >> kd′ and we can 
neglect kd′ in the denominator of the expression for kr in eqn 7.25. Th e ka in the 
numerator and denominator then cancel, and we are left  with

v = kd[A][B] Diffusion-controlled limit  (7.26a)

In this diff usion-controlled limit the rate of the reaction is controlled by the 
rate at which the reactants diff use together (as expressed by kd), for the reaction 
once they have encountered is so fast that they will certainly go on to form prod-
ucts rather than diff use apart before reacting. Alternatively, we may suppose that 
the rate at which the encounter pair accumulated enough energy to react is so low 
that it is highly likely that the pair will break up. In this case, we can set ka << kd′ in 
the expression for kr and obtain

v = kakd

kd′
 [A][B] Activation-controlled limit  (7.26b)

In this activation-controlled limit the reaction rate depends on the rate at which 
energy accumulates in the encounter pair (as expressed by ka).

A lesson to learn from this analysis is that the concept of the rate-determining 
step is rather subtle. Th us, in the diff usion-controlled limit, the condition for the 
encounter rate to be rate determining is not that it is the slowest step, but that 
the reaction rate of the encounter pair is much greater than the rate at which the 
pair breaks up. In the activation-controlled limit, the condition for the rate of 
energy accumulation to be rate determining is likewise a competition between 
the rate of reaction of the pair and the rate at which it breaks up, and all three rate 
constants contribute to the overall rate. Th e best way to analyze competing rates 
is to do as we have done here: to set up the overall rate law and then to analyze how 
it simplifi es as we allow particular elementary processes to dominate others.

We can go one stage further and end this part of the discussion on a more 
encouraging note. A detailed analysis of the rates of diff usion of molecules in 
liquids shows that the rate constant kd is related to the viscosity, h, of the 
medium by2

kd = 8RT
3h

 The diffusional rate constant in 
terms of the viscosity of the medium

 (7.27)

We see that the higher the viscosity, the smaller the diff usional rate constant, and 
therefore the slower the reaction of a diff usion-controlled reaction.
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7.5 Kinetic and thermodynamic control
Many biochemical processes never reach equilibrium, so we need to distinguish 
between thermodynamic and kinetic factors that control the relative concentrations 
of reaction products.

In some cases reactants can give rise to a variety of products. Suppose two prod-
ucts, P1 and P2, are produced by the following competing reactions:

A + B → P1 Rate of formation of P1 = k1[A][B]
A + B → P2 Rate of formation of P2 = k2[A][B]

Th e relative proportion in which the two products have been produced at a given 
stage of the reaction (before it has reached equilibrium) is given by the ratio of the 
two rates and therefore of the two rate constants:

[P2]
[P1]

 = k2

k1
 Kinetic control  (7.28)

Th is ratio represents the kinetic control over the proportions of products and is 
a common feature of biochemical reactions where an enzyme facilitates a specifi c 
pathway—one with a low activation energy—favoring the formation of a desired 
product. If a reaction is allowed to reach equilibrium, then the proportion of 
products is determined by thermodynamic rather than kinetic factors, and the 
ratio of concentrations is controlled by considerations of the standard Gibbs 
energies of all the reactants and products.

A brief illustration

We shall see in Section 8.1 that the following simple mechanism can explain a 
variety of enzyme-catalyzed reactions:

E + S → ES Rate of formation of ES = kd[E][S]
ES → E + S Rate of dissociation of ES = kd′[ES]
ES → E + P Rate of formation of P = ka[ES]

where E is the enzyme, S is the substrate (the substance processed by the 
enzyme), ES is an encounter pair between the enzyme and the substrate, 
and P is the product. When the reaction is controlled by diff usion of 
enzyme and substrate in solution, the rate is v = kd[E][S]. In water at 25°C, 
h = 8.9 × 10−4 kg m−1 s−1 and it follows that kd = 7.4 × 109 dm3 mol−1 s−1. Th is 
value is a useful indication of the upper limit of the rate of an enzyme-
catalyzed reaction. A number of enzymes operate near this diff usion limit.

Self-test 7.3 Two products are formed in reactions in which there is kinetic 
control of the ratio of products. Th e activation energy for the reaction leading 
to product 1 is greater than that leading to product 2. Will the ratio of product 
concentrations [P1]/[P2] increase or decrease if the temperature is raised?

Answer: Th e ratio [P1]/[P2] will increase
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Reaction dynamics

We now identify and investigate the factors that control the value of the rate con-
stant. In Section 6.6, we considered the Arrhenius equation

kr = Ae−Ea/RT Arrhenius equation  (7.29)

as a collection of empirical parameters, the activation energy, Ea, and the pre-
exponential factor, A, that determine the temperature dependence of the rate 
constant. Here we describe two theories of reaction dynamics, the study of the 
details of molecular events that transform reactants into products, and thereby 
provide a richer interpretation of the Arrhenius parameters.

7.6 Collision theory
Reactions in the gas phase introduce a number of concepts relating to the rates of 
reaction without the complication of having to take into account the role of the solvent.

We can understand the origin of the Arrhenius parameters most simply by con-
sidering gas-phase bimolecular reactions, such as the O + O3 reaction and others 
like it that occur in the upper atmosphere. In this collision theory of reaction 
rates it is supposed that reaction occurs only if two molecules collide with a cer-
tain minimum kinetic energy along their line of approach (Fig. 7.12). In collision 
theory, a reaction resembles the collision of two defective billiard balls: the balls 
bounce apart if they collide with only a small energy but might smash each other 
into fragments (products) if they collide with more than a certain minimum 
kinetic energy. Th is model of a reaction is a reasonable fi rst approximation to the 
types of processes that take place in planetary atmospheres and govern their com-
positions and temperature profi les.

A reaction profi le in collision theory is a graph showing the variation in poten-
tial energy as one reactant molecule approaches another and the products then 
separate (as in Fig. 7.1). On the left , the horizontal line represents the potential 
energy of the two reactant molecules that are far apart from each other. Th e poten-
tial energy rises from this value only when the separation of the molecules is so 
small that they are in contact, when it rises as bonds bend and start to break. Th e 
potential energy reaches a peak when the two molecules are highly distorted. 
Th en it starts to decrease as new bonds are formed. At separations to the right of 
the maximum, the potential energy rapidly falls to a low value as the product 
molecules separate. For the reaction to be successful, the reactant molecules 
must approach with suffi  cient kinetic energy along their line of approach to carry 
them over the activation barrier, the peak in the reaction profi le. As we shall see, 
we can identify the height of the activation barrier with the activation energy of 
the reaction.

With the reaction profi le in mind, it is quite easy to establish that collision 
theory accounts for Arrhenius behavior. Th us, the collision frequency, the rate of 
collisions between species A and B, is proportional to both their concentrations: 
if the concentration of B is doubled, then the rate at which A molecules collide 
with B molecules is doubled, and if the concentration of A is doubled, then the 
rate at which B molecules collide with A molecules is also doubled. It follows 
that the collision frequency of A and B molecules is directly proportional to the 
concentrations of A and B, and we can write

collision frequency ∝ [A][B]

Fig. 7.12 In the collision theory of 
gas-phase chemical reactions, 
reaction occurs when two 
molecules collide, but only if the 
collision is suffi  ciently vigorous. 
(a) An insuffi  ciently vigorous 
collision: the reactant molecules 
collide but bounce apart 
unchanged. (b) A suffi  ciently 
vigorous collision results in a 
reaction.
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Not all collisions occur with suffi  cient energy to result in reaction, therefore we 
need to multiply the collision frequency by a factor f that represents the fraction 
of collisions that occur with at least a kinetic energy Ea along the line of approach 
(Fig. 7.13), for only these collisions will lead to the formation of products. 
Molecules that approach with less than a kinetic energy Ea will behave like a ball 
that rolls toward the activation barrier, fails to surmount it, and rolls back. We saw 
in Fundamentals F.3 that only small fractions of molecules in the gas phase have 
very high speeds and that the fraction with very high speeds increases sharply as 
the temperature is raised. Because the kinetic energy increases as the square of 
the speed, we expect that, at higher temperatures, a larger fraction of molecules 
will have speed and kinetic energy that exceed the minimum values required for 
collisions that lead to formation of products (Fig. 7.14). Th e fraction of collisions 
that occur with at least a kinetic energy Ea can be calculated from the Boltzmann 
distribution and the result is3

f = e−Ea/RT (7.30)

Th is fraction increases with increasing temperature: at T = 0, f = e−∞ = 0 and no 
collisions are successful; at T = ∞, f = e0 = 1 and every collision has enough energy 
to result in reaction.

Self-test 7.4 What is the fraction of collisions that have suffi  cient energy for 
reaction if the activation energy is 50 kJ mol−1 and the temperature is (a) 25°C 
and (b) 500°C?

Answer: (a) 1.7 × 10−9; (b) 4.2 × 10−4

Fig. 7.13 Th e criterion for a 
successful collision is that the two 
reactant species should collide 
with a kinetic energy along their 
line of approach, which exceeds a 
certain minimum value Ea that is 
characteristic of the reaction. Th e 
two molecules might also have 
components of velocity (and an 
associated kinetic energy) in 
other directions (for example, the 
two molecules depicted here as 
(a) and (b) might be moving up 
the page as well as toward each 
other), but only the energy 
associated with their mutual 
approach can be used to 
overcome the activation energy.

Fig. 7.14 According to the 
Maxwell distribution of speeds 
(Further information 7.1), as 
the temperature increases, so 
does the fraction of gas phase 
molecules with a speed that 
exceeds a minimum value. 
Because the kinetic energy is 
proportional to the square of 
the speed, it follows that more 
molecules can collide with 
a minimum kinetic energy 
Emin = Ea (the activation energy) 
at higher temperatures.

At this stage we can conclude that the rate of reaction, which is proportional to 
the collision frequency multiplied by the fraction of successful collisions, is

v ∝ [A][B]e−Ea/RT

If we compare this expression with a second-order rate law,

v = kr[A][B]

it follows that

kr ∝ e−Ea/RT

Th is expression has exactly the Arrhenius form (eqn 6.19) if we identify the 
constant of proportionality with A. Collision theory therefore suggests the 
following interpretations:

• Th e pre-exponential factor, A, is the constant of proportionality between the 
concentrations of the reactants and the rate at which the reactant molecules 
collide.

• Th e activation energy, Ea, is the minimum kinetic energy along the line of 
approach required for a collision to result in reaction.

Th e value of A can be calculated from the kinetic model of gases (Further 
information 7.1), and the result is

A = s AC
8kT
pm

D
F

1/2

NA  m = mAmB

mA + mB
 The pre-exponential factor 

according to collision theory
 (7.31)

3 For details of the calculation, see our Physical chemistry (2010).
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where mA and mB are the masses of the molecules A and B and s is the collision 
cross section, the target area presented by one molecule to another (Table 7.1). 
However, it is oft en found that the experimental value of A is smaller than that 
calculated from the kinetic model. One possible explanation is that not only must 
the molecules collide with suffi  cient kinetic energy, but they must also come 
together in a specifi c relative orientation (Fig. 7.15). It follows that the reaction 
rate is proportional to the probability that the encounter occurs in the correct 
relative orientation. Th e pre-exponential factor A should therefore include a 
steric factor, P, which usually lies between 0 (no relative orientations lead to reac-
tion) and 1 (all relative orientations lead to reaction). Some reactions have P > 1 
if specifi c molecular interactions during collisions (for example, Coulomb 
interactions between charged species) eff ectively extend the cross-section for the 
reactive encounter beyond the value expected from simple mechanical contact 
between reactants.

7.7 Transition state theory
The concepts we introduce here form the basis of a theory that explains the rates of 
biochemical reactions in fluid environments.

Although collision theory is a useful starting point for the discussion of reactions 
in the atmosphere, it has little relevance to the reactions that interest biologists 
the most: those taking place in the aqueous environment of a cell. A more soph-
isticated theory, ‘transition state theory’ (or activated complex theory), builds 
on collision theory but is applicable to a wider range of reaction environments 
and introduces a more sophisticated interpretation of the empirical Arrhenius 
parameters A and Ea.

(a) Formulation of the theory

In the transition state theory of reactions it is supposed that as two reactants 
approach, their potential energy rises and reaches a maximum, as illustrated by 
the reaction profi le in Fig. 7.1. Th is maximum corresponds to the formation of an 
activated complex, a cluster of atoms that is poised to pass on to products or to 
collapse back into the reactants from which it was formed (Fig. 7.16). Th e concept 
of an activated complex is applicable to reactions in solutions as well as to the gas 
phase because we can think of the activated complex as perhaps involving any 
solvent molecules that may be present.

To describe the essential features of transition state theory, we follow the pro-
gress of a bimolecular reaction, possibly occurring in solution. Initially only the 
reactants A and B are present. As the reaction event proceeds, A and B come into 
contact, distort, and begin to exchange or discard atoms. Th e potential energy 
rises to a maximum, and the cluster of atoms that corresponds to the region close 
to the maximum is the activated complex. Th e potential energy falls as the atoms 
rearrange in the cluster and reaches a value characteristic of the products. Th e 
climax of the reaction is at the peak of the potential energy. Here two reactant 
molecules have come to such a degree of closeness and distortion that a small 
further distortion will send them in the direction of products. Th is crucial con-
fi guration is called the transition state of the reaction. Although some molecules 
entering the transition state might revert to reactants, if they pass through this 
confi guration it is probable that products will emerge from the encounter.

Th e reaction coordinate is an indication of the stage reached in this process. 
On the left  we have undistorted, widely separated reactants. On the right are the 
products. Somewhere in the middle is the stage of the reaction corresponding 

Fig. 7.15 Energy is not the only 
criterion of a successful reactive 
encounter, for relative orientation 
can also play a role. (a) In this 
collision, the reactants approach 
in an inappropriate relative 
orientation and no reaction 
occurs even though their energy 
is suffi  cient. (b) In this encounter, 
both the energy and the 
orientation are suitable for 
reaction.

Table 7.1 Collision cross-sections 
of atoms and molecules

Species s/nm2*

Argon, Ar 0.36
Benzene, C6H6 0.88
Carbon dioxide, CO2 0.52
Chlorine, Cl2 0.93
Ethene, C2H4 0.64
Helium, He 0.21
Hydrogen, H2 0.27
Methane, CH4 0.46
Nitrogen, N2 0.43
Oxygen, O2 0.40
Sulfur dioxide, SO2 0.58

*1 nm2 = 10−18 m2.
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to the formation of the activated complex. Th e principal goal of transition state 
theory is to write an expression for the rate constant by tracking the history of the 
activated complex from its formation by encounters between the reactants to its 
decay into product. Here we outline the steps involved in the calculation, with an 
eye toward gaining insight into the molecular events that aff ect the rate constant.

Th e activated complex C‡ is formed from the reactants A and B and it is sup-
posed—without much justifi cation—that there is an equilibrium between the 
concentrations of A, B, and C‡:

A + B 7 C‡  K ‡ = [C‡]c3

[A][B]
At the transition state, motion along the reaction coordinate corresponds to 

some complicated collective vibration-like motion of all the atoms in the complex 
(and the motion of the solvent molecules if they are involved too). However, 
it is possible that not every motion along the reaction coordinate takes the com-
plex through the transition state and to the product P. By taking into account 
the equilibrium between A, B, and C‡ and the rate of successful passage of C‡ 
through the transition state, it is possible to derive the Eyring equation for the 
rate constant kr:4

kr = k × kT
h

 × K
‡

c3
 Eyring equation  (7.32)

where k = R/NA = 1.381 × 10−23 J K−1 is Boltzmann’s constant and h = 6.626 × 10−34 
J s is Planck’s constant (Fundamentals F3). Th e factor k (kappa) is the transmis-
sion coeffi  cient, which takes into account the fact that the activated complex does 
not always pass through to the transition state. In the absence of information to 
the contrary, k is assumed to be about 1. Th e term kT/h in eqn 7.32 has the dimen-
sions of a frequency, as kT is an energy and division by Planck’s constant turns an 
energy into a frequency (with kT in joules, kT/h has the units s−1). It arises from a 
consideration of the motions of atoms that lead to the decay of C‡ into products, 
as specifi c bonds are broken and formed.

Calculation of the equilibrium constant K ‡ is very diffi  cult, except in cer-
tain simple model cases. For example, if we suppose that the reactants are two 
structureless atoms and that the activated complex is a weakly bound diatomic 
molecule of bond length R, then kr turns out to be the same as for collision theory, 
provided we interpret the collision cross-section in eqn 7.31 as pR2.

(b) Thermodynamic parameterization

It is more useful, especially for biological reactions in aqueous environments, to 
express the Eyring equation in terms of thermodynamic parameters and to dis-
cuss reactions in terms of their empirical values. Th us, we saw in Section 4.3 that 
an equilibrium constant may be expressed in terms of the standard reaction Gibbs 
energy (−RT ln K = DrG3). We do the same here, and express K ‡ in terms of the 
activation Gibbs energy, D‡G:

D‡G = −RT ln K ‡  and  K ‡ = e−D‡G/RT

Th erefore, by writing

D‡G = D‡H − TD‡S (7.33)

Fig. 7.16 In the transition state 
theory of chemical reactions, two 
reactants encounter each other 
(either in a gas-phase collision or 
as a result of diff using together 
through a solvent) and, if they 
have suffi  cient energy, form an 
activated complex. Th e activated 
complex is depicted here by a 
relatively loose cluster of atoms 
that may undergo rearrangement 
into products. In an actual 
reaction, only some atoms—
those at the actual reaction 
site—might be signifi cantly 
loosened in the complex; the 
bonding of the others remaining 
almost unchanged. Th is would be 
the case for CH3 groups attached 
to a carbon atom that was 
undergoing substitution.

4 In some expositions, you will see Boltzmann’s constant denoted kB to emphasize its signifi cance.
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where D‡H and D‡S are the enthalpy of activation and the entropy of activation, 
respectively, we conclude that (with k = 1)

kr = kT
h

 e−(D‡H−TD‡S)/RT  = AC
kT
h

 eD‡S/R D
F  e−D‡H/RT  

The Eyring equation in 
terms of thermodynamic 
parameters

 (7.34)

Th is expression has the form of the Arrhenius expression, eqn 7.29, if we identify 
the D‡H with the activation energy and the term in parentheses with the pre-
exponential factor.

Th e advantage of transition state theory over collision theory is that it is appli-
cable to reactions in solution as well as in the gas phase. It also gives some clue to 
the calculation of the steric factor P, for the orientation requirements are carried 
in the entropy of activation. Th us, if there are strict orientation requirements (for 
example, in the approach of a substrate molecule to an enzyme), then the entropy 
of activation will be strongly negative (representing a decrease in disorder when 
the activated complex forms), and the pre-exponential factor will be small. In 
practice, it is occasionally possible to estimate the sign and magnitude of the 
entropy of activation and hence to estimate the rate constant. Th e general im-
portance of transition state theory is that it shows that even a complex series of 
events—not only a collisional encounter in the gas phase—displays Arrhenius-
like behavior and that the concept of activation energy is widely applicable.

Self-test 7.5 In a certain reaction in water, it is proposed that two ions 
of opposite charge come together to form an electrically neutral activated 
complex. Is the contribution of the solvent to the entropy of activation likely to 
be positive or negative?

Answer: Positive, as H2O is less organized around the neutral species

In the laboratory 7.2 Time-resolved spectroscopy for kinetics

Th e ability of lasers to produce pulses as brief as 1 fs (10−15 s) is particularly 
useful in chemistry when we want to monitor very fast processes in time. In 
time-resolved spectroscopy, a form of fl ash photolysis (In the laboratory 6.1), 
laser pulses are used to obtain the spectra of reactants, intermediates, prod-
ucts, and even activated complexes of reactions. Lasers that produce nano-
second pulses are generally suitable for the observation of reactions with 
rates controlled by the speed with which reactants can move through a fl uid 
medium. However, pulses in the range 1 fs to 1 ps are needed to study energy 
transfer, molecular vibrations, and conversion from one mode of motion into 
another. Th e arrangement shown in Fig. 7.17 is oft en used to study ultrafast 
chemical reactions that can be initiated by light. An intense and short laser 
pulse, the pump, initiates the process, possibly by elevating a molecule A to a 
high-energy state, A*, which can either release the additional energy, perhaps 
as light, or react with another species B to yield a product C:

A   laser pulsef f g A*  (absorption of energy from light)
A* → A  (energy release)
A* + B → AB → C  (reaction)

where AB denotes either an intermediate or an activated complex.

Fig. 7.17 A confi guration used 
for time-resolved absorption 
spectroscopy, in which an intense 
laser pulse is used to generate a 
monochromatic pump pulse and 
a second laser pulse, the probe, 
arrives at the sample some time 
later to measure a spectroscopic 
feature of the reaction mixture.
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Th e rates of appearance and disappearance of the various species are deter-
mined by observing time-dependent changes in the spectrum of the sample 
during the course of the reaction. Th is monitoring may be done by passing a 
second, weaker laser pulse, the probe, through the sample at diff erent times 
aft er the laser pulse. For example, the wavelength of the probe pulse may be set 
at an absorption of an intermediate (to probe its formation and decay) or a 
product (to probe the rate of its formation).

Biological processes that are open to study by time-resolved spectroscopy 
include the energy-converting processes of photosynthesis (Section 5.11 and 
Case study 12.3) and the light-induced processes of vision (Case study 12.2). In 
other experiments, the laser-induced ejection of carbon monoxide from myo-
globin and the attachment of O2 to the exposed heme site have been studied 
to obtain rate constants for the two processes.

Th e technique may also be used to detect and study clusters of atoms that 
resemble activated complexes. In a typical experiment, energy from a femto-
second pump pulse is used to dissociate a molecule, and then a femtosecond 
probe pulse is fi red at an interval aft er the pulse. Th e frequency of the probe 
pulse is set at an absorption of one of the free fragmentation products, so 
its absorption is a measure of the abundance of the dissociation product. 
For example, when ICN is dissociated by the fi rst pulse, the emergence of CN 
can be monitored by watching the growth of the free CN absorption. In this 
way it has been found that the CN signal remains zero until the fragments have 
separated by about 600 pm, which takes about 205 fs. Time-resolved techni-
ques have also been used to examine analogs of the activated complex involved 
in more complex reactions, such as the Diels–Alder reaction, nucleophilic 
substitution reactions, and pericyclic addition and cleavage reactions.

7.8 The kinetic salt effect
Many biochemical reactions in solution are between ions; to treat them, we need to 
combine transition state theory and the Debye–Hückel limiting law.

Th e thermodynamic version of transition state theory simplifi es the discussion of 
reactions in solution, particularly those involving ions. For instance, the kinetic 
salt eff ect is the eff ect on the rate of a reaction of adding an inert salt to the reac-
tion mixture. Th e physical origin of the eff ect is the diff erence in stabilization of 
the reactant ions and the activated complex by the ionic atmosphere (Section 5.1) 
formed around each of them by the added ions. Th us, in a reaction in which the 
activated complex forms in the pre-equilibrium

A+ + B− 7 C‡  

both reactants are stabilized by their atmospheres, but the activated complex C‡ is 
not, less C‡ is present at the (presumed) equilibrium, so the rate of formation of 
products is decreased. On the other hand, if the reaction is between ions of like 
charge, as in

A+ + B+ 7 C‡2+  

the ionic atmosphere around the doubly charged activated complex has a greater 
eff ect than around each singly charged ion, the complex is stabilized more than 
either ion, so its abundance at equilibrium is increased and the rate of formation 
of products is increased too. We show in the following Justifi cation that quantita-
tive treatment of the problem leads to the result that
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 log kr = log k r
o + 2AzAzBI1/2 The kinetic salt effect  (7.35)

where k r
o is the rate constant in the absence of added salt and A = 0.509 for water 

at 25°C. Th e charge numbers of A and B are zA and zB, so the charge number of the 
activated complex is zA + zB; the zJ are positive for cations and negative for anions. 
Th e quantity I is the ionic strength due to the added salt (Section 5.1), and for a 
1:1 electrolyte (such as NaCl) is equal to the numerical value of the molality 
(that is, I = b/b3, with b3 = 1 mol kg−1).

Justification 7.5 The kinetic salt effect

Consider a reaction with the mechanism A + B 7 C‡ → products, where A and 
B are charged species, and the rate of formation of products is

v = kr[A][B]

Our goal is to write an expression for the rate constant kr. We begin by writing 
the thermodynamic equilibrium constant in terms of activities a and activity 
coeffi  cients g :

K = aC‡

aAaB
 = Kg 

[C‡]c3

[A][B]
,  where  Kg = gC‡

gAgB

It follows that

[A][B] = Kgc3

K  
[C‡]

Th e combination of this expression with v = kr[A][B] gives

v = kr 
A
C

Kgc3

K
 [C‡]DF

If we let k‡ be the rate constant for formation of products from the activated 
complex C‡, then we may also write

v = k‡[C‡]

It follows that

kr = k‡K
Kgc3

If k r
o is the rate constant when the activity coeffi  cients are 1 (that is, k r

o = k‡K/c3), 
we can write

kr =  kr
o

Kg

At low concentrations the activity coeffi  cients can be expressed in terms of 
the ionic strength, I, of the solution by using the Debye–Hückel limiting law 
(eqn 5.4, log gJ = −Az J

2I1/2). Th en

log kr = log k r
o − A{zA

2 + zB
2 − (zA + zB)2}I1/2 = log k r

o + 2AzAzBI1/2

as in eqn 7.35.
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Equation 7.35 confi rms that if the reactants have opposite charges (so zAzB is 
negative), then the rate decreases as the ionic strength is increased (Fig. 7.18), 
just as the qualitative description suggested. However, if the charges of the 
reactant ions have the same sign (and zAzB is positive), then the rate increases 
when a salt is added. Information of this kind is useful in unraveling the reaction 
mechanism of reactions in solution and identifying the nature of the activated 
complex.

Fig. 7.19 Th e plot for the data in 
Example 7.2.

Fig. 7.18 An illustration of the 
kinetic salt eff ect. If the reactants 
have opposite charges, then the 
rate decreases as the ionic 
strength, I, is increased. However, 
if the charges of the reactant ions 
have the same sign, then the rate 
increases when a salt is added.

Example 7.2 Analyzing the kinetic salt effect

Th e study of conditions that optimize the association of proteins in solution 
guides the design of protocols for the formation of large crystals that are amen-
able to analysis by the X-ray diff raction techniques discussed in Chapter 11. 
It is important to characterize protein dimerization because the process is 
considered to be the rate-determining step in the growth of crystals of many 
proteins. Consider the variation with ionic strength of the rate constant of 
dimerization in aqueous solution of a cationic protein P:

I 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350
kr/k r

o 8.10 13.30 20.50 27.80 38.10 52.00

What can be deduced about the charge of P?

Strategy Although the dimer is not an activated complex in the same sense as 
in transition state theory, eqn 7.35 applies if we assume that the activated com-
plex and the product (the dimer) are similar in the sense that two protein mol-
ecules associate to form the activated complex. Th us, the equilibrium constant 
for the dimerization is related to the rate constants for the formation of the 
dimer and its decomposition by K = kr/kr′c3 and K = KcKg. Hence kr = KcKgkr′c3 
= Kgk r

o. It then follows, as in Justifi cation 7.5, that

log (kr/k r
o) = 1.02z2I1/2

Th erefore, to infer the protein charge number z from the slope, 1.02z2, we need 
to plot log (kr/k r

o) against I1/2.

Answer: We draw up the following table:

I1/2 0.100 0.122 0.141 0.158 0.173 0.187
log (kr/k r

o) 0.908 1.124 1.312 1.444 1.581 1.716

Th ese points are plotted in Fig. 7.19. Th e slope of the straight line is 9.2, indi-
cating that z2 = 9. Because the protein is cationic, its charge number is +3.

Self-test 7.6 An ion of charge number +1 is known to be involved in the 
activated complex of a reaction. Deduce the charge number of the other ion 
from the following data:

I 0.0050 0.010 0.015 0.020 0.025 0.030
kr/k r

o 0.850 0.791 0.750 0.717 0.689 0.666
Answer: –1
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Checklist of key equations

Property Equation Comment

Equilibrium constant in terms of rate constants K = kr/kr′ First order in each direction
Relaxation time x = x0e−t/t 1/t = kr + kr′ Temperature jump experiment
Rate constant of a diff usion-controlled reaction kr = kd = 8RT/3h

Rate constant of an activation-controlled reaction kr = kakd/kd′
Kinetic control [P2]/[P1] = k2/k1

Eyring equation kr = k(kT/h)(K ‡/c3)
Th ermodynamic parameterization kr = (kT/h)e−D‡G/RT = {(kT/h)eD‡S/R}e−D‡H/RT Eyring equation with k  = 1
Kinetic salt eff ect log kr = log kr

o + 2AzAzBI1/2 Dilute solutions

Checklist of key concepts

 1. In relaxation methods of kinetic analysis, the 
equilibrium position of a reaction is fi rst shift ed 
suddenly and then allowed to readjust to the 
equilibrium composition characteristic of 
the new conditions.

 2. An elementary unimolecular reaction has fi rst-order 
kinetics; an elementary bimolecular reaction has 
second-order kinetics.

 3. Th e molecularity of an elementary reaction is 
the number of molecules coming together 
to react.

 4. Th e rate-determining step is the slowest step in a 
reaction mechanism that controls the rate of the 
overall reaction.

 5. In the steady-state approximation, it is assumed that 
the concentrations of all reaction intermediates 
remain constant and small throughout the reaction.

 6. Provided a reaction has not reached equilibrium, the 
products of competing reactions are controlled by 
kinetics.

 7. In collision theory, it is supposed that the rate is 
proportional to the collision frequency, a steric factor, 
and the fraction of collisions that occur with at least 
the kinetic energy Ea along their lines of centers.

 8. In transition state theory, it is supposed that an 
activated complex is in equilibrium with the reactants 
and that the rate at which that complex forms 
products depends on the rate at which it passes 
through a transition state.

Further information

Further information 7.1 Collisions in the gas phase

To gain insight into collisions in the gas phase, fi rst we need 
to explore a model that can explain the properties of perfect 
gases. Th en we consider the distribution of molecular speeds, 
a concept we previewed in Fundamentals F.2 and F.3. Finally, 
we defi ne some of the parameters used in the collision theory 
of chemical reactions in the gas phase.

(a) The kinetic model of gases

Th e basis for our discussion is the kinetic model of gases 
(also called the ‘kinetic molecular theory’, KMT, of gases), 
which makes the following three assumptions:

1.  A gas consists of molecules in ceaseless random motion 
(Fig. F.9).

2.  Th e size of the molecules is negligible in the sense that 
their diameters are much smaller than the average 
distance traveled between collisions.

3.  Th e molecules do not interact, except during collisions.

Th e assumption that the molecules do not interact unless they 
are in contact implies that the potential energy of the molecules 
(their energy due to their position) is independent of their 
separation and may be set equal to zero. Th e total energy of 
a sample of gas is therefore the sum of the kinetic energies 
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(the energy due to motion) of all the molecules present in it. It 
follows that the faster the molecules travel (and hence the greater 
their kinetic energy), the greater the total energy of the gas.

Th e kinetic model accounts for the steady pressure exerted 
by a gas in terms of the collisions the molecules make with the 
walls of the container. Each collision gives rise to a brief force 
on the wall, but as billions of collisions take place every second, 
the walls experience a virtually constant force, and hence the 
gas exerts a steady pressure. On the basis of this model, the 
pressure exerted by a gas of molar mass M in a volume V is5

p = nMc2

3V
 The pressure of a perfect gas 

according to the kinetic model
 (7.36)

where c is the root-mean-square speed (r.m.s. speed) of the 
molecules. Th is quantity is defi ned as the square root of the 
mean value of the squares of the speeds, v, of the molecules. 
Th at is, for a sample consisting of N molecules with speeds v1, 
v2, . . . , vN, we square each speed, add the squares together, 
divide by the total number of molecules (to get the mean, 
denoted by 〈· · ·〉), and fi nally take the square root of the result:

c = 〈v2〉1/2 = AC
v1

2 + v2
2 + · · · + vN

2

N
D
F

1/2

 Definition of the 
r.m.s. speed

 (7.37)

Th e r.m.s. speed might at fi rst encounter seem to be a rather 
peculiar measure of the mean speeds of the molecules, but its 
signifi cance becomes clear when we make use of the fact that 
the kinetic energy of a molecule of mass m traveling at a speed 
v is Ek = 12mv2, which implies that the mean kinetic energy, 
〈Ek〉, is the average of this quantity, or 12mc2. It follows that

c = AC
2〈Ek〉

m
D
F

1/2

 The r.m.s. speed in terms of 
the mean kinetic energy

 (7.38)

Th erefore, wherever c appears, we can think of it as a measure 
of the mean kinetic energy of the molecules of the gas.

We also note that eqn 7.36 resembles the perfect gas 
equation of state, pV = nRT, for we can rearrange it into

pV = 13 nMc2

Equating the expression on the right to nRT gives
1
3 nMc2 = nRT

where the ns now cancel. Th e great usefulness of this 
expression is that we can rearrange it into a formula for 
the r.m.s. speed of the gas molecules at any temperature:

c = AC
3RT
M

D
F

1/2

 The r.m.s. speed in terms 
of the temperature

 (7.39)

Th e important conclusion to draw from eqn 7.39 is that 
the r.m.s. speed of molecules in a gas is proportional to the 
square root of the temperature. Because the mean speed is 
proportional to the r.m.s. speed, the same is true of the mean 
speed too. Th erefore, doubling the temperature (on the Kelvin 
scale) increases the mean and the r.m.s. speed of molecules by 
a factor of 21/2 = 1.414 . . . .

(b) The Maxwell distribution of speeds

Th e mathematical expression that tells us the fraction of 
molecules that have a particular speed at any instant is called 
the distribution of molecular speeds. Th e precise form of the 
distribution was worked out by James Clerk Maxwell towards 
the end of the nineteenth century, and his expression is known 
as the Maxwell distribution of speeds. According to Maxwell, 
the fraction f of molecules that have a speed in a narrow range 
between s and s + Ds (for example, between 300 m s−1 and 
310 m s−1, corresponding to s = 300 m s−1 and Ds = 10 m s−1) is

f = F(s)Ds with 

F(s) = 4p AC
M

2pRT
D
F

3/2

 s2e−Ms2/2RT 
Maxwell
distribution
of speeds

 (7.40)

Although eqn 7.40 looks complicated, its features can be 
picked out quite readily:

1. Because f is proportional to the range of speeds Ds, 
we see that the fraction in the range Ds increases in 
proportion to the width of the range. If at a given speed 
we double the range of interest (but still ensure that it is 
narrow), then the fraction of molecules in that range 
doubles too.

2. Equation 7.40 includes a decaying exponential function, 
the term e−Ms2/2RT. Its presence implies that the fraction 
of molecules with very high speeds will be very small 
because e−x2 becomes very small when x2 is large.

3. Th e factor M/2RT multiplying s2 in the exponent is large 
when the molar mass, M, is large, so the exponential 
factor goes most rapidly towards zero when M is large. 
Th at tells us that heavy molecules are unlikely to be 
found with very high speeds.

4. Th e opposite is true when the temperature, T, is high: 
then the factor M/2RT in the exponent is small, so the 
exponential factor falls towards zero relatively slowly 
as s increases. Th is tells us that at high temperatures, 
a greater fraction of the molecules can be expected to 
have high speeds than at low temperatures.

5. A factor s2 (the term before the e) multiplies the 
exponential. Th is factor goes to zero as s goes to zero, 
so the fraction of molecules with very low speeds will 
also be very small.

Th e remaining factors (the term in parentheses in eqn 7.40 
and the 4p) simply ensure that when we add together the 
fractions over the entire range of speeds from zero to infi nity, 
then we get 1. Th ese features are summarized in Figs F.10 
and F.11.5 For a derivation of eqn 7.36, see our Physical chemistry (2010).

A brief illustration

Substitution into eqn 7.39 of the molar mass of O2 (32.0 g mol−1) 
and a temperature corresponding to 25°C (that is, 298 K) gives 
an r.m.s. speed for these molecules of 482 m s−1. Th e same 
calculation for nitrogen molecules gives 515 m s−1.
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(c) Molecular collisions

Th e average distance that a molecule travels between collisions 
is called its mean free path, l (lambda). Th e mean free path in 
a liquid is less than the diameter of the molecules because a 
molecule in a liquid meets a neighbor even if it moves only a 
fraction of a diameter. However, in gases, the mean free paths 
of molecules can be several hundred molecular diameters. 
If we think of a molecule as the size of a tennis ball, then the 
mean free path in a typical gas would be about the length of 
a tennis court.

Th e collision frequency, z, is the average rate of collisions 
made by one molecule. Specifi cally, z is the average number 
of collisions one molecule makes in a given time interval 
divided by the length of the interval. It follows that the inverse 
of the collision frequency, 1/z, is the time of fl ight, the average 
time that a molecule spends in fl ight between two collisions 
(for instance, if there are 10 collisions per second, so the 
collision frequency is 10 s−1, then the average time between 
collisions is 1

10 of a second and the time of fl ight is 1
10 s). As 

we shall see, the collision frequency in a typical gas is about 
109 s−1 at 1 atm and room temperature, so the time of fl ight 
in a gas is typically 1 ns.

Because speed is distance traveled divided by the time 
taken for the journey, the r.m.s. speed c, which we can 
loosely think of as the average speed, is the average length 
of the fl ight of a molecule between collisions (that is, the 
mean free path, l) divided by the time of fl ight (1/z). It 
follows that the mean free path and the collision frequency 
are related by

c = mean free path
time of fl ight

 = l
1/z

 = lz 
The r.m.s. speed in 
terms of the mean 
free path and the 
collision frequency

 (7.41)

To fi nd expressions for l and z, we need a slightly more 
elaborate version of the kinetic model of gases. Th e basic 
kinetic model supposes that the molecules are eff ectively 
pointlike; however, to obtain collisions, we need to assume 
that two ‘points’ score a hit whenever they come within a 
certain range d of each other, where d can be thought of 
as the diameter of the molecules (Fig. 7.20). Th e collision 
cross-section, s (sigma), the target area presented by one 
molecule to another, is therefore the area of a circle of radius d, 
so s = pd2. When this quantity is built into the kinetic model, 
we fi nd that

l = kT
21/2sp

  z = 2
1/2sp
kT

 c 
The mean free path and 
the collision frequency 
in terms of the collision 
cross-section

 (7.42)

We can identify the following features:

1. Because l ∝ 1/p, we see that the mean free path decreases 
as the pressure increases. Th is decrease is a result of the 
increase in the number of molecules present in a given 
volume as the pressure is increased, so each molecule 
travels a shorter distance before it collides with a 
neighbor.

For example, the mean free path of an O2 molecule decreases 
from 73 nm to 36 nm when the pressure is increased from 
1.0 bar to 2.0 bar at 25°C.

2. Because l ∝ 1/s, the mean free path is shorter for 
molecules with large collision cross-sections.

For instance, the collision cross-section of a benzene molecule 
(0.88 nm2) is about four times greater than that of a helium 
atom (0.21 nm2), and at the same pressure and temperature 
its mean free path is four times shorter.

3. Because z ∝ p, the collision frequency increases with the 
pressure of the gas. Th is dependence follows from the 
fact that, provided the temperature is the same, the 
molecule take less time to travel to its neighbor in a 
denser, higher pressure gas.

For example, although the collision frequency for an O2 
molecule in oxygen gas at 298.15 K and 1.0 bar is 6.2 × 109 s−1, 
at 2.0 bar and the same temperature the collision frequency is 
doubled, to 1.2 × 1010 s−1.

Fig. 7.20 To calculate features of a perfect gas that are related 
to collisions, a point is regarded as being surrounded by a 
sphere of diameter d. A molecule will hit another molecule 
if the center of the former lies within a circle of radius d. 
Th e collision cross-section is the target area, pd2.
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Discussion questions

7.1 Sketch, without carrying out the calculation, the variation of 
concentration with time for the approach to equilibrium when both 
forward and reverse reactions are second order. How does your graph 
diff er from that in Fig. 7.2?

7.2 Write a brief report on a recent research article in which at least 
one of the following techniques was used to study the kinetics of 
a biochemical reaction: stopped-fl ow techniques, time-resolved 
spectroscopy, chemical quench-fl ow methods, freeze-quench 
methods, temperature-jump methods. Your report should be similar 
in content and extent to one of the Case studies found throughout 
this text.

7.3 Assess the validity of the following statement: the rate-
determining step is the slowest step in a reaction mechanism.

7.4 Distinguish between a pre-equilibrium approximation and 
a steady-state approximation.

7.5 Distinguish between a diff usion-controlled reaction and an 
activation-controlled reaction.

7.6 Distinguish between kinetic and thermodynamic control of 
a reaction. Suggest criteria for expecting one over the other.

7.7 Describe the formulation of the Eyring equation and interpret 
its form.

7.8 Is it possible for the activation energy of a reaction to be negative? 
Explain your conclusion and provide a molecular explanation.

7.9 Discuss the physical origin of the kinetic salt eff ect.

Exercises

7.10 Th e equilibrium constant for the attachment of a substrate 
to the active site of an enzyme was measured as 235. In a separate 
experiment, the rate constant for the second-order attachment was 
found to be 7.4 × 107 dm3 mol−1 s−1. What is the rate constant for 
the loss of the unreacted substrate from the active site?

7.11 Find the solutions of the same rate laws that led to eqn 7.2, but 
for some B present initially. Go on to confi rm that the solutions you 
fi nd reduce to those in eqn 7.2 when [B]0 = 0.

7.12 Th e reaction H2O(l) 7 H+(aq) + OH−(aq) (pKw = 14.01) relaxes 
to equilibrium with a relaxation time of 37 ms at 298 K and pH ≈ 7. 
(a) Given that the forward reaction (with rate constant kr) is fi rst 
order and the reverse is second order overall (with rate constant kr′), 
show that

1
t

 = kr + kr′([H+]eq + [OH−]eq)

(b) Calculate the rate constants for the forward and reverse reactions.

7.13 A protein dimerizes according to the reaction 2A 7 A2 with 
forward rate constant kr and reverse rate constant kr′. Show that the 
relaxation time is

 t = 1
kr′ + 4kr[A]eq

7.14 Consider the dimerization of a protein, as in Exercise 7.13. 
(a) Derive the following expression for the relaxation time in terms 
of the total concentration of protein, [A]tot = [A] + 2[A2]:

1
t2

 = kr′2 + 8krkr′[A]tot

(b) Describe the computational procedures that lead to the 
determination of the rate constants kr and kr′ from measurements 
of t for diff erent values of [A]tot.

7.15 An understanding of the kinetics of formation of molecular 
complexes held together by hydrogen bonds gives insight into the 
formation of base pairs in nucleic acids. Use the data provided below 

and the procedure you outlined in Exercise 7.14 to calculate the rate 
constants kr and kr′ and the equilibrium constant K for formation of 
hydrogen-bonded dimers of 2-pyridone (2):

[P]/(mol dm−3) 0.500 0.352 0.251 0.151 0.101
t/ns 2.3 2.7 3.3 4.0 5.3

7.16 Confi rm (by diff erentiation) that the three expressions in 
eqns 7.10, 7.12, and 7.13 are correct solutions of the rate laws for 
consecutive fi rst-order reactions.

7.17 Two radioactive nuclides decay by successive fi rst-order 
processes:

X  22.5 df g Y  33.0 df g Z

(Th e times are half-lives in days.) Suppose that Y is an isotope that is 
required for medical applications. At what stage aft er X is fi rst formed 
will Y be most abundant?

7.18 Use mathematical soft ware or an electronic spreadsheet to 
examine the time dependence of [I] in the reaction mechanism 
A → I → P (ka, kb) by plotting the expression in eqn 7.12. In the 
following calculations, use [A]0 = 1 mol dm−3 and a time range of 
0 to 5 s. (a) Plot [I] against t for ka = 10 s−1 and kb = 1 s−1. (b) Increase 
the ratio kb/ka steadily by decreasing the value of ka and examine the 
plot of [I] against t at each turn. What approximation about d[I]/dt 
becomes increasingly valid?

7.19 Th e reaction 2 H2O2(aq) → H2O(l) + O2(g) is catalyzed by 
Br− ions. If the mechanism is as shown below give the predicted 
order of the reaction with respect to the various participants.
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H2O2(aq) + Br−(aq) → H2O(l) + BrO−(aq) (slow)
BrO−(aq) + H2O2(aq) → H2O(l) + O2(g) + Br−(aq) (fast)

7.20 Th e reaction mechanism

A2 7 A + A  (fast)
A + B → P (slow)

involves an intermediate A. Deduce the rate law for the formation of P.

7.21 Consider the following mechanism for formation of a double 
helix from its strands A and B:

A + B 7 unstable helix (fast)
unstable helix → stable double helix (slow)

Derive the rate equation for the formation of the double helix and 
express the rate constant of the reaction in terms of the rate constants 
of the individual steps.

7.22 Th e following mechanism has been proposed for the 
decomposition of ozone in the atmosphere:

(1) O3 → O2 + O and its reverse (ka, ka′)
(2) O + O3 → O2 + O2 (kb; the reverse reaction is negligibly slow)

Use the steady-state approximation, with O treated as the 
intermediate, to fi nd an expression for the rate of decomposition 
of O3. Show that if step 2 is slow, then the rate is second order 
in O3 and −1 order in O2.

7.23 Th e condensation reaction of acetone, (CH3)2CO (propanone), 
in aqueous solution is catalyzed by bases, B, which react reversibly 
with acetone to form the carbanion C3H5O−. Th e carbanion then 
reacts with a molecule of acetone to give the product. A simplifi ed 
version of the mechanism is

(1) AH + B → BH+ + A−

(2) A− + BH+ → AH + B
(3) A− + HA → product

where AH stands for acetone and A− its carbanion. Use the steady-
state approximation to fi nd the concentration of the carbanion and 
derive the rate equation for the formation of the product.

7.24 Consider the acid-catalyzed reaction

HA + H+ 7 HAH+ (fast)
HAH+ + B → BH+ + AH (slow)

Deduce the rate law and show that it can be made independent of the 
specifi c term [H+].

7.25 Models of population growth are analogous to chemical 
reaction rate equations. In the model due to Malthus (1798) the 
rate of change of the population N of the planet is assumed to be 
given by dN/dt = births − deaths. Th e numbers of births and deaths 
are proportional to the population, with proportionality constants b 
and d. Obtain the integrated rate law. How well does it fi t the (very 
approximate) data below on the population of the planet as a function 
of time?

Year 1750 1825 1922 1960 1974 1987 2000
N/109 0.5 1 2 3 4 5 6

7.26 Th e compound a-tocopherol, a form of vitamin E (Atlas M3), 
is a powerful antioxidant that may help to maintain the integrity 
of biological membranes. Th e light-induced reaction between 
duroquinone and the antioxidant in ethanol is bimolecular and 

diff usion controlled. Estimate the rate constant for the reaction 
at 298 K, given that the viscosity of ethanol is 1.06 × 10−3 kg m−1 s−1.

7.27 Collision theory demands knowing the fraction of molecular 
collisions having at least the kinetic energy Ea along the line of 
fl ight. What is this fraction when (a) Ea = 10 kJ mol−1 and 
(b) Ea = 100 kJ mol−1 at (i) 300 K and (ii) 1000 K?

7.28 Calculate the percentage increase in the fractions in Exercise 7.27 
when the temperature is raised by 10 K.

7.29 Calculate the ratio of rates of catalyzed to non-catalyzed 
reactions at 37°C given that the Gibbs energy of activation for a 
particular reaction is reduced from 100 kJ mol−1 to 10 kJ mol−1.

7.30 Estimate the pre-exponential factor for the reaction between 
molecular hydrogen and ethene at 400°C. Hint: Th e steric factor 
is P = 1.7 × 10−6.

7.31 Th e mechanism of a composite reaction consists of a fast 
pre-equilibrium step with forward and reverse activation energies of 
25 kJ mol−1 and 38 kJ mol−1, respectively, followed by an elementary 
step of activation energy 10 kJ mol−1. What is the activation energy 
of the composite reaction?

7.32 Rhodopsin is the protein in the retina that absorbs light, starting 
a cascade of chemical events that we call vision (see Case study 12.2 
for additional information). Bovine rhodopsin undergoes a transition 
from one form (metarhodopsin I) to another form (metarhodopsin II) 
with a half-life of 600 ms at 37°C to 1 s at 0°C. On the other hand, 
studies of a frog retina show that the same transformation has a 
half-life that increases by only a factor of 6 over the same temperature 
range. Suggest an explanation and speculate on the survival 
advantages that this diff erence represents for the frog.

7.33 Estimate the activation Gibbs energy for the decomposition 
of urea in the reaction (NH2)2CO(aq) + 2 H2O(l) → 2 NH4

+(aq) 
+ CO3

2−(aq) for which the pseudo-fi rst-order rate constant is 
1.2 × 10−7 s−1 at 60°C and 4.6 × 10−7 s−1 at 70°C.

7.34 Calculate the entropy of activation of the reaction in Exercise 
7.33 at the two temperatures.

7.35 Calculate the Gibbs energy, enthalpy, and entropy of activation 
(at 300 K) for the binding of an inhibitor to the enzyme carbonic 
anhydrase using the following data:

T/K 289.0 293.5 298.1
kr/(106 dm3 mol−1 s−1) 1.04 1.34 1.53

T/K 303.2 308.0 313.5
kr/(106 dm3 mol−1 s−1)  1.89 2.29 2.84

7.36 Th e reaction A− + H+ → P has a rate constant given by the 
empirical expression kr = (8.72 × 1012)e(6134 K)/T dm3 mol−1 s−1. 
Evaluate the energy and entropy of activation at 25°C.

7.37 Th e conversion of fumarate ion to malate ion is catalyzed by the 
enzyme fumarase:

fumarate2−(aq) + H2O(l) 7 malate2−(aq)

(a) Sketch the reaction profi le for this reaction given that (i) the 
standard enthalpy of formation of the fumarate–fumarase complex 
from fumarate ion and enzyme is 17.6 kJ mol−1, (ii) the enthalpy of 
activation of the forward reaction is 41.3 kJ mol−1, (iii) the standard 
enthalpy of formation of the malate–fumarase complex from malate 
ion and enzyme is −5.0 kJ mol−1, and (iv) the standard reaction 
enthalpy is −20.1 kJ mol−1. (b) What is the enthalpy of activation 
of the reverse reaction?



272   7 ACCOUNTING FOR THE RATE LAWS

7.38 Th e activation Gibbs energy is composed of two terms: the 
activation enthalpy and the activation entropy. Diff erences in the latter 
can lead to the activation Gibbs energy for a process having the same 
values despite species inhabiting environments that diff er widely in 
temperature. Show how the data depicted in Fig. 7.21 support this 
remark. Th e data relate to the enthalpy and entropy of activation of 
myosin ATPase in diff erent species of fi sh living in environments 
ranging from the Arctic to hot springs.

7.39 At 25°C, kr = 1.55 dm6 mol−2 min−1 at an ionic strength of 0.0241 
for a reaction in which the rate-determining step involves the 
encounter of two singly charged cations. Use the Debye–Hückel 
limiting law to estimate the rate constant at zero ionic strength.

Projects

7.40 Th e absorption and elimination of a drug in the body may be 
modeled with a mechanism consisting of two consecutive reactions:

 A → B → C
drug at site of  drug dispersed  eliminated
administration  in blood  drug

where the rate constants of absorption (A → B) and elimination are, 
respectively, ka and kb.

(a) Consider a case in which absorption is so fast that it may be 
regarded as instantaneous, and a dose of A at an initial concentration 
[A]0 immediately leads to a drug concentration in blood of [B]0. Also, 
assume that elimination follows fi rst-order kinetics.

(i) Show that, aft er the administration of N equal doses separated by 
a time interval t, the peak concentration of drug B in the blood, [P]N, 
rises beyond the value of [B]0 and eventually reaches a constant, 
maximum peak value given by

[P]∞ = [B]0(1 − e−kbt)−1

[P]N is the (peak) concentration of B immediately aft er administration 
of the Nth dose and [P]∞ is the value at very large N.

(ii) Write a mathematical expression for the residual concentration of 
B, [R]N, which we defi ne to be the concentration of drug B immediately 
before the administration of the (N + 1)th dose. Note that [R]N is 
always smaller than [P]N because of drug elimination during the 
period t between drug administrations. Show that [P]∞ − [R]∞ = [B]0.

(b) Consider a drug for which kb = 0.0289 h−1.
(i) Calculate the t value required to achieve [P]∞/[B]0 = 10. Prepare 
a graph that plots both [P]N/[B]0 and [R]N/[B]0 against N.
(ii) How many doses must be administered to achieve a [P]N value 
that is 75 per cent of the maximum value? What time has passed 
during the administration of these doses?
(iii) What actions can be taken to reduce the variation [P]∞ − [R]∞ 
while maintaining the same value of [P]∞?

(c) Now consider the administration of a single dose [A]0 for which 
absorption follows fi rst-order kinetics and elimination follows 
zeroth-order kinetics. Show that with the initial concentration 
[B]0 = 0, the concentration of drug in the blood is given by

[B] = [A]0(1 − e−kat) − kbt

Plot [B]/[A]0 against t for the case ka = 10 h−1, 
kb = 4.0 × 10−3 mmol dm−3 h−1, and [A]0 = 0.1 mmol dm−3. 
Comment on the shape of the curve.

(d) Using the model from part (c), set d[B]/dt = 0 and show that 
the maximum value of [B] occurs at the time

tmax = 1
ka

 ln AC
ka[A]0

kb

D
F

Also, show that the maximum concentration of drug in blood is 
given by

[B]max = [A]0 − kb/ka − kbtmax.

7.41 Consider a mechanism for the helix–coil transition in which 
nucleation occurs in the middle of the chain:

hhhh . . . 7 hchh  hchh . . . 7 cccc

We saw in Case study 7.1 that this type of nucleation is relatively slow, 
so neither step may be rate determining.

(a) Set up the rate equations for this alternative mechanism.

(b) Apply the steady-state approximation and show that, under these 
circumstances, the mechanism is equivalent to  hhhh . . . 7 cccc . . .

(c) Use your knowledge of experimental techniques and your results 
from parts (a) and (b) to support or refute the following statement: 
It is very diffi  cult to obtain experimental evidence for intermediates 
in protein folding by performing simple rate measurements and one 
must resort to special fl ow, relaxation, or trapping techniques to detect 
intermediates directly.

Fig. 7.21 (right) Th e correlation of the enthalpy and entropy of 
activation of the reaction catalyzed by myosin ATPase 
in a variety of fi sh species. (Data from I.A. Johnson and 
G. Goldspink, Nature 257, 620 (1970), recalculated by 
H. Guttfreund, Kinetics for the life sciences. Cambridge 
University Press (1995).
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Biochemical processes use a number of strategies to achieve kinetic control. Chief 
among them is the use of enzymes to accelerate and regulate the rates of chemical 
reactions that, although thermodynamically favorable under intracellular conditions, 
would be too slow to account for the observed rate of growth of organisms and the 
processes of life in general. With the constant development of powerful experimental 
techniques, biochemists are beginning to decipher the mechanisms of even the most 
complex biological processes, such as the transport of nutrients across cell mem-
branes and the transfer of electrons between proteins during glucose metabolism and 
photosynthesis. In this chapter we describe these processes and develop the physical 
and chemical concepts that will be used throughout the remainder of the text.

Enzymes

Enzymes are homogeneous biological catalysts that work by lowering the activa-
tion energy of a reaction pathway or providing a new pathway with a low activa-
tion energy. Enzymes are special biological polymers that contain an active site, 
which is responsible for binding the substrates, the reactants, and processing 
them into products. As is true of any catalyst, the active site returns to its original 
state aft er the products are released. Many enzymes consist primarily of proteins, 
some featuring organic or inorganic cofactors in their active sites. However, 
certain ribonucleic acid (RNA) molecules can also be biological catalysts, form-
ing ribozymes. A very important example of a ribozyme is the ribosome, a large 
assembly of proteins and catalytically active RNA molecules responsible for the 
synthesis of proteins in the cell.

Th e structure of the active site is specifi c to the reaction that it catalyzes, with 
groups in the substrate interacting with groups in the active site through inter-
molecular interactions, such as hydrogen bonding, electrostatic, or van der Waals 
interactions (see Chapter 11). Figure 8.1 shows two models that explain the bind-
ing of a substrate to the active site of an enzyme. In the lock-and-key model, the 
active site and substrate have complementary three-dimensional structures and 
dock perfectly without the need for major atomic rearrangements. Experimental 
evidence favors the induced fi t model, in which binding of the substrate induces 
a conformational change in the active site. Only aft er the change does the sub-
strate fi t snugly in the active site.

Enzyme-catalyzed reactions are prone to inhibition by molecules that interfere 
with the formation of product. As we remarked in the Prolog, many drugs for 
the treatment of disease inhibit enzymes of infectious agents, such as bacteria 
and viruses. Here we focus on the kinetic analysis of enzyme inhibition, and in 

Complex
biochemical
processes

8
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Chapters 10 and 11 we shall see how computational methods contribute to the 
design of effi  cient inhibitors and potent drugs.

8.1 The Michaelis–Menten mechanism of enzyme catalysis
Because enzyme-controlled reactions are so important in biochemistry, we need to 
build a model of their mechanism. The simplest approach proposed by Michaelis 
and Menten is our starting point.

Experimental studies of enzyme kinetics are typically conducted by monitoring 
the initial rate of product formation in a solution in which the enzyme is present 
at very low concentration. Indeed, enzymes are such effi  cient catalysts that sig-
nifi cant accelerations may be observed even when their concentrations are more 
than three orders of magnitude smaller than those of their substrates.

Th e principal features of many enzyme-catalyzed reactions are as follows 
(Fig. 8.2):

1. For a given initial concentration of substrate, [S]0, the initial rate of product 
formation is proportional to the total concentration of enzyme, [E]0.

2. For a given [E]0 and low values of [S]0, the rate of product formation is pro-
portional to [S]0.

3. For a given [E]0 and high values of [S]0, the rate of product formation 
becomes independent of [S]0, reaching a maximum value known as the 
maximum velocity, vmax.

Th e Michaelis–Menten mechanism accounts for these features.1 According to 
this mechanism, an enzyme–substrate complex, ES, is formed in the fi rst step and 
the substrate is released either unchanged or aft er modifi cation to form products:

Michaelis–Menten mechanism:
E + S → ES v = ka[E][S]
ES → E + S v = ka′[ES]
ES → P + E v = kb[ES]

As we show in the following Justifi cation, this mechanism implies that the rate of 
product formation is given by the Michaelis–Menten equation:

v = kb[E]0

1 + KM/[S]0
  or  v = kb[E]0[S]0

[S]0 + KM
 Michaelis–Menten

equation
 (8.1)

where KM = (ka′ + kb)/ka is the Michaelis constant, characteristic of a given enzyme 
acting on a given substrate, [E]0 is the molar concentration of enzyme added and 
[S]0 is the molar concentration of the substrate.

Justification 8.1 The Michaelis–Menten equation

To derive eqn 8.1, we note that the rate of product formation (v = kb[ES]) 
requires us to know [ES]. We can obtain the concentration of the enzyme–
substrate complex by invoking the steady-state approximation (Section 7.3c) 
and writing

Fig. 8.2 Th e variation of the rate 
of an enzyme-catalyzed reaction 
with substrate concentration. 
Th e approach to a maximum rate, 
vmax, for large [S]0 is explained 
by the Michaelis–Menten 
mechanism. (Th e constant KM 
is explained shortly.)

Fig. 8.1 Two models that explain 
the binding of a substrate to 
the active site of an enzyme. 
In the lock-and-key model, 
the active site and substrate 
have complementary three-
dimensional structures and dock 
perfectly without the need for 
major atomic rearrangements. 
In the induced fi t model, binding 
of the substrate induces a 
conformational change in the 
active site. Th e substrate fi ts 
well in the active site aft er the 
conformational change has 
taken place.

1 Michaelis and Menten derived their rate law in 1913 in a more restrictive way, by assuming a 
rapid equilibrium. Th e approach we take is a generalization using the steady-state approximation 
made by Briggs and Haldane in 1925.
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 d[ES]
dt

 = ka[E][S] − ka′[ES] − kb[ES] = 0

It follows that

[ES] = AC
ka

ka′ + kb

D
F  [E][S]

where [E] and [S] are the concentrations of free enzyme and substrate, respec-
tively. Now we defi ne the Michaelis constant as

KM = ka′ + kb

ka
 = [E][S]

[ES]
 

and note that KM has the units of a molar concentration. To express the rate law 
in terms of the concentrations of enzyme, we note that [E]0 = [E] + [ES], so

[E]0 = [E] + [E][S]
KM

 = AC1 + [S]
KM

D
F  [E]

Moreover, because the substrate is typically in large excess relative to the 
enzyme, the free substrate concentration is approximately equal to the initial 
substrate concentration and we can write [S] ≈ [S]0. It then follows that

[ES] = 1
KM

 [E]0[S]0

1 + [S]0/KM
 = [E]0

(1 + KM)/[S]0

We obtain eqn 8.1 when we substitute this expression for [ES] into that for the 
rate of product formation.

Fig. 8.3 A Lineweaver–Burk plot is 
used to analyze kinetic data on 
enzyme-catalyzed reactions. Th e 
reciprocal of the rate of formation 
of products (1/v) is plotted 
against the reciprocal of the 
substrate concentration (1/[S]0). 
All the data points (which 
typically lie in the full region of 
the line) correspond to the same 
overall enzyme concentration, 
[E]0. Th e intercept of the 
extrapolated (dotted) straight line 
with the horizontal axis is used to 
obtain the Michaelis constant, 
KM. Th e intercept with the 
vertical axis is used to determine 
vmax = kb[E]0 and hence kb. Th e 
slope may also be used, for it is 
equal to KM/vmax.

Equation 8.1 shows that, in accord with experimental observations:

1. When [S]0 << KM, the rate is proportional to [S]0:

v = kb

KM
 [S]0[E]0 (8.2a)

2. When [S]0 >>KM, the rate reaches its maximum value and is independent 
of [S]0:

v = vmax = kb[E]0 (8.2b)

We can rearrange eqn 8.1 into a form that is amenable to data analysis by linear 
regression. Substitution of the defi nition of vmax into eqn 8.2b gives

v = vmax

1 + KM/[S]0

Th en, on taking reciprocals of both sides, we obtain

1
v

 = 1
vmax

 + AC
KM

vmax

D
F  1

[S]0
 Lineweaver–Burk plot  (8.3)

A Lineweaver–Burk plot is a plot of 1/v against 1/[S]0 and, according to 
eqn 8.3, it should yield a straight line with slope of KM/vmax, a y-intercept at 1/vmax, 
and an x-intercept at −1/KM (Fig. 8.3). Th e value of kb is then calculated from the 
y-intercept and eqn 8.2b. However, the plot cannot give the individual rate con-
stants ka and ka′ that appear in the expression for KM. Th e stopped-fl ow technique 
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described in Section 6.1b gives the additional data needed because we can 
fi nd the rate of formation of the enzyme–substrate complex by monitoring the 
concentration aft er mixing the enzyme and substrate. Th is procedure gives a 
value for ka, and ka′ is then found by combining this result with the values of kb 
and KM.

Fig. 8.4 Th e Lineweaver–Burk plot 
based on the data in Example 8.1.

A note on good practice 
Th e slope and the intercept 
are unit-less: we have 
remarked previously that all 
graphs should be plotted as 
pure numbers by dividing the 
physical variables by their 
units (not just by ignoring 
the units!).

 

Example 8.1 Analyzing a Lineweaver–Burk plot

Th e enzyme carbonic anhydrase (Atlas P2) catalyzes the hydration of CO2 in 
red blood cells to give bicarbonate (hydrogencarbonate) ion:

CO2(g) + H2O(l) → HCO3
−(aq) + H+(aq)

Th e following data were obtained for the reaction at pH = 7.1, 273.5 K, and an 
enzyme concentration of 2.3 nmol dm−3:

[CO2]0/(mmol dm−3) 1.25 2.5 5 20
V/(mmol dm−3 s−1) 2.78 × 10−2 5.00 × 10−2 8.33 × 10−2 1.67 × 10−1

Determine the maximum velocity and the Michaelis constant for the 
reaction.

Strategy We construct a Lineweaver–Burk plot by drawing up a table of 1/[S]0 
and 1/v. Th e intercept at 1/[S]0 = 0 is 1/vmax and the slope of the line through the 
points is KM/vmax, so KM is found from the slope divided by the intercept.

Solution We draw up the following table:

1/([CO2]0/(mmol dm−3)) 0.800 0.400 0.200 0.0500
1/(V/(mmol dm−3 s−1)) 36.0 20.0 12.0 6.00

Th e graph is plotted in Fig. 8.4. A least-squares analysis gives an intercept at 
4.00 and a slope of 40.0. It follows that

vmax/(mmol dm−3 s−1) = 1
intercept

 = 1
4.00

 = 0.250

and

KM/(mmol dm−3) = slope
intercept

 = 40.0
4.00

 = 10.0

Self-test 8.1 Th e enzyme a-chymotrypsin (Atlas P3) is secreted in the 
pancreas of mammals and cleaves peptide bonds made between certain 
amino acids. Several solutions containing the small peptide N-glutaryl-l-
phenylalanine-p-nitroanilide at diff erent concentrations were prepared, and 
the same small amount of a-chymotrypsin was added to each one. Th e follow-
ing data were obtained on the initial rates of the formation of product:

[S]0/(mmol dm−3) 0.334 0.450 0.667 1.00 1.33 1.67
V/(mmol dm−3 s−1) 0.152 0.201 0.269 0.417 0.505 0.667

Determine the maximum velocity and the Michaelis constant for the 
reaction.

Answer: 2.76 mmol dm−3 s−1, 5.77 mmol dm−3
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Many enzyme-catalyzed reactions are consistent with a modifi ed version of 
the Michaelis–Menten mechanism, in which the release of product from the ES 
complex is also reversible with the step

P → ES  v = kb′[P]

added to the mechanism. In Exercise 8.10 you are invited to show that application 
of the steady-state approximation for [ES] then results in the following expression 
for the rate of the reaction:

v = (vmax/KM)[S]0 − (v ′max/K ′M)[P]
1 + [S]0/KM + [P]/K ′M

 (8.4a)

where

vmax = kb[E]0  v ′max = ka′[E]0 (8.4b)

KM = ka′ + kb

ka
  K ′M = ka′ + kb

kb′
  (8.4c)

Equation 8.4a tells us that the reaction rate depends on the concentration of 
product. However, at the early stages of the reaction, when [S] = [S]0 >> [P], terms 
containing [P] can be ignored and it is easy to show that eqn 8.4a reduces to 
eqn 8.1.

8.2 The analysis of complex mechanisms
The simple mechanism described in the previous section is only a starting point: to 
account for the full range of enzyme-controlled reactions, we need to consider more 
involved mechanisms.

Many enzymes can generate several intermediates as they process a substrate into 
one or more products. An example is the enzyme chymotrypsin, which we treat 
in detail in Case study 8.1. Other enzymes act on multiple substrates. An example 
is hexokinase, which catalyzes the reaction between ATP and glucose (the two 
substrates of the enzyme), the fi rst step of glycolysis (Section 4.8). Th e same strat-
egies developed in Section 8.1 can be used to deal with such complex reaction 
schemes, and we shall focus on reactions involving two substrates.

(a) Sequential reactions

In sequential reactions the active site binds all the substrates before processing 
them into products. Th e binding can be ordered:

Sequential reaction mechanism

E + S1 7 ES1 KM1 = [E][S1]
[ES1]

ES1 + S2 7 ES1S2 KM12 = [ES1][S2]
[ES1S2]

ES1S2 → E + P v = kb[ES1S2]

for the two substrates S1 and S2. (Note that the Michaelis constants are, apart from 
their units, the reciprocals of the equilibrium constants for each step; we are sup-
posing that there are two fast pre-equilibrium steps.) Alternatively, substrate 
binding can be random and the following steps can also lead to formation of the 
ES1S2 complex:
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Sequential mechanism with random attachment

E + S2 7 ES2 KM2 = [E][S2]
[ES2]

ES2 + S1 7 ES1S2 KM21 = [ES2][S1]
[ES1S2]

Th e resulting rate law, based on the relation

[E]0 = [E] + [ES1] + [ES2] + [ES1S2]

for the total concentration of enzyme in its bound and unbound forms, is

v = vmax[S1]0[S2]0

KM1KM12 + KM12[S1]0 + KM12[S2]0 + [S1]0[S2]0
 (8.5a)

where vmax = kb[E]0 and we have supposed that both S1 and S2 are in such 
excess over the enzyme concentration that they are equal to their nominal 
concentrations.

Th is equation can be rearranged into a form more suitable for plotting by 
holding the concentration of one substrate (S2, for instance) constant and writ-
ing fi rst

v = vmax[S1]0

KM1KM12/[S2]0 + KM12[S1]0/[S2]0 + KM21 + [S1]0

and then forming the reciprocal of both sides:

1
v

 = 1 + KM12/[S2]0

vmax
 + KM21 + KM1KM12/[S2]0

vmax
 1
[S1]0

 
Analysis of 
sequential
reaction

 (8.5b)

It follows that a plot of 1/v against 1/[S1]0 for constant [S2]0 is linear with

slope = KM21 + KM1KM12/[S2]0

vmax

y-intercept = 1 + KM12/[S2]0

vmax
 (8.5c)

(b) Ping-pong reactions

In so-called ping-pong reactions products are released in a stepwise fashion. 
In a two-substrate reaction, the fi rst substrate (S1) binds to the enzyme E and a 
product (P1) is released, leaving the enzyme chemically modifi ed (denoted E*), 
perhaps by a fragment of the substrate. Th en the second substrate (S2) binds to 
the modifi ed enzyme and is processed into a second product, P2, returning the 
enzyme to its native form. Th e scheme can be summarized as follows:

Ping-pong mechanism

E + S1 7 ES1 KM1 = [E][S1]
[ES1]

ES1 → E* + P1 v1 = kb1[ES1]

E* + S2 7 E*S2 KM2 = [E*][S2]
[E*S2]

E*S2 → E + P2 v2 = kb2[E*S2]
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Enzymes with ping-pong mechanisms include various transferases, oxido-
reductases, and proteases. Th e intermediate E* in the action of the protease 
chymotrypsin (Atlas P3), for instance, is formed by modifi cation of a serine 
residue in the active site.

If we suppose that ES1 rapidly turns into E*, we may identify [E*] with the value 
of [ES1] due to the fi rst rapid equilibrium and write

[E]0 = [E] + [E*] + [E*S2] = [E] + [ES1] + [E*S2]

 = [E] + [E][S1]
KM1

 + [E*][S2]
KM2

 = [E] + [E][S1]
KM1

 + [ES1][S2]
KM2

 = AC1 + [S1]
KM1

 + [S1][S2]
KM1KM2 

D
F  [E]

Th e rate of the production of P2 is then given by

v2 = kb2[E*S2] = kb2

KM2
 [E*][S2] = kb2

KM2
 [ES1][S2] = kb2

KM1KM2
 [E][S1][S2]

which, with the value of [E] replaced by the expression derived above, becomes

v2 = v2max[S1][S2]
KM2[S1] + KM1[S2] + [S1][S2]

 (8.6a)

with v2max = kb2[E]0. Again, we can rearrange this equation to obtain

1
v2

 = 1 + KM2/[S2]
v2max

 + KM1

v2max
 · 1

[S1]
 Analyzing a ping-pong 

mechanism
 (8.6b)

It follows that a plot of 1/v2 against 1/[S1] for constant [S2] is linear with

slope = KM1

v2max
  y-intercept = 1 + KM2/[S2]

v2max
 (8.6c)

Equations 8.5 and 8.6 form the basis of a graphical method for distinguish-
ing between sequential and ping-pong reactions. For sequential reactions, the 
slope of a plot of 1/v against 1/[S1] depends on [S2], so a series of such plots 
for diff erent values of [B] form a family of nonparallel lines (Fig. 8.5a). However, 
for ping-pong reactions the lines described by plots of 1/v2 against 1/[S1] for 
diff erent values of [S2] are parallel because the slopes are independent of [S2] 
(Fig. 8.5b).

8.3 The catalytic efficiency of enzymes
To discuss the effectiveness of enzymes, it is useful to have a quantitative measure 
of their kinetic efficiencies for the acceleration of biochemical reactions.

Th e turnover frequency, or catalytic constant, of an enzyme, kcat, is the number 
of catalytic cycles (turnovers) performed by the active site in a given interval 
divided by the duration of the interval. Th is quantity has the same units as a 
fi rst-order rate constant and, in terms of the Michaelis–Menten mechanism, is 
numerically equivalent to kb, the rate constant for release of product from the 
enzyme–substrate complex. It follows from the identifi cation of kcat with kb and 
from eqn 8.2b that

Fig. 8.5 Th e analysis of kinetic data 
for enzyme-catalyzed reactions 
involving two substrates. Plots of 
1/v against 1/[S1]0 for diff erent 
values of [S2]0 can be used to 
distinguish between (a) a 
sequential reaction, which gives 
rise to a family of nonparallel 
lines, and (b) a ‘ping-pong’ 
reaction, which give rise to a 
family of parallel lines.
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kcat = kb = vmax

[E]0
 Turnover 

frequency
 (8.7)

Th e catalytic effi  ciency, h (eta), of an enzyme is the ratio kcat/KM. Th e higher 
the value of h, the more effi  cient is the enzyme. We can think of the catalytic activ-
ity as the eff ective rate constant of the enzymatic reaction. From KM = (ka′ + kb)/ka 
and eqn 8.7, it follows that

h = kcat

KM
 = kakb

ka′ + kb
 Catalytic

efficiency
 (8.8)

Th e catalytic effi  ciency reaches its maximum value of ka when kb >> ka′. Because 
ka is the rate constant for the formation of a complex from two species that are dif-
fusing freely in solution, the maximum effi  ciency is related to the maximum rate 
of diff usion of E and S in solution (Section 7.5). Th is limit leads to rate constants 
of about 108–109 dm3 mol−1 s−1 for molecules as large as enzymes at room tem-
perature. Th e enzyme catalase has h = 4.0 × 108 dm3 mol−1 s−1 and is said to have 
attained ‘catalytic perfection’ in the sense that the rate of the reaction it catalyzes 
is essentially diff usion controlled: it acts as soon as a substrate makes contact.

Self-test 8.2 Calculate kcat and the catalytic effi  ciency of carbonic anhydrase 
by using the data from Example 8.1.

Answer: kcat = 1.1 × 105 s−1, h = 1.1 × 104 dm3 mmol−1 s−1

8.4 Enzyme inhibition
We now need to take the analysis a stage further to see how to accommodate 
reaction steps that prevent an enzyme from forming product.

An inhibitor, I, decreases the rate of product formation from the substrate by 
binding to the enzyme, to the ES complex, or to the enzyme and ES complex 
simultaneously. Th e most general kinetic scheme for enzyme inhibition is then

Reaction with inhibition
E + S → ES v = ka[E][S]
ES → E + S v = ka′[ES]
ES → E + P v = kb[ES]

EI 7 E + I KI = [E][I]
[EI]

ESI 7 ES + I KI′ = [ES][I]
[ESI]

Th e lower the values of KI and KI′, the more effi  cient is the inhibition. As shown in 
the following Justifi cation, the rate of reaction in the presence of an inhibitor is

v = vmax

a′ + aKM/[S]0
 Inhibited rate  (8.9a)

where

a = 1 + [I]
KI

  a′ = 1 + [I]
KI′

  (8.9b)
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Th is equation is very similar to the Michaelis–Menten equation for the unin-
hibited enzyme (eqn 8.1) and is also amenable to analysis by a version of the 
Lineweaver–Burk plot:

1
v

 = a′
vmax

 + aKM

vmax
 1
[S]0

 Lineweaver–Burk
plot with inhibition

 (8.9c)

Fig. 8.6 Lineweaver–Burk plots 
characteristic of the three major 
modes of enzyme inhibition: 
(a) competitive inhibition, 
(b) uncompetitive inhibition, 
and (c) noncompetitive 
inhibition, showing the special 
case a = a′ > 1.

Justification 8.2 Enzyme inhibition

By mass balance, the total concentration of enzyme is

[E]0 = [E] + [EI] + [ES] + [ESI]

By using the defi nitions in eqn 8.9 and the two equilibrium constants it follows 
that

[E]0 = a[E] + a′[ES]

Th en, because KM = [E][S]/[ES] and [S] ≈ [S]0, we can write

[E]0 = aKM[ES]
[S]0

 + a′[ES] = AC
aKM

[S]0
 + a′

D
F  [ES]

Th e expression for the rate of product formation is then

v = kb[ES] = kb[E]0

aKM/[S]0 + a′

which, on rearrangement, gives eqn 8.9c.

Th ere are three major modes of inhibition that give rise to distinctly diff erent 
kinetic behavior (Fig. 8.6):

• Competitive inhibition: the inhibitor binds only to the active site of the 
enzyme and thereby inhibits the attachment of the substrate.

Th is condition corresponds to a > 1 and a′ = 1 (because ESI does not form). 
Th e slope of the Lineweaver–Burk plot increases by a factor of a relative to the 
slope for data on the uninhibited enzyme (a = a′ = 1). Th e y-intercept does not 
change as a result of competitive inhibition.

• Uncompetitive inhibition: the inhibitor binds to a site of the enzyme that is 
removed from the active site but only if the substrate is already present.

Th e inhibition occurs because ESI reduces the concentration of ES, the active 
type of complex. In this case a = 1 (because EI does not form) and a′ > 1. Th e 
y-intercept of the Lineweaver–Burk plot increases by a factor of a′ relative to the 
y-intercept for data on the uninhibited enzyme, but the slope does not change.

• Non-competitive inhibition (or mixed inhibition): the inhibitor binds to 
a site other than the active site, and its presence reduces the ability of the 
substrate to bind to the active site.

Inhibition occurs at both the E and ES sites. Th is condition corresponds to 
a > 1 and a′ > 1. Both the slope and y-intercept of the Lineweaver–Burk plot 
increase on addition of the inhibitor. Figure 8.6c shows the special case of KI = KI′ 
and a = a′, which results in intersection of the lines at the x-axis.
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In all cases, the effi  ciency of the inhibitor may be obtained by determining KM 
and vmax from a control experiment with uninhibited enzyme and then repeating 
the experiment with a known concentration of inhibitor. From the slope and 
y-intercept of the Lineweaver–Burk plot for the inhibited enzyme (eqn 8.9), 
the mode of inhibition, the values of a or a′, and the values of KI or KI′ can be 
obtained.

A brief comment
Because several plots are 
involved in the extraction of 
information from the data, 
it is sometimes diffi  cult to keep 
track of units. Th e following 
lengthy Example shows in 
detail how to keep track of 
them in analyses of this kind 
(and in general). Example 8.2 Distinguishing between types of inhibition

Five solutions of a substrate, S, were prepared with the concentrations given 
in the fi rst column below, and each one was divided into fi ve equal volumes. 
Th e same concentration of enzyme was present in each one. An inhibitor, 
I, was then added in diff erent concentrations to the samples, and the initial 
rate of formation of product was determined with the results given below. 
Does the inhibitor act competitively or noncompetitively? Determine KI 
and KM.

  [I]/(mmol dm−3)
[S]/(mmol dm−3) 0 0.20 0.40 0.60 0.80 
0.050 0.033 0.026 0.021 0.018 0.016  
0.10 0.055 0.045 0.038 0.033 0.029  
0.20 0.083 0.071 0.062 0.055 0.050 

⎤⎥⎥⎥⎥⎦  

v/(mmol dm−3 s−1)
0.40 0.111 0.100 0.091 0.084 0.077  
0.60 0.126 0.116 0.108 0.101 0.094

Strategy We draw a series of Lineweaver–Burk plots for diff erent inhibitor 
concentrations. If the plots resemble those in Fig. 8.6a, then the inhibition is 
competitive. On the other hand, if the plots resemble those in Fig. 8.6c, then 
the inhibition is noncompetitive. To fi nd KI, we need to determine the slope at 
each value of [I], which is equal to aKM/vmax, or KM/vmax + KM[I]/KIvmax, then 
plot this slope against [I]: the intercept at [I] = 0 is the value of KM/vmax and the 
slope is KM/KIvmax. To conform to the rule that all graphs should be plots of 
dimensionless quantities, we express eqn 8.9c as

1
v/mmol dm−3 s−1

 
= a′

vmax/mmol dm−3 s−1
 + aKM/mmol dm−3

vmax/mmol dm−3 s−1
 1
[S]0/mmol dm−3

and plot 1/(v/mmol dm−3 s−1) against 1/([S]0/mmol dm−3), then the slope (which 
we shall call slope1 for this fi rst graph) is identifi ed with

slope1 = aKM/mmol dm−3

vmax/mmol dm−3 s−1
 , so a = slope1 × vmax/mmol dm−3 s−1

KM/mmol dm−3

and the y-intercept with

intercept1 = a′
vmax/mmol dm−3 s−1

 , so vmax = a′
intercept1

 mmol dm−3 s−1

For the determination of KI and KM we write eqn 8.9b, a = 1 + [I]/KI, which 
becomes

slope1 × vmax/mmol dm−3 s−1

KM/mmol dm−3
 = 1 + [I]/mmol dm−3

KI/mmol dm−3
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and therefore

slope1 = KM/mmol dm−3

vmax/mmol dm−3 s−1
 + KM/mmol dm−3

vmax/mmol dm−3 s−1
 × [I]/mmol dm−3

KI/mmol dm−3

 = KM/mmol dm−3

vmax/mmol dm−3 s−1
 + KM/KI

vmax/mmol dm−3 s−1
 × [I]/mmol dm−3

We conclude that when in the second graph slope1 is plotted against 
[I]/mmol dm−3,

slope2 = KM/KI

vmax/mmol dm−3 s−1
, so KM/KI = slope2 × vmax/mmol dm−3 s−1

intercept2 = KM/mmol dm−3

vmax/mmol dm−3 s−1
, so 

KM

mmol
 dm−3 = intercept2 × vmax/mmol dm−3 s−1

Solution First, we draw up a table of 1/[S] and 1/v for each value of [I]:

 [I]/(mmol dm−3)
1/([S]/(mmol dm−3)) 0 0.20 0.40 0.60 0.80
20 30 38 48 56 62  
10 18 22 26 30 34  
5.0 12 14 16 18 20 

⎤⎥⎥⎥⎥⎦  

1/(v/(mmol dm−3 s−1))
2.5 9.01 10.0 11.0 11.9 13.0  
1.7 7.94 8.62 9.26 9.90 10.6

Th e fi ve plots (one for each [I]) are given in Fig. 8.7. We see that they 
pass through the same intercept on the vertical axis, so the inhibition is com-
petitive and we can set a′ = 1. Th e mean of the (least-squares) intercepts is 
intercept1 = 5.83, so

vmax = 1
5.83

 mmol dm−3 s−1 = 0.17 mmol dm−3 s−1

Th e (least-squares) slopes of the lines are as follows:

[I]/mmol dm−3  0 0.20 0.40 0.60 0.80
slope1 1.219 1.627 2.090 2.489 2.832

Th ese values are plotted in Fig. 8.8. Th e intercept at [I] = 0 is intercept2 = 1.234, 
so

KM/mmol dm−3 = 1.234 × 0.17 = 0.21

and therefore KM = 0.21 mmol dm−3. Th e (least-squares) slope of the line is 
slope2 = 2.045, so

KM/KI = 2.045 × 0.17 = 0.348

It follows that

KI = KM

2.045 × 0.17
 = 0.21 mmol dm−3

2.045 × 0.17
 = 0.60 mmol dm−3

Fig. 8.7 Lineweaver–Burk plots for 
the data in Example 8.2. Each line 
corresponds to a diff erent 
concentration of inhibitor.

Fig. 8.8 Plot of the slopes of the 
plots in Fig. 8.7 against [I] based 
on the data in Example 8.2.



284   8 COMPLEX BIOCHEMICAL PROCESSES

Self-test 8.3 Repeat the question using the following data:

 [I]/(mmol dm−3)
[S]/(mmol dm−3) 0 0.20 0.40 0.60 0.80  
0.050 0.020 0.015 0.012 0.0098 0.0084  
0.10 0.035 0.026 0.021 0.017 0.015  
0.20 0.056 0.042 0.033 0.028 0.024 

⎤⎥⎥⎥⎥⎦
 v/(mmol dm−3 s−1)

0.40 0.080 0.059 0.047 0.039 0.034  
0.60 0.093 0.069 0.055 0.046 0.039

Answer: Noncompetitive, KM = 0.30 mmol dm−3, KI = 0.57 mmol dm−3

Case study 8.1 The molecular basis of catalysis by hydrolytic enzymes

One protein enzyme that has been studied in considerable detail is chymo-
trypsin (Atlas P3), which functions by hydrolyzing peptide bonds in poly-
peptides in the small intestine. Th e sequence of steps by which the enzyme 
carries out the fi rst part of its task—to snip through the C–N bond of the 
peptide link—is shown in Fig. 8.9. Th e crucial point to notice is the formation 
of a tetrahedral transition state in the course of the reaction. Th e second 
sequence by which the carboxylic acid group is eliminated from the polypep-
tide is shown in Fig. 8.10. Th is step involves the attack by an H2O molecule on 
the carboxyl group and the subsequent cleavage of the original C–O bond. 
Once again, the crucial point is the formation of a tetrahedral transition state. 
In each case, the catalytic activity of the enzyme can be traced to the struc-
ture of the active site, in this case featuring a catalytic triad, which enhances 
reactivity of the enzyme toward the substrate, and an oxoanion hole, which 
stabilizes the tetrahedral transition state.

Th e catalytic triad consists of the serine, histidine, and aspartic acid residues 
shown in Figs 8.9 and 8.10. Th ere, proton transfer between the residues depro-
tonates serine’s hydroxyl group, resulting in an alkoxide ion that is particularly 
reactive toward the carbonyl group of the polypeptide. In the oxoanion hole, 
NH groups from the peptide backbone of the enzyme are strategically placed 
to form hydrogen bonds with the negatively charged oxygen atom (formerly 
the carbonyl oxygen of the polypeptide substrate) of the tetrahedral transition 
state. By helping to accommodate a nascent negative charge, the oxoanion hole 
lowers the energy of the transition state and enhances the rate of hydrolysis.

Th e entities known as ‘catalytic antibodies’ combine the insight that studies on 
molecules such as chymotrypsin provide with an organism’s natural defence 
system. In that way, they open routes to alternative enzymes for carrying out 
particular reactions. Th e key idea is that an organism generates a fl ood of 
antibodies when an antigen—a foreign body—is introduced. Th e organism 
maintains a wide range of latent antibodies, but they proliferate in the presence 
of the antigen. It follows that, if we can introduce an antigen that emulates 
the tetrahedral transition state typical of a peptide hydrolysis reaction, then an 
organism should produce a supply of antibodies that may be able to act as 
enzymes for that and related functions.

Th is procedure has been applied to the search for enzymes for the hydrolysis 
of esters. Th e compound used to mimic the tetrahedral transition state is a 
tetrahedral phosphonate (1). When the antibody stimulated to interact with 

Fig. 8.9 Th e sequence of steps 
by which chymotrypsin cuts 
through the C–N bond of a 
peptide link and releases an 
amine.
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this antigen is used to catalyze the hydrolysis of an ester, pronounced activity is 
indeed found, with KM = 1.9 mmol dm−3 and an enhancement of rate over the 
uncatalyzed reaction by a factor of 103. Th e hope is that catalytic antibodies 
can be formed that catalyze reactions currently untouched by enzymes, such 
as those that target destruction of viruses and tumors.

Fig. 8.11 One possible path 
of a random walk in three 
dimensions. In this general case, 
the step length is also a random 
variable. (Available at http://
www.ki.inf.tu-dresden.
de/~fritzke/research/TS/
example1.html.)

Fig. 8.10 Th e following sequence 
of steps by which chymotrypsin 
cuts through the C–O bond and 
releases a carboxylic acid.

Transport across biological  membranes

At this stage we can begin to explore the molecular features that govern the rates 
of reactions. We saw in Chapter 5 that many cellular processes, such as the propa-
gation of impulses in neurons and the synthesis of ATP by ATPases, are controlled 
by the transport of molecules and ions across biological membranes. Passive 
transport is the spontaneous movement of species down concentration and 
membrane potential gradients; active transport is nonspontaneous movement 
against these gradients and driven by the hydrolysis of ATP. Here we complement 
the thermodynamic treatment of Chapter 5 with a kinetic analysis that begins 
with a consideration of the laws governing the motion of molecules and ions in 
liquids and then describes modes of transport across cell membranes.

8.5 Molecular motion in liquids
Because the rate at which molecules move in solution may be a controlling factor of 
the maximum rate of a biochemical reaction in the intracellular medium, we need to 
understand the factors that limit molecular motion in a liquid.

A molecule in a liquid is surrounded by other molecules and can move only 
a fraction of a diameter in each step it takes, perhaps because its neighbors 
briefl y move aside. Molecular motion in liquids is a series of short steps, with 
ever-changing directions, like people in an aimless, milling crowd.

Th e process of migration by means of a random jostling motion through a 
liquid is called diff usion. We can think of the motion of the molecule as a series 
of short jumps in random directions, a so-called random walk (Fig. 8.11). If there 
is an initial concentration gradient in the liquid (for instance, a solution may have 
a high concentration of solute in one region), then the rate at which the molecules 
spread out is proportional to the concentration gradient and we write

rate of diff usion ∝ concentration gradient

To express this relation mathematically, we introduce the fl ux, J, which is 
the number of particles passing through an imaginary window in a given time 
interval, divided by the area of the window and the duration of the interval:

J = number of particles passing through window
area of window × time interval

 Definition
of flux

 (8.10a)

Th e fl ux may also be expressed in terms of the amount (in moles) of molecules:

J = amount of particles passing through window
area of window × time interval

 (8.10b)

To calculate the number or amount of molecules passing through a given 
window in a given time interval, we multiply the fl ux by the area of the window 
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and the time interval. Fick’s fi rst law of diff usion (see Further information 8.1 for 
a derivation) then states:

J = −D dc
dx

 Fick’s first law  (8.11)

where dc/dx is the gradient of either the number concentration (molecules m−3, 
for instance) when the fl ux is in terms of numbers or the molar concentration 
(mol dm−3, for instance) when the fl ux is in terms of amounts. Th e coeffi  cient D, 
which has the dimensions of area divided by time (typically with units m2 s−1), is 
called the diff usion coeffi  cient (Table 8.1) and depends on the solute species, the 
solvent, and the temperature. For a given concentration gradient, large values of 
D correspond to rapid diff usion. Th e negative sign in eqn 8.11 simply means that 
if the concentration gradient is negative (down from left  to right, Fig. 8.12), then 
the fl ux is positive (fl owing from left  to right).

Fig. 8.12 Th e fl ux of solute 
particles is proportional to the 
concentration gradient. Here 
we see a solution in which the 
concentration falls from left  to 
right. Th e gradient is negative 
(down from left  to right) and 
the fl ux is positive (towards the 
right). Th e greatest fl ux is found 
where the gradient is steepest 
(at the left ).

Table 8.1 Diff usion coeffi  cients in 
water, D/(10−9 m2 s−1)

Water, H2O* 2.26
Glycine, NH2CH2COOH* 1.055
Sucrose, C12H22O11* 0.522
Lysozyme† 0.112
Serum albumin† 0.0594
Catalase† 0.0410
Fibrinogen† 0.0202
Bushy stunt virus† 0.0115

*Measured at 5°C.
†Measured at 20°C.

A brief illustration

For sucrose in water at 25°C, D = 5.22 × 10−10 m2 s−1. Suppose that in a region of 
an unstirred aqueous solution of sucrose the molar concentration gradient 
is −0.10 mol dm−3 cm−1. Th en, because 1 dm = 10−1 m (so 1 dm−3 = 103 m−3) and 
1 cm = 10−2 m (so 1 cm−1 = 102 m−1), the fl ux arising from this gradient is

J = −(5.22 × 10−10 m2 s−1) × (−0.10 mol dm−3 cm−1)
 = 5.22 × 0.10 × 10−10 m2 s−1 mol × (103 m−3) × (102 m−1)
 = 5.2 × 10−6 mol m−2 s−1

Th e amount of sucrose molecules passing through a 1.0-cm square window in 
10 minutes is therefore

n = JADt = (5.2 × 10−6 mol m−2 s−1) × (1.0 × 10−2 m)2 × (10 × 60 s) 
 = 3.1 × 10−7 mol, or 0.31 mmol

Diff usion coeffi  cients are of the greatest importance for discussing the spread 
of pollutants in lakes and through the atmosphere. In both cases, the spread of 
pollutant may be assisted—and is normally greatly dominated—by bulk motion 
of the fl uid as a whole (as when a wind blows in the atmosphere). Th is motion is 
called convection. Because diff usion is oft en a slow process, we speed up the 
spread of solute molecules by inducing convection by stirring a fl uid or turning 
on an extractor fan.

One of the most important equations in the physical chemistry of fl uids is 
the diff usion equation, which enables us to predict the rate at which the concen-
tration of a solute changes in a nonuniform solution. In essence, the diff usion 
equation expresses the fact that wrinkles in the concentration tend to disperse. 
Th e formal statement of the diff usion equation, which is also known as Fick’s 
second law of diff usion, is

∂c
∂t

 = D ∂
2c

∂x2
 Fick’s second law  (8.12)
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where ∂c/∂t is the rate of change of concentration in a region and ∂2c/∂x2 may 
be thought of as the curvature of the concentration in the region. Because the 
concentration c depends on both position and time, we have to express Fick’s 
second law using ‘partial derivative’ notation (see Mathematical toolkit 8.1). 
Th e ‘curvature’ ∂2c/∂x2 is a measure of the wrinkliness of the concentration (see 
below). Th e derivation of this expression from Fick’s fi rst law is also given in 
Further information 8.1. Th e concentrations on the left  and right of this equation 
may be either number concentrations or molar concentrations.

Th e diff usion equation tells us that a uniform concentration and a concentra-
tion with unvarying slope through the region (so ∂2c/∂x2 = 0 in each case) results 
in no net change in concentration in the region (∂c/∂t = 0) because the rate of 
infl ux through one wall of the region is equal to the rate of effl  ux through the 
opposite wall. Only if the slope of the concentration varies through a region—
only if the concentration is wrinkled—is there a change in concentration. Where 
the curvature is positive (a dip, Fig. 8.13), the change in concentration is positive: 
the dip tends to fi ll. Where the curvature is negative (a heap), the change in con-
centration is negative: the heap tends to spread.

Th e diff usion coeffi  cient increases with temperature because an increase in 
temperature enables a molecule to escape more easily from the attractive forces 
exerted by its neighbors. If we suppose that the rate of random motion follows 
an Arrhenius temperature dependence with an activation energy Ea, then the 
diff usion coeffi  cient will follow the relation

D = D0e−Ea/RT Temperature-
dependence of D

 (8.13)

Fig. 8.13 Nature abhors a wrinkle. 
Th e diff usion equation tells us 
that peaks in a distribution 
(regions of negative curvature) 
spread and troughs (regions of 
positive curvature) fi ll in.

  Mathematical toolkit 8.1 Partial derivatives

When a function depends on more than one variable, 
such as the function f(x,y), there are two fi rst deriva-
tives: one with respect to x with y held constant, and 
the other with respect to y with x held constant. Th ese 
derivatives are referred to as ‘partial derivatives’ and 
denoted

A
C

∂f
∂x

D
F

y

 and A
C

∂f
∂y

D
F

x

respectively (note the ‘curly d’) and the variable held 
constant as a right-subscript (this may be omitted if 
there is no ambiguity). Th e fi rst of these expressions 
is the slope of the function parallel to the x-axis and 
the second is the slope parallel to the y-axis (see the 
illustration). For instance, if f = x2y3, then

A
C

∂f
∂x

D
F

y

 = 2xy3 and A
C

∂f
∂y

D
F

x

 = 3x2y2

Higher derivatives are defi ned analogously, as in

A
C

∂2f
∂x2

D
F

y

 and A
C

∂2f
∂y2

D
F

x
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Th e rate at which particles diff use through a liquid is related to the viscosity, 
and we should expect a high diff usion coeffi  cient to be found for fl uids that have a 
low viscosity. Th at is, we can suspect that D ∝ 1/h, where h (eta) is the coeffi  cient 
of viscosity. In fact, the Stokes–Einstein relation states that

D = kT
6pha

 Stokes–Einstein
relation

 (8.14)

where a is the eff ective radius of the molecule. Figure 8.14 shows the observed 
temperature dependence of the viscosity of water.

Fig. 8.14 Th e experimental 
temperature dependence of 
the viscosity of water. As the 
temperature is increased, more 
molecules are able to escape from 
the potential wells provided by 
their neighbors, so the liquid 
becomes more fl uid.

Self-test 8.4 Estimate the activation energy for the diff usion of a solute 
molecule in water from the graph in Fig. 8.14 by using the viscosities at 40°C 
and 80°C. Hint: Use an equation such as eqn 8.13 to formulate an expression 
for the logarithm of the ratio of the two diff usion coeffi  cients.

Answer: 19 kJ mol−1

8.6 Molecular motion across membranes
A crucial aspect of biochemical change is the rate at which species are transported 
across a membrane, so we need to understand the kinetic factors that facilitate or 
impede transport.

Consider the passive transport of an uncharged species A across a lipid bilayer 
of thickness l. To simplify the problem, we assume that the concentration of A is 
always maintained at [A] = [A]0 on one surface of the membrane and at [A] = 0 on 
the other surface, perhaps by a perfect balance between the rate of the process that 
produces A on one side and the rate of another process that consumes A com-
pletely on the other side. Th en ∂[A]/∂t = 0 because the two boundary conditions 
ensure that the interior of the membrane is maintained at a constant but not 
necessarily uniform concentration, and eqn 8.12 simplifi es to

D d
2[A]
dx2

 = 0 (8.15)

where D is the diff usion coeffi  cient. (We can use d in place of the partial ∂ because 
this [A] is independent of time, so x is the only variable.) We use the conditions 
[A](0) = [A]0 and [A](l) = 0 to solve this diff erential equation and the result, which 
may be verifi ed by diff erentiation, is

[A](x) = [A]0 
A
C1 − x

l
D
F  Concentration

profile
 (8.16)

which implies that [A] decreases linearly inside the membrane. We now use Fick’s 
fi rst law to calculate the fl ux J of A through the membrane. From eqn 8.16, it 
follows that

d[A]
dx

 = − [A]0

l

and from this result and eqn 8.11 obtain

J = D [A]0

l
 (8.17)
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Before using this simple result we need to take into account the fact that 
the concentration of A on the surface of a membrane is not always equal to its 
concentration measured in the bulk solution, which we assume to be aqueous. 
Th is diff erence arises from the signifi cant diff erence in the solubility of A in an 
aqueous environment and in the solution–membrane interface. One way to deal 
with this problem is to defi ne a partition coeffi  cient k (kappa) as

 k = [A]0

[A]s
 Definition of partition 

coefficient
 (8.18)

where [A]s is the molar concentration of A in the bulk aqueous solution. It 
follows that

J = kD [A]s

l
 Diffusion flux  (8.19)

We see, as intuition would suggest, that the fl ux is high when the concentration of 
A in the bulk solution is high and the membrane is thin.

In spite of the assumptions that led to its fi nal form, eqn 8.19 describes 
adequately the passive transport of many nonelectrolytes through membranes 
of blood cells. In many cases, however, eqn 8.19 underestimates the fl ux, which 
suggests that the membrane is more permeable than expected. However, because 
the permeability increases only for certain species, we can infer that in these 
cases, transport is facilitated by carrier molecules. One example is the trans-
porter protein that carries glucose into cells. But we issue a word of caution: 
there is little justifi cation for supposing that D in the membrane is equal to its 
value in aqueous solution or that k has any particular value, and the conclusion 
that facilitated transport is involved needs additional evidence before it can be 
accepted.

To treat facilitated transport we suppose that a characteristic of a carrier C is 
that it binds to the transported species A and that the dissociation of the AC com-
plex is described by

AC 7 A + C  K = [A][C]
[AC]c3

 (8.20a)

where we have used concentrations instead of activities (and c3 = 1 mol dm−3, 
the standard molar concentration). Aft er writing [C]0 = [C] + [AC], where [C]0 
is the total concentration of carrier, it follows that

 [AC] = [A][C]0

[A] + Kc3
 (8.20b)

Th en the fl ux through the membrane of the species AC is given by a version of 
eqn 8.19 as

J = kACDAC [AC]
l

 = kACDAC[C]0

l
 [A]
[A] + Kc3

 = Jmax 
[A]

[A] + Kc3
 

Mediated
flux

 (8.21)

where kAC and DAC are the partition coeffi  cient and diff usion coeffi  cient of the 
species AC, respectively and Jmax = kACDAC[C]0/l. We see from Fig. 8.15 that:

• when [A] << Kc3, J = Jmax[A] and the fl ux is proportional to [A]
• when [A] >> Kc3, J = Jmax and the fl ux has its maximum value.

Th is behavior is characteristic of mediated transport.

Fig. 8.15 Th e fl ux of the species AC 
through a membrane varies with 
the concentration of the species 
A. Th e behavior shown in the 
fi gure and explained in the text 
is characteristic of mediated 
transport of A, with C as a carrier 
molecule.
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8.7 The mobility of ions
Ion transport through membranes is central to the operation of many biological 
processes, particularly signal transduction in neurons, and we need to be equipped 
to describe ion migration quantitatively.

An ion in solution responds to the presence of an electric fi eld, migrates through 
the solution, and carries charge from one location to another. Th e study of the 
motion of ions down a potential gradient gives an indication of their size, the 
eff ect of solvation, and details of the type of motion they undergo.

When an ion is subjected to an electric fi eld E , it accelerates. However, 
the faster it travels through the solution, the greater the retarding force it experi-
ences from the viscosity of the medium. As a result, as we show in the following 
Justifi cation, the ion settles down into a limiting velocity called its drift  velocity, 
s, which is proportional to the strength of the applied fi eld:

s = uE Definition of mobility  (8.22)

Th e mobility, u, depends on the radius, a, and charge number, z, of the ion and 
the viscosity, h, of the solution:

u = ez
6pha

 Relation of mobility 
to size and viscosity

 (8.23)

Justification 8.3 The ionic mobility

An ion of charge ze in an electric fi eld E (typically in volts per meter, V m−1) 
experiences a force of magnitude zeE , which accelerates it. However, the ion 
experiences a frictional force due to its motion through the medium, and that 
retarding force increases the faster the ion travels. Th e viscous drag (the retard-
ing force), F, on a spherical particle of radius a traveling at a speed s is given by 
Stokes’ law:

F = 6phas

When the particle has reached its drift  speed, the accelerating and viscous 
retarding forces are equal, so we can write

zeE = 6phas

and solve this expression for s:

s = ezE
6pha

At this point we can compare this expression for the drift  speed with eqn 8.22 
and hence fi nd the expression for mobility given in eqn 8.23.

Equation 8.23 tells us that the mobility of an ion is high if it is highly charged, is 
small, and is in a solution with low viscosity. Th ese features appear to contradict 
the trends in Table 8.2, which lists the mobilities of a number of ions. For instance, 
the mobilities of the Group 1 cations increase down the group despite their 
increasing radii (Section 9.12). Th e explanation is that the radius to use in eqn 
8.23 is the hydrodynamic radius, the eff ective radius for the migration of the ions 
taking into account the entire object that moves. When an ion migrates, it carries 
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its hydrating water molecules with it, and as small ions are more extensively 
hydrated than large ions (because they give rise to a stronger electric fi eld in their 
vicinity), ions of small radius actually have a large hydrodynamic radius. Th us, 
hydrodynamic radius decreases down Group 1 because the extent of hydration 
decreases with increasing ionic radius.

One signifi cant deviation from this trend is the very high mobility of the pro-
ton in water. It is believed that this high mobility refl ects an entirely diff erent 
mechanism for conduction, the Grotthus mechanism, in which the proton on 
one H2O molecule migrates to its neighbors, the proton on that H2O molecule 
migrates to its neighbors, and so on along a chain (Fig. 8.16). Th e motion is there-
fore an eff ective motion of a proton, not the actual motion of a single proton.

Table 8.2 Ionic mobilities in water at 298 K, u/(10−8 m2 s−1 V−1)

Cations Anions

H+ (H3O+) 36.23 OH− 20.64

Li+ 4.01 F− 5.74

Na+ 5.19 Cl− 7.92

K+ 7.62 Br− 8.09

Rb+ 8.06 I− 7.96

Cs+ 8.00 CO3
2− 7.46

Mg2+ 5.50 NO3
− 7.41

Ca2+ 6.17 SO4
2− 8.29

Sr2+ 6.16

NH4
+ 7.62

[N(CH3)4]+ 4.65

[N(CH2CH3)4]+ 3.38

Fig. 8.16 A simplifi ed version 
of the Grotthus mechanism of 
proton conduction through 
water. Th e proton entering the 
chain at the top is not the same 
as the proton leaving the chain 
at the bottom.

In the laboratory 8.1 Electrophoresis

An important application of the preceding material is to the determination of 
the molar mass of biological macromolecules. Electrophoresis is the motion 
of a charged species, such as DNA and ionic forms of amino acids, in response 
to an electric fi eld. Electrophoretic mobility is a result of a constant drift  speed, 
so the mobility of a macromolecule in an electric fi eld depends on its net 
charge, size (and hence molar mass), and shape.

Electrophoresis is a very valuable tool for the separation of biopolymers from 
complex mixtures, such as those resulting from fractionation of biological 
cells. We shall consider several strategies controlling the drift  speeds of bio-
molecules in order to achieve separation of a mixture into its components.

In gel electrophoresis, migration takes place through a slab of a porous gel, a 
semi-rigid dispersion of a solid in a liquid. Because the molecules must pass 
through the pores in the gel, the larger the macromolecule, the less mobile it is 
in the electric fi eld and, conversely, the smaller the macromolecule, the more 
swift ly it moves through the pores. In this way, gel electrophoresis allows for 
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the separation of components of a mixture according to their molar masses. 
Two common gel materials for the study of proteins and nucleic acids are 
agarose and cross-linked polyacrylamide. Agarose has large pores and is better 
suited for the study of large macromolecules, such as DNA and enzyme com-
plexes. Polyacrylamide gels with varying pore sizes can be made by changing 
the concentration of acrylamide in the polymerization solution. In general, 
smaller pores form as the concentration of acrylamide is increased, making 
possible the separation of relatively small macromolecules by polyacrylamide 
gel electrophoresis (PAGE).

Th e separation of very large pieces of DNA, such as chromosomes, by conven-
tional gel electrophoresis is not eff ective, making the analysis of genomic mater-
ial rather diffi  cult. Double-stranded DNA molecules are thin enough to pass 
through gel pores, but long and fl exible DNA coils can become trapped in the 
pores and the result is impaired mobility along the direction of the applied 
electric fi eld. Th is problem can be avoided with pulsed-fi eld electrophoresis, 
in which a brief burst of the electric fi eld is applied fi rst along one direction 
and then along a perpendicular direction. In response to the switching back 
and forth between fi eld directions, the DNA coils writhe about and eventually 
pass through the gel pores. In this way, the mobility of the macromolecule can 
be related to its molar mass.

We have seen that charge also determines the drift  speed. For example, pro-
teins of the same size but diff erent net charge travel along the slab at diff erent 
speeds. One way to avoid this problem and to achieve separation by molar 
mass is to denature the proteins in a controlled way. Sodium dodecyl sulfate is 
an anionic detergent that is very useful in this respect: it denatures proteins, 
whatever their initial shapes, into rods by forming a complex with them. 
Moreover, most protein molecules bind a constant number of ions, so the net 
charge per protein is well regulated. Under these conditions, diff erent proteins 
in a mixture may be separated according to size only. Th e molar mass of 
each constituent protein is estimated by comparing its mobility in its rod-
like complex form with a standard sample of known molar mass. However, 
molar masses obtained by this method, oft en referred to as SDS-PAGE when 
polyacrylamide gels are used, are not as accurate as those obtained by the 
sophisticated techniques discussed in Chapter 11.

Another technique that deals with the eff ect of charge on drift  speed takes 
advantage of the fact that the overall charge of proteins and other biopolymers 
depends on the pH of the medium. For instance, in acidic environments pro-
tons attach to basic groups and the net charge is positive; in basic media the net 
charge is negative as a result of proton loss. At the isoelectric point, the pH is 
such that there is no net charge on the biopolymer. Consequently, the drift  
speed of a biopolymer depends on the pH of the medium, with s = 0 at the 
isoelectric point (see Example 8.3 and Fig. 8.17). Isoelectric focusing is an 
electrophoresis method that exploits the dependence of drift  speed on pH. In 
this technique, a mixture of proteins is dispersed in a medium with a pH gradi-
ent along the direction of an applied electric fi eld. Each protein in the mixture 
will stop moving at a position in the gradient where the pH is equal to the 
isoelectric point. In this manner, the protein mixture can be separated into its 
components.

Fig. 8.17 Th e plot of the speed of 
a moving macromolecule against 
pH allows the isoelectric point to 
be detected as the pH at which 
the speed is zero. Th e data are 
from Example 8.3.
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Th e separation of complicated mixtures of macromolecules may be diffi  cult 
by SDS-PAGE or isoelectric focusing alone. However, the two techniques can 
be combined in two-dimensional (2D) electrophoresis. In a typical experi-
ment, a protein mixture is separated fi rst by isoelectric focusing, yielding a 
pattern of bands in a gel slab such as the one shown in Fig. 8.18a. To improve 
the separation of closely spaced bands, the fi rst slab is attached to a second slab 
and SDS-PAGE is performed with the electric fi eld being applied in a direction 
that is perpendicular to the direction in which isoelectric focusing was per-
formed. Th e macromolecules separate according to their molar masses along 
this second dimension of the experiment, and the result is that spots are spread 
widely over the surface of the slab, leading to enhanced separation of the 
mixture’s components (Fig. 8.18b).

Th e techniques described so far give good separations, but the drift  speeds 
attained by macromolecules in traditional electrophoresis methods are rather 
low; as a result, several hours are oft en necessary to achieve good separation of 
complex mixtures. According to eqn 8.22, one way to increase the drift  speed 
is to increase the electric fi eld strength. However, there are limits to this 
strategy because very large electric fi elds can heat the large surfaces of an 
electrophoresis apparatus unevenly, leading to a nonuniform distribution of 
electrophoretic mobilities and poor separation.

In capillary electrophoresis, the sample is dispersed in a medium (such as 
methylcellulose) and held in a thin glass or plastic tube with diameters ranging 
from 20 to 100 mm. Th e small size of the apparatus makes it easy to dissipate 
heat when large electric fi elds are applied. Excellent separations may be 
achieved in minutes rather than hours.

Example 8.3 The isoelectric point of a protein

Th e speed with which bovine serum albumin (BSA) moves through water 
under the infl uence of an electric fi eld was monitored at several values of pH, 
and the data are listed below. What is the isoelectric point of the protein?

pH 4.20 4.56  5.20  5.65  6.30  7.00
Velocity/(mm s−1) 0.50 0.18 −0.25 −0.65 −0.90 −1.25

Strategy If we plot speed against pH, we can use interpolation to fi nd the pH 
at which the speed is zero, which is the pH at which the molecule has zero net 
charge.

Solution Th e data are plotted in Fig. 8.17. Th e velocity passes through zero at 
pH = 4.8; hence pH = 4.8 is the isoelectric point.

Self-test 8.5 Th e following data were obtained for another protein:

pH  4.5  5.0  5.5  6.0
Velocity/(mm s−1) −0.10 −0.20 −0.30 −0.35

Estimate the pH of the isoelectric point.
Answer: 4.1

Fig. 8.18 Th e experimental steps 
taken during separation of a 
mixture of biopolymers by 
two-dimensional electrophoresis. 
(a) Isoelectric focusing is 
performed on a thin gel slab, 
resulting in separation along 
the vertical direction of the 
illustration. (b) Th e fi rst slab is 
attached to a second, larger slab 
and SDS-PAGE is performed 
with the electric fi eld oriented in 
the horizontal direction of the 
illustration, resulting in further 
separation by molar mass. Th e 
dashed horizontal lines show 
how the bands in the two-
dimensional gel correspond to 
the bands in the gel on which 
isoelectric focusing was 
performed.
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8.8 Transport across ion channels and ion pumps
We now have enough background information about ion transport to consider the 
centrally important processes of ion transport mediated by ion channels and ion pumps, 
which are involved in the propagation of action potentials and the synthesis of ATP.

Th e thermodynamic treatment of ion transport in Chapter 5 does not explain the 
fact that ion channels and pumps discriminate between ions. For example, it is 
found experimentally that a K+ ion channel is not permeable to Na+ ions. We shall 
see that the key to the selectivity of an ion channel or pump lies in the mechanism 
of transport and, consequently, in the structure of the protein and the size of 
the ion.

Th e structures of a number of channel proteins have been obtained by the X-ray 
diff raction techniques that will be described in greater detail in Chapter 12. 
Information about the fl ow of ions across channels and pumps is supplied by the 
patch clamp technique. One of many possible experimental arrangements is 
shown in Fig. 8.19. With mild suction, a ‘patch’ of membrane from a whole cell or 
a small section of a broken cell can be attached tightly to the tip of a micropipette 
fi lled with an electrolyte solution and containing an electronic conductor, the 
patch electrode. A potential diff erence (the ‘clamp’) is applied between the patch 
electrode and an intracellular electronic conductor in contact with the cytosol 
of the cell. If the membrane is permeable to ions at the applied potential diff er-
ence, a current fl ows through the completed circuit. Using narrow micropipette 
tips with diameters of less than 1 mm, ion currents of a few picoamperes (1 pA = 
10−12 A) have been measured across sections of membranes containing only one 
ion channel protein.

(a) The potassium channel

A detailed picture of the mechanism of action of ion channels has emerged from 
analysis of patch clamp data and structural data. Here we focus on the K+ ion 

Fig. 8.19 A representation of the 
patch clamp technique for the 
measurement of ionic currents 
through membranes in intact 
cells. (a) A section of membrane 
containing an ion channel is in 
tight contact with the tip of a 
micropipette containing an 
electrolyte solution and the patch 
electrode. (b) A schematic 
representation of the cross-
section of a membrane-spanning 
K+ ion channel and (c) the 
protein. (d) Th e selectivity fi lter 
has a number of carbonyl groups 
that grip K+ ions. As explained in 
the text, electrostatic repulsions 
between two bound K+ ions 
encourage ionic movement 
through the selectivity fi lter 
and across the membrane.
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channel protein, which, like all other mediators of ion transport, spans the mem-
brane bilayer. Th e pore through which ions move has a length of 3.4 nm and is 
divided into two regions: a wide region with a length of 2.2 nm and diameter of 
1.0 nm, and a narrow region with a length of 1.2 nm and diameter of 0.3 nm. Th e 
narrow region is called the selectivity fi lter of the K+ ion channel because it allows 
only K+ ions to pass.

Filtering is a subtle process that depends on ionic size and the thermodynamic 
tendency of an ion to lose its hydrating water molecules. On entering the 
selectivity fi lter, the K+ ion is stripped of its hydrating shell and is then gripped 
by carbonyl groups of the protein. Dehydration of the K+ ion is endergonic 
(DdehydG3 = +203 kJ mol−1) but is driven by the energy of interaction between the 
ion and the protein. Th e Na+ ion, although smaller than the K+ ion, does not pass 
through the selectivity fi lter of the K+ ion channel because interactions with the 
protein are not suffi  cient to compensate for the high Gibbs energy of dehydration 
of Na+ (DdehydG3 = +301 kJ mol−1). More specifi cally, a dehydrated Na+ ion is too 
small and cannot be held tightly by the protein carbonyl groups, which are 
positioned for ideal interactions with the larger K+ ion. In its hydrated form, the 
Na+ ion is too large (larger than a dehydrated K+ ion), does not fi t in the selectivity 
fi lter, and does not cross the membrane.

Although very selective, a K+ ion channel can still let other ions pass through. 
For example, K+ and Tl+ ions have similar radii and Gibbs energies of dehydra-
tion, so Tl+ can cross the membrane. As a result, Tl+ is a neurotoxin because it 
replaces K+ in many neuronal functions and suppresses them.

Th e effi  ciency of transfer of K+ ions through the channel can also be explained 
by structural features of the protein. For effi  cient transport to occur, a K+ ion must 
enter the protein but then must not be allowed to remain inside for very long, 
so that as one K+ ion enters the channel from one side, another K+ ion leaves 
from the opposite side. An ion is lured into the channel by water molecules 
about halfway through the length of the membrane. Consequently, the thermo-
dynamic cost of moving an ion from an aqueous environment to the less 
hydrophilic interior of the protein is minimized. Th e ion is encouraged to 
leave the protein by electrostatic interactions in the selectivity fi lter, which can 
bind two K+ ions simultaneously, usually with a bridging water molecule. 
Electrostatic repulsion prevents the ions from binding too tightly, minimizing 
the residence time of an ion in the selectivity fi lter and maximizing the tran-
sport rate.

(b) The proton pump

Now we turn our attention to a very important ion pump, the H+-ATPase re-
sponsible for coupling of proton fl ow to synthesis of ATP from ADP and Pi 
(Chapter 4). Structural studies show that the channel through which the protons 
fl ow is linked in tandem to a unit composed of six protein molecules arranged 
in pairs of a and b subunits to form three interlocked ab segments (Fig. 8.20). 
Th e conformations of the three pairs may be loose, (L), tight (T), or open (O), 
and one of each type is present at each stage. A protein at the centre of the 
interlocked structure, the subunit shown as an arrow, rotates and induces struc-
tural changes that cycle each of the three segments between L, T, and O 
conformations.

At the start of a cycle, a T unit holds an ATP molecule. Th en ADP and a Pi 
group migrate into the L site, and as it closes into T, the earlier T site opens into O 
and releases its ATP. Th e ADP and Pi in the T site meanwhile condense into ATP, 
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and the new L site is ready for the cycle to begin again. Th e proton fl ux drives the 
rotation of a g subunit, and hence the conformational changes of the ab segments, 
as well as providing the energy for the condensation reaction itself.

Several key aspects of this mechanism have been confi rmed experimentally. 
For example, the rotation of a g subunit has been portrayed directly by using 
single-molecule spectroscopy (In the laboratory 12.6).

Electron transfer in biological systems

We saw in Case studies 4.2 and 4.3 that exergonic electron transfer processes drive 
the synthesis of ATP in the mitochondrion during oxidative phosphorylation. 
Electron transfer between protein-bound co-factors or between proteins also 
plays a role in other biological processes, such as photosynthesis (Section 5.11 
and Case study 12.3), nitrogen fi xation, the reduction of atmospheric N2 to NH3 
by certain microorganisms, and the mechanisms of action of oxidoreductases, 
which are enzymes that catalyze redox reactions.

We begin by examining the features of a theory that describes the factors 
governing the rates of electron transfer. Th en we discuss the theory in the light 
of experimental results on a variety of systems, including protein complexes. 
We shall see that relatively simple expressions can be used to predict the rates of 
electron transfer between proteins with reasonable accuracy.

8.9 The rates of electron transfer processes
Electron transfer is of crucial importance in many biological reactions, and we need 
to see how to use the strategies we have developed to discuss them quantitatively.

Consider electron transfer from a donor species D to an acceptor species A in 
solution. Th e net reaction, the observed rate law, and the equilibrium constant 
are

D + A → D+ + A− v = kobs[D][A] K = [D+][A−]
[D][A]

 Electron 
transfer

 (8.24)

Fig. 8.20 Th e mechanism of action 
of H+-ATPase, a molecular motor 
that transports protons across the 
mitochondrial membrane and 
catalyzes either the formation or 
hydrolysis of ATP. Th e yellow 
shapes represent the species ADP, 
ATP, and Pi.
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Th e proposed mechanism is:

Electron transfer

D + A 7 DA ka, ka′  KDA = kac3

ka′
 = [DA]c3

[D][A]
DA → D+A− vet = ket[DA]
D+A− → DA vret = k′et[D+A−]
D+A− → D+ + A− vd = kd[D+A−]

In the fi rst step of the mechanism, D and A must diff use through the solution 
and encounter to form a complex DA, in which the donor and acceptor are 
separated by a distance comparable to r, the distance between the edges of each 
species. Next, electron transfer occurs within the DA complex to yield D+A−. Th e 
D+A− complex has two possible fates. One is the regeneration of DA. Th e other 
is to break apart and for the ions to diff use through the solution. We show in the 
following Justifi cation that kobs in eqn 8.24 is given by

1
kobs

 = 1
ka

 + ka′
kaket

 AC1 + k′et

kd

D
F  Electron transfer 

rate constant
 (8.25)

Justification 8.4 The rate constant for electron transfer in solution

We begin by equating the rate of the net reaction (eqn 8.24) to the rate of for-
mation of separated ions, the reaction products:

v = kobs[D][A] = kd[D+A−]

Next, we apply the steady-state assumption to the intermediate D+A−:

d[D+A−]
dt

 = ket[DA] − k′et[D+A−] − kd[D+A−] = 0

It follows that

[D+A−] = ket

k′et + kd
 [DA]

However, DA is also an intermediate, so we apply the steady-state approxima-
tion again:

d[DA]
dt

 = ka[D][A] − ka′[DA] − ket[DA] + k′et[D+A−] = 0

Substitution of the initial expression for the steady-state concentration of D+A− 
into this expression for [DA] gives, aft er some algebra, a new expression for 
[D+A−]:

[D+A−] = kaket

ka′k′et + ka′kd + kdket
 [D][A]

When we multiply this expression by kd, we see that the resulting equation has 
the form of the rate of electron transfer, v = kobs[D][A], with kobs given by

kobs = kdkaket

ka′k′et + ka′kd + kdket

To obtain eqn 8.25, we divide the numerator and denominator on the right-
hand side of this expression by kdket and solve for the reciprocal of kobs.
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To gain insight into eqn 8.25 and the factors that determine the rate of electron 
transfer reactions in solution, we assume that the main decay route for D+A− is 
dissociation of the complex into separated ions, or kd >> k′et. It then follows that

1
kobs

 ≈ 1
ka

 AC1 + ka′
ket

D
F  (8.26)

Th ere are two limits to consider:

• When ket >> ka′, kobs ≈ ka and the rate of product formation is controlled by dif-
fusion of D and A in solution, which fosters formation of the DA complex.

• When, ket << ka′, kobs ≈ (ka/ka′)ket and the process is controlled by the activation 
energy of electron transfer in the DA complex.

When the electron donor and acceptor are anchored at fi xed distances within a 
single protein, the diff usion of D to A and their separation play no role and only 
ket needs to be considered when calculating the rate of electron transfer. In terms 
of transition state theory (Section 7.7), we write

ket = k kT
h  

e−D‡G/RT (8.27)

where k is the transmission coeffi  cient and D‡G is the Gibbs energy of activation. 
Cytochrome c oxidase is an example of a system where such intraprotein electron 
transfer is important. In that enzyme, bound copper ions and heme groups work 
together to reduce O2 to water in the fi nal step of respiration.

8.10 The theory of electron transfer processes
To gain insight into the rate constants for electron transfer, we need to know the 
factors that control their values and interpret them in terms of the specific 
arrangement of redox partners.

Our next task is to describe the Marcus theory of electron transfer, which gives 
clues about the factors that control the rate constant ket for unimolecular electron 
transfer within the DA complex.2 To do so, we examine the k(kT/h) term in 
eqn 8.27.

We saw in Chapter 7 that the transmission coeffi  cient k takes into account the 
fact that the activated complex does not always pass through to the transition 
state and the term kT/h arises from consideration of motions that lead to the 
decay of the activated complex into products. It follows that, in the case of an elec-
tron transfer process, k(kT/h) can be thought of as a measure of the probability 
that an electron will move from D to A in the transition state. Th e theory due to 
R.A. Marcus supposes that this probability decreases with increasing distance 
between D and A in the DA complex. More specifi cally, for given values of the 
temperature and D‡G, the rate constant ket varies with the edge-to-edge distance 
r as3

ket ∝ e−br (at constant T and D‡G)  (8.28)

where b is a constant with a value that depends on the medium through which the 
electron must travel from donor to acceptor.

2 Th e development of modern electron transfer theory began with independent work by R.A. 
Marcus, N.S. Hush, V.G. Levich, and R.R. Dogonadze between 1956 and 1959. Marcus received the 
Nobel Prize for chemistry in 1992 for his seminal contributions in this area.

3 For a mathematical treatment of Marcus theory, see our Physical chemistry (2010).
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In considering the factors that determine the value of the Gibbs energy of 
activation, Marcus noted that the DA complex and the medium surrounding it 
must rearrange spatially as charge is redistributed to form the ions D+ and A−. 
Th ese molecular rearrangements include the relative reorientation of the D and A 
molecules in DA and the relative reorientation of the solvent molecules surround-
ing DA. Th e resulting expression for the Gibbs energy of activation is

D‡G = (DrG3 + l)2

4l
  Marcus expression for the 

Gibbs energy of activation
 (8.29)

where DrG3 is the standard reaction Gibbs energy for the electron transfer process 
DA → D+A− and l is the reorganization energy, the energy change associated 
with molecular rearrangements that must take place so that DA can take on the 
equilibrium geometry of D+A−. Equation 8.29 shows that when DrG3 = −l, corres-
ponding to the cancelation of the reorganization energy term by the standard 
reaction Gibbs energy, then D‡G = 0, with the implication that the reaction is not 
slowed down by an activation barrier.

Taken together, eqns 8.27 and 8.28 suggest that the expression for ket has the 
form

ket ∝ e−bre−D‡G/RT Marcus expression for the rate 
constant of electron transfer

 (8.30)

where D‡G is given by eqn 8.29. In summary, Marcus theory predicts that ket 
depends on

• Th e distance between the donor and acceptor, with electron transfer becom-
ing more effi  cient as the distance between donor and acceptor decreases.

• Th e standard reaction Gibbs energy, DrG3, with electron transfer becoming 
more effi  cient as DrG3 becomes more negative. For example, kinetically effi  -
cient oxidation of D requires that its standard reduction potential be lower 
than the standard reduction potential of A.

• Th e reorganization energy, with electron transfer becoming more effi  cient as 
the reorganization energy is matched closely by the standard reaction Gibbs 
energy.

8.11 Experimental tests of the theory
Many of the key features of Marcus theory have been tested by experiments, showing 
in particular the predicted dependence of ket on the standard reaction Gibbs energy 
and the edge-to-edge distance between electron donor and acceptor.

It is diffi  cult to measure the distance dependence of ket when the reactants are ions 
or molecules that are free to move in solution. In such cases, electron transfer 
occurs aft er a donor–acceptor complex forms and it is not possible to exert con-
trol over r, the edge-to-edge distance. Th e most meaningful experimental tests of 
the dependence of ket on r are those in which the same donor and acceptor are 
positioned at a variety of distances, perhaps by covalent attachment to molecular 
linkers. Under these conditions, the term e−D‡G/RT becomes a constant and, aft er 
taking the natural logarithm of eqn 8.30, we obtain

ln ket = −br + constant (8.31)

which implies that a plot of ln ket against r should be a straight line with slope 
−b. It is found experimentally that in a vacuum, 28 nm−1 < b < 35 nm−1, whereas 
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b ≈ 9 nm−1 when the intervening medium is a molecular link between donor and 
acceptor. Electron transfer between protein-bound cofactors can occur at dis-
tances of up to about 2.0 nm, a long distance on a molecular scale, corresponding 
to about 20 carbon atoms, with the protein providing an intervening medium 
between donor and acceptor.

Th ere is, however, a great deal of controversy surrounding the interpretation 
of electron transfer data in proteins. Much of the available data may be inter-
preted with b ≈ 14 nm−1, a value that appears to be insensitive to the primary and 
secondary structures of the protein but does depend slightly on the density of 
atoms in the section of protein that separates donor from acceptor. More detailed 
work on the specifi c eff ect of secondary structure suggests that 12.5 nm−1 < b 
< 16.0 nm−1 when the intervening medium consists primarily of a helices and 
9.0 nm−1 < b < 11.5 nm−1 when the medium is primarily b sheet. Yet another view 
suggests that the electron takes specifi c paths through covalent bonds and 
hydrogen bonds that exist in the protein for the purpose of optimizing the rate of 
electron transfer.

Th e dependence of ket on the standard reaction Gibbs energy has been investi-
gated in systems where the edge-to-edge distance and the reorganization energy 
are constant for a series of reactions. Th en eqn 8.30 becomes

ln ket = RT
4l

 AC
DrG3

RT
D
F

2

 − 1
2

 AC
DrG3

RT
D
F  + constant (8.32)

and a plot of ln ket (or log ket) against DrG3 (or −DrG3) is predicted to be shaped 
like a downward parabola. Equation 8.32 implies that the rate constant increases 
as DrG3 decreases but only up to −DrG3 = l. Beyond that, the reaction enters the 
inverted region, in which the rate constant decreases as DrG3 becomes more nega-
tive. Figure 8.21 shows that the inverted region has been observed in compounds 
such as (2), in which the electron donor and acceptor are linked covalently to a 
molecular spacer of known and fi xed size.

8.12 The Marcus cross-relation
Because electron transfer reactions are of such importance for metabolism and other 
biological processes, to discuss them quantitatively we need to be able to predict 
their rate constants: Marcus theory provides a way.

It follows from eqns 8.26 and 8.27 that the rate constant kobs may be written as

kobs = Z e−D‡G/RT (8.33)

Fig. 8.21 Variation of log ket 
with −DrG3 for a series 
of compounds with the 
structures given in (2). Kinetic 
measurements were conducted 
in 2-methyltetrahydrofuran at 
296 K. Th e distance between the 
donor (the reduced biphenyl 
group) and the acceptor is 
constant for all compounds in 
the series because the molecular 
linker remains the same. Each 
acceptor has a characteristic 
standard potential, so it follows 
that the standard Gibbs energy 
for the electron transfer process 
is diff erent for each compound 
in the series. Th e line is a fi t 
to a version of eqn 8.32; the 
maximum of the parabola 
occurs at −DrG3 = l = 1.2 eV = 
1.2 × 102 kJ mol−1. (Reproduced 
with permission from J.R. Miller, 
L.T. Calcaterra, and G.L. Closs, 
J. Am. Chem. Soc. 106, 3047 
(1984).)
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where Z = KDAk(kT/h). It is diffi  cult to estimate kobs because we oft en lack know-
ledge of b, l, and k. However, as we show in the following Justifi cation, when 
l >> | DrG3 |, kobs may be estimated by a special case of the Marcus cross-relation:

kobs = (kDDkAAK)1/2 Marcus cross-relation  (8.34)

where K is the equilibrium constant for the net electron transfer reaction 
(eqn 8.24) and kDD and kAA (in general, kii) are the experimental rate constants 
for the electron self-exchange processes (with the colors distinguishing one 
molecule from another):

D + D+ → D+ + D kDD

A− + A → A + A− kAA

Justification 8.5 The Marcus cross-relation

To derive the Marcus cross-relation, we use eqn 8.33 to write the rate constants 
for the self-exchange reactions as

kDD = ZDD e−D‡GDD/RT  kAA = ZAA e−D‡GAA/RT

For the net reaction and the self-exchange reactions, the Gibbs energy of activ-
ation may be written from eqn 8.29 as

D‡G = DrG32

4l
 + 12DrG3 + 14l

For the self-exchange reactions DrG3
DD = DrG3

AA = 0 and hence D‡GDD = 14 lDD and 
D‡GAA = 14lAA. It follows that

kDD = ZDD e−lDD/4RT  kAA = ZAA e−lAA/4RT

To make further progress, Marcus assumed that the reorganization energy of 
the net reaction is the arithmetic mean of the reorganization energies of the 
self-exchange reactions:

l = 12 (lDD + lAA)

Provided l >> DrG3 for the net reaction, the fi rst term in D‡G may be neglected 
and the Gibbs energy of activation of the net reaction is

D‡G = 12DrG3 + 18lDD + 18lAA

Th erefore, the rate constant for the net reaction is

kobs = Ze−DrG3/2RT e−lDD/8RT e−lAA/8RT

We can use eqn 4.10 (ln K = −DrG3/RT) in the form K = e−DrG3/RT to write

kobs = (kDDkAAK)1/2f

where

f = Z
(ZAAZDD)1/2

In practice, the factor f is usually set to 1 and we obtain eqn 8.34.

Th e rate constants estimated by eqn 8.34 agree fairly well with experimental 
rate constants for electron transfer between proteins, as we see in the following 
example.
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Example 8.4 Using the Marcus cross-relation

Th e following data were obtained for cytochrome c and cytochrome c551, two 
proteins in which heme-bound iron ions shuttle between the oxidation states 
Fe(II) and Fe(III):

 kii/(dm3 mol−1 s−1) E9/V 
cytochrome c 1.5 × 102

 +0.260 
cytochrome c551 4.6 × 107 +0.286 

Estimate the rate constant kobs for the process

cytochrome c551(red) + cytochrome c(ox) 
 → cytochrome c551(ox) + cytochrome c(red)

Th en compare the estimated value with the observed value of 6.7 × 
104 dm3 mol−1 s−1.

Strategy We use the standard potentials and eqns 5.16 (ln K = nFE 3
cell/RT) 

and 5.17a (E 3
cell = E R

3 − E L
3) to calculate the equilibrium constant K. Th en we 

use eqn 8.34, the calculated value of K, and the self-exchange rate constants 
k ii to calculate the rate constant kobs.

Solution Th e two reduction half-reactions are

Right: cytochrome c(ox) + e− → cytochrome c(red) E R
3 = +0.260 V

Left : cytochrome c551(ox) + e− → cytochrome c551(red) E L
3 = +0.286 V

Th e diff erence is

E 3
cell = (0.260 V) − (0.286 V) = −0.026 V

It then follows from eqn 5.16 with v = 1 and RT/F = 25.69 mV that

ln K = − 0.026V
25.69 × 10−3 V

 = − 2.6
2.569

Th erefore, K = 0.36. From eqn 8.34 and the self-exchange rate constants, we 
calculate

kobs = {(1.5 × 102 dm3 mol−1 s−1) × (4.6 × 107 dm3 mol−1 s−1) × 0.36}1/2 
 = 5.0 × 104 dm3 mol−1 s−1

Th e calculated and observed values diff er by only 25 per cent, indicating 
that the Marcus relation can lead to reasonable estimates of rate constants for 
electron transfer.

Self-test 8.6 Estimate kobs for the reduction by cytochrome c of plasto-
cyanin, a protein containing a copper ion that shuttles between the +2 
and +1 oxidation states and for which kAA = 6.6 × 102 dm3 mol−1 s−1 and 
E 3

cell = +0.350 V.
Answer: 1.8 × 103 dm3 mol−1 s−1
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Checklist of key equations

Property Equation Comment

Michaelis–Menten rate law v = vmax[S]0/([S]0 + KM) vmax = kb[E]0; assumes S is in excess
Lineweaver–Burk plot 1/v = 1/vmax + (KM/vmax)(1/[S]0) Based on Michaelis–Menten mechanism
Fick’s fi rst law J = −Ddc/dx
Fick’s second law ∂c/∂t = D∂2c/∂x2 Also known as the diff usion equation
Temperature-dependence of D D = D0e−Ea/RT

Mobility of an ion u = ez/6pha Assumes the validity of Stokes’ law
Marcus expression ket ∝ e−bre−D‡G/RT

with
D‡G = (DrG3 + l)2/4l

Marcus cross-relation kobs = (kDDkAAK)1/2

Checklist of key concepts

 1. Catalysts are substances that accelerate reactions but 
undergo no net chemical change.

 2. A homogeneous catalyst is a catalyst in the same phase 
as the reaction mixture.

 3. Enzymes are homogeneous, biological catalysts.
 4. Th e Michaelis–Menten mechanism of enzyme 

kinetics accounts for the dependence of rate on the 
concentration of the substrate.

 5. A Lineweaver–Burk plot is used to determine the 
parameters that occur in the Michaelis–Menten 
mechanism.

 6. In sequential reactions, the active site binds all the 
substrates before processing them into products. 
In ‘ping-pong’ reactions, products are released in a 
stepwise fashion.

 7. In competitive inhibition of an enzyme, the inhibitor 
binds only to the active site of the enzyme and thereby 
inhibits the attachment of the substrate.

 8. In uncompetitive inhibition, the inhibitor binds to a 
site of the enzyme that is removed from the active site 
but only if the substrate is already present.

 9. In noncompetitive inhibition, the inhibitor binds to a 
site other than the active site, and its presence reduces 
the ability of the substrate to bind to the active site.

 10. Fick’s fi rst law of diff usion states that the fl ux of 
molecules is proportional to the concentration 
gradient.

 11. Fick’s second law of diff usion (the diff usion equation) 
states that the rate of change of concentration in 
a region is proportional to the curvature of the 
concentration in the region.

 12. Diff usion is an activated process.
 13. Th e fl ux of molecules through biological membranes 

is oft en mediated by carrier molecules.
 14. Protons migrate by the Grotthus mechanism, 

Fig. 8.16.
 15. Electrophoresis is the motion of a charged 

macromolecule, such as DNA, in response to 
an electric fi eld. Important techniques are gel 
electrophoresis, isoelectric focusing, pulsed-fi eld 
electrophoresis, two-dimensional electrophoresis, 
and capillary electrophoresis.

 16. According to the Marcus theory, the rate constant 
of electron transfer in a donor–acceptor complex 
depends on the distance between electron donor and 
acceptor, the standard reaction Gibbs energy, and the 
reorganization energy, l.
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Further information

Further information 8.1 Fick’s laws of diffusion

1. Fick’s first law of diffusion

Consider the arrangement in Fig. 8.22. In an interval Dt the 
number of molecules passing through the window of area A 
from the left  is proportional to the number in the slab of 
thickness l and area A, and therefore volume lA, just to the left  
of the window where the average (number) concentration is 
c(x − 12 l), and to the length of the interval Dt:

number coming from left  ∝ c(x − 12 l)lADt

On writing the constant of proportionality as D 
(and absorbing l2 into it), we obtain eqn 8.11.

2. Fick’s second law

Consider the arrangement in Fig. 8.23. Th e number of solute 
particles passing through the window of area A located at x in 
an infi nitesimal interval dt is J(x)Adt, where J(x) is the fl ux at 
the location x. Th e number of particles passing out of the 
region through a window of area A at x + dx is J(x + dx)Adt, 
where J(x + dx) is the fl ux at the location of this window. Th e 
fl ux in and the fl ux out will be diff erent if the concentration 
gradients are diff erent at the two windows. Th e net change in 
the number of solute particles in the region between the two 
windows is

net change in number = J(x)Adt − J(x + dx)Adt
 = {J(x) − J(x + dx)}Adt

Fig. 8.23 To calculate the change in concentration in the region 
between the two walls, we need to consider the net eff ect of 
the infl ux of particles from the left  and their effl  ux toward the 
right. Only if the slope of the concentrations is diff erent at the 
two walls will there be a net change.

Fig. 8.22 Th e calculation of the rate of diff usion considers the 
net fl ux of molecules through a plane of area A as a result of 
arrivals from on average a distance 1

2 l in each direction.

Likewise, the number coming from the right in the same 
interval is

number coming from right ∝ c(x + 12 l)lADt

Th e net fl ux is therefore proportional to the diff erence in these 
numbers divided by the area and the time interval:

J ∝ c(x − 12 l)lADt − c(x + 12 l)lADt
ADt

 = {c(x − 12 l) − c(x + 12 l)}l

We now express the two concentrations in terms of the 
concentration at the window itself, c(x), as follows:

c(x + 12 l) = c(x) + 12 l × dc
dx

c(x − 12 l) = c(x) − 12 l × dc
dx

From which it follows that

J ∝ !@
A
C c(x) − 12 l dc

dx
D
F  − AC c(x) + 12 l dc

dx
D
F

#
$ l

 ∝ −l2 dc
dx

Now we express the fl ux at x + dx in terms of the fl ux at x and 
the gradient of the fl ux, dJ/dx:

J(x + dx) = J(x) + dJ
dx

 × dx

It follows that

net change in number = − dJ
dx

 × dx Adt

Th e change in concentration inside the region between the 
two windows is the net change in number divided by the 
volume of the region (which is Adx), and the net rate of 
change is obtained by dividing that change in concentration 
by the time interval dt. Th erefore, on dividing by both Adx 
and dt, we obtain
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rate of change of concentration AC= dc
dt

D
F  = − dJ

dx

Finally, we express the fl ux by using Fick’s fi rst law (at this 
point we need to acknowledge that c depends on both x and t 
and therefore use partial diff erential notation):

 ∂c
∂t

 = − ∂
∂x

 AC−D ∂c
∂x

D
F  = D ∂

2c
∂x2

which is eqn 8.12.

Discussion questions

8.1 Discuss the features and limitations of the Michaelis–Menten 
mechanism of enzyme action.

8.2 Prepare a report on the application of the experimental strategies 
described in Chapters 6 and 7 to the study of enzyme-catalyzed 
reactions. Devote some attention to the following topics: (a) the 
determination of reaction rates over a long time scale, (b) the 
determination of the rate constants and equilibrium constant of 
binding of substrate to an enzyme, and (c) the characterization 
of intermediates in a catalytic cycle. Your report should be similar 
in content and extent to one of the Case studies found throughout 
this text.

8.3 A plot of the rate of an enzyme-catalyzed reaction against 
temperature has a maximum, in an apparent deviation from the 
behavior predicted by the Arrhenius relation (eqn 6.19). Provide 
a molecular interpretation for this eff ect.

8.4 Describe graphical procedures for distinguishing between 
(a) sequential and ping-pong enzyme-catalyzed reactions and 
(b) competitive, uncompetitive, and noncompetitive inhibition 
of an enzyme.

8.5 Some enzymes are inhibited by high concentrations of their 
own products. (a) Sketch a plot of reaction rate against concentration 
of substrate for an enzyme that is prone to product inhibition. 
(b) How does product inhibition of hexokinase, the enzyme that 
phosphorylates glucose in the fi rst step of glycolysis, provide a 
mechanism for regulation of glycolysis in the cell? Hint: Review 
Case study 4.3.

8.6 Provide a molecular interpretation for the observation that 
mediated transport through biological membranes leads to a 
maximum fl ux Jmax when the concentration of the transported 
species becomes very large.

8.7 Discuss the mechanism of proton conduction in liquid water. 
For a more detailed account of the modern version of this mechanism, 
consult our Quanta, matter, and change (2009).

8.8 Discuss how the following factors determine the rate of electron 
transfer in biological systems: (a) the distance between electron donor 
and acceptor, and (b) the reorganization energy of redox active species 
and the surrounding medium.

Exercises

8.9 As remarked in the text, Michaelis and Menten derived their rate 
law by assuming a rapid pre-equilibrium of E, S, and ES. Derive the rate 
law in this manner, and identify the conditions under which it becomes 
the same as that based on the steady-state approximation (eqn 8.1).

8.10 Equation 8.4a gives the expression for the rate of formation of 
product by a modifi ed version of the Michaelis–Menten mechanism 
in which the second step is also reversible. Derive the expression and 
fi nd its limiting behavior for large and small concentrations of 
substrate.

8.11 For many enzymes, such as chymotrypsin (Case study 8.1), the 
mechanism of action involves the formation of two intermediates:

E + S → ES v = ka[E][S]
ES → E + S v = ka′[ES]
ES → ES′ v = kb[ES]
ES′ → E + P v = kc[ES′]

Show that the rate of formation of product has the same form as that 
shown in eqn 8.1, written as:

v = vmax

1 + KM/[S]0

but with vmax and KM given by

vmax = kbkc[E]0

kb + kc
  and  KM = kc(ka′ + kb)

ka(kb + kc)

8.12 Th e enzyme-catalyzed conversion of a substrate at 25°C has 
a Michaelis constant of 0.045 mol dm−3. Th e rate of the reaction 
is 1.15 mmol dm−3 s−1 when the substrate concentration is 
0.110 mol dm−3. What is the maximum velocity of this reaction?

8.13 Find the condition for which the reaction rate of an enzyme-
catalyzed reaction that follows Michaelis–Menten kinetics is half its 
maximum value.

8.14 Isocitrate lyase catalyzes the following reaction: 

isocitrate ion → glyoxylate ion + succinate ion

Th e rate, v, of the reaction was measured when various concentrations 
of isocitrate ion were present, and the following results were obtained 
at 25°C:

[isocitrate]/(mmol dm−3)   31.8   46.4 59.3 118.5 222.2
V/(pmol dm−3 s−1) 70.0 97.2 116.7 159.2 194.5

Determine the Michaelis constant and the maximum velocity of the 
reaction.
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8.15 Th e following results were obtained for the action of an 
ATPase on ATP at 20°C, when the concentration of the ATPase 
was 20 nmol dm−3:

[ATP]/(mmol dm−3) 0.60 0.80 1.4 2.0 3.0
v/(mmol dm−3 s−1) 0.81 0.97 1.30 1.47 1.69

Determine the Michaelis constant, the maximum velocity of the reaction, 
the turnover number, and the catalytic effi  ciency of the enzyme.

8.16 Enzyme-catalyzed reactions are sometimes analyzed by use of 
the Eadie–Hofstee plot, in which v/[S]0 is plotted against v. (a) Using 
the simple Michaelis–Menten mechanism, derive a relation between 
v/[S]0 and v. (b) Discuss how the values of KM and vmax are obtained 
from analysis of the Eadie–Hofstee plot. (c) Determine the Michaelis 
constant and the maximum velocity of the reaction from Exercise 8.14 
by using an Eadie–Hofstee plot to analyze the data.

8.17 Enzyme-catalyzed reactions are sometimes analyzed by use of 
the Hanes plot, in which [S]0/v is plotted against [S]0. (a) Using the 
simple Michaelis–Menten mechanism, derive a relation between 
[S]0/v and [S]0. (b) Discuss how the values of KM and vmax are obtained 
from analysis of the Hanes plot. (c) Determine the Michaelis constant 
and the maximum velocity of the reaction from Exercise 8.14 by using 
a Hanes plot to analyze the data.

8.18 An allosteric enzyme shows catalytic activity that changes on 
noncovalent binding of small molecules called eff ectors. For example, 
consider a protein enzyme consisting of several identical subunits and 
several active sites. In one mode of allosteric behavior, the substrate 
acts as eff ector, so that binding of a substrate molecule to one of the 
subunits either increases or decreases the catalytic effi  ciency of the 
other active sites. Consequently, reactions catalyzed by allosteric 
enzymes show signifi cant deviations from Michaelis–Menten 
behaviour. (a) Sketch a plot of reaction rate against substrate 
concentration for a multi-subunit allosteric enzyme, assuming that 
the catalytic effi  ciency changes in such a way that the enzyme with all 
its active sites occupied is more effi  cient than the enzyme with one 
fewer bound substrate molecule, and so on. Compare your sketch 
with Fig. 8.2, which illustrates Michaelis–Menten behavior. (b) Your 
plot from part (a) should have a sigmoidal shape (S shape) that is 
typical for allosteric enzymes. Th e mechanism of the reaction can 
be written as

E + nS 7 ESn → E + nP

and the reaction rate v is given by

 v = vmax

1 + K′/[S]0
n

where K′ is a collection of rate constants analogous to the Michaelis 
constant and n is the interaction coeffi  cient, which may be taken as the 
number of active sites that interact to give allosteric behavior. Plot 
v/vmax against [S]0 for a fi xed value of K′ of your choosing and several 
values of n. Confi rm that the expression for v does predict sigmoidal 
kinetics and provide a molecular interpretation for the eff ect of n on 
the shape of the curve.

8.19 (a) Show that the expression for the rate of a reaction catalyzed 
by an allosteric enzyme of the type discussed in Exercise 8.18 may be 
rewritten as

log v
vmax − v

 = n log [S]0 − log K ′

(b) Use the preceding expression and the following data to determine 
the interaction coeffi  cient for an enzyme-catalyzed reaction showing 
sigmoidal kinetics:

[S]0/(10−5 mol dm−3) 0.10 0.40 0.50
V/(mmol dm−3 s−1) 0.0040 0.25 0.46

[S]0/(10−5 mol dm−3)  0.60 0.80 1.0
V/(mmol dm−3 s−1) 0.75 1.42 2.08

[S]0/(10−5 mol dm−3) 1.5 2.0 3.0
V/(mmol dm−3 s−1) 3.22 3.70 4.02

For substrate concentrations ranging between 0.10 mmol dm−3 
and 10 mmol dm−3, the reaction rate remained constant at 
4.17 mmol dm−3 s−1.

8.20 A simple method for the determination of the interaction 
coeffi  cient n for an enzyme-catalyzed reaction involves the calculation 
of the ratio [S]90/[S]10, where [S]90 and [S]10 are the concentrations 
of substrate for which the reaction rates are 0.90vmax and 0.10vmax, 
respectively. (a) Show that [S]90/[S]10 = 81 for an enzyme-catalyzed 
reaction that follows Michaelis–Menten kinetics. (b) Show that 
[S]90/[S]10 = (81)1/n for an enzyme-catalyzed reaction that follows 
sigmoidal kinetics, where n is the interaction coeffi  cient defi ned in 
Exercise 8.19. (c) Use the data from Exercise 8.19 to estimate the 
value of n.

8.21 Yeast alcohol dehydrogenase catalyzes the oxidation of ethanol 
by NAD+ according to the reaction

CH3CH2OH(aq) + NAD+(aq) → CH3CHO(aq) + NADH(aq) + H+(aq)

Th e following results were obtained for the reaction:

[CH3CH2OH]0/(10−2 mol dm−3)  1.0 2.0 4.0 20.0
V/(mol s−1 (kg protein)−1) (a) 0.30 0.44 0.57 0.76
V/(mol s−1 (kg protein)−1) (b) 0.51 0.75 0.99 1.31
V/(mol s−1 (kg protein)−1) (c) 0.89 1.32 1.72 2.29
V/(mol s−1 (kg protein)−1) (d) 1.43 2.11 2.76 3.67

where the concentrations of NAD+ are (a) 0.050 mmol dm−3, 
(b) 0.10 mmol dm−3, (c) 0.25 mmol dm−3, and (d) 1.0 mmol dm−3. 
Is the reaction sequential or ping-pong? Determine vmax and the 
appropriate K constants for the reaction.

8.22 One of the key events in the transmission of chemical messages 
in the brain is the hydrolysis of the neurotransmitter acetylcholine 
by the enzyme acetylcholinesterase. Th e kinetic parameters for 
this reaction are kcat = 1.4 × 104 s−1 and KM = 9.0 × 10−5 mol dm−3. 
Is acetylcholinesterase catalytically perfect?

8.23 Th e enzyme carboxypeptidase catalyses the hydrolysis of 
polypeptides, and here we consider its inhibition. Th e following 
results were obtained when the rate of the enzymolysis of 
carbobenzoxy-glycyl-d-phenylalanine (CBGP) was monitored 
without inhibitor:

[CBGP]0/(10−2 mol dm−3) 1.25 3.84 5.81 7.13
Relative reaction rate 0.398 0.669 0.859 1.000

(All rates in this exercise were measured with the same concentration 
of enzyme and are relative to the rate measured when [CBGP]0 = 
0.0713 mol dm−3 in the absence of inhibitor.) When 2.0 mmol dm−3 
phenylbutyrate ion was added to a solution containing the enzyme 
and substrate, the following results were obtained:

[CBGP]0/(10−2 mol dm−3) 1.25 2.50 4.00 5.50
Relative reaction rate 0.172 0.301 0.344 0.548

In a separate experiment, the eff ect of 50 mmol dm−3 benzoate ion was 
monitored and the results were

[CBGP]0/(10−2 mol dm−3)  1.75 2.50 5.00 10.00
Relative reaction rate 0.183 0.201 0.231 0.246
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Determine the mode of inhibition of carboxypeptidase by the 
phenylbutyrate ion and benzoate ion.

8.24 Consider an enzyme-catalyzed reaction that follows Michaelis–
Menten kinetics with KM = 3.0 mmol dm−3. What concentration of a 
competitive inhibitor characterized by KI = 20 mmol dm−3 will reduce 
the rate of formation of product by 50 per cent when the substrate 
concentration is held at 0.10 mmol dm−3?

8.25 Some enzymes are inhibited by high concentrations of their own 
substrates. (a) Show that when substrate inhibition is important, the 
reaction rate v is given by

 v = vmax

1 + KM/[S]0 + [S]0/KI

where KI is the equilibrium constant for dissociation of the inhibited 
enzyme–substrate complex. (b) What eff ect does substrate inhibition 
have on a plot of 1/v against 1/[S]0?

8.26 What is (a) the fl ux of nutrient molecules down a concentration 
gradient of 0.10 mol dm−3 m−1, (b) the amount of molecules (in moles) 
passing through an area of 5.0 mm2 in 1.0 min? Take for the diff usion 
coeffi  cient the value for sucrose in water (5.22 × 10−10 m2 s−1).

8.27 How long does it take a sucrose molecule in water at 25°C to 
diff use (a) 1 mm, (b) 1 cm, and (c) 1 m from its starting point?

8.28 Th e mobility of species through fl uids is of the greatest 
importance for nutritional processes. (a) Estimate the diff usion 
coeffi  cient for a molecule that steps 150 pm each 1.8 ps. (b) What 
would be the diff usion coeffi  cient if the molecule traveled only half 
as far on each step?

8.29 Th e diff usion coeffi  cient of a particular kind of t-RNA molecule 
is D = 1.0 × 10−11 m2 s−1 in the medium of a cell interior at 37°C. How 
long does it take molecules produced in the cell nucleus to reach the 
walls of the cell at a distance 1.0 mm, corresponding to the radius of 
the cell?

8.30 Th e diff usion coeffi  cients for a lipid in a plasma membrane and 
in a lipid bilayer are 1.0 × 10−10 m2 s−1 and 1.0 × 10−9 m2 s−1, respectively. 
How long will it take the lipid to diff use 10 nm in a plasma membrane 
and a lipid bilayer?

8.31 Diff usion coeffi  cients of proteins are oft en used as a measure of 
molar mass. For a spherical protein, D ∝ M−1/2. Considering only 
one-dimensional diff usion, compare the length of time it would take 
ribonuclease (M = 13.683 kg mol−1) to diff use 10 nm to the length of 
time it would take the enzyme catalase (M = 250 kg mol−1) to diff use 
the same distance.

8.32 Is diff usion important in lakes? How long would it take a small 
pollutant molecule about the size of H2O to diff use across a lake of 
width 100 m?

8.33 Pollutants spread through the environment by convection 
(winds and currents) and by diff usion. How many steps must a 
molecule take to be 1000 step lengths away from its origin if it 
undergoes a one-dimensional random walk?

8.34 Th e viscosity of water at 20°C is 1.0019 × 10−3 kg m−1 s−1 and at 
30°C it is 7.982 × 10−4 kg m−1 s−1. What is the activation energy for the 
motion of water molecules?

8.35 Th e mobility of a Na+ ion in aqueous solution is 5.19 × 
10−8 m2 s−1 V−1 at 25°C. Th e potential diff erence between two 
electrodes placed in the solution is 12.0 V. If the electrodes are 1.00 cm 
apart, what is the drift  speed of the ion? Use h = 8.91 × 10−4 kg m−1 s−1.

8.36 It is possible to estimate the isoelectric point of a protein from 
its primary sequence. (a) A molecule of calf thymus histone contains 
one aspartic acid, one glutamic acid, 11 lysine, 15 arginine, and two 
histidine residues. Will the protein bear a net charge at pH = 7? If so, 
will the net charge be positive or negative? Is the isoelectric point of 
the protein less than, equal to, or greater than 7? Hint: See Exercise 4.45. 
(b) Each molecule of egg albumin has 51 acidic residues (aspartic and 
glutamic acid), 15 arginine, 20 lysine, and seven histidine residues. 
Is the isoelectric point of the protein less than, equal to, or greater 
than 7? (c) Can a mixture of calf thymus histone and egg albumin be 
separated by gel electrophoresis with the isoelectric focusing method?

8.37 We saw in Section 8.8 that to pass through a channel, the ion 
must fi rst lose its hydrating water molecules. To explore the motion 
of hydrated Na+ ions, we need to know that the diff usion coeffi  cient D 
of an ion is related to its mobility u by the Einstein relation:

D = uRT
zF

where z is the charge number of the ion and F is Faraday’s constant. 
(a) Estimate the diff usion coeffi  cient and the eff ective hydrodynamic 
radius a of the Na+ ion in water at 25°C. For water, h = 8.91 × 
10−4 kg m−1 s−1. (b) Estimate the approximate number of water 
molecules that are dragged along by the cations. Ionic radii are 
given in Table 9.3.

8.38 For a pair of electron donor and acceptor, ket = 2.02 × 105 s−1 
for DrG3 = −0.665 eV. Th e standard reaction Gibbs energy changes 
to DrG3 = −0.975 eV when a substituent is added to the electron 
acceptor and the rate constant for electron transfer changes to 
ket = 3.33 × 106 s−1. Assuming that the distance between donor and 
acceptor is the same in both experiments, estimate the value of the 
reorganization energy.

8.39 For a pair of electron donor and acceptor, ket = 2.02 × 105 s−1 
when r = 1.11 nm and ket = 2.8 × 104 s−1 when r = 1.23 nm. 
(a) Assuming that DrG3 and l are the same in both experiments, 
estimate the value of b. (b) Estimate the value of ket when r = 1.48 nm.

8.40 Azurin is a protein containing a copper ion that shuttles between 
the +2 and +1 oxidation states, and cytochrome c is a protein in which 
a heme-bound iron ion shuttles between the +3 and +2 oxidation 
states. Th e rate constant for electron transfer from reduced azurin to 
oxidized cytochrome c is 1.6 × 103 dm3 mol−1 s−1. Estimate the electron 
self-exchange rate constant for azurin from the following data:

 kii/(dm3 mol−1 s−1) E9
cell/V

Cytochrome c 1.5 × 102 0.260
Azurin ? 0.304
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8.41 Autocatalysis is the catalysis of a reaction by the products. 
For example, for a reaction A → P it can be found that the rate law is 
v = k[A][P] and the reaction rate is proportional to the concentration 
of P. Th e reaction gets started because there are usually other reaction 
routes for the formation of some P initially, which then takes part in 
the autocatalytic reaction proper. Many biological and biochemical 
processes involve autocatalytic steps, and here we explore one case: 
the spread of infectious diseases.

(a) Integrate the rate equation for an autocatalytic reaction of the 
form A → P, with rate law v = k[A][P], and show that

 [P]
[P]0

 = (1 + b) eat

1 + beat

where a = ([A]0 + [P]0)k and b = [P]0/[A]0. Hint: Starting with the 
expression v = −d[A]/dt = k[A][P], write [A] = [A]0 − x, [P] = [P]0 + x 
and then write the expression for the rate of change of either species 
in terms of x. To integrate the resulting expression, the following 
relation will be useful:

1
([A]0 − x)([P]0 + x)

 = 1
[A]0 + [P]0

 AC
1

[A]0 − x
 + 1

[P]0 + x
D
F

(b) Plot [P]/[P]0 against at for several values of b. Discuss the eff ect 
of autocatalysis on the shape of a plot of [P]/[P]0 against t by 
comparing your results with those for a fi rst-order process, in 
which [P]/[P]0 = 1 − e−kt.

(c) Show that for the autocatalytic process discussed in parts (a) 
and (b), the reaction rate reaches a maximum at tmax = −(1/a) ln b.

(d) In the so-called SIR model of the spread and decline of infectious 
diseases, the population is divided into three classes: the susceptibles, 
S, who can catch the disease, the infectives, I, who have the disease 
and can transmit it, and the removed class, R, who have either had 
the disease and recovered, are dead, are immune, or are isolated. Th e 
model mechanism for this process implies the following rate laws:

dS
dt

 = −rSI  dI
dt

 = rSI − aI  dR
dt

 = aI

(i) What are the autocatalytic steps of this mechanism?

(ii) Find the conditions on the ratio a/r that decide whether the 
disease will spread (an epidemic) or die out.

(iii) Show that a constant population is built into this system, namely 
that S + I + R = N, meaning that the timescales of births, deaths by 
other causes, and migration are assumed large compared to that of 
the spread of the disease.

8.42 In general, the catalytic effi  ciency of an enzyme depends on the 
pH of the medium in which it operates. One way to account for this 
behavior is to propose that the enzyme and the enzyme–substrate 
complex are active only in specifi c protonation states. Th is proposition 
can be summarized by the following mechanism:

EH + S 8 ESH ka, ka′
ESH → E + P kb

EH 7 E− + H+ KE,a = [E−][H+]
[EH]

EH2
+ 7 EH + H+ KE,b = [EH][H+]

[EH+
2]

 ESH 7 ES− + H+ KES,a = [ES−][H+]
[ESH]

ESH2
+ 7 ESH + H+ KES,b = [ESH][H+]

[ESH+
2]

in which only the EH and ESH forms are active. 

(a) For the mechanism above, show that 

v = v ′max

1 + K ′M/[S]0

with

v ′max = vmax

1 + [H+]
KES,b

 + KES,a

[H+]

K ′M = KM 

 
1 + [H+]

KE,b
 + KE,a

[H+]

1 + [H+]
KES,b

 + KES,a

[H+]

where vmax and KM correspond to the form EH of the enzyme. 

(b) For pH values ranging from 0 to 14, plot v ′max against pH 
for a hypothetical reaction for which vmax = 1.0 mmol dm−3 s−1, 
KES,b = 1.0 mmol dm−3, and KES,a = 10 nmol dm−3. Is there a pH at 
which vmax reaches a maximum value? If so, determine the pH. 

(c) Redraw the plot in part (b) by using the same value of vmax, but 
KES,b = 0.10 mmol dm−3 and KES,a = 0.10 nmol dm−3. Account for any 
diff erences between this plot and the plot from part (b).

8.43 Studies of biochemical reactions initiated by the absorption 
of light have contributed signifi cantly to our understanding of the 
kinetics of electron transfer processes. Th e experimental arrangement 
is that for time-resolved spectroscopy (In the laboratory 7.2) and relies 
on the observation that many substances become more effi  cient 
electron donors on absorbing energy from a light source, such as a 
laser. With judicious choice of electron acceptor, it is possible to set 
up an experimental system in which electron transfer will not occur in 
the dark (when only a poor electron donor is present) but will proceed 
aft er application of a laser pulse (when a better electron donor is 
generated). Nature makes use of this strategy to initiate the chain of 
electron transfer events that leads ultimately to the phosphorylation 
of ATP in photosynthetic organisms.

(a) An elegant way to study electron transfer in proteins consists of 
attaching an electroactive species to the protein’s surface and then 
measuring ket between the attached species and an electroactive 
protein cofactor. J.W. Winkler and H.B. Gray, Chem. Rev. 92, 369 
(1992), summarize data for cytochrome c modifi ed by replacement 
of the heme iron by a Zn2+ ion, resulting in a zinc–porphyrin (ZnP) 
moiety in the interior of the protein, and by attachment of a 
ruthenium ion complex to a surface histidine amino acid. Th e 
edge-to-edge distance between the electroactive species was thus 
fi xed at 1.23 nm. A variety of ruthenium ion complexes with diff erent 
standard reduction potentials were used. For each ruthenium-
modifi ed protein, either Ru2+ → ZnP+ or ZnP* → Ru3+, in which 
the zinc-porphyrin is excited by a laser pulse, was monitored. 



 PROJECTS   309

Th is arrangement leads to diff erent standard reaction Gibbs energies 
because the redox couples ZnP+/ZnP and ZnP+/ZnP* have diff erent 
standard potentials, with the electronically excited porphyrin being 
a more powerful reductant. Use the following data to estimate the 
reorganization energy for this system:

DrG9/eV 0.665 0.705 0.745 0.975 1.015 5.50
ket/(106 s−1) 0.657 1.52 1.52 8.99 5.76 10.1

(b) Th e photosynthetic reaction center of the purple photosynthetic 
bacterium Rhodopseudomonas viridis is a protein complex containing 
a number of bound co-factors that participate in electron transfer 
reactions. Th e table below shows data compiled by Moser et al., 
Nature 355, 796 (1992), on the rate constants for electron transfer 

between diff erent co-factors and their edge-to-edge distances. (BChl, 
bacteriochlorophyll; BChl2, bacteriochlorophyll dimer, functionally 
distinct from BChl; BPh, bacteriopheophytin; QA and QB, quinone 
molecules bound to two distinct sites; cyt c559, a cytochrome bound 
to the reaction center complex.) Are these data in agreement with 
the behavior predicted by eqn 8.31? If so, evaluate the value of b.

Reaction BChl−→BPh BPh−→Chl2
+ BPh−→QA cyt c559→Chl2

+

r/nm 0.48 0.95 0.96 1.23
ket/s−1 1.58 × 1012 3.98 × 109 1.00 × 109 1.58 × 108

Reaction QA
−→QB QA

−→BChl2
+

r/nm 1.35 2.24
ket/s−1 3.98 × 107 63.1
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PART 3 Biomolecular
structure

We now begin our study of structural biology, the description of the 

molecular features that determine the structures of and the relationships 

between structure and function in biological macromolecules. In the 

following chapters, we shall see how concepts of physical chemistry 

can be used to establish some of the known ‘rules’ for the assembly 

of complex structures, such as proteins, nucleic acids, and biological 

membranes. However, not all the rules are known, so structural biology 

is a very active area of research that brings together biologists, chemists, 

physicists, and mathematicians.
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The first goal of our study of biological molecules and assemblies is to gain a firm 
understanding of their ultimate structural components, atoms. To make progress, we 
need to become familiar with the principal concepts of quantum mechanics, the most 
fundamental description of matter that we currently possess and the only way to 
account for the structures of atoms. Such knowledge is applied to rational drug design 
(see the Prolog) when computational chemists use quantum mechanical concepts 
to predict the structures and reactivities of drug molecules. Quantum mechanical phe-
nomena also form the basis for virtually all the modes of spectroscopy and microscopy 
that are now so central to investigations of composition and structure in both chemistry 
and biology. Present-day techniques for studying biochemical reactions have pro-
gressed to the point where the information is so detailed that quantum mechanics has 
to be used in its interpretation.

Atomic structure—the arrangement of electrons in atoms—is an essential part of 
chemistry and biology because it is the basis for the description of molecular structure 
and molecular interactions. Indeed, without intimate knowledge of the physical and 
chemical properties of elements, it is impossible to understand the molecular basis of 
biochemical processes, such as protein folding, the formation of cell membranes, and 
the storage and transmission of information by DNA.

Principles of quantum theory

Th e role—indeed, the existence—of quantum mechanics was appreciated only 
during the twentieth century. Until then it was thought that the motion of atomic 
and subatomic particles could be expressed in terms of the laws of classical 
mechanics introduced in the seventeenth century by Isaac Newton (see Funda-
mentals F.3), for these laws were very successful at explaining the motion of 
planets and everyday objects such as pendulums and projectiles. Classical physics 
is based on three ‘obvious’ assumptions:

1. A particle travels in a trajectory, a path with a precise position and momen-
tum at each instant.

2. Any type of motion can be excited to a state of arbitrary energy.
3. Waves and particles are distinct concepts.

Th ese assumptions agree with everyday experience. For example, a pendulum 
swings with a precise oscillating motion and can be made to oscillate with any 
energy simply by pulling it back to an arbitrary angle and then letting it swing 
freely. Classical mechanics lets us predict the angle of the pendulum and the speed 
at which it is swinging at any instant.

Microscopic systems 
and quantization 9
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Towards the end of the nineteenth century, experimental evidence accumu-
lated showing that classical mechanics failed to explain all the experimental 
evidence on very small particles, such as individual atoms, nuclei, and electrons. 
It took until 1926 to identify the appropriate concepts and equations for describ-
ing them. We now know that classical mechanics is in fact only an approximate 
description of the motion of particles and the approximation is invalid when it is 
applied to molecules, atoms, and electrons.

9.1 The emergence of the quantum theory
The structure of biological matter cannot be understood without understanding the 
nature of electrons. Moreover, because many of the experimental tools available to 
biochemists are based on interactions between light and matter, we also need to 
understand the nature of light. We shall see, in fact, that matter and light have a lot 
in common.

Quantum theory emerged from a series of observations made during the late 
nineteenth century, from which two important conclusions were drawn. Th e fi rst 
conclusion, which countered what had been supposed for two centuries, is that 
energy can be transferred between systems only in discrete amounts. Th e second 
conclusion is that light and particles have properties in common: electromagnetic 
radiation (light), which had long been considered to be a wave, in fact behaves 
like a stream of particles, and electrons, which since their discovery in 1897 had 
been supposed to be particles, but in fact behave like waves. In this section we 
review the evidence that led to these conclusions, and establish the properties that 
a valid system of mechanics must accommodate.

(a) Atomic and molecular spectra

A spectrum is a display of the frequencies or wavelengths (which are related by 
l = c/n; see Fundamentals F.3) of electromagnetic radiation that are absorbed 
or emitted by an atom or molecule. Figure 9.1 shows a typical atomic emission 
spectrum and Fig. 9.2 shows a typical molecular absorption spectrum. Th e obvi-
ous feature of both is that radiation is absorbed or emitted at a series of discrete 
frequencies. Th e emission or absorption of light at discrete frequencies can be 
understood if we suppose that

• the energy of the atoms or molecules is confi ned to discrete values, for then 
energy can be discarded or absorbed only in packets as the atom or molecule 
jumps between its allowed states (Fig. 9.3)

• the frequency of the radiation is related to the energy diff erence between the 
initial and fi nal states.

Th ese assumptions are brought together in the Bohr frequency condition, 
which relates the frequency n (nu) of radiation to the diff erence in energy DE 
between two states of an atom or molecule:

DE = hn Bohr frequency relation  (9.1)

where h is the constant of proportionality. Th e additional evidence that we de-
scribe below confi rms this simple relation and gives the value h = 6.626 × 10−34 J s. 
Th is constant is now known as Planck’s constant, for it arose in a context that had 
been suggested by the German physicist Max Planck.

At this point we can conclude that one feature of nature that any system of 
mechanics must accommodate is that the internal modes of atoms and molecules 

Fig. 9.2 When a molecule changes 
its state, it does so by absorbing 
radiation at defi nite frequencies. 
Th is spectrum of chlorophyll 
(Atlas R3) suggests that the 
molecule (and molecules in 
general) can possess only certain 
energies, not a continuously 
variable energy.

Fig. 9.1 A region of the spectrum 
of radiation emitted by excited 
iron atoms consists of radiation 
at a series of discrete wavelengths 
(or frequencies).
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can possess only certain energies; that is, these modes are quantized. Th e limita-
tion of energies to discrete values is called the quantization of energy.

(b) Wave–particle duality

In Fundamentals F.3 we saw that classical physics describes light as electromag-
netic radiation, an oscillating electromagnetic fi eld that spreads as a harmonic 
wave through empty space, the vacuum, at a constant speed c. A new view of electro-
magnetic radiation began to emerge in 1900 when the German physicist Max 
Planck discovered that the energy of an electromagnetic oscillator is limited to 
discrete values and cannot be varied arbitrarily. Th is proposal is quite contrary 
to the viewpoint of classical physics, in which all possible energies are allowed. 
In particular, Planck found that the permitted energies of an electromagnetic 
oscillator of frequency n are integer multiples of hn:

E = nhn  n = 0, 1, 2, . . . Quantization of energy in 
electromagnetic oscillators

 (9.2)

where h is Planck’s constant. Th is conclusion inspired Albert Einstein to conceive 
of radiation as consisting of a stream of particles, each particle having an energy 
hn. When there is only one such particle present, the energy of the radiation is hn, 
when there are two particles of that frequency, their total energy is 2hn, and so on. 
Th ese particles of electromagnetic radiation are now called photons. According 
to the photon picture of radiation, an intense beam of monochromatic (single-
frequency) radiation consists of a dense stream of identical photons; a weak beam 
of radiation of the same frequency consists of a relatively small number of the 
same type of photons.

Evidence that confi rms the view that radiation can be interpreted as a stream 
of particles comes from the photoelectric eff ect, the ejection of electrons from 
metals when they are exposed to ultraviolet radiation (Fig. 9.4). Experiments 
show that no electrons are ejected, regardless of the intensity of the radiation, 
unless the frequency exceeds a threshold value characteristic of the metal. On the 
other hand, even at low light intensities, electrons are ejected immediately if 
the frequency is above the threshold value. Th ese observations strongly suggest 
an interpretation of the photoelectric eff ect in which an electron is ejected in a 
collision with a particle-like projectile, the photon, provided the projectile carries 
enough energy to expel the electron from the metal. When the photon collides 
with an electron, it gives up all its energy, so we should expect electrons to appear 
as soon as the collisions begin, provided each photon carries suffi  cient energy. 
Th at is, through the principle of conservation of energy, the photon energy should 
be equal to the sum of the kinetic energy of the electron and the work function F  
(uppercase phi) of the metal, the energy required to remove the electron from the 
metal (Fig. 9.5).

Th e photoelectric eff ect is strong evidence for the existence of photons and 
shows that light has certain properties of particles, a view that is contrary to the 
classical wave theory of light. A crucial experiment performed by the American 
physicists Clinton Davisson and Lester Germer in 1925 challenged another 
classical idea by showing that matter is wavelike: they observed the diff raction of 
electrons by a crystal (Fig. 9.6). Diff raction is the interference between waves 
caused by an object in their path and results in a series of bright and dark fringes 
where the waves are detected (Fig. 9.7). It is a typical characteristic of waves.

Th e Davisson–Germer experiment, which has since been repeated with 
other particles (including molecular hydrogen), shows clearly that ‘particles’ have 

Fig. 9.4 Th e experimental 
arrangement to demonstrate the 
photoelectric eff ect. A beam of 
ultraviolet radiation is used to 
irradiate a patch of the surface of 
a metal, and electrons are ejected 
from the surface if the frequency 
of the radiation is above a 
threshold value that depends 
on the metal.

Fig. 9.3 Spectral features can be 
accounted for if we assume that 
a molecule emits (or absorbs) 
a photon as it changes between 
discrete energy levels. High-
frequency radiation is emitted 
(or absorbed) when the two states 
involved in the transition are 
widely separated in energy; 
low-frequency radiation is 
emitted when the two states are 
close in energy. In absorption 
or emission, the change in the 
energy of the molecule, DE, is 
equal to hn, where n is the 
frequency of the radiation.
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wavelike properties. We have also seen that ‘waves’ have particle-like properties. 
Th us we are brought to the heart of modern physics. When examined on an 
atomic scale, the concepts of particle and wave melt together, particles taking on 
the characteristics of waves and waves the characteristics of particles. Th is joint 
wave–particle character of matter and radiation is called wave–particle duality. 
You should keep this extraordinary, perplexing, and at the time revolution-
ary idea in mind whenever you are thinking about matter and radiation at an 
atomic scale.

As these concepts emerged there was an understandable confusion—which 
continues to this day—about how to combine both aspects of matter into a single 
description. Some progress was made by Louis de Broglie when, in 1924, he 
suggested that any particle traveling with a linear momentum, p, should have 
(in some sense) a wavelength l given by the de Broglie relation:

 l = h
p

 de Broglie relation  (9.3)

Th e wave corresponding to this wavelength, what de Broglie called a ‘matter 
wave’, has the mathematical form sin(2px/l). Th e de Broglie relation implies that 
the wavelength of a ‘matter wave’ should decrease as the particle’s speed increases 
(Fig. 9.8). Th e relation also implies that, for a given speed, heavy particles should 
be associated with waves of shorter wavelengths than those of lighter particles. 
Equation 9.3 was confi rmed by the Davisson–Germer experiment, for the wave-
length it predicts for the electrons they used in their experiment agrees with the 
details of the diff raction pattern they observed. We shall build on the relation, and 
understand it more, in the next section.

Fig. 9.7 When two waves (drawn as 
blue and orange lines) are in the same 
region of space they interfere (with the 
resulting wave drawn as a red line). 
Depending on the relative positions of 
peaks and troughs, they may interfere 
(a) constructively, to given an enhanced 
amplitude), or (b) destructively, to give 
a smaller amplitude.

Fig. 9.5 In the photoelectric eff ect, 
an incoming photon brings a 
defi nite quantity of energy, hn. 
It collides with an electron close 
to the surface of the metal target 
and transfers its energy to it. 
Th e diff erence between the work 
function, F, and the energy hn 
appears as the kinetic energy of 
the photoelectron, the electron 
ejected by the photon.

Fig. 9.6 In the Davisson–Germer 
experiment, a beam of electrons was 
directed on a single crystal of nickel, 
and the scattered electrons showed a 
variation in intensity with angle that 
corresponded to the pattern that would 
be expected if the electrons had a wave 
character and were diff racted by the 
layers of atoms in the solid.

Example 9.1 Estimating the de Broglie wavelength of electrons

Th e wave character of the electron is the key to imaging small samples by elec-
tron microscopy (see In the laboratory 9.1). Consider an electron microscope 

Fig. 9.8 According to the de 
Broglie relation, a particle with 
low momentum has a long 
wavelength, whereas a particle 
with high momentum has a short 
wavelength. A high momentum 
can result either from a high mass 
or from a high velocity (because 
p = mv). Macroscopic objects 
have such large masses that, 
even if they are traveling very 
slowly, their wavelengths are 
undetectably short.



 9.1 THE EMERGENCE OF THE QUANTUM THEORY   317

in which electrons are accelerated from rest through a potential diff erence of 
15.0 kV. Calculate the wavelength of the electrons.

Strategy To use the de Broglie relation, we need to establish a relation between 
the kinetic energy Ek and the linear momentum p. With p = mv and Ek =  12 mv2, 
it follows that Ek = 1

2 m(p/m)2 = p2/2m, and therefore p = (2mEk)1/2. Th e kinetic 
energy acquired by an electron accelerated from rest by falling through a 
potential diff erence V is eV, where e = 1.602 × 10−19 C is the magnitude of its 
charge, so we can write Ek = eV and, aft er using me = 9.109 × 10−31 kg for the 
mass of the electron, p = (2meeV)1/2.

Solution By using p = (2meeV)1/2 in de Broglie’s relation (eqn 9.3), we obtain

 l = h
(2meeV)1/2

At this stage, all we need do is to substitute the data and use the relations 
1 C V = 1 J and 1 J = 1 kg m2 s−2:

l = 6.626 × 10−34 J s
{2 × (9.109 × 10−31 kg) × (1.602 × 10−19 C) × (1.50 × 104 V)}1/2

 = 1.00 × 10−11 m = 10.0 pm

Self-test 9.1 Calculate the wavelength of an electron accelerated from rest 
in an electric potential diff erence of 1.0 MV (1 MV = 106 V).

Answer: 1.2 pm

In the laboratory 9.1 Electron microscopy

Th e basic approach of illuminating a small area of a sample and collecting light 
with a microscope has been used for many years to image small specimens. 
However, the resolution of a microscope, the minimum distance between two 
objects that leads to two distinct images, is in the order of the wavelength of 
light being used. Th erefore, conventional microscopes employing visible light 
have resolutions in the micrometer range and cannot resolve features on a 
scale of nanometers.

Th ere is great interest in the development of new experimental probes of very 
small specimens that cannot be studied by traditional light microscopy. For 
example, our understanding of biochemical processes, such as enzymatic 
catalysis, protein folding, and the insertion of DNA into the cell’s nucleus, will 
be enhanced if it becomes possible to image individual biopolymers—with 
dimensions much smaller than visible wavelengths—at work. Th e concept of 
wave–particle duality is directly relevant to biology because the observation 
that electrons can be diff racted led to the development of important techniques 
for the determination of the structures of biologically active matter. One tech-
nique that is oft en used to image nanometer-sized objects is electron micro-
scopy, in which a beam of electrons with a well-defi ned de Broglie wavelength 
replaces the lamp found in traditional light microscopes. Instead of glass or 
quartz lenses, magnetic fi elds are used to focus the beam. In transmission 
electron microscopy (TEM), the electron beam passes through the specimen 
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and the image is collected on a screen. In scanning electron microscopy 
(SEM), electrons scattered back from a small irradiated area of the sample are 
detected and the electrical signal is sent to a video screen. An image of the 
surface is then obtained by scanning the electron beam across the sample.

As in traditional light microscopy, the resolution of the microscope is governed 
by the wavelength (in this case, the de Broglie wavelength of the electrons in 
the beam) and the ability to focus the beam. Electron wavelengths in typical 
electron microscopes can be as short as 10 pm, but it is not possible to focus 
electrons well with magnetic lenses so, in the end, typical resolutions of TEM 
and SEM instruments are about 2 nm and 50 nm, respectively. It follows that 
electron microscopes cannot resolve individual atoms (which have diameters 
of about 0.2 nm). Furthermore, only certain samples can be observed under 
certain conditions. Th e measurements must be conducted under high vacuum. 
For TEM observations, the samples must be very thin cross-sections of a 
specimen and SEM observations must be made on dry samples.

Bombardment with high-energy electrons can damage biological samples 
by excessive heating, ionization, and formation of radicals. Th ese eff ects can 
lead to denaturation or more severe chemical transformation of biological 
molecules, such as the breaking of bonds and formation of new bonds not 
found in native structures. To minimize such damage, it has become common 
to cool samples to temperatures as low as 77 K or 4 K (by immersion in liquid 
N2 or liquid He, respectively) prior to and during examination with the micro-
scope. Th is technique is known as electron cryomicroscopy.1

A consequence of these stringent experimental requirements is that electron 
microscopy cannot be used to study living cells. In spite of these limitations, 
the technique is very useful in studies of the internal structure of cells 
(Fig. 9.9).

9.2 The Schrödinger equation
The surprising consequences of wave–particle duality led not only to powerful 
techniques in microscopy and medical diagnostics but also to new views of the 
mechanisms of biochemical reactions, particularly those involving the transfer 
of electrons and protons. To understand these applications, it is essential to 
know how electrons behave under the influence of various forces.

We take the de Broglie relation as our starting point for the formulation of a new 
mechanics and abandon the classical concept of particles moving along trajector-
ies. From now on, we adopt the quantum mechanical view that a particle is spread 
through space like a wave. Like for a wave in water, where the water accumulates in 
some places but is low in others, there are regions where the particle is more likely 
to be found than others. To describe this distribution, we introduce the concept 
of wavefunction, y (psi), in place of the trajectory, and then set up a scheme 
for calculating and interpreting y. A ‘wavefunction’ is the modern term for de 
Broglie’s ‘matter wave’. To a very crude fi rst approximation, we can visualize a 
wavefunction as a blurred version of a trajectory (Fig. 9.10); however, we shall 
refi ne this picture in the following sections.

1 Th e prefi x ‘cryo’ originates from kryos, the Greek word for cold or frost.

Fig. 9.9 A TEM image of a 
cross-section of a plant cell 
showing chloroplasts, organelles 
responsible for the reactions of 
photosynthesis (Chapter 12). 
Chloroplasts are typically 5 mm 
long. (Dr Jeremy Burgess/
Science Photo Library.)

Fig. 9.10 According to classical 
mechanics, a particle can have 
a well-defi ned trajectory, with 
a precisely specifi ed position 
and momentum at each instant 
(as represented by the precise 
path in the diagram). According 
to quantum mechanics, a particle 
cannot have a precise trajectory; 
instead, there is only a probability 
that it may be found at a specifi c 
location at any instant. Th e 
wavefunction that determines 
its probability distribution is 
a kind of blurred version 
of the trajectory. Here, the 
wavefunction is represented by 
areas of shading: the darker the 
area, the greater the probability 
of fi nding the particle there.
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(a) The formulation of the equation

In 1926, the Austrian physicist Erwin Schrödinger proposed an equation for 
calculating wavefunctions. Th e Schrödinger equation for a single particle of mass 
m moving with energy E in one dimension is

−
ħ2

2m
 
d2y
dx2

 + Vy = Ey Schrödinger
equation

 (9.4a)

You will oft en see eqn 9.4a written in the very compact form

Ĥy = Ey Compact form of the 
Schrödinger equation

 (9.4b)

where Ĥy stands for everything on the left  of eqn 9.4a. Th e quantity Ĥ is called 
the hamiltonian of the system aft er the mathematician William Hamilton, who 
had formulated a version of classical mechanics that used the concept. It is written 
with a caret (ˆ) to signify that it is an ‘operator’, something that acts in a particular 
way on y rather than just multiplying it (as E multiplies y in Ey). You should be 
aware that much of quantum theory is formulated in terms of various operators, 
but we shall encounter them only very rarely in this text.2

Technically, the Schrödinger equation is a second-order diff erential equation. 
In it, V, which may depend on the position x of the particle, is the potential energy; 
ħ (which is read h-bar) is a convenient modifi cation of Planck’s constant:

ħ = h
2p

 = 1.054 × 10−34 J s

We provide a justifi cation of the form of the equation in Further information 
9.1. Th e rare cases where we need to see the explicit forms of its solution will 
involve very simple functions. For example (and to become familiar with the form 
of wavefunctions in three simple cases, but not putting in various constants):

1. Th e wavefunction for a freely moving particle is sin x (exactly as for de 
Broglie’s matter wave, sin(2px/l)).

2. Th e wavefunction for the lowest energy state of a particle free to oscillate 
to and fro near a point is e−x2, where x is the displacement from the point 
(see Section 9.6),

3. Th e wavefunction for an electron in the lowest energy state of a hydrogen 
atom is e−r, where r is the distance from the nucleus (see Section 9.8).

As can be seen, none of these wavefunctions is particularly complicated 
mathematically.

One feature of the solution of any given Schrödinger equation, a feature com-
mon to all diff erential equations, is that an infi nite number of possible solutions 
are allowed mathematically. For instance, if sin x is a solution of the equation, 
then so too is a sin bx, where a and b are arbitrary constants, with each solution 
corresponding to a particular value of E. However, it turns out that only some of 
these solutions are acceptable physically when the motion of a particle is con-
strained somehow (as in the case of an electron moving under the infl uence of the 
electric fi eld of a proton in a hydrogen atom). In such instances, an acceptable 
solution must satisfy certain constraints called boundary conditions, which we 
describe shortly (Fig. 9.11). Suddenly, we are at the heart of quantum mechanics: 

Fig. 9.11 Although an infi nite 
number of solutions of the 
Schrödinger equation exist, 
not all of them are physically 
acceptable. Acceptable 
wavefunctions have to satisfy 
certain boundary conditions, 
which vary from system to 
system. In the example shown 
here, where the particle is 
confi ned between two 
impenetrable walls, the only 
acceptable wavefunctions are 
those that fi t between the 
walls (like the vibrations of a 
stretched string). Because each 
wavefunction corresponds to a 
characteristic energy and the 
boundary conditions rule out 
many solutions, only certain 
energies are permissible.2 See, for instance, our Physical chemistry (2010).
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the fact that only some solutions of the Schrödinger equation are acceptable, together 
with the fact that each solution corresponds to a characteristic value of E, implies 
that only certain values of the energy are acceptable. Th at is, when the Schrödinger 
equation is solved subject to the boundary conditions that the solutions must 
satisfy, we fi nd that the energy of the system is quantized. Planck and his imme-
diate successors had to postulate the quantization of energy for each system 
they considered: now we see that quantization is an automatic feature of a single 
equation, the Schrödinger equation, which is applicable to all systems. Later in 
this chapter and the next we shall see exactly which energies are allowed in a 
variety of systems, the most important of which (for chemistry) is an atom.

(b) The interpretation of the wavefunction

Before going any further, it will be helpful to understand the physical signifi cance 
of a wavefunction. Th e interpretation most widely used is based on a suggestion 
made by the German physicist Max Born. He made use of an analogy with the 
wave theory of light, in which the square of the amplitude of an electromagnetic 
wave is interpreted as its intensity and therefore (in quantum terms) as the num-
ber of photons present. Th e Born interpretation asserts:

Th e probability of fi nding a particle in a small region of space of volume dV is 
proportional to y2dV, where y is the value of the wavefunction in the region.

In other words, y2 is a probability density. As for other kinds of density, such as 
mass density (ordinary ‘density’), we get the probability itself by multiplying the 
probability density by the volume of the region of interest.

Th e Born interpretation implies that wherever y2 is large (‘high probability 
density’), there is a high probability of fi nding the particle. Wherever y2 is small 
(‘low probability density’), there is only a small chance of fi nding the particle. 
Th e density of shading in Fig. 9.12 represents this probabilistic interpretation, 
an interpretation that accepts that we can make predictions only about the 
probability of fi nding a particle somewhere. Th is interpretation is in contrast to 
classical physics, which claims to be able to predict precisely that a particle will 
be at a given point on its path at a given instant.

Fig. 9.12 A wavefunction y does 
not have a direct physical 
interpretation. However, its 
square (its square modulus if 
it is complex), y2, tells us the 
probability of fi nding a particle 
at each point. Th e probability 
density implied by the 
wavefunction shown here is 
depicted by the density of 
shading in the band at the 
bottom of the fi gure.

A note on good practice 
Th e symbol d (see below, right) 
indicates a small (and, in the 
limit, infi nitesimal) change in 
a parameter, as in x changing 
to x + dx. Th e symbol D 
indicates a fi nite (measurable) 
diff erence between 
two quantities, as in 
DX = Xfi nal − Xinitial.

 

A brief comment
We are supposing throughout 
that y is a real function (that 
is, one that does not depend 
on i = (−1)1/2). In general, y is 
complex (has both real and 
imaginary components); in 
such cases y2 is replaced by 
y*y, where y* is the complex 
conjugate of y. We do not 
consider complex functions 
in this text.3

Example 9.2 Interpreting a wavefunction

Th e wavefunction of an electron in the lowest energy state of a hydrogen atom 
is proportional to e−r/a0, with a0 = 52.9 pm and r the distance from the nucleus 
(Fig. 9.13). Calculate the relative probabilities of fi nding the electron inside a 
small volume located at (a) r = 0 (that is, at the nucleus) and (b) r = a0 away 
from the nucleus.

Strategy Th e probability is proportional to y2dV evaluated at the specifi ed 
location, with y ∝ e−r/a0 and y2 ∝ e−2r/a0. Th e volume of interest is so small (even 
on the scale of the atom) that we can ignore the variation of y within it and 
write

probability  ∝ y2dV

with y evaluated at the point in question.

3 For the role, properties, and interpretation of complex wavefunctions, see our Physical chemistry 
(2010).
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Solution (a) When r = 0, y2 ∝ 1.0 (because e0 = 1) and the probability of fi nd-
ing the electron at the nucleus is proportional to 1.0 × dV. (b) At a distance 
r = a0 in an arbitrary direction, y2 ∝ e−2, so the probability of being found there 
is proportional to e−2 × dV = 0.14 × dV. Th erefore, the ratio of probabilities 
is 1.0/0.14 = 7.1. It is more probable (by a factor of 7.1) that the electron will be 
found at the nucleus than in the same tiny volume located at a distance a0 from 
the nucleus.

Self-test 9.2 Th e wavefunction for the lowest energy state in the ion He+ is 
proportional to e−2r/a0. Calculate the ratio of probabilities as in Example 9.2, by 
comparing the cases for which r = 0 and r = a0. Any comment?

Answer: Th e ratio of probabilities is 55; a more compact wavefunction 
on account of the higher nuclear charge.

9.3 The uncertainty principle
Given that electrons behave like waves, we need to be able to reconcile the 
predictions of quantum mechanics with the existence of objects, such as biological 
cells and the organelles within them.

We have seen that, according to the de Broglie relation, a wave of constant wave-
length, the wavefunction sin(2px/l), corresponds to a particle with a defi nite 
linear momentum p = h/l. However, a wave does not have a defi nite location at 
a single point in space, so we cannot speak of the precise position of the particle 
if it has a defi nite momentum. Indeed, because a sine wave spreads throughout 
the whole of space, we cannot say anything about the location of the particle: 
because the wave spreads everywhere, the particle may be found anywhere in the 
whole of space. Th is statement is one half of the uncertainty principle, proposed 
by Werner Heisenberg in 1927, in one of the most celebrated results of quantum 
mechanics:

It is impossible to specify simultaneously, with arbitrary precision, both the 
momentum and the position of a particle.

Before discussing the principle, we must establish the other half: that if we 
know the position of a particle exactly, then we can say nothing about its momen-
tum. If the particle is at a defi nite location, then its wavefunction must be nonzero 
there and zero everywhere else (Fig. 9.14). We can simulate such a wavefunction 
by forming a superposition of many wavefunctions; that is, by adding together 
the amplitudes of a large number of sine functions (Fig. 9.15). Th is procedure is 
successful because the amplitudes of the waves add together at one location to 
give a nonzero total amplitude but cancel everywhere else. In other words, we 
can create a sharply localized wavefunction by adding together wavefunctions 
corresponding to many diff erent wavelengths, and therefore, by the de Broglie 
relation, of many diff erent linear momenta.

Th e superposition of a few sine functions gives a broad, ill-defi ned wavefunc-
tion. As the number of functions used to form the superposition increases, 
the wavefunction becomes sharper because of the more complete interference 
between the positive and negative regions of the components. When an infi nite 
number of components are used, the wavefunction is a sharp, infi nitely narrow 
spike like that in Fig. 9.14, which corresponds to perfect localization of the 

Fig. 9.13 Th e wavefunction for 
an electron in the ground 
state of a hydrogen atom is 
an exponentially decaying 
function of the form e−r/a0, where 
a0 = 52.9 pm is the Bohr radius.

Fig. 9.14 Th e wavefunction for 
a particle with a well-defi ned 
position is a sharply spiked 
function that has zero amplitude 
everywhere except at the 
particle’s position.



322   9 MICROSCOPIC SYSTEMS AND QUANTIZATION

particle. Now the particle is perfectly localized, but at the expense of discarding 
all information about its momentum.

Th e exact, quantitative version of the position–momentum uncertainty rela-
tion is

 DpDx ≥ 12 ħ Position–momentum uncertainty 
relation (in one dimension)

 (9.5)

Th e quantity Dp is the ‘uncertainty’ in the linear momentum and Dx is the 
uncertainty in position (which is proportional to the width of the peak in 
Fig. 9.15). Equation 9.5 expresses quantitatively the fact that the more closely 
the location of a particle is specifi ed (the smaller the value of Dx), then the greater 
the uncertainty in its momentum (the larger the value of Dp) parallel to that 
coordinate and vice versa (Fig. 9.16).

Th e uncertainty principle applies to location and momentum along the same 
axis. It is silent on location on one axis and momentum along a perpendicular 
axis, such as location along the x-axis and momentum parallel to the y-axis.

Fig. 9.15 Th e wavefunction for a particle with an ill-defi ned location can be 
regarded as the sum (superposition) of several wavefunctions of diff erent 
wavelength that interfere constructively in one place but destructively 
elsewhere. As more waves are used in the superposition, the location 
becomes more precise at the expense of uncertainty in the particle’s 
momentum. An infi nite number of waves are needed to construct the 
wavefunction of a perfectly localized particle. Th e numbers against 
each curve are the number of sine waves used in the superposition. 
(a) Th e wavefunctions; (b) the corresponding probability densities.

Fig. 9.16 A representation of the content 
of the uncertainty principle. Th e range 
of locations of a particle is shown by the 
circles and the range of momenta by 
the arrows. In (a), the position is quite 
uncertain, and the range of momenta is 
small. In (b), the location is much better 
defi ned, and now the momentum of the 
particle is quite uncertain.

A brief comment
Strictly, the uncertainty in 
momentum is the root mean 
square (r.m.s.) deviation of 
the momentum from its mean 
value, Dp = (〈p2〉 − 〈p〉2)1/2, 
where the angle brackets 
denote mean values. Likewise, 
the uncertainty in position 
is the r.m.s. deviation in the 
mean value of position, 
Dx = (〈x2〉 − 〈x〉2)1/2.

Example 9.3 Using the uncertainty principle

To gain some appreciation of the biological importance—or lack of it—of the 
uncertainty principle, estimate the minimum uncertainty in the position of 
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each of the following, given that their speeds are known to within 1.0 mm s−1: 
(a) an electron in a hydrogen atom and (b) a mobile E. coli cell of mass 1.0 pg 
that can swim in a liquid or glide over surfaces by fl exing tail-like structures, 
known as fl agella. Comment on the importance of including quantum mechan-
ical eff ects in the description of the motion of the electron and the cell.

Strategy We can estimate Dp from mDv, where Dv is the uncertainty in the 
speed v; then we use eqn 9.5 to estimate the minimum uncertainty in position, 
Dx, where x is the direction in which the projectile is traveling.

Solution From DpDx ≥ 12 ħ, the uncertainty in position is

(a) for the electron, with mass 9.109 × 10−31 kg:

Dx ≥ ħ
2Dp

 = 1.054 × 10−34 J s
2 × (9.109 × 10−31 kg) × (1.0 × 10−6 m s−1)

 = 58 m

(b) for the E. coli cell (using 1 kg = 103 g):

 Dx ≥ ħ
2Dp

 = 1.054 × 10−34 J s
2 × (1.0 × 10−15 kg) × (1.0 × 10−6 m s−1)

 = 5.3 × 10−14 m

For the electron, the uncertainty in position is far larger than the diameter of 
the atom, which is about 100 pm. Th erefore, the concept of a trajectory—the 
simultaneous possession of a precise position and momentum—is untenable. 
However, the degree of uncertainty is completely negligible for all practical 
purposes in the case of the bacterium. Indeed, the position of the cell can be 
known to within 0.05 per cent of the diameter of a hydrogen atom. It follows 
that the uncertainty principle plays no direct role in cell biology. However, it 
plays a major role in the description of the motion of electrons around nuclei 
in atoms and molecules and, as we shall see soon, the transfer of electrons 
between molecules and proteins during metabolism.

Self-test 9.3 Estimate the minimum uncertainty in the speed of an electron 
that can move along the carbon skeleton of a conjugated polyene (such as 
b-carotene) of length 2.0 nm.

Answer: 29 km s−1

Th e uncertainty principle epitomizes the diff erence between classical and 
quantum mechanics. Classical mechanics supposed, falsely as we now know, 
that the position and momentum of a particle can be specifi ed simultaneously 
with arbitrary precision. However, quantum mechanics shows that position and 
momentum are complementary, that is, not simultaneously specifi able. Quantum 
mechanics requires us to make a choice: we can specify position at the expense of 
momentum or momentum at the expense of position.

Applications of quantum theory

We shall now illustrate some of the concepts that have been introduced and 
gain some familiarity with the implications and interpretation of quantum 
mechanics, including applications to biochemistry. We shall encounter many 
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other illustrations in the following chapters, for quantum mechanics pervades 
the whole of chemistry. Just to set the scene, here we describe three basic types 
of motion: translation (motion in a straight line, like a beam of electrons in the 
electron microscope), rotation, and vibration.

9.4 Translation
The three primitive types of motion—translation, rotation, and vibration—occur 
throughout science, and we need to be familiar with their quantum mechanical 
description before we can understand the motion of electrons in atoms and 
molecules.

In this section we shall see how quantization of energy arises when a particle is 
confi ned between two walls. When the potential energy of the particle within the 
walls is not infi nite, the solutions of the Schrödinger equation reveal surprising 
features, especially the ability of particles to tunnel into and through regions 
where classical physics would forbid them to be found.

(a) Motion in one dimension

Let’s consider the translational motion of a ‘particle in a box’, a particle of mass m 
that can travel in a straight line in one dimension (along the x-axis) but is con-
fi ned between two walls separated by a distance L. Th e potential energy of the 
particle is zero inside the box but rises abruptly to infi nity at the walls (Fig. 9.17). 
Th e particle might be an electron free to move along the linear arrangement of 
conjugated double bonds in a linear polyene, such as b-carotene (Atlas E1), the 
molecule responsible for the orange color of carrots and pumpkins.

Th e boundary conditions for this system are the requirement that each accept-
able wavefunction of the particle must fi t inside the box exactly, like the vibrations 
of a violin string (as in Fig. 9.11). It follows that the wavelength, l, of the permitted 
wavefunctions must be one of the values

l = 2L, L,  23 L, . . .  or  l = 2L
n

, with n = 1, 2, 3, . . . (9.6)

Each wavefunction is a sine wave with one of these wavelengths; therefore, 
because a sine wave of wavelength l has the form sin(2px/l), the permitted wave-
functions are

 yn = N sin npx
L

  n = 1, 2, . . . 
Wavefunctions 
for a particle in a 
one-dimensional box

 (9.7)

As shown in the following Justifi cation, the normalization constant, N, a constant 
that ensures that the total probability of fi nding the particle anywhere is 1, 
is equal to (2/L)1/2.

A brief comment
More precisely, the boundary 
conditions stem from the 
requirement that the 
wavefunction is continuous 
everywhere: because the 
wavefunction is zero outside 
the box, it must therefore be 
zero at its edges, at x = 0 and 
at x = L.

Justification 9.1 The normalization constant

To calculate the constant N, we recall that the wavefunction y must have a form 
that is consistent with the interpretation of the quantity y(x)2dx as the prob-
ability of fi nding the particle in the infi nitesimal region of length dx at the 
point x given that its wavefunction has the value y(x) at that point. Th erefore, 
the total probability of fi nding the particle between x = 0 and x = L is the 
sum (integral) of all the probabilities of its being in each infi nitesimal region. 

Fig. 9.17 A particle in a one-
dimensional region with 
impenetrable walls at either end. 
Its potential energy is zero 
between x = 0 and x = L and rises 
abruptly to infi nity as soon as the 
particle touches either wall.
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Th at total probability is 1 (the particle is certainly in the range somewhere), 
so we know that

�
L

0

y2dx = 1

Substitution of eqn 9.7 turns this expression into

N 2�
L

0

 sin2 npx
L  

dx = 1

Our task is to solve this equation for N. Because

� sin2 ax dx = 12 x − sin 2ax
4a

 + constant

and sin bp = 0 (b = 0, 1, 2, . . .), it follows that, because the sine term is zero at 
x = 0 and x = L,

�
L

0

 sin2 npx
L  

dx = 12 L

Th erefore,

N 2 × 12 L = 1

and hence N = (2/L)1/2. Note that, in this case but not in general, the same nor-
malization factor applies to all the wavefunctions regardless of the value of n.

It is a simple matter to fi nd the permitted energy levels because the only contri-
bution to the energy is the kinetic energy of the particle: the potential energy is 
zero everywhere inside the box, and the particle is never outside the box. First, we 
note that it follows from the de Broglie relation, eqn 9.3, that the only acceptable 
values of the linear momentum are

p = h
l

 = nh
2L

  n = 1, 2, . . . (9.8)

Th en, because the kinetic energy of a particle of momentum p and mass m is 
E = p2/2m, it follows that the permitted energies of the particle are

En = n2h2

8mL2
  n = 1, 2, . . . 

Quantized energies 
of a particle in a 
one-dimensional box

 (9.9)

As we see in eqns 9.7 and 9.9, the wavefunctions and energies of a particle in a 
box are labeled with the number n. A quantum number, of which n is an example, 
is an integer (in certain cases, as we shall see later, a half-integer) that labels the 
state of the system. As well as acting as a label, a quantum number specifi es 
certain physical properties of the system: in the present example, n specifi es the 
energy of the particle through eqn 9.9.

Th e permitted energies of the particle are shown in Fig. 9.18 together with the 
shapes of the wavefunctions for n = 1 to 6. All the wavefunctions except the one of 
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lowest energy (n = 1) possess points called nodes where the function passes 
through zero. Passing through zero is an essential part of the defi nition: just 
becoming zero is not suffi  cient. Th e points at the edges of the box where y = 0 are 
not nodes because the wavefunction does not pass through zero there.

Th e number of nodes in the wavefunctions shown in Fig. 9.18 increases from 0 
(for n = 1) to 5 (for n = 6) and is n − 1 for a particle in a box in general. It is a 
general feature of quantum mechanics that the wavefunction corresponding to 
the state of lowest energy has no nodes, and as the number of nodes in the wave-
functions increases, the energy increases too.

Th e solutions of a particle in a box introduce another important general feature 
of quantum mechanics. Because the quantum number n cannot be zero (for this 
system), the lowest energy that the particle may possess is not zero, as would be 
allowed by classical mechanics, but h2/8mL2 (the energy when n = 1). Th is lowest, 
irremovable energy is called the zero-point energy. Th e existence of a zero-point 
energy is consistent with the uncertainty principle. If a particle is confi ned to a 
fi nite region, its location is not completely indefi nite; consequently its momen-
tum cannot be specifi ed precisely as zero, and therefore its kinetic energy cannot 
be precisely zero either. Th e zero-point energy is not a special, mysterious kind 
of energy. It is simply the last remnant of energy that a particle cannot give up. 

Fig. 9.18 Th e allowed energy levels 
and the corresponding (sine 
wave) wavefunctions for a 
particle in a box. Note that the 
energy levels increase as n2, and 
so their spacing increases as n 
increases. Each wavefunction is 
a standing wave, and successive 
functions possess one more half-
wave and a correspondingly 
shorter wavelength.
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For a particle in a box it can be interpreted as the energy arising from a ceaseless 
fl uctuating motion of the particle between the two confi ning walls of the box.

Th e energy diff erence between adjacent levels is

DE = En+1 − En = (n + 1)2 h2

8mL2
 − n2 h2

8mL2
 
= (2n + 1) h2

8mL2
 (9.10)

Th is expression shows that the diff erence decreases as the length L of the 
box increases and that it becomes zero when the walls are infi nitely far apart 
(Fig. 9.19). Atoms and molecules free to move in laboratory-sized vessels may 
therefore be treated as though their translational energy is not quantized, because 
L is so large. Th e expression also shows that the separation decreases as the mass 
of the particle increases. Particles of macroscopic mass (like balls and planets 
and even minute specks of dust) behave as though their translational motion is 
unquantized. Both these conclusions are true in general:

1. Th e greater the size of the system, the less important are the eff ects of 
quantization.

2. Th e greater the mass of the particle, the less important are the eff ects of 
quantization.

Case study 9.1 The electronic structure of b-carotene

Some linear polyenes, of which b-carotene is an example, are important bio-
logical co-factors that participate in processes as diverse as the absorption of 
solar energy in photosynthesis (Chapter 12) and protection against harmful 
biological oxidations. b-Carotene is a linear polyene in which 21 bonds, 10 
single and 11 double, alternate along a chain of 22 carbon atoms. We already 
know from introductory chemistry that this bonding pattern results in con-
jugation, the sharing of p electrons among all the carbon atoms in the chain.4 
Th erefore, the particle in a one-dimensional box may be used as a simple 
model for the discussion of the distribution of p electrons in conjugated poly-
enes. If we take each C–C bond length to be about 140 pm, the length L of the 
molecular box in b-carotene is

L = 21 × (1.40 × 10−10 m) = 2.94 × 10−9 m

For reasons that will become clear in Sections 9.9 and 10.4, we assume that 
only one electron per carbon atom is allowed to move freely within the box 
and that, in the lowest energy state (called the ground state) of the molecule, 
each level is occupied by two electrons. Th erefore, the levels up to n = 11 are 
occupied. From eqn 9.10 it follows that the separation in energy between 
the ground state and the state in which one electron is promoted from the 
n = 11 level to the n = 12 level is

DE = E12 − E11 = (2 × 11 + 1) (6.626 × 10−34 J s)2

8 × (9.109 × 10−31 kg) × (2.94 × 10−9 m)2
 

 = 1.60 × 10−19 J

We can relate this energy diff erence to the properties of the light that can bring 
about the transition. From the Bohr frequency condition (eqn 9.1), this energy 
separation corresponds to a frequency of

Fig. 9.19  (a) A narrow box has 
widely spaced energy levels; 
(b) a wide box has closely spaced 
energy levels. (In each case, the 
separations depend on the mass 
of the particle too.)

4 Th e quantum mechanical basis for conjugation is discussed in Chapter 10.
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 n = DE

h
 = 1.60 × 10−19 J

6.626 × 10−34 J s
 = 2.41 × 1014 Hz

(we have used 1 s−1 = 1 Hz) and a wavelength (l = c/n) of 1240 nm; the experi-
mental value is 497 nm.

Th is model of b-carotene is primitive and the agreement with experiment not 
very good, but the fact that the calculated and experimental values are of the 
same order of magnitude is encouraging as it suggests that the model is not 
ludicrously wrong. Moreover, the model gives us some insight into the origins 
of quantized energy levels in conjugated systems and predicts, for example, 
that the separation between adjacent energy levels decreases as the number of 
carbon atoms in the conjugated chain increases. In other words, the wave-
length of the light absorbed by conjugated polyenes increases as the chain 
length increases. We shall develop better models in Chapter 10.

Fig. 9.20 A particle incident on 
a barrier from the left  has an 
oscillating wavefunction, but 
inside the barrier there are no 
oscillations (for E < V). If the 
barrier is not too thick, the 
wavefunction is nonzero at its 
opposite face, and so oscillation 
begins again there.

(b) Tunneling

We now need to consider the case in which the potential energy of a particle does 
not rise to infi nity when it is in the walls of the container and E < V. If the walls are 
thin (so that the potential energy falls to zero again aft er a fi nite distance, as for a 
biological membrane) and the particle is very light (as for an electron or a pro-
ton), the wavefunction oscillates inside the box (eqn 9.7), varies smoothly inside 
the region representing the wall, and oscillates again on the other side of the wall 
outside the box (Fig. 9.20). Hence, the particle might be found on the outside of a 
container even though according to classical mechanics it has insuffi  cient energy 
to escape. Such leakage by penetration through classically forbidden zones is 
called tunneling. Tunneling is a consequence of the wave character of matter. 
So, just as radio waves pass through walls and X-rays penetrate soft  tissue, so 
can ‘matter waves’ tunnel through thin walls.

Th e Schrödinger equation can be used to determine the probability of tunnel-
ing, the transmission probability, T, of a particle incident on a fi nite barrier. 
When the barrier is high (in the sense that V/E >> 1) and wide (in the sense that 
the wavefunction loses much of its amplitude inside the barrier), we may write5

T ≈ 16ε(1 − ε)e−2kL k = {2m(V − E)}1/2

ħ
 

Transmission probability 
for a high and wide 
one-dimensional barrier

 (9.11)

where ε = E/V and L is the thickness of the barrier. Th e transmission probability 
decreases exponentially with L and with m1/2. It follows that particles of low mass 
are more able to tunnel through barriers than heavy ones (Fig. 9.21). Hence, tun-
neling is very important for electrons, moderately important for protons, and 
negligible for most other heavier particles.

Th e very rapid equilibration of proton transfer reactions (Chapter 4) is also a 
manifestation of the ability of protons to tunnel through barriers and transfer 
quickly from an acid to a base. Tunneling of protons between acidic and basic 
groups is also an important feature of the mechanism of some enzyme-catalyzed 
reactions. Th e process may be visualized as a proton passing through an activation 
barrier rather than having to acquire enough energy to travel over it (Fig. 9.22). 
Quantum mechanical tunneling can be the dominant process in reactions 

Fig. 9.21 Th e wavefunction of 
a heavy particle decays more 
rapidly inside a barrier than that 
of a light particle. Consequently, 
a light particle has a greater 
probability of tunneling through 
the barrier. 5 For details of the calculation, see our Physical chemistry (2010).
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involving hydrogen atom or proton transfer when the temperature is so low that 
very few reactant molecules can overcome the activation energy barrier. One 
indication that a proton transfer is taking place by tunneling is that an Arrhenius 
plot (Section 6.6) deviates from a straight line at low temperatures and the rate is 
higher than would be expected by extrapolation from room temperature.

Equation 9.11 implies that the rates of electron transfer processes should 
decrease exponentially with distance between the electron donor and acceptor. 
Th is prediction is supported by the experimental evidence that we discussed in 
Section 8.11, where we showed that, when the temperature and Gibbs energy of 
activation are held constant, the rate constant ket of electron transfer is propor-
tional to e−br, where r is the edge-to-edge distance between electron donor and 
acceptor and b is a constant with a value that depends on the medium through 
which the electron must travel from donor to acceptor. It follows that tunneling 
is an essential mechanistic feature of the electron transfer processes between 
proteins, such as those associated with oxidative phosphorylation.

Fig. 9.23 A scanning tunneling 
microscope makes use of the 
current of electrons that tunnel 
between the surface and the tip 
of the stylus. Th at current is very 
sensitive to the height of the tip 
above the surface.

Fig. 9.22 A proton can tunnel 
through the activation energy 
barrier that separates reactants 
from products, so the eff ective 
height of the barrier is reduced 
and the rate of the proton transfer 
reaction increases. Th e eff ect 
is represented by drawing the 
wavefunction of the proton near 
the barrier. Proton tunneling 
is important only at low 
temperatures, when most 
of the reactants are trapped 
on the left  of the barrier.

In the laboratory 9.2 Scanning probe microscopy

Like electron microscopy, scanning probe microscopy (SPM) also opens a 
window into the world of nanometer-sized specimens and, in some cases, pro-
vides details at the atomic level. One version of SPM is scanning tunneling 
microscopy (STM), in which a platinum–rhodium or tungsten needle is 
scanned across the surface of a conducting solid. When the tip of the needle 
is brought very close to the surface, electrons tunnel across the intervening 
space (Fig. 9.23).

In the constant-current mode of operation, the stylus moves up and down cor-
responding to the form of the surface, and the topography of the surface, 
including any adsorbates, can be mapped on an atomic scale. Th e vertical 
motion of the stylus is achieved by fi xing it to a piezoelectric cylinder, which 
contracts or expands according to the potential diff erence it experiences. In 
the constant-z mode, the vertical position of the stylus is held constant and the 
current is monitored. Because the tunneling probability is very sensitive to 
the size of the gap (remember the exponential dependence of T on L), the 
microscope can detect tiny, atom-scale variations in the height of the surface 
(Fig. 9.24). It is diffi  cult to observe individual atoms in large molecules, such 
as biopolymers. However, Fig. 9.25 shows that STM can reveal some details 
of the double helical structure of a DNA molecule on a surface.

In atomic force microscopy (AFM), a sharpened tip attached to a cantilever is 
scanned across the surface. Th e force exerted by the surface and any molecules 
attached to it pushes or pulls on the tip and defl ects the cantilever (Fig. 9.26). 
Th e defl ection is monitored by using a laser beam. Because no current needs 
to pass between the sample and the probe, the technique can be applied to 
nonconducting surfaces and to liquid samples.

Two modes of operation of AFM are common. In contact mode, or constant-
force mode, the force between the tip and surface is held constant and the tip 
makes contact with the surface. Th is mode of operation can damage fragile 
samples on the surface. In noncontact, or tapping, mode, the tip bounces up 
and down with a specifi ed frequency and never quite touches the surface. Th e 
amplitude of the tip’s oscillation changes when it passes over a species adsorbed 
on the surface.
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Figure 9.27 demonstrates the power of AFM, which shows bacterial DNA 
plasmids on a solid surface. Th e technique also can visualize in real time 
processes occurring on the surface, such as the enzymatic degradation of 
DNA, and conformational changes in proteins. Th e tip may also be used to 
cleave biopolymers, achieving mechanically on a surface what enzymes do in 
solution or in organisms.

(c) Motion in two dimensions

Now that we have described motion in one dimension, it is a simple matter to step 
into higher dimensions. Th e arrangement we consider is like a particle confi ned 
to a rectangular box of side LX in the x-direction and LY in the y-direction 
(Fig. 9.28). Th e wavefunction varies across the fl oor of the box, so it is a function 
of the variables x and y, written as y(x,y). We show in Further information 9.2 
that, according to the separation of variables procedure, the wavefunction can 
be expressed as a product of wavefunctions for each direction

y(x,y) = X(x)Y(y) (9.12)

with each wavefunction satisfying a Schrödinger equation like that in eqn 9.4. 
Th e solutions are

ynX,nY
(x,y) = XnX

(x)YnY
(y) 

 = AC
4

LXLY

D
F

1/2

 sin AC
nXpx

LX

D
F  sin AC

nYpy
LY

D
F   

Wavefunctions of 
a particle in a two-
dimensional box

 (9.13a)

Figure 9.29 shows some examples of these wavefunctions. Th e energies are

EnX,nY
 = EnX

 + EnY
 = nX

2h2

8mLX
2
 + nY

2h2

8mLY
2
  

 = AC
nX

2

LX
2
 + nY

2

LY
2

D
F  h2

8m
  Energies of a particle in 

a two-dimensional box
 (9.13b)

Fig. 9.27 An atomic force 
microscopy image of bacterial 
DNA plasmids on a mica surface. 
(Courtesy of Veeco Instruments.)

Fig. 9.25 Image of a DNA molecule obtained 
by scanning tunneling microscopy, showing 
some features that are consistent with the 
double helical structure discussed in 
Fundamentals and Chapter 11. (Courtesy 
of J. Baldeschwieler, CIT.)

Fig. 9.28 A two-dimensional 
square well. Th e particle is 
confi ned to a rectangular plane 
bounded by impenetrable walls. 
As soon as the particle touches a 
wall, its potential energy rises to 
infi nity.

Fig. 9.26 In atomic force microscopy, 
a laser beam is used to monitor the tiny 
changes in position of a probe as it is 
attracted to or repelled by atoms on a 
surface.

Fig. 9.24 An STM image of cesium 
atoms on a gallium arsenide 
surface.
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Th ere are two quantum numbers, nX and nY, each allowed the values 1, 2, . . . 
independently.

An especially interesting case arises when the region is a square, with 
LX = LY = L. Th e allowed energies are then

EnX,nY
 = (nX

2 + nY
2) h2

8mL2
 (9.14)

Th is result shows that two diff erent wavefunctions may correspond to the same 
energy. For example, the wavefunctions with nX = 1, nY = 2 and nX = 2, nY = 1 are 
diff erent

y1,2(x,y) = 2
L

 sin AC
px
L

D
F  sin AC

2py
L

D
F

y2,1(x,y) = 2
L

 sin AC
2px

L
D
F  sin AC

py
L

D
F  (9.15)

but both have the energy 5h2/8mL2. Diff erent states with the same energy are said 
to be degenerate. Degeneracy occurs commonly in atoms, and is a feature that 
underlies the structure of the periodic table.

Th e separation of variables procedure is very important because it tells us that 
energies of independent systems are additive and that their wavefunctions are 
products of simpler component wavefunctions. We shall encounter it several 
times in later chapters.

9.5 Rotation
Rotational motion is the starting point for our discussion of the atom, in which 
electrons are free to circulate around a nucleus.

To describe rotational motion we need to focus on the angular momentum, J, a 
vector with a length proportional to the rate of circulation and a direction that 
indicates the axis of rotation (Fig. 9.30). Th e magnitude of the angular momen-
tum of a particle that is traveling on a circular path of radius r is defi ned as

J = pr Magnitude of the angular momentum 
of a particle moving on a circular path

 (9.16)

where p is the magnitude of its linear momentum (p = mv) at any instant. A par-
ticle that is traveling at high speed in a circle has a higher angular momentum 
than a particle of the same mass traveling more slowly. An object with a high 
angular momentum (such as a fl ywheel) requires a strong braking force (more 
precisely, a strong torque) to bring it to a standstill.

(a) A particle on a ring

Consider a particle of mass m moving in a horizontal circular path of radius r. Th e 
energy of the particle is entirely kinetic because the potential energy is constant 
and can be set equal to zero everywhere. We can therefore write E = p2/2m. By 
using eqn 9.16, we can express this energy in terms of the angular momentum as

E = J z
2

2mr 2
 Kinetic energy of a particle 

moving on a circular path
 (9.17)

where Jz is the angular momentum for rotation around the z-axis (the axis per-
pendicular to the plane). Th e quantity mr2 is the moment of inertia of the particle 

Fig. 9.29 Th ree wavefunctions of a 
particle confi ned to a rectangular 
surface.

Fig. 9.30 Th e angular momentum 
of a particle of mass m on a 
circular path of radius r in the 
xy-plane is represented by a 
vector J perpendicular to the 
plane and of magnitude pr.
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about the z-axis and denoted I: a heavy particle in a path of large radius has a large 
moment of inertia (Fig. 9.31). It follows that the energy of the particle is

E = J z
2

2I
 Kinetic energy of a particle on a ring 

in terms of the moment of inertia
 (9.18)

Now we use the de Broglie relation to see that the energy of rotation is quantized. 
To do so, we express the angular momentum in terms of the wavelength of the 
particle:

Jz = pr = hr
l  

The angular momentum in terms 
of the de Broglie wavelength

 (9.19)

Suppose for the moment that l can take an arbitrary value. In that case, the 
amplitude of the wavefunction depends on the angle f as shown in Fig. 9.32. 
When the angle increases beyond 2p (that is, 360°), the wavefunction continues 
to change. For an arbitrary wavelength it gives rise to a diff erent value at each 
point and the interference between the waves on successive circuits cancels the 
wave on its previous circuit. Th us, this arbitrarily selected wave cannot survive in 
the system. An acceptable solution is obtained only if the wavefunction repro-
duces itself on successive circuits: y(f + 2p) = y(f). We say that the wavefunction 
must satisfy cyclic boundary conditions. It follows that acceptable wavefunctions 
have wavelengths that are given by the expression

l = 2pr
n

  n = 0, 1, . . . (9.20)

where the value n = 0, which gives an infi nite wavelength, corresponds to a uni-
form amplitude. It follows that the permitted energies are

En = (hr/l)2

2I
 = (nh/2p)2

2I
 = n

2ħ2

2I
 (9.21)

with n = 0, ±1, ±2, . . . .
It is conventional in the discussion of rotational motion to denote the quantum 

number by ml in place of n. Th erefore, the fi nal expression for the energy levels is

Eml
 = ml

2ħ2

2I
  ml = 0, ±1, . . . Quantized energies 

of a particle on a ring
 (9.22)

Th ese energy levels are drawn in Fig. 9.33. Th e occurrence of ml
2  in the expres-

sion for the energy means that two states of motion, such as those with ml = +1 

Fig. 9.31 A particle traveling on 
a circular path has a moment 
of inertia I that is given by mr2. 
(a) Th is heavy particle has a 
large moment of inertia about 
the central point; (b) this light 
particle is traveling on a path 
of the same radius, but it has a 
smaller moment of inertia. Th e 
moment of inertia plays a role in 
circular motion that is the analog 
of the mass for linear motion: 
a particle with a high moment 
of inertia is diffi  cult to accelerate 
into a given state of rotation and 
requires a strong braking force 
to stop its rotation.

  Mathematical toolkit 9.1 Vectors

A vector quantity has both magnitude and direction. 
Th e vector V shown in the fi gure has components on 
the x-, y-, and z-axes with magnitudes vx, vy, and vz, 
respectively. Th e direction of each of the components 
is denoted with a plus sign or minus sign. For example, 
if vx = −1.0, the x-component of the vector V has a 
magnitude of 1.0 and points in the −x direction. Th e 
magnitude of the vector is denoted v or | V | and is 
given by

v = (vx
2 + vy

2 + vz
2)1/2 

Operations involving vectors are not as straightforward 
as those involving numbers. We describe the opera-
tions we need for this text in Mathematical toolkit 11.1.
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and ml = −1, both correspond to the same energy. Th is degeneracy arises from the 
fact that the direction of rotation, represented by positive and negative values of 
ml, does not aff ect the energy of the particle. All the states with | ml | > 0 are doubly 
degenerate because two states correspond to the same energy for each value of 
| ml |. Th e state with ml = 0, the lowest energy state of the particle, is nondegener-
ate, meaning that only one state has a particular energy (in this case, zero).

An important additional conclusion is that the angular momentum of a particle 
is quantized. We can use the relation between angular momentum and linear 
momentum (angular momentum J = pr), and between linear momentum and the 
allowed wavelengths of the particle (l = 2pr/ml), to conclude that the angular 
momentum of a particle around the z-axis is confi ned to the values

Jz = pr = hr
l

 = hr
2pr/ml

 = ml × h
2p

 (9.23)

Th at is, the angular momentum of the particle around the axis is confi ned to 
the values

Jz = mlħ z-component of the angular 
momentum of a particle on a ring

 (9.24)

with ml = 0, ±1, ±2, . . . . Positive values of ml correspond to clockwise rotation (as 
seen from below) and negative values correspond to counterclockwise rotation 
(Fig. 9.34). Th e quantized motion can be thought of in terms of the rotation of a 
bicycle wheel that can rotate only with a discrete series of angular momenta, so 
that as the wheel is accelerated, the angular momentum jerks from the values 0 
(when the wheel is stationary) to ħ, 2ħ, . . . but can have no intermediate value.

Fig. 9.32 Two solutions of the 
Schrödinger equation for a particle on 
a ring. Th e circumference has been 
opened out into a straight line; the 
points at f = 0 and 2p are identical. 
Th e solution labeled (a) is unacceptable 
because it has diff erent values aft er each 
circuit and so interferes destructively 
with itself. Th e solution labeled (b) is 
acceptable because it reproduces itself 
on successive circuits.

Fig. 9.33 Th e energy levels of a particle 
that can move on a circular path. 
Classical physics allowed the particle 
to travel with any energy; quantum 
mechanics, however, allows only 
discrete energies. Each energy level, 
other than the one with ml = 0, is 
doubly degenerate because the particle 
may rotate either clockwise or 
counterclockwise with the same energy.

Fig. 9.34 Th e signifi cance 
of the sign of ml. When ml < 0, 
the particle travels in a 
counterclockwise direction as 
viewed from below; when ml > 0, 
the motion is clockwise.
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A fi nal point concerning the rotational motion of a particle is that it does 
not have a zero-point energy: ml may take the value 0, so E may be zero. Th is con-
clusion is also consistent with the uncertainty principle. Although the particle 
is certainly between the angles 0 and 360° on the ring, that range is equivalent to 
not knowing anything about where it is on the ring. Consequently, the angular 
momentum may be specifi ed exactly, and a value of zero is possible. When 
the angular momentum is zero precisely, the energy of the particle is also zero 
precisely.

Fig. 9.35 Th e wavefunction of a 
particle on the surface of a sphere 
must satisfy two cyclic boundary 
conditions. Th e wavefunction 
must reproduce itself aft er the 
angles f and q are swept by 360° 
(or 2p radians). Th is requirement 
leads to two quantum numbers 
for its state of angular 
momentum.

Case study 9.2 The electronic structure of phenylalanine

Just as the particle in a box gives us some understanding of the distribution 
and energies of p electrons in linear conjugated systems, the particle on a ring 
is a useful model for the distribution of p electrons around a cyclic conjugated 
system.

Consider the p electrons of the phenyl group of the amino acid phenylalanine 
(Atlas A14). We may treat the group as a circular ring of radius 140 pm, with 
six electrons in the conjugated system moving along the perimeter of the ring. 
As in Case study 9.1, we assume that only one electron per carbon atom is 
allowed to move freely around the ring and that in the ground state of the 
molecule each level is occupied by two electrons. Th erefore, only the ml = 0, +1, 
and −1 levels are occupied (with the last two states being degenerate). From 
eqn 9.22, the energy separation between the ml = ±1 and the ml = ±2 levels is

DE = E±2 − E±1 = (4 − 1) (1.054 × 10−34 J s)2

2 × (9.109 × 10−31 kg) × (1.40 × 10−10 m)2

 = 9.33 × 10−19 J

Th is energy separation corresponds to an absorption frequency of 1409 THz 
and a wavelength of 213 nm; the experimental value for a transition of this 
kind is 260 nm.

Even though the model is primitive, it gives insight into the origin of the 
quantized p-electron energy levels in cyclic conjugated systems, such as the 
aromatic side chains of phenylalanine, tryptophan, and tyrosine, the purine 
and pyrimidine bases in nucleic acids, the heme group, and the chlorophylls.

(b) A particle on a sphere

We now consider a particle of mass m free to move around a central point at a 
constant radius r. Th at is, it is free to travel anywhere on the surface of a sphere of 
radius r. To calculate the energy of the particle, we let—as we did for motion on a 
ring—the potential energy be zero wherever it is free to travel. Furthermore, when 
we take into account the requirement that the wavefunction should match as a 
path is traced over the poles as well as around the equator of the sphere surround-
ing the central point, we defi ne two cyclic boundary conditions (Fig. 9.35). 
Solution of the Schrödinger equation leads to the following expression for the 
permitted energies of the particle:

E = l(l + 1) ħ
2

2I
  l = 0, 1, 2, . . . Quantized energies of 

a particle on a sphere
 (9.25)
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As before, the energy of the rotating particle is related classically to its angular 
momentum J by E = J 2/2I. Th erefore, by comparing E = J 2/2I with eqn 9.25, we 
can deduce that because the energy is quantized, the magnitude of the angular 
momentum is also confi ned to the values

J = {l(l + 1)}1/2ħ  l = 0, 1, 2 . . . 
Magnitude of the 
angular momentum of 
a particle on a sphere

 (9.26)

where l is the orbital angular momentum quantum number. For motion in three 
dimensions, the vector J has components Jx, Jy, and Jz along the x-, y-, and z-axes, 
respectively (Fig. 9.36). We have already seen (in the context of rotation in a plane) 
that the angular momentum about the z-axis is quantized and that it has the 
values Jz = mlħ. However, it is a consequence of there being two cyclic boundary 
conditions that the values of ml are restricted, so the z-component of the angular 
momentum is given by

Jz = mlħ  ml = l, l − 1, . . . , −l 
Magnitude of the z-component
of the angular momentum of 
a particle on a sphere

 (9.27)

and ml is now called the magnetic quantum number. We note that for a given 
value of l there are 2l + 1 permitted values of ml. Th erefore, because the energy is 
independent of ml (because ml does not appear in the expression for the energy, 
eqn 9.25) a level with quantum number l is (2l + 1)-fold degenerate.

9.6 Vibration
The atoms in a molecule vibrate about their equilibrium positions, and the following 
description of molecular vibrations sets the stage for a discussion of vibrational 
spectroscopy (Chapter 12), an important experimental technique for the structural 
characterization of biological molecules.

Th e simplest model that describes molecular vibrations is the harmonic oscilla-
tor, in which a particle is restrained by a spring that obeys Hooke’s law of force, 
that the restoring force is proportional to the displacement, x:

restoring force = −kfx Hooke’s law  (9.28a)

Th e constant of proportionality kf is called the force constant: a stiff  spring has 
a high force constant and a weak spring has a low force constant. We show in the 
following Justifi cation that the potential energy of a particle subjected to this force 
increases as the square of the displacement, and specifi cally

V(x) = 12 kfx2 Potential energy of a 
harmonic oscillator

 (9.28b)

Th e variation of V with x is shown in Fig. 9.37: it has the shape of a parabola 
(a curve of the form y = ax2), and we say that a particle undergoing harmonic 
motion has a ‘parabolic potential energy’.

Fig. 9.36 For motion in three 
dimensions, the angular 
momentum vector J has 
components Jx, Jy, and Jz on the 
x-, y-, and z-axes, respectively.

Fig. 9.37 Th e parabolic potential 
energy characteristic of a 
harmonic oscillator. Positive 
displacements correspond to 
extension of the spring; negative 
displacements correspond to 
compression of the spring.

Justification 9.2 Potential energy of a harmonic oscillator

Force is the negative slope of the potential energy: F = −dV/dx. Because the 
infi nitesimal quantities may be treated as any other quantity in algebraic 
manipulations, we rearrange the expression into dV = −Fdx and then integrate 
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both sides from x = 0, where the potential energy is V(0), to x, where the poten-
tial energy is V(x):

V(x) − V(0) = −�
x

0

F dx

Now substitute F = −kfx:

V(x) − V(0) = −�
x

0

(−kfx)dx = kf�
x

0

x dx = 12 kfx2

We are free to choose V(0) = 0, which then gives eqn 9.28b.

Fig. 9.38 Th e array of energy levels 
of a harmonic oscillator. Th e 
separation depends on the mass 
and the force constant. Note the 
zero-point energy.

Unlike the earlier cases we considered, the potential energy varies with posi-
tion, so we have to use V(x) in the Schrödinger equation and solve it using the 
techniques for solving diff erential equations. Th en we have to select the solutions 
that satisfy the boundary conditions, which in this case means that they must fi t 
into the parabola representing the potential energy. More precisely, the wavefunc-
tions must all go to zero for large displacements from x = 0: they do not have to go 
abruptly to zero at the edges of the parabola.

Th e solutions of the Schrödinger equation for a harmonic oscillator are quite 
hard to fi nd, but once found, they turn out to be very simple. For instance, the 
energies of the solutions that satisfy the boundary conditions are

Ev = (v + 12)hn v = 0, 1, 2 . . . n = 1
2π

 AC
kf

m
D
F

1/2

 
Quantized energies 
of a harmonic 
oscillator

 (9.29)

where m is the mass of the particle and v is the vibrational quantum number.6 
Th ese energies form a uniform ladder of values separated by hn (Fig. 9.38). Th e 
separation is large for stiff  springs and low masses.

Figure 9.39 shows the shapes of the fi rst few wavefunctions of a harmonic oscil-
lator. Th e ground-state wavefunction (corresponding to v = 0 and having the 
zero-point energy 12 hn) is a bell-shaped curve, a curve of the form e−x2 (a Gaussian 
function; see Mathematical toolkit F.2), with no nodes. Th is shape shows that the 
particle is most likely to be found at x = 0 (zero displacement) but may be found at 
greater displacements with decreasing probability. Th e fi rst excited wavefunction 
has a node at x = 0 and peaks on either side. Th erefore, in this state, the particle 
will be found most probably with the ‘spring’ stretched or compressed to the same 
amount. In all the states of a harmonic oscillator the wavefunctions extend beyond 
the limits of motion of a classical oscillator (Fig. 9.40), but the extent decreases as 
v increases. Th is penetration into classically forbidden regions is another example 
of quantum mechanical tunneling, in this case tunneling into rather than through 
a barrier.

Case study 9.3 The vibration of the N–H bond of the peptide link

Atoms vibrate relative to one another in molecules with the bond acting like 
a spring. Th erefore, eqn 9.29 describes the allowed vibrational energy levels 
of molecules. Here we consider the vibration of the N–H bond of the peptide 
link (1), making the approximation that the relatively heavy C, N, and O atoms 

6 Be very careful to distinguish the quantum number v (italic vee) from the frequency n (Greek nu).
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form a stationary anchor for the very light H atom. Th at is, only the H atom 
moves, vibrating as a simple harmonic oscillator.

Because the force constant for an N–H bond can be set equal to 700 N m−1 and 
the mass of the 1H atom is mH = 1.67 × 10−27 kg, we write

n = 1
2π

 AC
kf

m
D
F

1/2

 = 1
2π

 AC
700 N m−1

1.67 × 10−27 kg
D
F

1/2

 = 1.03 × 1014 Hz

or 103 THz. Th erefore, we expect that radiation with a frequency of 103 THz, 
in the infrared range of the spectrum, induces a spectroscopic transition 
between v = 0 and the v = 1 levels of the oscillator. We shall see in Chapter 12 
that the concepts just described represent the starting point for the interpreta-
tion of vibrational (infrared) spectroscopy, an important technique for the 
characterization of biopolymers both in solution and inside biological cells.
 

Fig. 9.39  (a) Th e wavefunctions and (b) the probability densities of the fi rst three states 
of a harmonic oscillator. Note how the probability of fi nding the oscillator at large 
displacements increases as the state of excitation increases. Th e wavefunctions and 
displacements are expressed in terms of the parameter a = (ħ2/mkf)1/4.

Fig. 9.40 A schematic illustration 
of the probability density for 
fi nding a harmonic oscillator at a 
given displacement. Classically, 
the oscillator cannot be found at 
displacements at which its total 
energy is less than its potential 
energy (because the kinetic 
energy cannot be negative). 
A quantum oscillator, however, 
can tunnel into regions that are 
classically forbidden.

A note on good practice 
To calculate the vibrational 
frequency precisely, we need 
to specify the nuclide. Also, 
the mass to use is the actual 
atomic mass in kilograms, 
not the element’s molar mass. 
In Section 12.3 we explain 
how to take into account the 
motion of both atoms in a 
bond by introducing the 
‘eff ective mass’ of an oscillator.

 

Hydrogenic atoms

Quantum theory provides the foundation for the description of atomic structure. 
A hydrogenic atom is a one-electron atom or ion of general atomic number Z. 
Hydrogenic atoms include H, He+, Li2+, C5+, and even U91+. A many-electron atom 
is an atom or ion that has more than one electron. Many-electron atoms include 
all neutral atoms other than H. For instance, helium, with its two electrons, is 
a many-electron atom in this sense. Hydrogenic atoms, and H in particular, 
are important because the Schrödinger equation can be solved for them and 
their structures can be discussed exactly. Furthermore, the concepts learned 
from a study of hydrogenic atoms can be used to describe the structures of many-
electron atoms and of molecules too.
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Much of the material in the remainder of this chapter is a review of intro-
ductory chemistry. However, we provide some detail not commonly covered in 
introductory chemistry, with the goal of showing how core concepts of quantum 
mechanics can be applied to atoms. Th e material also sets the stage for the dis-
cussion of molecules in Chapter 10.

9.7 The permitted energy levels of hydrogenic atoms
Hydrogenic atoms provide the starting point for the discussion of many-electron 
atoms and hence of the properties of all atoms and their abilities to form bonds 
and hence aggregate into molecules.

Th e quantum mechanical description of the structure of a hydrogenic atom is 
based on Rutherford’s nuclear model, in which the atom is pictured as consisting 
of an electron outside a central nucleus of charge +Ze, where Z is the atomic num-
ber. To derive the details of the structure of this type of atom, we have to set up 
and solve the Schrödinger equation in which the potential energy, V, is the 
Coulombic potential energy (Fundamentals F.3 and eqn F.13) for the interaction 
between the nucleus of charge Q1 = +Ze and the electron of charge Q2 = −e:

V = − 
Ze2

4pε0r
 (9.30)

where ε0 = 8.854 × 10−12 C2 J−1 m−1 is the vacuum permittivity. We also need to 
identify the appropriate boundary conditions that the wavefunctions must satisfy 
in order to be acceptable. For a hydrogenic atom, these conditions are that the 
wavefunction must not become infi nite anywhere and that it must repeat itself 
(just like the particle on a sphere) as we circle the nucleus either over the poles or 
around the equator.

With a lot of work, the Schrödinger equation with this potential energy and 
these boundary conditions can be solved, and we shall summarize the results. As 
usual, the need to satisfy boundary conditions leads to the conclusion that the 
electron can have only certain energies. Schrödinger himself found that for a 
hydrogenic atom of atomic number Z with a nucleus of mass mN, the allowed 
energy levels are given by the expression

En = −hcR  Z
2

n2
 hcR  = me4

32p2ε0
2ħ2

 m = memN

me + mN
 Energy levels of a 

hydrogenic atom
 (9.31)

and n = 1, 2, . . . . Th e quantity R , the Rydberg constant, has the dimensions of a 
wavenumber and is commonly reported in units of reciprocal centimeters (cm−1). 
Th e quantity m is the reduced mass. For all except the most precise consider-
ations, the mass of the nucleus is so much bigger than the mass of the electron that 
the latter may be neglected in the denominator of m, and then m ≈ me.

Let’s unpack the signifi cance of eqn 9.31:

1. Th e quantum number n is called the principal quantum number. It gives 
the energy of the electron in the atom by substituting its value into 
eqn 9.31.

Th e resulting energy levels are depicted in Fig. 9.41. Note how they are widely 
separated at low values of n but then converge as n increases. At low values of n 
the electron is confi ned close to the nucleus by the pull between opposite charges 
and the energy levels are widely spaced like those of a particle in a narrow box. 
At high values of n, when the electron has such a high energy that it can travel out 

Fig. 9.41 Th e energy levels of the 
hydrogen atom. Th e energies 
are relative to a proton and an 
infi nitely distant, stationary 
electron.
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to large distances, the energy levels are close together, like those of a particle in 
a large box.

2. All the energies are negative, which signifi es that an electron in an atom has 
a lower energy than when it is free.

Th e zero of energy (which occurs at n = ∞) corresponds to the infi nitely widely 
separated (so that the Coulomb potential energy is zero) and stationary (so that 
the kinetic energy is zero) electron and nucleus. Th e state of lowest, most negative 
energy, the ground state of the atom, is the one with n = 1 (the lowest permitted 
value of n and hence the most negative value of the energy). Th e energy of this 
state is

E1 = −hcRZ 2

Th e negative sign means that the ground state lies at hcR Z 2 below the energy of 
the infi nitely separated stationary electron and nucleus.

Th e minimum energy needed to remove an electron completely from an atom 
is called the ionization energy, I. For a hydrogen atom, the ionization energy 
is the energy required to raise the electron from the ground state with energy 
E1 = −hcR to the state corresponding to complete removal of the electron (the 
state with n = ∞ and zero energy). Th erefore, the energy that must be supplied 
is (using m ≈ me)

IH = mee4

32p2ε0
2ħ2

 = 2.179 × 10−18 J

or 2.179 aJ (1 aJ = 10−18 J). Th is energy corresponds to 13.60 eV and (aft er multi-
plication by NA, Avogadro’s constant) to 1312 kJ mol−1.

3. Th e energy of a given level, and therefore the separation of neighboring lev-
els, is proportional to Z 2.

Th is dependence on Z 2 stems from two eff ects. First, an electron at a given dis-
tance from a nucleus of charge +Ze has a potential energy that is Z times larger 
than that of an electron at the same distance from a proton (for which Z = 1). 
However, the electron is drawn into the vicinity of the nucleus by the greater 
nuclear charge, so it is more likely to be found closer to the nucleus of charge Z 
than the proton. Th is eff ect is also proportional to Z, so overall the energy of an 
electron can be expected to be proportional to the square of Z, one factor of Z 
representing the Z times greater strength of the nuclear fi eld and the second fac-
tor of Z representing the fact that the electron is Z times more likely to be found 
closer to the nucleus.

Self-test 9.4 Predict the ionization energy of He+ given that the ionization 
energy of H is 13.60 eV. Hint: Decide how the energy of the ground state varies 
with Z.

Answer: IHe+ = 4IH = 54.40 eV

9.8 Atomic orbitals
The properties of elements and the formation of chemical bonds are consequences 
of the shapes and energies of the wavefunctions that describe the distribution of 
electrons in atoms. We need information about the shapes of these wavefunctions 
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to understand why compounds of carbon adopt the conformations that are 
responsible for the unique biological functions of such molecules as proteins, 
nucleic acids, and lipids.

Th e wavefunction of the electron in a hydrogenic atom is called an atomic orbital. 
Th e name is intended to express something less defi nite than the ‘orbit’ of classical 
mechanics. An electron that is described by a particular wavefunction is said 
to ‘occupy’ that orbital. So, in the ground state of the atom, the electron occupies 
the orbital of lowest energy (that with n = 1).

(a) Shells and subshells

We have remarked that there are three boundary conditions on the orbitals: 
that the wavefunctions must not become infi nite, that they must match as they 
encircle the equator, and that they must match as they encircle the poles. Each 
boundary condition gives rise to a quantum number, so each orbital is specifi ed 
by three quantum numbers that act as a kind of ‘address’ of the electron in the 
atom. We can suspect that the values allowed to the three quantum numbers are 
linked because, for instance, to get the right shape on a polar journey, we also have 
to note how the wavefunction changes shape as it wraps around the equator.

Th e quantum numbers are:

• Th e principal quantum number n, which determines the energy of the 
orbital through eqn 9.31 and has values

n  = 1, 2, . . . (without limit) Principal quantum number

• Th e orbital angular momentum quantum number l,7 which is restricted to 
the values

l = 0, 1, 2, . . . , n − 1 Orbital angular momentum 
quantum number

 For a given value of n, there are n allowed values of l: all the values are positive 
(for example, if n = 3, then l may be 0, 1, or 2).

• Th e magnetic quantum number, ml, which is confi ned to the values

ml = l, l − 1, l − 2, . . . . −l Magnetic quantum number

 For a given value of l, there are 2l + 1 values of ml (for example, when l = 3, ml 
may have any of the seven values +3, +2, +1, 0, −1, −2, −3).

It follows from the restrictions on the values of the quantum numbers that 
there is only one orbital with n = 1, because when n = 1 the only value that l can 
have is 0, and that in turn implies that ml can have only the value 0. Likewise, there 
are four orbitals with n = 2, because l can take the values 0 and 1, and in the latter 
case ml can have the three values +1, 0, and −1. In general, there are n2 orbitals 
with a given value of n.

Because the energy of a hydrogenic atom depends only on the principal quan-
tum number n, orbitals of the same value of n but diff erent values of l and ml have 
the same energy. It follows that all orbitals with the same value of n are degenerate. 
But be careful: this statement applies only to hydrogenic atoms. A second point is 
that the average distance of an electron from the nucleus of a hydrogenic atom of 
atomic number Z increases as n increases. As Z increases, the average distance is 
reduced because the increasing nuclear charge draws the electron closer in.

A note on good practice 
Always give the sign of ml, 
even when it is positive. So, 
write ml = +1, not ml = 1.

  

7 Th is quantum number is also called by its older name, the azimuthal quantum number.
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Th e degeneracy of all orbitals with the same value of n (remember that there 
are n2 of them) and their similar mean radii is the basis of saying that they all 
belong to the same shell of the atom. It is common to refer to successive shells by 
letters:

n 1 2 3 4 . . .
 K L M N . . .

Th us, all four orbitals of the shell with n = 2 form the L shell of the atom.
Orbitals with the same value of n but diff erent values of l belong to diff erent 

subshells of a given shell. Th ese subshells are denoted by the letters s, p, . . . using 
the following correspondence:

l 0 1 2 3 . . .
 s p d f . . .

For the shell with n = 1, there is only one subshell, the one with l = 0. For the shell 
with n = 2 (which allows l = 0, 1), there are two subshells, namely the 2s subshell 
(with l = 0) and the 2p subshell (with l = 1). Th e general pattern of the fi rst three 
shells and their subshells is shown in Fig. 9.42. In a hydrogenic atom, all the sub-
shells of a given shell correspond to the same energy (because, as we have seen, 
the energy depends on n and not on l).

We have seen that if the orbital angular momentum quantum number is l, then 
ml can take the 2l + 1 values ml = 0, ±1, . . . , ±l. Th erefore, each subshell contains 
2l + 1 individual orbitals (corresponding to the 2l + 1 values of ml for each value 
of l). It follows that in any given subshell, the number of orbitals is

 s p d f . . .
 1 3 5 7 . . .

An orbital with l = 0 (and necessarily ml = 0) is called an s orbital. A p subshell 
(l = 1) consists of three p orbitals (corresponding to ml = +1, 0, −1). An electron 
that occupies an s orbital is called an s electron. Similarly, we can speak of 
p, d, . . . electrons according to the orbitals they occupy.

Self-test 9.5 How many orbitals are there in a shell with n = 5 and what is 
their designation?

Answer: 25; one s, three p, fi ve d, seven f, nine g

Fig. 9.42 Th e structures of atoms 
are described in terms of shells of 
electrons that are labeled by the 
principal quantum number n and 
a series of n subshells of these 
shells, with each subshell of 
a shell being labeled by the 
quantum number l. Each subshell 
consists of 2l + 1 orbitals.

(b) The shapes of s orbitals

We saw in Section 9.4c that in certain cases a wavefunction can be separated into 
factors that depend on diff erent coordinates and that the Schrödinger equation 
separates into simpler versions for each variable. Application of this separation 
of variables procedure to the hydrogen atom leads to a Schrödinger equation 
that separates into one equation for the electron moving around the nucleus (the 
analog of the particle on a sphere) and an equation for the radial dependence. 
Th e wavefunction is written as

yn,l,m1
(r,q,f) = Yl,ml

(q,f)Rn,l(r) Wavefunctions of 
hydrogenic atoms

 (9.32)

Th e factor R(r) is a function of the distance r from the nucleus and is known 
as the radial wavefunction. Its form depends on the values of n and l but is 
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independent of ml: that is, all orbitals of the same subshell of a given shell have the 
same radial wavefunction. In other words, all p orbitals of a shell have the same 
radial wavefunction, all d orbitals of a shell likewise (but diff erent from that of the 
p orbitals), and so on. Th e other factor, Y(q,f), is called the angular wavefunc-
tion; it is independent of the distance from the nucleus but varies with the 
angles q and f. Th is factor depends on the quantum numbers l and ml. Th erefore, 
regardless of the value of n, orbitals with the same value of l and ml have the same 
angular wavefunction. In other words, for a given value of ml, a d orbital has the 
same angular shape regardless of the shell to which it belongs.

Th e mathematical form of a 1s orbital (the wavefunction with n = 1, l = 0, and 
ml = 0) for a hydrogen atom is

y = 1
(4p)1/2

 AC
4
a0

3

D
F

1/2

 e−r/a0 = 1
(pa0

3)1/2
 e−r/a0 

a0 = 4pε0ħ2

mee2
 

Wavefunction of 
a 1s electron in 
a hydrogen atom

 (9.33)

In this case the angular wavefunction, Y0,0 = 1/(4p)1/2, is a constant, independ-
ent of the angles q and f. You should recall that in Section 9.2 we anticipated 
that a wavefunction for an electron in the ground state of a hydrogen atom has a 
wavefunction proportional to e−r: eqn 9.33 is its precise form. Th e constant a0 is 
called the Bohr radius (because it occurred in the equations based on an early 
model of the structure of the hydrogen atom proposed by the Danish physicist 
Niels Bohr) and has the value 52.92 pm.

Th e amplitude of a 1s orbital depends only on the radius, r, of the point of 
interest and is independent of angle (the latitude and longitude of the point). 
Th erefore, the orbital has the same amplitude at all points at the same distance 
from the nucleus regardless of direction. Because, according to the Born interpre-
tation (Section 9.2b), the probability density of the electron is proportional to the 
square of the wavefunction, we now know that the electron will be found with 
the same probability in any direction (for a given distance from the nucleus). We 
summarize this angular independence by saying that a 1s orbital is spherically 
symmetrical. Because the same factor Y occurs in all orbitals with l = 0, all s 
orbitals have the same spherical symmetry (but diff erent radial dependences).

Th e wavefunction in eqn 9.33 decays exponentially toward zero from a max-
imum value at the nucleus (Fig. 9.43). It follows that the most probable point at 
which the electron will be found is at the nucleus itself. A method of depicting the 
probability of fi nding the electron at each point in space is to represent y2 by the 
density of shading in a diagram (Fig. 9.44). A simpler procedure is to show only 
the boundary surface, the shape that captures about 90 per cent of the electron 
probability. For the 1s orbital, the boundary surface is a sphere centered on the 
nucleus (Fig. 9.45).

We oft en need to know the total probability that an electron will be found in the 
range r to r + dr from a nucleus regardless of its angular position (Fig. 9.46). We 
can calculate this probability by combining the wavefunction in eqn 9.33 with the 
Born interpretation and fi nd that for s orbitals, the answer can be expressed as

probability = P(r)dr with P(r) = 4pr2y2 Radial distribution 
function of an s orbital

 (9.34)

Th e function P is called the radial distribution function.

Fig. 9.43 Th e radial dependence 
of the wavefunction of a 1s 
orbital (n = 1, l = 0) and the 
corresponding probability 
density. Th e quantity a0 is the 
Bohr radius (52.92 pm).

Fig. 9.44 Representations of the 
fi rst two hydrogenic s orbitals, 
(a) 1s and (b) 2s, in terms of the 
electron densities (as represented 
by the density of shading).
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Justification 9.3 The radial distribution function

Consider two spherical shells centered on the nucleus, one of radius r and the 
other of radius r + dr. Th e probability of fi nding the electron at a radius r regard-
less of its direction is equal to the probability of fi nding it between these two 
spherical surfaces. Th e volume of the region of space between the surfaces is 
equal to the surface area of the inner shell, 4pr2, multiplied by the thickness, dr, 
of the region and is therefore 4pr2dr. According to the Born interpretation, the 
probability of fi nding an electron inside a small volume of magnitude dV is 
given, for a normalized wavefunction, by the value of y2dV. Th erefore, inter-
preting V as the volume of the shell, we obtain

probability = y2 × (4pr2dr)

as in eqn 9.34. Th e result we have derived is for any s orbital. For orbitals that 
depend on angle, the more general form is P(r) = r2R(r)2, where R(r) is the 
radial wavefunction.

Self-test 9.6 Calculate the probability that an electron in a 1s orbital will 
be found between a shell of radius a0 and a shell of radius 1.0 pm greater. 
Hint: Use r = a0 in the expression for the probability density and dr = 1.0 pm 
in eqn 9.34.

Answer: 0.010

Th e radial distribution function tells us the total probability of fi nding an elec-
tron at a distance r from the nucleus regardless of its direction. Because r2 increases 
from 0 as r increases but y2 decreases toward 0 exponentially, P starts at 0, goes 
through a maximum, and declines to 0 again. Th e location of the maximum marks 
the most probable radius (not point) at which the electron will be found. For a 1s 
orbital of hydrogen, the maximum occurs at a0, the Bohr radius. An analogy that 
might help to fi x the signifi cance of the radial distribution function for an elec-
tron is the corresponding distribution for the population of the Earth regarded as 
a perfect sphere. Th e radial distribution function is zero at the center of the Earth 
and for the next 6400 km (to the surface of the planet), when it peaks sharply and 
then rapidly decays again to zero. It remains virtually zero for all radii more than 
about 10 km above the surface. Almost all the population will be found very close 
to r = 6400 km, and it is not relevant that people are dispersed non-uniformly over 
a very wide range of latitudes and longitudes. Th e small probabilities of fi nding 
people above and below 6400 km anywhere in the world corresponds to the 
population that happens to be down mines or living in places as high as Denver 
or Tibet at the time.

A 2s orbital (an orbital with n = 2, l = 0, and ml = 0) is also spherical, so its 
boundary surface is a sphere. Because a 2s orbital spreads farther out from the 
nucleus than a 1s orbital—because the electron it describes has more energy to 
climb away from the nucleus—its boundary surface is a sphere of larger radius. 
Th e orbital also diff ers from a 1s orbital in its radial dependence (Fig. 9.47), for 
although the wavefunction has a nonzero value at the nucleus (like all s orbitals), 
it passes through zero before commencing its exponential decay toward zero at 
large distances. We summarize the fact that the wavefunction passes through zero 
everywhere at a certain radius by saying that the orbital has a radial node. A 3s 

Fig. 9.45 Th e boundary surface of 
an s orbital within which there is 
a high probability of fi nding the 
electron.

Fig. 9.46 Th e radial distribution 
function gives the probability 
that the electron will be found 
anywhere in a shell of radius r 
and thickness dr regardless of 
angle. Th e graph shows the 
output from an imaginary 
shell-like detector of variable 
radius and fi xed thickness dr.
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orbital has two radial nodes; a 4s orbital has three radial nodes. In general, an ns 
orbital has n − 1 radial nodes.

(c) The shapes of p orbitals

Now we turn our attention to the p orbitals (orbitals with l = 1), which have a 
double-lobed appearance like that shown in Fig. 9.48. Th e two lobes are separated 
by a nodal plane that cuts through the nucleus. Th ere is zero probability density 
for an electron on this plane. Here, for instance, is the explicit form of the 2pz 
orbital:

y = AC
3

4p
D
F

1/2

cos q × 12 A
C

1
6a0

3

D
F

1/2 r
a0

 e−r/2a0

 = AC
1

32pa0
5

D
F

1/2

r cos q e−r/2a0 
Wavefunction 
associated with 
a 2pz orbital

 (9.35)

Note that because y is proportional to r, it is zero at the nucleus, so there is 
zero probability of fi nding the electron in a small volume centered on the nucleus. 
Th e orbital is also zero everywhere on the plane with cos q = 0, corresponding to 
q = 90°. Th e px and py orbitals are similar but have nodal planes perpendicular 
to the x- and y-axes, respectively.

Fig. 9.47 Th e radial wavefunctions 
of the hydrogenic 1s, 2s, 3s, 2p, 
3p, and 3d orbitals. Note that 
the s orbitals have a nonzero 
and fi nite value at the nucleus. 
Th e vertical scales are diff erent 
in each case.

A brief comment
Th e radial wavefunction is 
zero at r = 0, but because r 
does not take negative values 
that is not a radial node: the 
wavefunction does not pass 
through zero there. A 2p 
orbital has an angular node, 
not a radial node.
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Th e exclusion of the electron from the region of the nucleus is a common fea-
ture of all atomic orbitals except s orbitals. To understand its origin, we need to 
recall from Section 9.5 that the value of the quantum number l tells us the magni-
tude of the angular momentum of the electron around the nucleus (eqn 9.26, 
J = {l(l + 1)}1/2ħ). For an s orbital, the orbital angular momentum is zero (because 
l = 0), and in classical terms the electron does not circulate around the nucleus. 
Because l = 1 for a p orbital, the magnitude of the angular momentum of a p 
electron is 21/2ħ. As a result, a p electron is fl ung away from the nucleus by the 
centrifugal force arising from its motion, but an s electron is not. Th e same cen-
trifugal eff ect appears in all orbitals with angular momentum (those for which 
l > 0), such as d orbitals and f orbitals, and all such orbitals have nodal planes that 
cut through the nucleus.

Each p subshell consists of three orbitals (ml = +1, 0, −1). Th e three orbitals are 
normally represented by their boundary surfaces, as depicted in Fig. 9.48. Th e px 
orbital has a symmetrical double-lobed shape directed along the x-axis, and simi-
larly the py and pz orbitals are directed along the y- and z-axes, respectively. As n 
increases, the p orbitals become bigger (for the same reason as s orbitals) and have 
n − 2 radial nodes. However, their boundary surfaces retain the double-lobed 
shape shown in the illustration.

We can now explain the physical signifi cance of the quantum number ml. 
It indicates the component of the electron’s orbital angular momentum around 
an arbitrary axis passing through the nucleus. Positive values of ml correspond to 
clockwise motion seen from below and negative values correspond to counter-
clockwise motion. Th e larger the value of | ml |, the higher is the angular momen-
tum around the arbitrary axis. Specifi cally:

component of angular momentum = mlħ

An s electron (an electron described by an s orbital) has ml = 0 and has no angu-
lar momentum about any axis. A p electron can circulate clockwise about an axis 
as seen from below (ml = +1). Of its total angular momentum of 21/2ħ = 1.414ħ, an 
amount ħ is due to motion around the selected axis (the rest is due to motion 
around the other two axes). A p electron can also circulate counterclockwise as 
seen from below (ml = −1) or not at all (ml = 0) about that selected axis.

Except for orbitals with ml = 0, there is not a one-to-one correspondence 
between the value of ml and the orbitals shown in the illustrations: we cannot say, 
for instance, that a px orbital has ml = +1. For technical reasons, the orbitals we 
draw are combinations of orbitals with equal but opposite values of ml (px, for 
instance, is a combination of the orbitals with ml = +1 and −1).

(d) The shapes of d orbitals

When n = 3, l can be 0, 1, or 2. As a result, this shell consists of one 3s orbital, 
three 3p orbitals, and fi ve 3d orbitals, corresponding to fi ve diff erent values of 
the magnetic quantum number (ml = +2, +1, 0, −1, −2) for the value l = 2 of 
the orbital angular momentum quantum number. Th at is, an electron in the d 

Fig. 9.48 Th e boundary surfaces 
of p orbitals. A nodal plane 
passes through the nucleus and 
separates the two lobes of each 
orbital.
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subshell can circulate with fi ve diff erent amounts of angular momentum about an 
arbitrary axis (+2ħ, +ħ, 0, −ħ, −2ħ). As for the p orbitals, d orbitals with opposite 
values of ml (and hence opposite senses of motion around an arbitrary axis) may 
be combined in pairs to give orbitals designated as dxy, dyz, dzx, dx2−y2, and dz2 and 
having the shapes shown in Fig. 9.49.

The structures of many-electron atoms

Th e Schrödinger equation for a many-electron atom is highly complicated 
because all the electrons interact with one another. Even for a He atom, with its 
two electrons, no mathematical expression for the orbitals and energies can be 
given and we are forced to make approximations. Modern computational tech-
niques, however, are able to refi ne the approximations we are about to make and 
permit highly accurate numerical calculations of energies and wavefunctions.

Th e periodic recurrence of analogous ground state electron confi gurations as 
the atomic number increases accounts for the periodic variation in the properties 
of atoms. Here we concentrate on two aspects of atomic periodicity—atomic 
radius and ionization energy—and see how they can help to explain the diff erent 
biological roles played by diff erent elements.

9.9 The orbital approximation and the Pauli 
exclusion principle

Here we begin to develop the rules by which electrons occupy orbitals of different 
energies and shapes. We shall see that our study of hydrogenic atoms was a crucial 
step toward our goal of ‘building’ many-electron atoms and associating atomic 
structure with biological function.

In the orbital approximation we suppose that a reasonable fi rst approximation 
to the exact wavefunction is obtained by letting each electron occupy (that is, 
have a wavefunction corresponding to) its ‘own’ orbital and writing

y = y(1)y(2) . . . Orbital approximation  (9.36)

where y(1) is the wavefunction of electron 1, y(2) that of electron 2, and so on. 
We can think of the individual orbitals as resembling the hydrogenic orbitals. 
For example, consider a model of the helium atom in which both electrons occupy 
the same 1s orbital, so the wavefunction for each electron is y = (8/pa0

3)1/2e−2r/a0 
(because Z = 2). If electron 1 is at a radius r1 and electron 2 is at a radius r2 (and at 
any angle), then the overall wavefunction for the two-electron atom is

y = y(1)y(2) = AC
8

pa0
3

D
F

1/2

 e−2r1/a0 × AC
8

pa0
3

D
F

1/2

 e−2r2/a0 = AC
8

pa0
3

D
F

 

e−2(r1+r2)/a0

Fig. 9.49 Th e boundary surfaces 
of d orbitals. Two nodal planes 
in each orbital intersect at the 
nucleus and separate the four 
lobes of each orbital.
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Th is description is only approximate because it neglects repulsions between 
electrons and does not take into account the fact that the nuclear charge is modi-
fi ed by the presence of all the other electrons in the atom.

Th e orbital approximation allows us to express the electronic structure of an 
atom by reporting its confi guration, the list of occupied orbitals (usually, but not 
necessarily, in its ground state). For example, because the ground state of a hydro-
gen atom consists of a single electron in a 1s orbital, we report its confi guration as 
1s1 (read ‘one s one’). A helium atom has two electrons. We can imagine forming 
the atom by adding the electrons in succession to the orbitals of the bare nucleus 
(of charge +2e). Th e fi rst electron occupies a hydrogenic 1s orbital, but because 
Z = 2, the orbital is more compact than in H itself. Th e second electron joins the 
fi rst in the same 1s orbital, and so the electron confi guration of the ground state 
of He is 1s2 (read ‘one s two’).

To continue our description, we need to introduce the concept of spin, an 
intrinsic angular momentum that every electron possesses and that cannot be 
changed or eliminated (just like its mass or its charge). Th e name ‘spin’ is evoca-
tive of a ball spinning on its axis, and this classical interpretation can be used to 
help to visualize the motion. However, spin is a purely quantum mechanical phe-
nomenon and has no classical counterpart, so the analogy must be used with care.

We shall make use of two properties of electron spin:

1. Electron spin is described by a spin quantum number, s (the analog of 
l for orbital angular momentum), with s fi xed at the single (positive) value 
of 12 for all electrons at all times.

2. Th e spin can be clockwise or counterclockwise; these two states are dis-
tinguished by the spin magnetic quantum number, ms, which can take the 
values + 1

2 or − 1
2 but no other values (Fig. 9.50). An electron with ms = + 1

2 
is called an a electron and commonly denoted a or ↑; an electron with 
ms = − 1

2 is called a b electron and denoted b or ↓.

When an atom contains more than one electron, we need to consider the inter-
actions between the electron spin states. Consider lithium (Z = 3), which has three 
electrons. Two of its electrons occupy a 1s orbital drawn even more closely than in 
He around the more highly charged nucleus. Th e third electron, however, does 
not join the fi rst two in the 1s orbital because a 1s3 confi guration is forbidden by a 
fundamental feature of nature summarized by the Austrian physicist Wolfgang 
Pauli in the Pauli exclusion principle:

No more than two electrons may occupy any given orbital, and if two electrons 
do occupy one orbital, then their spins must be paired.

Electrons with paired spins, denoted ↑↓, have zero net spin angular momentum 
because the spin angular momentum of one electron is canceled by the spin of 
the other. In Further information 9.3 we see that the exclusion principle is a 
consequence of an even deeper statement about wavefunctions.

Lithium’s third electron cannot enter the 1s orbital because that orbital is 
already full: we say that the K shell is complete and that the two electrons form a 
closed shell. Because a similar closed shell occurs in the He atom, we denote it 
[He]. Th e third electron is excluded from the K shell (n = 1) and must occupy the 
next available orbital, which is one with n = 2 and hence belonging to the L shell. 
However, we now have to decide whether the next available orbital is the 2s orbital 
or a 2p orbital and therefore whether the lowest energy confi guration of the atom 
is [He]2s1 or [He]2p1.

A note on good practice 
Th e quantum number s 
should not be confused with 
or used in place of ms. Th e 
spin quantum number s has 
a single, positive value 
(1

2; there is no need to write 
a + sign). Use ms to denote 
the orientation of the spin 
(ms = + 1

2 or − 1
2), and always 

include the + sign in ms = + 1
2.

 

Fig. 9.50 A classical representation 
of the two allowed spin states of 
an electron. Th e magnitude of 
the spin angular momentum is 
(31/2/2)ħ in each case, but the 
directions of spin are opposite.
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9.10 Penetration and shielding
Penetration and shielding account for the general form of the periodic table and 
the physical and chemical properties of the elements. The two effects underlie 
all the varied properties of the elements and hence their contributions to biological 
systems.

An electron in a many-electron atom experiences a Coulombic repulsion from all 
the other electrons present. When the electron is at a distance r from the nucleus, 
the repulsion it experiences from the other electrons can be modeled by a point 
negative charge located on the nucleus and having a magnitude equal to the 
charge of the electrons within a sphere of radius r (Fig. 9.51). Th e eff ect of the 
point negative charge is to lower the full charge of the nucleus from Ze to Zeff e, 
the eff ective nuclear charge.8 To express the fact that an electron experiences 
a nuclear charge that has been modifi ed by the other electrons present, we say that 
the electron experiences a shielded nuclear charge. Th e electrons do not actually 
‘block’ the full Coulombic attraction of the nucleus: the eff ective charge is simply 
a way of expressing the net outcome of the nuclear attraction and the electronic 
repulsions in terms of a single equivalent charge at the center of the atom.

Th e eff ective nuclear charges experienced by s and p electrons are diff erent 
because the electrons have diff erent wavefunctions and therefore diff erent distri-
butions around the nucleus (Fig. 9.52). An s electron has a greater penetration 
through inner shells than a p electron of the same shell in the sense that an s 
electron is more likely to be found close to the nucleus than a p electron of the 
same shell (a p orbital, remember, is proportional to r and hence has zero prob-
ability density at the nucleus). As a result of this greater penetration, an s electron 
experiences less shielding than a p electron of the same shell and therefore experi-
ences a larger Zeff . Consequently, by the combined eff ects of penetration and 
shielding, an s electron is more tightly bound than a p electron of the same shell. 
Similarly, a d electron (which has a wavefunction proportional to r2) penetrates 
less than a p electron of the same shell, and it therefore experiences more shield-
ing and an even smaller Zeff .

As a consequence of penetration and shielding, the energies of orbitals in the 
same shell of a many-electron atom lie in the order s < p < d < f. Th e individual 
orbitals of a given subshell (such as the three p orbitals of the p subshell) remain 
degenerate because they all have the same radial characteristics and so experience 
the same eff ective nuclear charge.

We can now complete the Li story. Because the shell with n = 2 has two non-
degenerate subshells, with the 2s orbital lower in energy than the three 2p orbitals, 
the third electron occupies the 2s orbital. Th is arrangement results in the ground 
state confi guration 1s22s1, or [He]2s1. It follows that we can think of the structure 
of the atom as consisting of a central nucleus surrounded by a complete helium-
like shell of two 1s electrons and around that a more diff use 2s electron. Th e 
electrons in the outermost shell of an atom in its ground state are called the 
valence electrons because they are largely responsible for the chemical bonds 
that the atom forms (and, as we shall see, the extent to which an atom can form 
bonds is called its ‘valence’). Th us, the valence electron in Li is a 2s electron, and 
lithium’s other two electrons belong to its core, where they take little part in bond 
formation.

Fig. 9.52 An electron in an s 
orbital (here a 3s orbital) is more 
likely to be found close to the 
nucleus than an electron in a p 
orbital of the same shell. Hence 
it experiences less shielding 
and is more tightly bound.

8 Commonly, Zeff  itself is referred to as the ‘eff ective nuclear charge,’ although strictly that quantity 
is Zeff e.

Fig. 9.51 An electron at a distance 
r from the nucleus experiences 
a Coulombic repulsion from all 
the electrons within a sphere of 
radius r that is equivalent to a 
point negative charge located on 
the nucleus. Th e eff ect of the 
point charge is to reduce the 
apparent nuclear charge of the 
nucleus from Ze to Zeff e.
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9.11 The building-up principle
The exclusion principle and the consequences of shielding are our keys to 
understanding the structures of complex atoms and ions, chemical periodicity, 
and molecular structure.

Th e extension of the procedure used for H, He, and Li to other atoms is called 
the building-up principle.9 Th e building-up principle specifi es an order of 
occupation of atomic orbitals that in most cases reproduces the experimentally 
determined ground state confi gurations of atoms and ions.

(a) Neutral atoms

We imagine the bare nucleus of atomic number Z and then feed into the available 
orbitals Z electrons one aft er the other. Th e fi rst two rules of the building-up 
principle are:

1. Th e order of occupation of orbitals is
 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d 4f 6p . . .
2. According to the Pauli exclusion principle, each orbital may accommodate 

up to two electrons.

Th e order of occupation is approximately the order of energies of the individual 
orbitals because in general the lower the energy of the orbital, the lower the total 
energy of the atom as a whole when that orbital is occupied. An s subshell is 
complete as soon as two electrons are present in it. Each of the three p orbitals of 
a shell can accommodate two electrons, so a p subshell is complete as soon as 
six electrons are present in it. A d subshell, which consists of fi ve orbitals, can 
accommodate up to 10 electrons.

As an example, consider a carbon atom. Because Z = 6 for carbon, there are six 
electrons to accommodate. Two enter and fi ll the 1s orbital, two enter and fi ll the 
2s orbital, leaving two electrons to occupy the orbitals of the 2p subshell. Hence 
its ground confi guration is 1s22s22p2, or more succinctly [He]2s22p2, with [He] 
the helium-like 1s2 core. On electrostatic grounds, we can expect the last two 
electrons to occupy diff erent 2p orbitals, for they will then be farther apart on 
average and repel each other less than if they were in the same orbital. Th us, one 
electron can be thought of as occupying the 2px orbital and the other the 2py 
orbital, and the lowest energy confi guration of the atom is [He]2s22px

12py
1. Th e 

same rule applies whenever degenerate orbitals of a subshell are available for 
occupation. Th erefore, another rule of the building-up principle is:

3. Electrons occupy diff erent orbitals of a given subshell before doubly occupy-
ing any one of them.

It follows that a nitrogen atom (Z = 7) has the confi guration [He]2s22px
12py

12pz
1. 

Only when we get to oxygen (Z = 8) is a 2p orbital doubly occupied, giving the 
confi guration [He]2s22px

22py
12pz

1.
An additional point arises when electrons occupy degenerate orbitals (such as 

the three 2p orbitals) singly, as they do in C, N, and O, for there is then no require-
ment that their spins should be paired. We need to know whether the lowest 
energy is achieved when the electron spins are the same (both ↑, for instance, 

9 Th e building-up principle is still widely called the Aufb au principle, from the German word for 
‘building up’.
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Th is analysis has brought us to the origin of chemical periodicity. Th e L shell 
is completed by eight electrons, and so the element with Z = 3 (Li) should have 
similar properties to the element with Z = 11 (Na). Likewise, Be (Z = 4) should 
be similar to Mg (Z = 12), and so on up to the noble gases He (Z = 2), Ne (Z = 10), 
and Ar (Z = 18).

Argon has complete 3s and 3p subshells, and as the 3d orbitals are high in 
energy, the atom eff ectively has a closed-shell confi guration. Indeed, the 4s orbit-
als are so lowered in energy by their ability to penetrate close to the nucleus that 
the next electron (for potassium) occupies a 4s orbital rather than a 3d orbital and 
the K atom resembles an Na atom. Th e same is true of a Ca atom, which has the 
confi guration [Ar]4s2, resembling that of its congener Mg, which is [Ne]3s2.

Ten electrons can be accommodated in the fi ve 3d orbitals, which accounts for 
the electron confi gurations of scandium to zinc. Th e building-up principle has 
less clear-cut predictions about the ground-state confi gurations of these elements, 
and a simple analysis no longer works. Calculations show that for these atoms the 
energies of the 3d orbitals are always lower than the energy of the 4s orbital. 
However, experiments show that Sc has the confi guration [Ar]3d14s2 instead of 
[Ar]3d3 or [Ar]3d24s1. To understand this observation, we have to consider the 
nature of electron–electron repulsions in 3d and 4s orbitals. Th e most probable 
distance of a 3d electron from the nucleus is less than that for a 4s electron, so two 
3d electrons repel each other more strongly than two 4s electrons. As a result, Sc 
has the confi guration [Ar]3d14s2 rather than the two alternatives, for then the 
strong electron–electron repulsions in the 3d orbitals are minimized. Th e total 

Self-test 9.7 Predict the ground state electron confi guration of sulfur.
Answer: [Ne]3s23px

23py
13pz

1

denoted ↑↑, if there are two electrons in question, as in C) or when they are paired 
(↑↓). Th is question is resolved by Hund’s rule:

4. In its ground state, an atom adopts a confi guration with the greatest number 
of unpaired electrons.

Th e explanation of Hund’s rule is complicated, but it refl ects the quantum 
mechanical property of spin correlation, that electrons in diff erent orbitals with 
parallel spins have a quantum mechanical tendency to stay well apart (a tendency 
that has nothing to do with their charge: even two ‘uncharged electrons’ would 
behave in the same way). Th eir mutual avoidance allows the atom to shrink 
slightly, so the electron–nucleus interaction is improved when the spins are 
parallel. We can now conclude that in the ground state of a C atom, the two 2p 
electrons have the same spin, that all three 2p electrons in an N atom have the 
same spin, and that the two electrons that singly occupy diff erent 2p orbitals in an 
O atom have the same spin (the two in the 2px orbital are necessarily paired).

Neon, with Z = 10, has the confi guration [He]2s22p6, which completes the 
L shell. Th is closed-shell confi guration is denoted [Ne] and acts as a core for 
subsequent elements. Th e next electron must enter the 3s orbital and begin 
a new shell, and so an Na atom, with Z = 11, has the confi guration [Ne]3s1. Like 
lithium with the confi guration [He]2s1, sodium has a single s electron outside 
a complete core.
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energy of the atom is least despite the cost of allowing electrons to populate the 
high-energy 4s orbital (Fig. 9.53). Th e eff ect just described is generally true for Sc 
through Zn, so the electron confi gurations of these atoms are of the form 
[Ar]3dn4s2, where n = 1 for Sc and n = 10 for Zn. Experiments show that there are 
two notable exceptions: Cr, with electron confi guration [Ar]3d54s1, and Cu, with 
electron confi guration [Ar]3d104s1.

At gallium, the energy of the 3d orbitals has fallen so far below those of the 4s 
and 4p orbitals that they (the full 3d orbitals) can be largely ignored, and the 
building-up principle can be used in the same way as in preceding periods. Now 
the 4s and 4p subshells constitute the valence shell, and the period terminates 
with krypton. Because 18 electrons have intervened since argon, this period is the 
fi rst long period of the periodic table. Th e existence of the d block (the ‘transition 
metals’) refl ects the stepwise occupation of the 3d orbitals, and the subtle shades 
of energy diff erences along this series give rise to the rich complexity of inorganic 
(and bioinorganic) d-metal chemistry (Case study 9.4 and Section 10.8). A simi-
lar intrusion of the f orbitals in Periods 6 and 7 accounts for the existence of the f 
block of the periodic table (the lanthanoids and actinoids; still commonly the 
lanthanides and actinides).

(b) Cations and anions

Th e confi gurations of cations of elements in the s, p, and d blocks of the periodic 
table are derived by removing electrons from the ground state confi guration 
of the neutral atom in a specifi c order. First, we remove any valence p electrons, 
then the valence s electrons, and then as many d electrons as are necessary to 
achieve the stated charge. We consider a few examples below.

Calcium, an essential constituent of bone and a key player in a number of bio-
chemical processes (such as muscle contraction, cell division, blood clotting, and 
the conduction of nerve impulses), is taken up by and functions in the cell as the 
Ca2+ ion. Because the confi guration of Ca is [Ar]4s2, the Ca2+ cation has the same 
confi guration, [Ar], as the argon atom.

Iron, copper, and manganese can shuttle between diff erent cationic forms and 
participate in electron transfer reactions that form the core of bioenergetics. For 
instance, because the confi guration of Fe is [Ar]3d64s2, the Fe2+ and Fe3+ cations 
have the confi gurations [Ar]3d6 and [Ar]3d5, respectively. Th ese are the oxidation 
states adopted by the iron ions bound to the protein cytochrome c as it transfers 
electrons between complexes II and IV in the mitochondrial electron transport 
chain (Section 5.10).

Th e confi gurations of anions are derived by continuing the building-up pro-
cedure and adding electrons to the neutral atom until the confi guration of the 
next noble gas has been reached. It is the chloride ion, and not elemental chlorine, 
that works together with Na+ and K+ ions to establish membrane potentials 
(Section 5.3) and to maintain osmotic pressure (Section 3.10) and charge balance 
in the cell. Th e confi guration of a Cl− ion is achieved by adding an electron to 
[Ne]3s23p5, giving the confi guration of Ar.

Fig. 9.53 Strong electron–electron 
repulsions in the 3d orbitals are 
minimized in the ground state of 
a scandium atom if the atom has 
the confi guration [Ar]3d14s2 
(shown on the left ) instead of 
[Ar]3d24s1 (shown on the right). 
Th e total energy of the atom 
is lower when it has the 
confi guration [Ar]3d14s2 despite 
the cost of populating the 
high-energy 4s orbital.

Self-test 9.8 Predict the electron confi gurations of (a) a Cu2+ ion and 
(b) an O2− ion.

Answer: (a) [Ar]3d9, (b) [He]2s22p6
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9.12 Three important atomic properties
The fitness of an element for a biological role is a consequence of electronic structure. 
We now need to understand how electronic structure affects atomic and ionic radii, 
and the thermodynamic ability of an atom to release or acquire electrons to form ions 
or chemical bonds.

We now explore three important atomic properties: the atomic (and ionic) radius, 
the ionization energy, and the electron affi  nity. Th ese properties are of great 
signifi cance in chemistry and biology, for they are controls on the number and 
types of chemical bonds the atom can form. Indeed, we can use these properties 
to reveal an important reason for the unique role of carbon in biology.

(a) Atomic and ionic radii

Th e atomic radius of an element is half the distance between the centers of neigh-
boring atoms in a solid (such as Cu) or, for nonmetals, in a homonuclear molecule 
(such as H2 or S8). If there is one single attribute of an element that determines its 
chemical properties (either directly, or indirectly through the variation of other 
properties), then it is atomic radius.

In general, atomic radii decrease from left  to right across a period and increase 
down each group (Table 9.1 and Fig. 9.54). Th e decrease across a period can be 
traced to the increase in nuclear charge, which draws the electrons in closer to the 
nucleus. Th e increase in nuclear charge is partly canceled by the increase in the 
number of electrons, but because electrons are spread over a region of space, one 
electron does not fully shield one nuclear charge, so the increase in nuclear charge 
dominates. Th e increase in atomic radius down a group (despite the increase in 
nuclear charge) is explained by the fact that the valence shells of successive periods 
correspond to higher principal quantum numbers. Th at is, successive periods 
correspond to the start and then completion of successive (and more distant) 
shells of the atom that surround each other like the successive layers of an onion. 
Th e need to occupy a more distant shell leads to a larger atom despite the increased 
nuclear charge.

A modifi cation of the increase down a group is encountered in Period 6, for 
the radii of the atoms late in the d block and in the following regions of the p block 
are not as large as would be expected by simple extrapolation down the group. 
Th e reason can be traced to the fact that in Period 6 the f orbitals are in the process 
of being occupied to form the 14 lanthanoids, cerium (Ce) to lutetium (Lu). An 
f electron is a very ineffi  cient shielder of nuclear charge (for reasons connected 

Fig. 9.54 Th e variation of atomic 
radius through the periodic table. 
Note the contraction of radius 
following the lanthanoids in 
Period 6 (following lutetium, 
Z = 71).

Table 9.1 Atomic radii of 
main-group elements, r/pm

Li Be B C N O F
157 112  88  77  74  66  64
Na Mg Al Si P S Cl
191 160 143 118 110 104 99
K Ca Ga Ge As Se Br
235 197 153 122 121 117 114
Rb Sr In Sn Sb Te I
250 215 167 158 141 137 133
Cs Ba Tl Pb Bi Po
272 224 171 175 182 167
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with its radial extension), and as the atomic number increases from Ce to Lu, 
there is a considerable contraction in radius. By the time the d block resumes (at 
hafnium, Hf ), the poorly shielded but considerably increased nuclear charge 
has drawn in the surrounding electrons, and the atoms are compact. Th ey are so 
compact that the metals in this region of the periodic table (iridium to lead) are 
very dense. Th e reduction in radius below that expected by extrapolation from 
preceding periods is called the lanthanide contraction.

Th e ionic radius of an element is its share of the distance between neighboring 
ions in an ionic solid (2). Th at is, the distance between the centers of a neigh-
boring cation and anion is the sum of the two ionic radii. Table 9.2 lists the radii 
of some ions that play important roles in biochemical processes.

When an atom loses one or more valence electrons to form a cation, the remain-
ing atomic core is generally much smaller than the parent atom. Th erefore, a 
cation is oft en smaller than its parent atom. For example, the atomic radius of 
Na, with the confi guration [Ne]3s1, is 191 pm, but the ionic radius of Na+, with 
the confi guration [Ne], is only 102 pm. Like atomic radii, cationic radii increase 
down each group because electrons are occupying shells with higher principal 
quantum numbers.

An anion is larger than its parent atom because the electrons added to the 
valence shell repel one another. Without a compensating increase in the nuclear 
charge, which would draw the electrons closer to the nucleus and each other, 
the ion expands. Th e variation in anionic radii shows the same trend as that for 
atoms and cations, with the smallest anions at the upper right of the periodic 
table, close to fl uorine.

Atoms and ions with the same number of electrons are called isoelectronic. 
For example, Ca2+, K+, and Cl− have the confi guration [Ar] and are isoelectronic. 
However, their radii diff er because they have diff erent nuclear charges. Th e 
Ca2+ ion has the largest nuclear charge, so it has the strongest attraction for the 
electrons and the smallest radius. Th e Cl− ion has the lowest nuclear charge of 
the three isoelectronic ions and, as a result, the largest radius.

(b) Ionization energy

Th e minimum energy necessary to remove an electron from a many-electron 
atom is its fi rst ionization energy, I1. Th e second ionization energy, I2, is the 
minimum energy needed to remove a second electron (from the singly charged 
cation):

Table 9.2 Ionic radii of selected main-group elements*

Ion Main biochemical function r/pm

Mg2+ Binds to ATP, constituent of chlorophyll, control of protein folding and 
muscle contraction

 72

Ca2+ Component of bone and teeth, control of protein folding, hormonal action, 
blood clotting, and cell division

100

Na+ 102

K+ Control of osmotic pressure, charge balance, and membrane potentials 138
Cl− 167

*Th e values are for ions surrounded by six counter-ions in a crystal.

5
6
7
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E(g) → E+(g) + e−(g) I1 = E(E+) − E(E)
E+(g) → E2+(g) + e−(g) I2 = E(E2+) − E(E+) (9.37)

Th e variation of the fi rst ionization energy through the periodic table is shown 
in Fig. 9.55, and some numerical values are given in Table 9.3. Th e ionization 
energy of an element plays a central role in determining the ability of its atoms to 
participate in bond formation (for bond formation, as we shall see in Chapter 10, 
is a consequence of the relocation of electrons from one atom to another). Aft er 
atomic radius, it is the most important property for determining an element’s 
chemical characteristics.

Lithium has a low fi rst ionization energy: its outermost electron is well shielded 
from the weakly charged nucleus by the core (Zeff  = 1.3 compared with Z = 3) 
and it is easily removed. Beryllium has a higher nuclear charge than Li, and its 
outermost electron (one of the two 2s electrons) is more diffi  cult to remove: 
its ionization energy is larger. Th e ionization energy decreases between Be and B 
because in the latter the outermost electron occupies a 2p orbital and is less 
strongly bound than if it had been a 2s electron. Th e ionization energy increases 
between B and C because the latter’s outermost electron is also 2p and the nuclear 

Table 9.3 First ionization energies of main-group elements, I/eV*

H He
13.60 24.59
Li Be B C N O F Ne
 5.32 9.32 8.30 11.26 14.53 13.62 17.42 21.56
Na Mg Al Si P S Cl Ar
 5.14 7.65 5.98  8.15 10.49 10.36 12.97 15.76
K Ca Ga Ge As Se Br Kr
 4.34 6.11 6.00  7.90  9.81  9.75 11.81 14.00
Rb Sr In Sn Sb Te I Xe
 4.18 5.70 5.79  7.34  8.64  9.01 11.81 14.00
Cs Ba Tl Pb Bi Po At Rn
 3.89 5.21 6.11  7.42  7.29  8.42  9.64 10.78

*1 eV = 96.485 kJ mol−1.

A note on good practice 
Th e physical state of the 
electron is given because 
ionization (and electron 
attachment; see below) is 
an actual process, unlike in 
electrochemistry, where the 
half-reaction, such as E(s) → 
E+(aq) + e−, is hypothetical 
and the electron is stateless.

 

Fig. 9.55 Th e periodic variation of 
the fi rst ionization energies of the 
elements.
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charge has increased. Nitrogen has a still higher ionization energy because of the 
further increase in nuclear charge.

Th ere is now a kink in the curve because the ionization energy of O is lower 
than would be expected by simple extrapolation. At O a 2p orbital must become 
doubly occupied, and the electron–electron repulsions are increased above what 
would be expected by simple extrapolation along the row. (Th e kink is less 
pronounced in the next row, between P and S, because their orbitals are more 
diff use.) Th e values for O, F, and Ne fall roughly on the same line, the increase of 
their ionization energies refl ecting the increasing attraction of the nucleus for the 
outermost electrons.

Th e outermost electron in Na is 3s. It is far from the nucleus, and the latter’s 
charge is shielded by the compact, complete neon-like core. As a result, the ion-
ization energy of Na is substantially lower than that of Ne. Th e periodic cycle 
starts again along this row, and the variation of the ionization energy can be traced 
to similar reasons.

(c) Electron affinity

Th e electron affi  nity, Eea, is the diff erence in energy between a neutral atom and 
its anion. It is the energy released in the process

E(g) + e−(g) → E−(g)  Eea = E(E) − E(E−) (9.38)

Th e electron affi  nity is positive if the anion has a lower energy than the neutral 
atom.

Electron affi  nities (Table 9.4) vary much less systematically through the 
periodic table than ionization energies. Broadly speaking, however, the highest 
electron affi  nities are found close to F. In the halogens, the incoming electron 
enters the valence shell and experiences a strong attraction from the nucleus. 
Th e electron affi  nities of the noble gases are negative—which means that the 
anion has a higher energy than the neutral atom—because the incoming electron 
occupies an orbital outside the closed valence shell. It is then far from the nucleus 
and repelled by the electrons of the closed shells. Th e fi rst electron affi  nity of O is 

Table 9.4 Electron affi  nities of main-group elements, Eea/eV*

H He
+0.75 <0†

Li Be B C N O F Ne
+0.62 −0.19 +0.28 +1.26 −0.07 +1.46 +3.40 −0.30†

Na Mg Al Si P S Cl Ar
+0.55 −0.22 +0.46 +1.38 +0.46 +2.08 +3.62 −0.36†

K Ca Ga Ge As Se Br Kr
+0.50 −1.99 +0.3 +1.20 +0.81 +2.02 +3.37 −0.47†

Rb Sr In Sn Sb Te I Xe
+0.49 +1.51 +0.3 +1.20 +1.50 +1.97 +3.06 −0.42†

Cs Ba Tl Pb Bi Po At Rn
+0.47 −0.48 +0.2 +0.36 +0.95 +1.90 +2.80 −0.42†

*1 eV = 96.485 kJ mol−1.
†Calculated.

A note on good practice 
We use the convention that 
Eea > 0 signifi es a ‘positive 
affi  nity’ for the added 
electron. Distinguish 
the electron affi  nity from 
the electron-gain enthalpy, 
which is negative for such an 
exothermic process (that is, 
has the opposite sign to the 
electron affi  nity, and diff ers 
very slightly in value).
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Case study 9.4 The biological role of Zn2+

Here we explore how the ionic radius and charge can work together to impart 
unique chemical properties to an ion, leading to unique biochemical function. 
Consider the Zn2+ ion, which is found in the active sites of many enzymes. An 
example is carbonic anhydrase (Atlas P2), which catalyzes the hydration of 
CO2 in red blood cells to give bicarbonate (hydrogencarbonate) ion:

CO2 + H2O → HCO3
− + H+

To understand the catalytic role played by the Zn2+ ion, we need to know that a 
‘Lewis acid’ is an electron-poor species that forms a complex with a ‘Lewis 
base,’ an electron-rich species. Metal cations are good Lewis acids, and mole-
cules with lone pairs of electrons, such as H2O, are good Lewis bases.

Th e Lewis acidity of a metal cation increases with its eff ective nuclear charge, 
Zeff  (defi ned here as the charge experienced by a Lewis base on the ‘surface’ of 
the cation), and decreases with the ionic radius, rion. Among the M2+ d-metal 
ions found in the active sites of enzymes, Cu2+ and Zn2+ are the best Lewis acids 
because they have the largest Zeff /rion ratios. Th ermodynamically, organisms 
make use of the Cu2+/Cu+ redox couple for electron transport processes 
(Chapters 5 and 8) and, generally, the Cu2+ ion does not act as a Lewis acid in 
biochemical processes. On the other hand, the Zn2+ ion is not used in biolo-
gical redox reactions but is a ubiquitous biological Lewis acid.

To illustrate the consequences of the Lewis acidity of the Zn2+ ion, we consider 
the mechanism of the hydration of CO2 by carbonic anhydrase (Fig. 9.56). In 
the fi rst two steps, a Lewis acid–base complex forms between the protein-
bound Zn2+ ion and a water molecule, which is then deprotonated. Th e Zn2+ 
ion has a large Zeff /rion ratio and gives rise to a strong electric fi eld in its vicinity, 
so it stabilizes the negative charge on the bound OH− ion, thus eff ectively lower-
ing the pKw of water from 14 to about 7. Th ermodynamically, the Zn2+ ion 
facilitates the generation of a strong nucleophile, the OH− ion, which can attack 
CO2 more eff ectively than H2O. In the next steps, CO2 binds to the active site 
and then reacts with the bound OH− ion, forming a hydrogencarbonate ion. 
Release of the bicarbonate ion poises the enzyme for another catalytic cycle.

positive for the same reason as for the halogens. However, the second electron 
affi  nity (for the formation of O2− from O−) is strongly negative because although 
the incoming electron enters the valence shell, it experiences a strong repulsion 
from the net negative charge of the O− ion.

Further analysis of ionization energies and electron affi  nities can begin to tell 
us why carbon is an essential building block of complex biological structures. 
Among the elements in Period 2, C has intermediate values of the ionization 
energy and electron affi  nity, so it can share electrons (that is, form covalent bonds) 
with many other elements, such as H, N, O, S, and, more importantly, other 
C atoms. As a consequence, such networks as long carbon–carbon chains (as in 
lipids) and chains of peptide links can form readily. Because the ionization energy 
and electron affi  nity of C are neither too high nor too low, the bonds in these 
covalent networks are neither too strong nor too weak. As a result, biological 
molecules are suffi  ciently stable to form viable organisms but are still susceptible 
to dissociation (essential to catabolism) and rearrangement (essential to anabol-
ism). In Chapter 10 we shall develop additional concepts that will complete this 
aspect of carbon’s biological role.
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Fig. 9.56 Th e mechanism of the 
hydration of CO2 by carbonic 
anhydrase. In the fi rst two steps, a 
Lewis acid–base complex forms 
between the protein-bound Zn2+ 
ion and a water molecule, which 
is then deprotonated. In the next 
steps, CO2 binds to the active site 
and then reacts with the bound 
OH− ion, forming a bicarbonate 
ion. Release of the bicarbonate 
ion poises the enzyme for another 
catalytic cycle.

Checklist of key concepts

 1. Atoms and molecules have discrete energy levels, which 
are revealed by their absorption or emission spectra.

 2. Planck proposed that electromagnetic oscillators of 
frequency n could acquire or discard energy in quanta 
of magnitude hn.

 3. Th e photoelectric eff ect is the ejection of electrons 
when radiation of greater than a threshold frequency 
is incident on a metal. Th e photon energy is equal to 
the sum of the kinetic energy of the electron and the 
work function F of the metal, the energy required 
to remove the electron from the metal.

 4. Th e wavelike character of electrons was demonstrated 
by the Davisson–Germer diff raction experiment.

 5. Th e joint wave–particle character of matter and 
radiation is called wave–particle duality.

 6. A wavefunction, y, contains all the dynamical 
information about a system and is found by solving 
the appropriate Schrödinger equation subject to the 
constraints on the solutions known as boundary 
conditions.

 7. According to the Born interpretation, the probability 
of fi nding a particle in a small region of space of 
volume dV is proportional to y2dV, where y is the 
value of the wavefunction in the region.

 8. According to the Heisenberg uncertainty principle, it 
is impossible to specify simultaneously, with arbitrary 
precision, both the momentum and the position of a 
particle.

 9. Because wavefunctions do not, in general, decay 
abruptly to zero, particles may tunnel into and 
through classically forbidden regions.

 10. A particle undergoes harmonic motion if it is 
subjected to a Hooke’s-law restoring force (a force 
proportional to the displacement).

 11. Hydrogenic atoms are atoms with a single electron.
 12. Th e wavefunctions of hydrogenic atoms are labeled 

with three quantum numbers: the principal quantum 
number n = 1, 2, . . . , the orbital angular momentum 
quantum number l = 0, 1, . . . , n − 1, and the magnetic 
quantum number ml = l, l − 1, . . . , −l.

 13. s Orbitals are spherically symmetrical and have 
nonzero amplitude at the nucleus.

 14. Th e p and d orbitals of a shell are shown in Figs. 9.48 
and 9.49, respectively.

 15. A radial distribution function, P(r), is the probability 
density for fi nding an electron between r and r + dr 
regardless of orientation.

 16. An electron possesses an intrinsic angular 
momentum, its spin, which is described by the 
quantum numbers s = 12 and ms = ±1

2.
 17. In the orbital approximation, each electron in a 

many-electron atom is supposed to occupy its own 
orbital.

 18. Th e Pauli exclusion principle states that no more than 
two electrons may occupy any given orbital and if two 
electrons do occupy one orbital, then their spins must 
be paired.

 19. In a many-electron atom, the orbitals of a given shell 
lie in the order s < p < d < f as a result of the eff ects of 
penetration and shielding.

 20. Atomic radii typically decrease from left  to right 
across a period and increase down a group.

 21. Ionization energies typically increase from left  to 
right across a period and decrease down a group.

 22. Electron affi  nities are highest toward the top right of 
the periodic table (near fl uorine).
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Checklist of key equations

Property Equation Comment

Bohr frequency relation DE = hn

de Broglie relation l = h/p
−(ħ2/2m)(d2y/dx2) + Vy = Ey

DpDx ≥ 12ħ

En = n2h2/8mL2

E1 = h2/8mL2

yn(x) = (2/L)1/2 sin(npx/L)
T ≈ 16ε(1 − ε)e−2kL,
k = {2m(V − E)}1/2/ħ

Eml = ml
2ħ2/2I, I = mr2

Jz = mlħ

E = l(l + 1)(ħ2/2I)
J = {l(l + 1)}1/2ħ
Jz = mlħ

V(x) = 12kfx2

Ev = (v + 12)hn, n = (1/2p)(kf/m)1/2

En = −hcR (Z 2/n2),
hcR = me4/(32p2ε0

2ħ2),
m = memN/(me + mN)
yn,l,ml

(r,q,f) = Yl,ml
(q,f)Rn,l(r)

Motion in one dimension
Motion in one dimension
Motion in one dimension
n = 1, 2, . . .

Motion in one dimension; V/E >> 1

ml = 0, ±1, ±2, . . .

l = 0, 1, 2, . . .

ml = l, l − 1, . . . , −l

Motion in one dimension
v = 0, 1, 2, . . .

n = 1, 2, . . .

l = 0, 1, 2, . . . , n − 1
ml = l, l − 1, . . . , −l

Schrödinger equation
Heisenberg uncertainty relation
Particle in a box:
 energy levels
 zero-point energy
 wavefunctions
Transmission probability

Particle on a ring:
 energy levels
 z-component of the angular momentum
Particle on a sphere
 energy levels
 angular momentum
 z-component of the angular momentum
Harmonic oscillator:
 potential energy
 energy levels
Hydrogenic atoms:
 energy levels

 wavefunctions

Radial distribution function P(r) = 4pr2y2 s orbitals

Further information

Further information 9.1 A justifi cation of the Schrödinger 
equation

Th e form of the Schrödinger equation can be justifi ed to a 
certain extent by showing that it implies the de Broglie relation 
for a freely moving particle. Free motion means motion in a 
region where the potential energy is zero (V = 0 everywhere). 
Th en

Ĥ = − ħ2

2m
 d2

dx2

and eqn 9.4 simplifi es to

−
ħ2

2m
 d

2y
dx2  = Ey

A solution is

y = sin kx  k = (2mE)1/2/ħ

Th e function sin kx is a wave of wavelength l = 2p/k, as we can 
see by comparing sin kx with sin(2px/l), the standard form 
of a harmonic wave with wavelength l. To verify that sin kx is 
indeed a solution, we insert y = sin kx into both sides of the 
diff erential equation and use

d
dx

 sin kx = k cos kx d
dx

 cos kx = −k sin kx  

d2

dx2 sin(kx) = −k2 sin(kx)

Th us

−
ħ2

2m
 d

2y
dx2  = − ħ2

2m
 d

2 sin (kx)
dx2  = − ħ2

2m
 (−k2 sin(kx)) = k

2ħ2

2m
 y

According to the Schrödinger equation, the fi nal term of this 
expression is equal to Ey, so it follows that E = k2ħ2/2m and 
k = (2mE)1/2/ħ.
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Next, we note that the energy of the particle is entirely 
kinetic (because V = 0 everywhere), so the total energy of 
the particle is just its kinetic energy:

E = Ek = p2/2m

Because E is related to k by E = k2ħ2/2m, it follows from a 
comparison of the two equations that p = kħ. Th erefore, 
the linear momentum is related to the wavelength of the 
wavefunction by

p = 2p
l

 × h
2p

 = h
l

which is the de Broglie relation. We see, in the case of a freely 
moving particle, that the Schrödinger equation has led to an 
experimentally verifi ed conclusion.

Further information 9.2 The separation of variables 
procedure

We illustrate the separation of variables procedure with 
motion in a rectangular box as example. Th e Schrödinger 
equation for the problem described in Section 9.4c is

 − ħ2

2m
 ∂

2y(x,y)
∂x2  − ħ2

2m
 ∂

2y(x,y)
∂y2  = Ey(x,y)

where we have noted that for a function of two variables 
the derivatives to be calculated are partial derivatives (see 
Mathematical toolkit 8.1). For simplicity, we can write this 
expression as

ĤXy(x,y) + ĤYy(x,y) = Ey(x,y)

where ĤX operates only on functions of x and ĤY operates 
only on functions of y. To see if y(x,y) = X(x)Y(y) is indeed a 
solution, we substitute this product on both sides of the last 
equation,

ĤXX(x)Y(y) + ĤYX(x)Y(y) = EX(x)Y(y)

and note that ĤX  acts only on X(x), with Y(y) being treated as 
a constant, and ĤY acts only on Y(y), with X(x) being treated 
as a constant. Th erefore, this equation becomes

Y(y)ĤXX(x) + X(x)ĤYY(y) = EX(x)Y(y)

When we divide both sides by X(x)Y(y), we obtain

1
X(x)

 ĤXX(x) + 1
Y(y)

 ĤYY(y) = E

Now we come to the crucial part of the argument. Th e fi rst 
term on the left  depends only on x and the second term 
depends only on y. Th erefore, if x changes, only the fi rst term 
can change. But its sum with the unchanging second term is 
the constant E. Th erefore, the fi rst term cannot in fact change 
when x changes. Th at is, the fi rst term is equal to a constant, 
which we write as EX. Th e same argument applies to the 
second term when y is changed, so it too is equal to a constant, 
which we write as EY. Th at is, we have shown that

1
X(x)

 ĤXX(x) = EX  1
Y(y)

 ĤYY(y) = EY

with EX + EY = E. Th ese two equations are easily turned into

ĤXX(x) = EXX(x)  ĤYY(y) = EYY(y)

which we should recognize as the Schrödinger equation for 
one-dimensional motion, one along the x-axis and the other 
along the y-axis. Th us, the variables have been separated, and 
because the boundary conditions are essentially the same for 
each axis (the only diff erence being the actual values of the 
lengths LX and LY), the individual wavefunctions are essentially 
the same as those already found for the one-dimensional case.

Further information 9.3 The Pauli principle

Some elementary particles have s = 1 and therefore have a 
higher intrinsic angular momentum than an electron. For our 
purposes the most important spin-1 particle is the photon. It 
is a very deep feature of nature that the fundamental particles 
from which matter is built have half-integral spin (such as 
electrons and quarks, all of which have s = 12). Th e particles 
that transmit forces between these particles, so binding them 
together into entities such as nuclei, atoms, and planets, 
all have integral spin (such as s = 1 for the photon, which 
transmits the electromagnetic interaction between charged 
particles). Fundamental particles with half-integral spin are 
called fermions; those with integral spin are called bosons. 
Matter therefore consists of fermions bound together by 
bosons.

Th e Pauli exclusion principle is a special case of a general 
statement called the Pauli principle:

When the labels of any two identical fermions are 
exchanged, the total wavefunction changes sign. When 
the labels of any two identical bosons are exchanged, the 
total wavefunction retains the same sign.

Th e Pauli exclusion principle applies only to fermions. ‘Total 
wavefunction’ means the entire wavefunction, including the 
spin of the particles.

Consider the wavefunction for two electrons y(1,2). 
Th e Pauli principle implies that it is a fact of nature that the 
wavefunction must change sign if we interchange the labels 1 
and 2 wherever they occur in the function: y(2,1) = −y(1,2). 
Suppose the two electrons in an atom occupy an orbital y; 
then in the orbital approximation the overall wavefunction 
is y(1)y(2). To apply the Pauli principle, we must deal with 
the total wavefunction, the wavefunction including spin. 
Th ere are several possibilities for two spins: the state a(1)a(2) 
corresponds to parallel spins, whereas (for technical reasons 
related to the cancelation of each spin’s angular momentum 
by the other) the combination a(1)b(2) − b(1)a(2) 
corresponds to paired spins. Th e total wavefunction of the 
system is one of the following:

Parallel spins: y(1)y(2)a(1)a(2)
Paired spins: y(1)y(2){a(1)b(2) − b(1)a(2)}

Th e Pauli principle, however, asserts that for a wavefunction 
to be acceptable (for electrons), it must change sign when the 
electrons are exchanged. In each case, exchanging the labels 1 
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and 2 converts the factor y(1)y(2) into y(2)y(1), which is the 
same because the order of multiplying the functions does not 
change the value of the product. Th e same is true of a(1)a(2). 
Th erefore, the fi rst combination is not allowed because it does 
not change sign. Th e second combination, however, changes to

y(2)y(1){a(2)b(1) − b(2)a(1)}
  = −y(1)y(2){a(1)b(2) − b(1)a(2)}

Th is combination does change sign (it is ‘antisymmetric’) and 
is therefore acceptable.

Now we see that the only possible state of two electrons in 
the same orbital allowed by the Pauli principle is the one that 
has paired spins. Th is is the content of the Pauli exclusion 
principle. Th e exclusion principle is irrelevant when the 
orbitals occupied by the electrons are diff erent and both 
electrons may then have (but need not have) the same spin 
state. Nevertheless, even then the overall wavefunction must 
still be antisymmetric overall and must still satisfy the Pauli 
principle itself.

Discussion questions

9.1 Summarize the evidence that led to the introduction of quantum 
theory.

9.2 Consult texts or online sources to establish the size range for 
the following particles: a plant cell, an animal cell, a bacterium, a 
ribosome, a protein (such as chymotrypsin), a small molecule (such as 
an amino acid), and an atom. Choose among light microscopy (which 
uses visible light as a probe), electron microscopy, AFM, and STM as 
suitable techniques for the study of the size and general shape (but 
not the internal structure) of these particles.

9.3 Discuss the physical origin of the quantization of energy of a 
particle confi ned to moving inside a one-dimensional box or on a ring.

9.4 Defi ne, justify, and provide examples of zero-point energy.

9.5 Discuss the physical origins of quantum mechanical tunneling. 
Why is tunneling more likely to contribute to the mechanisms of 
electron transfer and proton transfer processes than to mechanisms 
of group transfer reactions, such as AB + C → A + BC (where A, B, 
and C are large molecular groups)?

9.6 Explain how the technique of separation of variables is used to 
simplify the discussion of multi-dimensional problems. When can 
it not be used?

9.7 List and describe the signifi cance of the quantum numbers 
needed to specify the internal state of a hydrogenic atom.

9.8 Explain the signifi cance of (a) a boundary surface and (b) the 
radial distribution function for hydrogenic orbitals.

9.9 Describe the orbital approximation for the wavefunction of a 
many-electron atom. What are the limitations of the approximation?

9.10 Th e d metals iron, copper, and manganese form cations with 
diff erent oxidation states. For this reason they are found in many 
oxidoreductases and in several proteins of oxidative phosphorylation 
and photosynthesis (Section 5.10). Explain why many d metals form 
cations with diff erent oxidation states.

Exercises

9.11 Calculate the size of the quantum involved in the excitation of 
(a) an electronic motion of frequency 1.0 × 1015 Hz, (b) a molecular 
vibration of period 20 fs, and (c) a pendulum of period 0.50 s. Express 
the results in joules and in kilojoules per mole.

9.12 Calculate the average power output of a photodetector that 
collects 8.0 × 107 photons in 3.8 ms from monochromatic light 
of wavelength (a) 470 nm, the wavelength produced by some 
commercially available light-emitting diodes (LED), and (b) 780 nm, 
a wavelength produced by lasers that are commonly used in compact 
disc (CD) players. Hint: Th e total energy emitted by a source or 
collected by a detector in a given interval is its power multiplied by 
the time interval of interest (1 J = 1 W s).

9.13 Calculate the de Broglie wavelength of (a) a mass of 1.0 g 
traveling at 1.0 m s−1, (b) the same, traveling at 1.00 × 105 km s−1, (c) an 
He atom traveling at 1000 m s−1 (a typical speed at room temperature), 
(d) yourself traveling at 8 km h−1, and (e) yourself at rest.

9.14 Calculate the linear momentum per photon, energy per photon, 
and the energy per mole of photons for radiation of wavelength 

(a) 600 nm (red), (b) 550 nm (yellow), (c) 400 nm (violet), (d) 200 nm 
(ultraviolet), (e) 150 pm (X-ray), and (f) 1.0 cm (microwave).

9.15 Electron microscopes can obtain images with several hundred-
fold higher resolution than optical microscopes because of the short 
wavelength obtainable from a beam of electrons. For electrons moving 
at speeds close to c, the speed of light, the expression for the de Broglie 
wavelength (eqn 9.3) needs to be corrected for relativistic eff ects:

l = h

!
@2meeV AC1 + eV

2mec2

D
F

#
$

1/2

where c is the speed of light in a vacuum and V is the potential 
diff erence through which the electrons are accelerated. (a) Calculate 
the de Broglie wavelength of electrons accelerated through 50 kV. 
(b) Is the relativistic correction important?

9.16 Suppose that you designed a spacecraft  to work by photon 
pressure. Th e sail was a completely absorbing fabric of area 1.0 km2 
and you directed a red laser beam of wavelength 650 nm onto it at a 



 EXERCISES   361

rate of NA photons per second from a base on the Moon. What are 
(a) the force and (b) the pressure exerted by the radiation on the sail? 
(c) Suppose the mass of the spacecraft  was 1.0 kg. Given that, aft er a 
period of acceleration from standstill, speed = (force/mass) × time, 
how long would it take for the craft  to accelerate to a speed of 
1.0 m s−1?

9.17 Th e speed of a certain proton is 350 km s−1. If the uncertainty 
in its momentum is 0.0100 per cent, what uncertainty in its location 
must be tolerated?

9.18 An electron is confi ned to a linear region with a length of the 
same order as the diameter of an atom (about 100 pm). Calculate 
the minimum uncertainties in its position and speed.

9.19 Calculate the probability that an electron will be found 
(a) between x = 0.1 and 0.2 nm, and (b) between 4.9 and 5.2 nm 
in a box of length L = 10 nm when its wavefunction is 
y = (2/L)1/2 sin(2px/L). Hint: Treat the wavefunction as a 
constant in the small region of interest and interpret dV as dx.

9.20 Repeat Exercise 9.19, but allow for the variation of the 
wavefunction in the region of interest. What are the percentage 
errors in the procedure used in Exercise 9.19? Hint: You will need to 
integrate y2dx between the limits of interest. Th e indefi nite integral 
you require is given in Justifi cation 9.1.

9.21 What is the probability of fi nding a particle of mass m in (a) the 
left -hand one-third, (b) the central one-third, and (c) the right-hand 
one-third of a box of length L when it is in the state with n = 1?

9.22 A certain wavefunction is zero everywhere except between 
x = 0 and x = L, where it has the constant value A. Normalize the 
wavefunction.

9.23 Th e conjugated system of retinal consists of 11 carbon atoms 
and one oxygen atom. In the ground state of retinal, each level up to 
n = 6 is occupied by two electrons. Assuming an average internuclear 
distance of 140 pm, calculate (a) the separation in energy between the 
ground state and the fi rst excited state in which one electron occupies 
the state with n = 7 and (b) the frequency of the radiation required 
to produce a transition between these two states.

9.24 Many biological electron transfer reactions, such as those 
associated with biological energy conversion, may be visualized as 
arising from electron tunneling between protein-bound cofactors, 
such as cytochromes, quinones, fl avins, and chlorophylls. Th is 
tunneling occurs over distances that are oft en greater than 1.0 nm, 
with sections of protein separating electron donor from acceptor. 
For a specifi c combination of electron donor and acceptor, the rate 
of electron tunneling is proportional to the transmission probability, 
with k ≈ 7 nm−1 (eqn 9.11). By what factor does the rate of electron 
tunneling between two co-factors increase as the distance between 
them changes from 2.0 nm to 1.0 nm?

9.25 Th e rate, v, at which electrons tunnel through a potential barrier 
of height 2 eV, like that in a scanning tunneling microscope, and 
thickness d can be expressed as v = Ae−d/l, with A = 5 × 1014 s−1 and 
l = 70 pm. (a) Calculate the rate at which electrons tunnel across a 
barrier of width 750 pm. (b) By what factor is the current reduced 
when the probe is moved away by a further 100 pm?

9.26 Th e particle in a two-dimensional well is a useful model for the 
motion of electrons around the indole ring (3), the conjugated cycle 
found in the side chain of tryptophan. We may regard indole as a 
rectangle with sides of length 280 pm and 450 pm, with 10 electrons 
in the conjugated p system. As in Case study 9.1, we assume that in the 

ground state of the molecule each quantized level is occupied by 
two electrons. (a) Calculate the energy of an electron in the highest 
occupied level. (b) Calculate the frequency of radiation that can 
induce a transition between the highest occupied and lowest 
unoccupied levels.

9.27 Th e particle on a ring is a useful model for the motion of 
electrons around the porphine ring (4), the conjugated macrocycle 
that forms the structural basis of the heme group and the chlorophylls. 
We may treat the group as a circular ring of radius 440 pm, with 
20 electrons in the conjugated system moving along the perimeter 
of the ring. As in Exercise 9.26, assume that in the ground state 
of the molecule quantized each level is occupied by two electrons. 
(a) Calculate the energy and angular momentum of an electron in the 
highest occupied level. (b) Calculate the frequency of radiation that 
can induce a transition between the highest occupied and lowest 
unoccupied levels.

9.28 Use mathematical soft ware or an electronic spreadsheet to plot 
the wavefunctions y1,1, y1,2, y2,1, and y2,2, and the corresponding 
probability densities, for a particle in a square well.

9.29 (a) Use the separation of variables procedure to write expressions 
for the wavefunctions and energies of a particle trapped in a 
three-dimensional box with sides LX, LY, and LZ. (b) Using results 
from part (a), write expressions for the wavefunctions and energies 
of a particle in a cubic box with sides L. Investigate the existence of 
degeneracy in this system.

9.30 Th e HI molecule may be treated as a stationary I atom around 
which an H atom moves. Assuming that the H atom circulates in 
a plane at a distance of 161 pm from the I atom, calculate (a) the 
moment of inertia of the molecule and (b) the greatest wavelength 
of the radiation that can excite the molecule into rotation.

9.31 Consider again the HI molecule as you did in Exercise 9.30. 
Assuming that the H atom oscillates toward and away from the I atom 
and that the force constant of the HI bond is 314 N m−1, calculate 
(a) the vibrational frequency of the molecule and (b) the wavelength 
required to excite the molecule into vibration. (c) Assuming that the 
force constant of the bond does not change upon isotopic substitution, 
by what factor will the vibrational frequency of HI change when H is 
replaced by deuterium?

9.32 Th e ground state wavefunction of a harmonic oscillator is 
proportional to e−ax2/2, where a depends on the mass and force 
constant. (a) Normalize this wavefunction. (b) At what displacement 
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is the oscillator most likely to be found in its ground state? Hint: 
For part (a), you will need the integral 2+∞

−∝
 e−ax2 dx = (p/a)1/2. For 

part (b), recall that the maximum (or minimum) of a function f(x) 
occurs at the value of x for which df/dx = 0.

9.33 Th e solutions of the Schrödinger equation for a harmonic 
oscillator also apply to diatomic molecules. Th e only complication 
is that both atoms joined by the bond move, so the ‘mass’ of the 
oscillator has to be interpreted carefully. Detailed calculation shows 
that for two atoms of masses mA and mB joined by a bond of force 
constant kf, the energy levels are given by eqn 9.29, but the vibrational 
frequency is

 n = 1
2p

 AC
kf

m
D
F

1/2

  m = mAmB

mA + mB

and m is called the eff ective mass of the molecule. Consider the 
vibration of carbon monoxide, a poison that prevents the transport 
and storage of O2 (see Exercise 9.48). Th e bond in a 12C16O molecule 
has a force constant of 1860 N m−1. (a) Calculate the vibrational 
frequency, n, of the molecule. (b) In infrared spectroscopy it is 
common to convert the vibrational frequency of a molecule to its 
vibrational wavenumber, 6, given by 6 = n/c. What is the vibrational 
wavenumber of a 12C16O molecule? (c) Assuming that isotopic 
substitution does not aff ect the force constant of the C≡O bond, 
calculate the vibrational wavenumbers of the following molecules: 
12C16O, 13C16O, 12C18O, 13C18O.

9.34 Predict the ionization energy of Li2+ given that the ionization 
energy of He+ is 54.40 eV.

9.35 How many orbitals are present in the N shell of an atom?

9.36 Consider the ground state of the H atom. (a) At what radius does 
the probability of fi nding an electron in a small volume located at 
a point fall to 25 per cent of its maximum value? (b) At what radius 
does the radial distribution function have 25 per cent of its maximum 
value? (c) What is the most probable distance of an electron from the 
nucleus? Hint: Look for a maximum in the radial distribution 
function.

9.37 What is the probability of fi nding an electron anywhere in one 
lobe of a p orbital given that it occupies the orbital?

9.38 Th e (normalized) wavefunction for a 2s orbital in a hydrogen 
atom is

 y = AC
1

32pa0
3

D
F

1/2 A
C  

2 − r
a0

D
F  e−r/2a0

where a0 is the Bohr radius. (a) Calculate the probability of fi nding an 
electron that is described by this wavefunction in a volume of 1.0 pm3 
(i) centered on the nucleus, (ii) at the Bohr radius, and (iii) at twice the 
Bohr radius. (b) Construct an expression for the radial distribution 

function of a hydrogenic 2s electron and plot the function against r. 
What is the most probable radius at which the electron will be found? 
(c) For a more accurate determination of the most probable radius at 
which an electron will be found in an H2s orbital, diff erentiate the 
radial distribution function to fi nd where it is a maximum.

9.39 Locate the radial nodes in (a) the 3s orbital and (b) the 4s orbital 
of an H atom.

9.40 Th e wavefunction of one of the d orbitals is proportional to 
sin q cos q. At what angles does it have nodal planes?

9.41 What is the orbital angular momentum (as multiples of ħ) of 
an electron in the orbitals (a) 1s, (b) 3s, (c) 3d, (d) 2p, and (e) 3p? 
Give the numbers of angular and radial nodes in each case.

9.42 How many electrons can occupy subshells with the following 
values of l: (a) 0, (b) 3, (c) 5?

9.43 If we lived in a four-dimensional world, there would be one s 
orbital, four p orbitals, and nine d orbitals in their respective subshells. 
(a) Suggest what form the periodic table might take for the fi rst 24 
elements. (b) Which elements (using their current names) would be 
noble gases? (c) On what element would life be likely to be based?

9.44 Th e central iron ion of cytochrome c changes between the +2 and 
+3 oxidation states as the protein shuttles electrons between complex 
III and complex IV of the respiratory chain (Section 5.10). Which do 
you expect to be larger: Fe2+ or Fe3+? Why?

9.45 Th allium, a neurotoxin, is currently the heaviest member of 
Group 13 of the periodic table and is most oft en found in the +1 
oxidation state. Aluminum, which causes anemia and dementia, is 
also a member of the group, but its chemical properties are dominated 
by the +3 oxidation state. Examine this issue by plotting the fi rst, 
second, and third ionization energies for the Group 13 elements 
against atomic number. Explain the trends you observe. Hints: Th e 
third ionization energy, I3, is the minimum energy needed to remove 
an electron from the doubly charged cation: E2+(g) → E3+(g) + e−(g), 
I3 = E(E3+) − E(E2+). For data, see the links to databases of atomic 
properties provided in the text’s website.

9.46 How is the ionization energy of an anion related to the electron 
affi  nity of the parent atom?

9.47 To perform many of their biological functions, the Lewis acids 
Mg2+ and Ca2+ must be bound to Lewis bases, such as nucleotides 
(with ATP4− as an example) or the side chains of amino acids in 
proteins. Th e equilibrium constant for the association of a doubly 
charged cation M2+ to a Lewis base increases in the order: 
Ba2+ < Sr2+ < Ca2+ < Mg2+. Provide a molecular interpretation for 
this trend, which does not depend on the nature of the Lewis base. 
Hint: Consider the eff ect of ionic radius.
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Projects

9.48 Here we see how infrared spectroscopy can be used to study the 
binding of diatomic molecules to heme proteins. We focus on carbon 
monoxide, which is poisonous because it binds strongly to the Fe2+ ion 
of the heme group of hemoglobin and myoglobin and interferes with 
the transport and storage of O2 (Case study 4.1).

(a) Estimate the vibrational frequency and wavenumber of CO bound 
to myoglobin by using the data in Exercise 9.33 and by making the 
following assumptions: the atom that binds to the heme group is 
immobilized, the protein is infi nitely more massive than either the 
C or O atom, the C atom binds to the Fe2+ ion, and binding of CO 
to the protein does not alter the force constant of the C≡O bond.

(b) Of the four assumptions made in part (a), the last two are 
questionable. Suppose that the fi rst two assumptions are still 
reasonable and that you have at your disposal a supply of myoglobin, 
a suitable buff er in which to suspend the protein, 12C16O, 13C16O, 
12C18O, 13C18O, and an infrared spectrometer, an instrument used 
for the determination of vibrational frequencies. Describe a set of 
experiments that: (i) proves which atom, C or O, binds to the heme 
group of myoglobin and (ii) allows for the determination of the force 
constant of the C≡O bond for myoglobin-bound carbon monoxide.

9.49 Th e postulation of a plausible reaction mechanism requires 
careful analysis of many experiments designed to determine the 
fate of atoms during the formation of products. Observation of the 
kinetic isotope eff ect, a decrease in the rate of a chemical reaction on 
replacement of one atom in a reactant by a heavier isotope, facilitates 
the identifi cation of bond-breaking events in the rate-determining 
step. A primary kinetic isotope eff ect is observed when the rate-
determining step requires the scission of a bond involving the isotope. 
A secondary kinetic isotope eff ect is the reduction in reaction rate even 
though the bond involving the isotope is not broken to form product. 
In both cases, the eff ect arises from the change in activation energy 
that accompanies the replacement of an atom by a heavier isotope on 
account of changes in the zero-point vibrational energies. We now 
explore the primary kinetic isotope eff ect in some detail.

Consider a reaction, such as the rearrangements catalyzed by 
vitamin B12, in which a C–H bond is cleaved. If scission of this bond is 
the rate-determining step, then the reaction coordinate corresponds 
to the stretching of the C–H bond and the potential energy profi le 
is shown in Fig. 9.57. On deuteration, the dominant change is 
the reduction of the zero-point energy of the bond (because the 
deuterium atom is heavier). Th e whole reaction profi le is not lowered, 
however, because the relevant vibration in the activated complex has a 
very low force constant, so there is little zero-point energy associated 
with the reaction coordinate in either form of the activated complex.

(a) Assume that the change in the activation energy arises only from 
the change in zero-point energy of the stretching vibration and show 
that

Ea(C–D) − Ea(C–H) = 1
2

 NAhc6(C–H) !@1 − AC
mC–H

mC–D

D
F

1/2#
$

where 6 is the relevant vibrational wavenumber and m is the relevant 
eff ective mass (Exercise 9.33).

(b) Now consider the eff ect of deuteration on the rate constant, kr, 
of the reaction. (i) Starting with the Arrhenius equation (eqn 6.19) 
and assuming that the pre-exponential factor does not change on 
deuteration, show that the rate constants for the two species should 
be in the ratio

kr(C–D)
kr(C–H)

 = e−l with l = hc6(C–H)
2kT

 !@1 − AC
mC–H

mC–D

D
F

1/2 #
$

(ii) Does kr(C–D)/kr(C–H) increase or decrease with decreasing 
temperature?

(c) From infrared spectroscopy, the fundamental vibrational 
wavenumber for stretching of a C–H bond is about 3000 cm−1. 
Predict the value of the ratio kr(C–D)/kr(C–H) at 298 K.

(d) In some cases (including several enzyme-catalyzed reactions), 
substitution of deuterium for hydrogen results in values of kr(C–D)/
kr(C–H) that are too low to be accounted for by the model described 
above. Explain this eff ect.

Fig. 9.57 Changes in the reaction profi le when a C–H bond 
undergoing cleavage is deuterated. In this illustration, the 
C–H and C–D bonds are modeled as simple harmonic 
oscillators. Th e only signifi cant change is in the zero-point 
energy of the reactants, which is lower for C–D than for C–H. 
As a result, the activation energy is greater for C–D cleavage 
than for C–H cleavage.
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The chemical bond, a link between atoms, is central to all aspects of chemistry and 
biochemistry. The theory of the origin of the numbers, strengths, and three-dimensional 
arrangements of chemical bonds between atoms is called valence theory. Valence 
theory is an attempt to explain the properties of molecules ranging from the smallest to 
the largest. For instance, it explains why N2 is so inert that it acts as a diluent for the 
aggressive oxidizing power of atmospheric oxygen. At the other end of the scale, 
valence theory deals with the structural origins of the function of protein molecules and 
the molecular biology of DNA.

Certain ideas of valence theory will be familiar from introductory chemistry. We know 
that chemical bonds may be classified on the basis of the degree of redistribution of 
electron density among interacting atomic nuclei:

• An ionic bond is formed by the transfer of electrons from one atom to another and 
the consequent attraction between the ions so formed.

• A covalent bond is formed when two atoms share a pair of electrons.

The character of a covalent bond, the main focus of this chapter, was identified by 
G.N. Lewis in 1916, before quantum mechanics was fully developed. Lewis’s original 
theory was unable to account for the shapes adopted by molecules. The most elemen-
tary (but qualitatively quite successful) explanation of the shapes adopted by molecules 
is the valence-shell electron pair repulsion model (VSEPR model). In this model, 
which should be familiar from introductory chemistry courses, the shape of a molecule 
is ascribed to the repulsions between electron pairs in the valence shell. The purpose 
of this chapter is to extend these elementary arguments and to indicate some of the 
contributions that quantum theory has made to understanding why atoms form bonds 
and molecules adopt characteristic shapes.

There are two major approaches to the calculation of molecular structure, valence
bond theory (VB theory) and molecular orbital theory (MO theory). Almost all modern 
computational work makes use of MO theory, and we concentrate on that theory in this 
chapter. Valence bond theory, however, has left its imprint on the language of chemistry, 
and it is important to know the significance of terms that chemists use every day. The 
structure of this chapter is therefore as follows. First, we present VB theory and the 
terms it introduces. Next, we present in more detail the basic ideas of MO theory. 
Finally, we see how computational techniques based on MO theory pervade all current 
discussions of molecular structure, including the prediction of the physiological 
properties of therapeutic agents.

Both theories of molecular structure adopt the Born–Oppenheimer approximation
in which it is supposed that the nuclei, being so much heavier than an electron, move 
relatively slowly and may be treated as stationary while the electrons move around 
them. We can therefore think of the nuclei as being fixed at arbitrary locations and then 
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solve the Schrödinger equation for the electrons alone. The approximation is quite good 
for molecules in their electronic ground states, for calculations suggest that (in classical 
terms) the nuclei in H2 move through only about 1 pm while the electron speeds through 
1000 pm.

By invoking the Born–Oppenheimer approximation, we can select an internuclear 
separation in a diatomic molecule and solve the Schrödinger equation for the electrons 
for that nuclear separation. Then we can choose a different separation and repeat the 
calculation, and so on. In this way we can explore how the energy of the molecule varies 
with bond length and obtain a molecular potential energy curve, a graph showing 
how the energy of the molecule depends on the internuclear separation (Fig. 10.1). The 
graph is called a potential energy curve because the nuclei are stationary and con-
tribute no kinetic energy. Once the curve has been calculated, we can identify the 
equilibrium bond length, Re, the internuclear separation at the minimum of the curve, 
and De, the depth of the minimum below the energy of the infinitely widely separated 
atoms. In Chapter 12 we shall also see that the narrowness of the potential well is 
an indication of the stiffness of the bond. Similar considerations apply to polyatomic 
molecules, where bond angles may be varied as well as bond lengths.

Valence bond theory

In VB theory, a bond is regarded as forming when an electron in an atomic orbital 
on one atom pairs its spin with that of an electron in an atomic orbital on another 
atom. To understand why this pairing leads to bonding, we have to examine the 
wavefunction for the two electrons that form the bond.

10.1 Diatomic molecules
There are many diatomic molecules of biological importance, including O2 (the 
source of oxidizing power for catabolism), N2 (the ultimate source of nitrogen for the 
synthesis of a host of biomolecules, including proteins and nucleic acids), and NO 
(a versatile carrier of biochemical messages). We need to know how bonding in 
these molecules determines their physical and chemical properties and hence 
their biological function.

We begin by considering the simplest possible chemical bond, the one in molecu-
lar hydrogen, H–H, and then see how the concepts it introduces can be extended 
to other diatomic molecules.

(a) Formulation of the VB wavefunction

When two ground-state H atoms are far apart, we can be confi dent that electron 1 
is in the 1s orbital of atom A, which we denote yA(1), and that electron 2 is in the 
1s orbital of atom B, which we denote yB(2). It is a general rule in quantum 
mechanics that the wavefunction for several noninteracting particles is the pro-
duct of the wavefunctions for each particle, so we can write y(1,2) = yA(1)yB(2). 
When the two atoms are at their bonding distance, it may still be true that 
electron 1 is on A and electron 2 is on B. However, an equally likely arrangement 
is for electron 1 to escape from A and be found on B and for electron 2 to be on A. 
In this case the wavefunction is y(1,2) = yA(2)yB(1). Whenever two outcomes are 
equally likely, the rules of quantum mechanics tell us to add together the two 
corresponding wavefunctions. Th erefore, the (unnormalized) wavefunction for 
the two electrons in a hydrogen molecule is

Fig. 10.1 A molecular potential 
energy curve. Th e equilibrium 
bond length Re corresponds to 
the energy minimum De.
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yH–H(1,2) = yA(1)yB(2) + yA(2)yB(1) A valence-bond 
wavefunction

 (10.1)

Th is expression is the VB wavefunction for the bond in molecular hydrogen. 
For technical reasons related to the Pauli exclusion principle (see the following 
Justifi cation), this wavefunction can exist only if the two electrons it describes 
have opposite spins. Bonds do not form because electrons tend to pair their spins: 
bonds are allowed to form when the electrons pair their spins.

Justification 10.1 The role of spin pairing in VB theory

Th e spatial wavefunction in eqn 10.1 does not change sign when the labels 1 
and 2 are interchanged:

yH–H(2,1) = yA(2)yB(1) + yA(1)yB(2)
 = yA(1)yB(2) + yA(2)yB(1)
 = yH–H(1,2)

According to the Pauli principle (Further information 9.3), the overall wave-
function of the molecule (the wavefunction including spin) must change sign 
when we interchange the labels 1 and 2. Th erefore, we must multiply yA–B(2,1) 
by an antisymmetric spin function of the form shown in Further information 
9.3. Th ere is only one choice:

yA–B(1,2) = {yA(1)yB(2) + yA(2)yB(1)} × {a(1)b(2) − b(1)a(2)}

For this combination, yA–B(2,1) = −yA–B(1,2) as required. Because the spin state 
a(1)b(2) − b(1)a(2) corresponds to paired electron spins, we conclude that the 
two electron spins in the bond must be paired in order for the bond to form.

(b) The energy of interaction

Why, though, does the VB wavefunction result in bonding? As can be seen from 
Fig. 10.2, as the two atoms approach each other, there is an accumulation of elec-
tron density between the two nuclei where the two atomic orbitals overlap and 
their amplitudes add together. Th e electrons that have accumulated between the 
nuclei attract them and the potential energy is lowered. However, this decrease 
in energy is counteracted by an increase in energy from the Coulombic repulsion 
between the two positively charged nuclei. At intermediate internuclear separa-
tions the attraction dominates the internuclear repulsion, but at very short dis-
tances the repulsion dominates the attraction and the total energy rises above that 
of the widely separated atoms. Qualitatively at least, we see that this description 
leads to a molecular potential energy curve like that depicted in Fig. 10.1 and 
hence accounts for the existence of a bond.

To test the model quantitatively we calculate the energy of a molecule for a series 
of internuclear separations by substituting the VB wavefunction into the Schrödinger 
equation for the molecule and calculate the corresponding values of the energy. 
When this energy is plotted against R, we do indeed get a curve very much like 
that shown in Fig. 10.1, although numerically the agreement between the calculated 
and experimental bond length and depth of the well is not very good.

(c) s and p bonds

Because the wavefunction in eqn 10.1 is built from two H1s orbitals we can expect 
the overall distribution of the electrons in the molecule to be sausage shaped 

Fig. 10.2 Th e electron density in 
H2 according to the valence-bond 
model of the chemical bond 
and the electron densities 
corresponding to the 
contributing atomic orbitals. 
Th e nuclei are denoted by large 
dots on the horizontal line. 
Note the accumulation of 
electron density in the 
internuclear region.
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(Fig. 10.3). A VB wavefunction with cylindrical symmetry around the inter-
nuclear axis is called a s bond. It is so called because, when viewed along the 
bond, it resembles a pair of electrons in an s orbital (and s, sigma, is the Greek 
equivalent of s). All VB wavefunctions are constructed in a similar way, by using 
the atomic orbitals available on the participating atoms. In general, therefore, 
the (unnormalized) VB wavefunction for an A–B bond has the form given in 
eqn 10.1 with the two contributing wavefunctions the atomic orbitals that are 
being used to form the bond (for instance, the 2p orbitals of carbon atoms).

We can use a similar description for molecules built from atoms that contribute 
more than one electron to the bonding. For example, to construct the VB descrip-
tion of N2, we consider the valence-electron confi guration of each atom, which is 
2s22p1

x2p1
y2p1

z. It is conventional to take the z-axis to be the internuclear axis, so we 
can imagine each atom as having a 2pz orbital pointing toward a 2pz orbital on the 
other atom, with the 2px and 2py orbitals perpendicular to the axis (Fig. 10.4). 
Each of these p orbitals is occupied by one electron, so we can think of bonds as 
being formed by the merging of matching orbitals on neighbouring atoms and 
the pairing of the electrons that occupy them. We get a cylindrically symmetric s 
bond from the merging of the two 2pz orbitals and the pairing of the electrons 
they contain.

Th e remaining N2p orbitals cannot merge to give s bonds because they do not 
have cylindrical symmetry around the internuclear axis. Instead, the 2px orbitals 
merge and the two electrons pair to form a p bond, so called because, viewed 
along the internuclear axis, it resembles a pair of electrons in a p orbital (and p is 
the Greek equivalent of p). Similarly, the 2py orbitals merge and their electrons 
pair to form another p bond. In general, a p bond arises from the merging of two 
p orbitals that approach side by side and the pairing of the electrons that they 
contain. It follows that the overall bonding pattern in N2 is a s bond plus two 
p bonds (Fig. 10.5), which is consistent with the Lewis structure :N≡N: in which 
the atoms are linked by a triple bond.

Fig. 10.3 In the valence bond 
theory, a s bond is formed when 
two electrons in orbitals on 
neighboring atoms, as in (a), 
pair and the orbitals merge to 
form a cylindrical electron cloud, 
as in (b).

Fig. 10.4 Th e bonds in N2 are built 
by allowing the electrons in the 
N2p orbitals to pair. However, 
only one orbital on each atom 
can form a s bond: the orbitals 
perpendicular to the axis 
form p bonds.

Self-test 10.1 Describe the VB ground state of an O2 molecule.
Answer: One s(O2pz,O2pz) bond and one p(O2px,O2px) bond. 

See Case study 10.1 for an important comment.

10.2 Polyatomic molecules
To understand the role of molecules in the processes of life, including self-assembly, 
metabolism, and self-replication, we need to extend the discussion to include the 
electronic structures and shapes of polyatomic molecules, ranging in size from H2O
to DNA.

Th e ideas we have introduced so far are easily extended to polyatomic molecules. 
Each s bond in a polyatomic molecule is formed by the merging of orbitals with 
cylindrical symmetry about the internuclear axis and the pairing of the spins of 
the electrons they contain. Likewise, each p bond (if there is one) is formed by 
pairing electrons that occupy atomic orbitals of the appropriate symmetry. Th e 
description of the electronic structure of H2O will make this clear, but also bring 
to light a defi ciency of the theory.

Th e valence electron confi guration of an O atom is 2s22p2
x2p1

y2p1
z. Th e two 

unpaired electrons in the O2p orbitals can each pair with an electron in a H1s 
orbital, and each combination results in the formation of a s bond (each bond 
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has cylindrical symmetry about the respective O–H internuclear axis, Fig. 10.6). 
Because the 2py and 2pz orbitals lie at 90° to each other, the two s bonds they form 
also lie at 90° to each other. We predict, therefore, that H2O should be an angular 
(‘bent’) molecule, which it is. However, the model predicts a bond angle of 90°, 
whereas the actual bond angle is 104°. Clearly, the VB model needs to be improved.

A further major defi ciency becomes apparent as soon as we apply these argu-
ments to carbon. Th e ground state valence confi guration of a carbon atom is 
2s22p1

x2p1
y, which suggests that it should be capable of forming only two bonds, 

not the four bonds that are so characteristic of this element.

Fig. 10.5 Th e electrons in the 2p 
orbitals of two neighboring N 
atoms merge to form s and p 
bonds. Th e electrons in the N2pz 
orbitals pair to form a bond of 
cylindrical symmetry. Electrons 
in the N2p orbitals that lie 
perpendicular to the axis also 
pair to form two p bonds.

Self-test 10.2 Give a VB description of NH3, and predict the bond angle of 
the molecule on the basis of this description. Th e experimental bond angle 
is 107°.

Answer: Th ree s(N2p,H1s) bonds; 90°.

(a) Promotion

Two modifi cations solve both defi ciencies of VB theory. Th ey are both based on 
the fact that it might be appropriate to invest energy initially in order to achieve 
a greater overall lowering of energy by allowing bond angles to change and 
stronger and perhaps more bonds to form.

Suppose we imagine that a valence electron is promoted from a full atomic 
orbital to an empty atomic orbital. In carbon, with ground state confi guration 
2s22p1

x2p1
y, for example, the promotion of a 2s electron to a 2p orbital leads to the 

confi guration 2s12p1
x2p1

y2p1
z, with four unpaired electrons in separate orbitals. 

Th ese electrons may pair with four electrons in orbitals provided by four other 
atoms (such as four H1s orbitals if the molecule is CH4), and as a result the atom 
can form four s bonds. Promotion is worthwhile if the energy it requires can be 
more than recovered in the greater strength or greater number of bonds that can 
be formed. We should not think of the atom as making an initial transition to an 
excited state: promotion is just a way of analyzing the electron rearrangement that 
takes place as bonds form and achieve the lowest possible energy.

We can now see why tetravalent carbon is so common. Th e promotion energy 
of carbon is small because the promoted electron leaves a doubly occupied 2s 
orbital and enters a vacant 2p orbital, hence signifi cantly relieving the electron–
electron repulsion it experiences in the former. Furthermore, the energy required 
for promotion is more than recovered by the atom’s ability to form four bonds in 
place of the two bonds of the unpromoted atom.

(b) Hybridization

Promotion, however, appears to imply the presence of three s bonds of one type 
(in CH4, from the merging of H1s and C2p orbitals) and a fourth s bond of a 
distinctly diff erent type (formed from the merging of H1s and C2s). It is well 
known, however, that all four bonds in methane are exactly equivalent in terms of 
both their chemical and their physical properties (their lengths, strengths, and 
stiff ness).

Th is problem is overcome in VB theory by drawing on another feature of 
quantum mechanics that allows the same electron distribution to be described in 
diff erent ways. In this case, we can describe the electron distribution in the pro-
moted atom either as arising from four electrons in one s and three p orbitals or as 
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arising from four electrons in four diff erent mixtures of these orbitals. Mixtures 
(more formally, linear combinations) of atomic orbitals on the same atom are 
called hybrid orbitals. We can picture them by thinking of the four original 
atomic orbitals, which are waves centered on a nucleus, as being like ripples 
spreading from a single point on the surface of a lake. Th ese waves interfere 
destructively (where their amplitudes cancel) or constructively (where their 
amplitudes add) in diff erent regions and give rise to four new shapes. Th e specifi c 
linear combinations that give rise to four equivalent hybrid orbitals are

h1 = s + px + py + pz h2 = s − px − py + pz

h3 = s − px + py − pz h4 = s + px − py − pz sp3 hybrid orbitals  (10.2a)

As a result of the constructive and destructive interference between the positive 
and negative regions of the component orbitals, each hybrid orbital has a large 
lobe pointing toward one corner of a regular tetrahedron (Fig. 10.7). Because 
each hybrid is built from one s orbital and three p orbitals, it is called an sp3 hybrid 
orbital.

We can now see how the VB description of CH4 leads to a tetrahedral molecule 
containing four equivalent C–H bonds. It is energetically favorable (in the end, 
aft er bonding has been taken into account) for the C atom to undergo promotion. 
Th e promoted confi guration has a distribution of electrons that is equivalent to 
one electron occupying each of four tetrahedral hybrid orbitals. Each hybrid 
orbital of the promoted atom contains a single unpaired electron; an H1s electron 
can pair with each one, giving rise to a s bond pointing in a tetrahedral direction. 
Because each sp3 hybrid orbital has the same composition, all four s bonds are 
identical apart from their orientation in space (Fig. 10.8).

Hybridization is also used in the VB description of alkenes. Consider ethene 
(ethylene), which is not only an important industrial gas but also a hormone 
associated with the ripening of fruit. An ethene molecule is planar, with HCH and 
HCC bond angles close to 120°. To reproduce this s-bonding structure, we think 
of each C atom as being promoted to a 2s12p1

x2p1
y2p1

z confi guration. However, 
instead of using all four orbitals to form hybrids, we form sp2 hybrid orbitals by 
allowing the s orbital and two of the p orbitals to interfere. As shown in Fig. 10.9a, 
the three hybrid orbitals

h1 = s + 21/2py

h2 = s + (3
2)1/2px − (1

2)1/2py

h3 = s − (3
2)1/2px − (1

2)1/2py sp2 hybrid orbitals  (10.2b)

lie in a plane and point toward the corners of an equilateral triangle. Th e third 2p 
orbital (2pz) is not included in the hybridization, and its axis is perpendicular 
to the plane in which the hybrids lie (Fig. 10.9b). Th e coeffi  cients 21/2, etc., in 
the hybrids have been chosen to give the correct directional properties of the 
hybrids.

Th e sp2-hybridized C atoms each form three s bonds with either the h1 hybrid 
of the other C atom or with the H1s orbitals. Th e s framework therefore consists 
of bonds at 120° to each other. Moreover, provided the two CH2 groups lie in 
the same plane, the two electrons in the unhybridized C2pz orbitals can pair and 
form a p bond (Fig. 10.10). Th e formation of this p bond locks the framework into 
the planar arrangement, for any rotation of one CH2 group relative to the other 
leads to a weakening of the p bond (and consequently an increase in energy of 
the molecule).

Fig. 10.7 Th e 2s and three 2p 
orbitals of a carbon atom 
hybridize, and the resulting 
hybrid orbitals point toward the 
corners of a regular tetrahedron.

Fig. 10.6 Th e bonding in an H2O 
molecule can be pictured in 
terms of the pairing of an 
electron belonging to one H atom 
with an electron in an O2p 
orbital; the other bond is formed 
likewise, but using a 
perpendicular O2p orbital. 
Th e predicted bond angle is 90°, 
which is in poor agreement 
with the experimental bond 
angle (104°).
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A similar description applies to a linear ethyne (acetylene) molecule, 
H–C≡C–H. Now the carbon atoms are sp hybridized, and the s bonds are built 
from hybrid atomic orbitals of the form

h1 = s + pz  h2 = s − pz sp hybrid orbitals  (10.2c)

Th e two hybrids lie along the z-axis. Th e electrons in them pair either with an 
electron in the corresponding hybrid orbital on the other C atom or with an elec-
tron in an H1s orbital. Electrons in the two remaining p orbitals on each atom, 
which are perpendicular to the molecular axis, pair to form two perpendicular p 
bonds (as in Fig. 10.11).

It is possible to form hybrid orbitals with intermediate proportions of 
atomic orbitals. For example, as more p-orbital character is included in an 
sp-hybridization scheme, the hybridization changes toward sp2 and the angle 
between the hybrids changes from 180° for pure sp hybridization to 120° for pure 
sp2 hybridization. If the proportion of p character continues to be increased 
(by reducing the proportion of s orbital), then the hybrids eventually become 
pure p orbitals at an angle of 90° to each other (Fig. 10.12). Hybridization schemes 
involving d orbitals (Table 10.1) are oft en invoked to account for (or at least be 
consistent with) other molecular geometries but are not commonly invoked in 
biology. Regardless of the types of orbitals used, an important point is that:

Th e hybridization of N atomic orbitals always results in the formation of N 
hybrid orbitals.

Fig. 10.8 Th e valence bond 
description of the structure of 
CH4. Each s bond is formed by 
the pairing of an electron in an 
H1s orbital with an electron in 
one of the hybrid orbitals shown 
in Fig. 10.7. Th e resulting 
molecule is regular tetrahedral.

Fig. 10.9  (a) Trigonal planar 
hybridization is obtained 
when an s and two p orbitals are 
hybridized. Th e three lobes lie in 
a plane and make an angle of 120° 
to each other. (b) Th e remaining 
p orbital in the valence shell of 
an sp2-hybridized atom lies 
perpendicular to the plane of 
the three hybrids.

Fig. 10.11 Th e electronic structure 
of ethyne (acetylene). Th e 
electrons in the two sp hybrids on 
each atom pair to form s bonds 
either with the other C atom or 
with an H atom. Th e remaining 
two unhybridized 2p orbitals on 
each atom are perpendicular to 
the axis: the electrons in 
corresponding orbitals on each 
atom pair to form two p bonds. 
Th e overall electron distribution 
is cylindrical.

Fig. 10.10 Th e valence bond description of 
the structure of a carbon–carbon double 
bond, as in ethene. Th e electrons in the two 
sp2 hybrids that point toward each other 
pair and form a s bond. Electrons in the 
two p orbitals that are perpendicular to the 
plane of the hybrids pair and form a p bond. 
Th e electrons in the remaining hybrid 
orbitals are used to form bonds to other 
atoms (in ethene itself, to H atoms).
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Hybridization accounts for—or at least is consistent with—the structure of 
H2O, with its bond angle of 104°. Each O–H s bond is formed from an O atom 
hybrid orbital with a composition that lies between pure p (which would lead to 
a bond angle of 90°) and pure sp2 (which would lead to a bond angle of 120°). Th e 
actual bond angle and hybridization adopted are found by calculating the energy 
of the molecule as the bond angle is varied and looking for the angle at which the 
energy is a minimum.

Table 10.1 Hybrid orbitals

Number Shape Hybridization*

2 Linear sp
3 Trigonal planar sp2

4 Tetrahedral sp3

5 Trigonal bipyramidal sp3d
6 Octahedral sp3d2

*Other combinations are possible.

Fig. 10.12 Th e variation of 
hybridization with bond angle 
in (a) angular and (b) trigonal 
pyramidal molecules. Th e vertical 
axis gives the ratio of p to 
s character, so high values 
indicate mostly p character.

Example 10.1 Bonding in the peptide group

Use VB theory to describe the CO, CN, and NH bonds of the peptide group 
based on the structure shown in (1).

Strategy To calculate the number of hybrid orbitals, we note that each orbital 
can hold either one or two electrons. If it contains one electron, the orbital is 
ready to make a s bond with an orbital on another atom. If it contains a pair 
of electrons, then it does not participate in bonding but acts as a lone pair. 
It follows that the number of hybrid orbitals on an atom is equal to the sum of 
the number of s bonds to the atom and the number of lone pairs on the atom. 
Unhybridized p orbitals can participate in p bonds, as described in Section 
10.4. As noted in Section 10.2, a double bond consists of a s and a p bond.

Solution Th e O atom is sp2 hybridized because it has two lone pairs and makes 
a s bond with the C atom. Th e C atom is sp2 hybridized because it makes three 
s bonds: one with the O atom, one with the Ca1 atom, and one with the N atom. 
Th e N atom is sp3 hybridized because it has one lone pair and makes three s 
bonds: one with the H atom, one with the C atom, and one with the Ca2 atom.

We can infer that the CO group has a s bond between Csp2 and Osp2 hybrid 
orbitals and a p bond between unhybridized C2pz and O2pz orbitals (where 
again we have taken the z-axis to be perpendicular to the plane containing 
the hybrid orbitals). Th e CN group has a s bond between Csp2 and Nsp3 hybrid 
orbitals. Finally, the NH group has a s bond between a Nsp3 hybrid orbital 
and a H1s atomic orbital. Th is pattern of hybridizations is summarized in 
Fig. 10.13; but read on!

Self-test 10.3 Estimate the values of the Ca1CN and CNCa2 bond angles for 
the structure shown in (1).

Answer: 120°, <109°
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 (c) Resonance

Th e VB theory as presented so far fails to account for some experimental observa-
tions. For example, data (from X-ray diff raction, Section 11.4) on the peptide 
group show that all six of the atoms shown in (1) lie in the same plane. Th is 
geometry is not consistent with the sp3 hybridization of the N atom, which implies 
a tetrahedral arrangement of bonded and non-bonded electron pairs and hence 
a non-planar arrangement of the C, N, H, and Ca2 atoms. We need to refi ne the 
theory further.

What has been omitted so far? We have supposed that the peptide group has a 
structure that matches the Lewis structure in (2). But suppose instead we had 
assumed that the Lewis structure is (3), with equal and opposite charges on the O 
and N atoms. Th ere is now a double bond between the CO and CN groups and 
both C and N are sp2 hybridized and hence planar. If this were the structure, then 
the O, C, Ca1, N, H, and Ca2 atoms would lie in a single plane, as is observed.

When two Lewis structures have a similar energy, the true wavefunction is 
a linear combination of them both and in this case we would write

y = ay1 + by2 A resonance hybrid  (10.3)

where y1 is the wavefunction for structure (2), y2 is that for structure (3), and a 
and b are numerical coeffi  cients that are determined by minimizing the energy. 
According to quantum mechanics, we interpret the value of a2 as the probability 
that the peptide group has structure (2) and the value of b2 as the probability that 
it has structure (3), with a2 + b2 = 1. We say that the true wavefunction is a reson-
ance hybrid of the contributing structures. Th e superposition of contributing 
structures is called resonance. Resonance is not a fl ickering between the contrib-
uting states: it is a blending of their characteristics, much as a mule is a blend of a 
horse and a donkey.

Resonance has two main eff ects: it distributes multiple-bond character over the 
molecule and it lowers the overall energy. Th e most famous example is that of 
benzene, where the two Kekulé structures (4), having the same energy, contribute 
equally to the resonance hybrid. Resonance between structures of the same energy 
results in the greatest lowering of energy, and accounts (in VB terms) for the con-
siderable chemical stability of the phenyl group wherever it occurs in a molecule. 
Resonance also distributes double-bond character over the ring so that all the CC 
links are equivalent.

(d) The language of valence bonding

It might be helpful at this point to summarize the concepts that VB theory has 
introduced into chemistry and which still survive even though MO theory is the 
dominant computational mode:

1. Th e names of bond types: s and p bonds are formed by spin pairing of 
electrons on adjacent atoms.

2. Promotion: valence electrons may be promoted to empty orbitals if overall 
that results in a lowering of energy.

3. Hybridization: atomic orbitals may be hybridized to match the observed 
geometry of a molecule.

4. Resonance: the superposition of individual structures. Resonance dis-
tributes multiple-bond character over the molecule and lowers the overall 
energy.

Fig. 10.13 Th e pattern of bonding 
in the peptide group.
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Molecular orbital theory

In MO theory, electrons are treated as spreading throughout the entire molecule: 
every electron contributes to the strength of every bond. As we have remarked, 
this theory has been more fully developed than VB theory and provides the 
language that is widely used in modern discussions of bonding in organic and 
inorganic molecules and d-metal complexes. It is also the basis for the calculation 
of spectroscopic properties, the modeling of molecular interactions (such as those 
between therapeutic agents and receptor sites in the cell), and the prediction of 
the outcome of chemical reactions.

To introduce the theory, we follow the same strategy as in Chapter 9, where the 
one-electron hydrogen atom was taken as the fundamental species for discussing 
atomic structure and then developed into a description of many-electron atoms. 
In this section we use the simplest molecule of all, the one-electron hydrogen 
molecule-ion, H2

+, to introduce the essential features of bonding and then use H2
+ 

as a guide to the structures of more complex systems. Th e hydrogen molecule-ion 
has no direct importance to biology, but is of crucial importance for establishing 
the concepts of MO theory.

10.3 Linear combinations of atomic orbitals
To formulate orbitals that spread around a molecule as small as O2 or as large as 
DNA, we need to develop a mathematical procedure for combining atomic orbitals.

A molecular orbital is a one-electron wavefunction for an electron that spreads 
throughout the molecule. Th e mathematical forms of such orbitals are highly 
complicated, even for such a simple species as H2

+, and they are unknown in 
general. All modern work builds approximations to the true molecular orbital by 
building them from the atomic orbitals of the atoms present in the molecule.

First, we use once again (as in VB theory) the general principle that if there are 
several possible outcomes of an observation, then we add together the wavefunc-
tions that represent each outcome. In H2

+, there are two possible outcomes of 
locating the electron: it may be found either in an atomic orbital centered on A, 
yA, or in an orbital centered on B, yB. Th erefore, we write

 y = cAyA + cByB  An LCAO  (10.4a)

where cA and cB are numerical coeffi  cients. Th is wavefunction is called a linear 
combination of atomic orbitals (LCAO). Th e squares of the coeffi  cients tell us 
the relative proportions of the atomic orbitals contributing to the molecular 
orbital. In a homonuclear diatomic molecule, an electron can be found with equal 
probability in orbital A or orbital B, so the squares of the coeffi  cients must be 
equal, which implies that cB = ±cA. Th e two possible wavefunctions are therefore

 y = yA ± yB LCAOs for a homonuclear 
diatomic molecule

 (10.4b)

where, for simplicity, and to focus on the structure of molecular orbitals rather 
than their numerical details, we are ignoring the overall normalization factor.

(a) Bonding orbitals

First, we consider the LCAO with the plus sign, y = yA + yB, as this molecular 
orbital will turn out to have the lower energy of the two. Th e form of this orbital is 
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shown in Fig. 10.14. It is called a s orbital because it resembles an s orbital when 
viewed along the axis. Because (as we shall see) it is the s orbital of lowest energy, 
it is labeled 1s. An electron that occupies a s orbital is called a s electron. In the 
ground state of the H2

+ ion, there is a single 1s electron, so we report the ground 
state confi guration of H2

+ as 1s1.
By examining the LCAO-MO in eqn 10.4, we can identify the origin of the 

lowering of energy that is responsible for the formation of the bond. Th e two 
atomic orbitals are like waves centered on adjacent nuclei. In the internuclear 
region, the amplitudes interfere constructively and the wavefunction has an 
enhanced amplitude (Fig. 10.15). Because the amplitude is increased, there is 
an increased probability of fi nding the electron between the two nuclei, where it is 
in a good position to interact strongly with both of them. Hence the energy of 
the molecule is lower than that of the separate atoms, where each electron can 
interact strongly with only one nucleus. In elementary MO theory, the bonding 
eff ect of an electron that occupies a molecular orbital is ascribed to its accumu-
lation in the internuclear region as a result of the constructive interference of 
the contributing atomic orbitals.

A 1s orbital is an example of a bonding orbital, a molecular orbital that, 
if occupied, contributes to the strength of a bond between two atoms. As in VB 
theory, we can substitute the wavefunction in eqn 10.4 into the Schrödinger 
equation for the molecule-ion with the nuclei at a fi xed separation R and solve 
the equation for the energy. Th e molecular potential energy curve obtained 
by plotting the energy against R is very similar to the one drawn in Fig. 10.1. 
Th e energy of the molecule falls as R is decreased from large values because the 
electron is increasingly likely to be found in the internuclear region as the two 
atomic orbitals interfere more eff ectively. However, at small separations, there is 
too little space between the nuclei for signifi cant accumulation of electron density 
there. In addition, the nucleus–nucleus repulsion becomes large. As a result, aft er 
an initial decrease, at small internuclear separations the potential energy curve 
passes through a minimum and then rises sharply to high values. Calculations 
on H2

+ give the equilibrium bond length as 130 pm and the bond dissociation 
energy as 171 kJ mol−1; the experimental values are 106 pm and 250 kJ mol−1, 
so this simple LCAO-MO description of the molecule, while inaccurate, is not 
absurdly wrong.

(b) Antibonding orbitals

Now consider the alternative LCAO, the one with a minus sign, y = yA − yB. 
Because this wavefunction is also cylindrically symmetrical around the inter-
nuclear axis, it is also a s orbital and is denoted 1s* (Fig. 10.16). When sub-
stituted into the Schrödinger equation, we fi nd that it has a higher energy than 
the 1s orbital and, indeed, it has a higher energy than either of the two atomic 
orbitals.

Fig. 10.15 Th e bonding molecular 
orbital wavefunction along the 
internuclear axis. Note that there 
is an enhancement of amplitude 
between the nuclei, so there is 
an increased probability of 
fi nding the bonding electrons 
in that region.

Self-test 10.4 Show that the molecular orbital written above is zero on a plane 
cutting through the internuclear axis at its midpoint. Take each atomic orbital 
to be of the form e−r/a0, with rA measured from nucleus A and rB measured from 
nucleus B.

Answer: Th e atomic orbitals cancel for values equidistant from the two nuclei

Fig. 10.14 Th e formation of 
a bonding molecular orbital 
(a s orbital). (a) Two H1s orbitals 
come together. (b) Th e atomic 
orbitals overlap, interfere 
constructively, and give rise to 
an enhanced amplitude in the 
internuclear region. Th e resulting 
orbital has cylindrical symmetry 
about the internuclear axis. When 
it is occupied by two paired 
electrons, to give the confi guration 
s2, we have a s bond.



 10.4 HOMONUCLEAR DIATOMIC MOLECULES   375

We can trace the origin of the high energy of 1s* to the existence of a nodal 
plane, a plane on which the wavefunction passes through zero. Th is plane lies 
halfway between the nuclei and cuts through the internuclear axis. Th e two atomic 
orbitals cancel on this plane as a result of their destructive interference because 
they have opposite signs. In drawings like that in Figs 10.14 and 10.16, we 
represent overlap of orbitals with the same sign (as in the formation of 1s) by 
shading of the same color; the overlap of orbitals of opposite sign (as in the 
formation of 1s*) is represented by one orbital of one color and another orbital of 
a diff erent color.

Th e 1s* orbital is an example of an antibonding orbital, an orbital that, if 
occupied, decreases the strength of a bond between two atoms. Th e antibonding 
character of the 1s* orbital is partly a result of the exclusion of the electron from 
the internuclear region and its relocation outside the bonding region, where 
it helps to pull the nuclei apart rather than pulling them together (Fig. 10.17). 
An antibonding orbital is oft en slightly more strongly antibonding than the 
corresponding bonding orbital is bonding. Th is is partly because, although the 
‘gluing’ eff ect of a bonding electron and the ‘anti-gluing’ eff ect of an antibonding 
electron are similar, the nuclei repel each other in both cases, and this repulsion 
pushes both levels up in energy.

(c) Inversion symmetry

A fi nal point about notation is important for the discussion of electronic 
transitions (Chapter 12). For homonuclear diatomic molecules, it is helpful to 
identify the inversion symmetry of a molecular orbital, the behavior of the 
wavefunction when it is inverted through the center (more formally, the center of 
inversion) of the molecule. Th us, if we consider any point of the 1s orbital and 
then project it through the center of the molecule and out an equal distance on 
the other side, we arrive at an identical value of the wavefunction (Fig. 10.18). 
Th is so-called gerade symmetry (from the German word for ‘even’) is denoted by 
a subscript g, as in 1sg. On the other hand, the same procedure applied to the 
antibonding 1s* orbital results in the same size but opposite sign of the wave-
function. Th is ungerade symmetry (‘odd symmetry’) is denoted by a subscript u, 
as in 1su. Th is inversion symmetry classifi cation is not applicable to heteronuclear 
diatomic molecules (such as CO) because they do not have a center of inversion.

We shall use the g,u notation because it is helpful when discussing the elec-
tronic spectra of molecules and when labeling orbitals in many-electron species. 
However, to keep track of the bonding or antibonding character of an orbital, 
when we judge it appropriate we shall attach a * to the orbital label. Th e g,u 
classifi cation is fundamental as it is based on symmetry; the * designation is just 
an aid to interpretation.

10.4 Homonuclear diatomic molecules
To make MO theory relevant to biological systems, we need to describe procedures 
for describing molecules that are more complex than H2

+.

In Chapter 9 we used the hydrogenic atomic orbitals and the building-up prin-
ciple to deduce the ground electronic confi gurations of many-electron atoms. 
Here we use the same procedure for many-electron diatomic molecules (such as 
H2 with two electrons and even Br2 with 70), but using the H2

+ molecular orbitals 
as a basis.

Fig. 10.16 Th e formation of an 
antibonding molecular orbital 
(a s* orbital). (a) Two H1s 
orbitals come together. (b) Th e 
atomic orbitals overlap with 
opposite signs (as depicted by 
diff erent colors), interfere 
destructively, and give rise to 
a decreased amplitude in the 
internuclear region. Th ere is 
a nodal plane exactly halfway 
between the nuclei, on which any 
electrons that occupy the orbital 
will not be found.
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(a) Criteria for the formation of molecular orbitals

To use MO theory to build biological molecules we need to know why some 
atomic orbitals combine whereas some do not. When building molecular orbitals, 
we need to consider linear combinations only of atomic orbitals of the same symmetry 
with respect to the internuclear axis. Because an s orbital has cylindrical symmetry 
around the internuclear axis, but a px orbital (with x perpendicular to the bond) 
does not, the two atomic orbitals cannot contribute to the same molecular orbital. 
Th e reason for this distinction based on symmetry can be understood by con-
sidering the interference between an s orbital and a px orbital (Fig. 10.19): although 
there is constructive interference between the two orbitals on one side of the axis, 
there is an exactly compensating amount of destructive interference on the other 
side of the axis, and the net bonding or antibonding eff ect is zero.

Th e extent to which two orbitals overlap is measured by the overlap integral, S:

S = � yAyB dt The overlap integral  (10.5)

where the integration is over all space. If the atomic orbital yA on A is small wher-
ever the orbital yB on B is large or vice versa, then the product of their amplitudes 
is everywhere small and the integral—the sum of these products—is small 
(Fig. 10.20a). If yA and yB are simultaneously large in some region of space, then 
S may be large (Fig. 10.20b). If the two atomic orbitals are identical (for example, 
1s orbitals on the same nucleus), S = 1. Th e overlap integral between two H1s 
orbitals separated by a distance R turns out to be

S = !@1 + R
a0

 + 1
3 

A
C

R
a0

D
F

2#
$e−R/a0 (10.6)

where a0 is the Bohr radius. Th is function is plotted in Fig. 10.21: notice how the 
exponential factor ensures that S approaches zero for large separations. Typical 
values for orbitals with n = 2 are in the range 0.2 to 0.3.

Now consider the arrangement in Fig. 10.20c in which an s orbital overlaps a px 
orbital of a diff erent atom. At some point the product yAyB may be large. However, 
there is a point where yAyB has exactly the same magnitude but an opposite sign. 
When the overlap integral is evaluated, these two contributions are added together 
and cancel out. For every point in the upper half of the diagram, there is a point in 
the lower half that cancels it, so S = 0. Th erefore, there is no net overlap between 
the s and p orbitals in this arrangement, and no contribution to bonding.

Now consider the 2px and 2py orbitals of each atom, which are perpendicular 
to the internuclear axis and may overlap side by side. Th is overlap may be con-
structive or destructive and results in a bonding and an antibonding p orbital, 
which we label 1p and 1p*, respectively. Th e notation p is the analog of p in atoms, 
for when viewed along the axis of the molecule, a p orbital looks like a p orbital 
(Fig. 10.22). Th e two 2px orbitals overlap to give a bonding and an antibonding p 
orbital, as do the two 2py orbitals. Th e two bonding combinations have the same 
energy; likewise, the two antibonding combinations have the same energy. Hence, 
each p energy level is doubly degenerate and consists of two distinct orbitals. 
Two electrons in a p orbital constitute a p bond: such a bond resembles a p bond 
of VB theory, but the details of th e electron distribution are slightly diff erent.

Th e inversion-symmetry classifi cation also applies to p orbitals. As we see from 
Fig. 10.23, a bonding p orbital changes sign on inversion and is therefore classifi ed 

A brief comment
In quantum mechanics, 
it is conventional to use dt 
(where t is tau) to represent 
an infi nitesimal volume. 
In cartesian coordinates, 
dt = dxdydz. In spherical 
coordinates, dt = r2dr sin q 
dqdf.

Fig. 10.17 Th e antibonding 
molecular orbital wavefunction 
along the internuclear axis. 
Note that there is a decrease in 
amplitude between the nuclei, so 
there is a decreased probability of 
fi nding the bonding electrons in 
that region.
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as u. On the other hand, the antibonding p* orbital does not change sign and is 
therefore g. Th e bonding and antibonding combinations can therefore be denoted 
1pu and 1pg (or 1pg* when we want to emphasize its antibonding character) .

We now have the criteria for selecting atomic orbitals from which molecular 
orbitals are to be built:

1. Use all available valence orbitals from both atoms (in polyatomic molecules, 
from all the atoms).

2. Classify the atomic orbitals as having s and p symmetry with respect to 
the internuclear axis, and build s and p orbitals from all atomic orbitals of a 
given symmetry.

3. From Ns atomic orbitals of s symmetry, Ns s orbitals can be built with pro-
gressively higher energy from strongly bonding to strongly antibonding.

4. From Np atomic orbitals of p symmetry, Np p orbitals can be built with pro-
gressively higher energy from strongly bonding to strongly antibonding. 
Th e p orbitals occur in doubly degenerate pairs.

As a general rule, the energy of each type of orbital (s or p) increases with the 
number of internuclear nodes. Th e lowest-energy orbital of a given species has no 
internuclear nodes, and the highest-energy orbital has a nodal plane between 
each pair of adjacent atoms (Fig. 10.24). 

Fig. 10.20 A schematic 
representation of the 
contributions to the overlap 
integral. (a) S << 1 because the 
orbitals are far apart and their 
product is always small. (b) S is 
large (but less than 1) because 
the product yAyB is large over 
a substantial region. (c) S = 0 
because the positive region of 
overlap is exactly canceled by the 
negative region.

Fig. 10.19 Overlapping s and 
p orbitals. (a) End-on overlap 
leads to nonzero overlap and 
to the formation of an axially 
symmetric s orbital. 
(b) Broadside overlap leads to 
no net accumulation or reduction 
of electron density and does not 
contribute to bonding.

Fig. 10.21 Th e variation of the 
overlap integral with internuclear 
distance for two H1s orbitals.

Fig. 10.18 Th e inversion (gerade/
ungerade) character of s bonding 
and antibonding orbitals.
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Fig. 10.22  (a) Th e interference leading to 
the formation of a p bonding orbital and 
(b) the corresponding antibonding 
orbital.

Fig. 10.23 Th e gerade/ungerade character 
of p bonding and antibonding orbitals.

Fig. 10.24 A schematic 
representation of the four 
molecular orbitals that can be 
formed from four s orbitals 
in a chain of four atoms. Th e 
lowest-energy combination 
(the bottom diagram) is formed 
from atomic orbitals with the 
same sign, and there are no 
internuclear nodes. Th e next 
higher orbital has one node 
(at the center of the molecule). 
Th e next-higher orbital has 
two internuclear nodes, and the 
uppermost, highest energy 
orbital, has three internuclear 
nodes, one between each 
neighboring pair of atoms, and is 
fully antibonding. Th e sizes of the 
spheres refl ect the contributions 
of each atom to the molecular 
orbital; the diff erent colors 
represent diff erent signs.

Example 10.2 Assessing the contribution of d orbitals

In Section 10.8, we shall see the need to include d orbitals in the description of 
bonding between d-metal ions, such as Fe2+, and proteins, such as hemoglobin. 
To get a sense of how molecular orbitals can be built from d orbitals, show 
how they can contribute to the formation of s and p orbitals in diatomic 
molecules.

Strategy We need to assess the symmetry of d orbitals with respect to the 
internuclear z-axis: orbitals of the same symmetry can contribute to a given 
molecular orbital.

Solution A dz2 orbital has cylindrical symmetry around z and so can con-
tribute to s orbitals. Th e dzx and dyz orbitals have p symmetry with respect to 
the axis (Fig. 10.25), so they can contribute to p orbitals.

Self-test 10.5 Sketch the ‘d orbitals’ (orbitals that resemble four-lobed 
d orbitals when viewed along the internuclear axis) that may be formed by the 
remaining two d orbitals (and which contribute to bonding in some d-metal 
cluster compounds). Give their inversion-symmetry classifi cation.

Answer: see Fig. 10.25: bonding are g, antibonding are u

Once we have constructed the molecular orbitals, we build up the ground-state 
electron confi guration as follows:

1. Accommodate the valence electrons supplied by the atoms so as to achieve 
the lowest overall energy subject to the constraint of the Pauli exclusion 
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principle, that no more than two electrons may occupy a single orbital (and 
then must be paired).

2. If more than one molecular orbital of the same energy is available, add 
the electrons to each individual orbital before doubly occupying any one 
orbital (because that minimizes electron–electron repulsions).

3. Take note of Hund’s rule (Section 9.11), that if electrons occupy diff erent 
degenerate orbitals, then they do so with parallel spins.

Th e following sections show how these rules are used in practice.

Fig. 10.25 Th e types of molecular 
orbital to which d orbitals can 
contribute. Th e s and p 
combinations can be formed with 
s, p, and d orbitals of the 
appropriate symmetry, but the d 
orbitals can be formed only by 
the d orbitals of the two atoms.

Fig. 10.26 A molecular orbital 
energy level diagram for orbitals 
constructed from (1s,1s) overlap, 
the separation of the levels 
corresponding to the equilibrium 
bond length.

Self-test 10.6 How many molecular orbitals can be built from the valence 
shell orbitals in O2?

Answer: 8

(b) The hydrogen molecule

Th e fi rst step in the discussion of H2, the simplest many-electron diatomic molecule, 
is to build the molecular orbitals. Because each H atom of H2 contributes a 1s orbital 
(as in H2

+), we can form the 1sg and 1s*u bonding and antibonding orbitals from 
them, as we have seen already. At the equilibrium internuclear separation these 
orbitals will have the energies represented by the horizontal lines in Fig. 10.26.

Th ere are two electrons to accommodate (one from each atom). Both can enter 
the 1sg orbital by pairing their spins (Fig. 10.27). Th e ground state confi guration 
is therefore 1sg

2, and the atoms are joined by a bond consisting of an electron pair 
in a bonding s orbital. Th ese two electrons bind the two nuclei together more 
strongly and closely than the single electron in H2

+, and the bond length is reduced 
from 106 pm to 74 pm. A pair of electrons in a s orbital is called a s bond and is 
very similar to the s bond of VB theory. Th e two diff er in certain details of the 
electron distribution between the two atoms joined by the bond, but both have an 
accumulation of density between the nuclei.

We can conclude that the importance of an electron pair in bonding stems from 
the fact that two is the maximum number of electrons that can enter a bonding 
molecular orbital. Electrons do not ‘want’ to pair: they pair because, as we show in 
the following brief Justifi cation, the Pauli exclusion principle implies that:

• only if electrons pair their spins can they both occupy a bonding orbital
• no more than two electrons can occupy any given orbital.

Justification 10.2 Electron pairing in MO theory

Th e spatial wavefunction for two electrons in a bonding molecular orbital y 
such as the bonding orbital in eqn 10.4b (with the plus sign) is y(1)y(2). Th is 
two-electron wavefunction is obviously symmetric under interchange of the 
electron labels. To satisfy the Pauli principle, it must be multiplied by the anti-
symmetric spin state a(1)b(2) − b(1)a(2) to give the overall antisymmetric state

y(1,2) = y(1) y(2) × {a(1)b(2) − b(1)a(2)}

Because a(1)b(2) − b(1)a(2) corresponds to paired electron spins, we see that 
two electrons can occupy the same molecular orbital (in this case, the bonding 
orbital) only if their spins are paired.
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A similar argument shows why helium is a monatomic gas. Consider a 
hypothetical He2 molecule. Each He atom contributes a 1s orbital to the linear 
combination used to form the molecular orbitals, and so we can construct 1sg 
and 1s*u molecular orbitals. Th ey diff er in detail from those in H2 because the 
He1s orbitals are more compact than H1s orbitals, but the general shape of 
the molecular orbitals is the same, and for qualitative discussions we can use the 
same molecular orbital energy level diagram as for H2. Because each atom pro-
vides two electrons, there are four electrons to accommodate. Two can enter the 
1sg orbital, but then it is full (by the Pauli exclusion principle). Th e next two elec-
trons must enter the antibonding 1s*u orbital (Fig. 10.28). Th e ground electronic 
confi guration of He2 is therefore 1sg

21su*2. Because an antibonding orbital is 
slightly more antibonding than a bonding orbital is bonding, the He2 molecule 
has a higher energy than the separated atoms and is unstable. Hence, two ground-
state He atoms do not form bonds to each other, and helium is a monatomic gas.

(c) Many-electron homonuclear diatomic molecules

We shall now see how the concepts we have introduced apply to other homo-
nuclear diatomic molecules, such as N2 and O2, and diatomic ions such as O2

2−. In 
line with the building-up procedure, we fi rst consider the molecular orbitals that 
can be formed from the valence orbitals and do not (at this stage) worry about 
how many electrons are available.

In an element of Period 2 (Li to Ne), the valence orbitals are 2s and 2p. Suppose 
fi rst that we consider these two types of orbital separately. Th en the 2s orbitals on 
each atom overlap to form bonding and antibonding combinations that we denote 
1sg and 1s*u, respectively. Likewise, the two 2pz orbitals (by convention, the 
internuclear axis is the z-axis) have cylindrical symmetry around the internuclear 
axis. Th ey may therefore participate in s-orbital formation to give the bonding 
and antibonding combinations 2sg and 2s*u, respectively (Fig. 10.29). Th e two 2px 
orbitals overlap to give a bonding and an antibonding p orbital, as do the two 
2py orbitals. Th e resulting energy levels of the orbitals are shown in the molecular 
orbital energy level diagram in Fig. 10.30.

Th ere is a minor complication: although the px and py orbitals have diff erent 
symmetry from the pz orbitals (in the sense of forming p and s orbitals, respec-
tively), the pz orbital has the same symmetry as the s orbital (in the sense that both 
can contribute to s orbitals). When the 2s and 2p orbitals diff er considerably in 
energy, as they do on the right of Period 2, they can be treated separately as 
we have described. However, when their energies are similar, all four orbitals 
(the 2s orbitals on each atom and their 2pz orbitals) all contribute to the formation 
of s orbitals, and each orbital has the form y = c1yA2s + c2yB2s + c3yA2pz

 + c4yB2pz
. 

To fi nd the four coeffi  cients and the energies of the molecular orbitals we need 
to solve the Schrödinger equation. However, in practice, the energies of the two 
lowest-energy combinations of this kind are similar to the energies of the 1sg 
and 1su orbitals formed solely from 2s orbitals. Similarly, the energies of the two 
highest-energy combinations are very similar to the energies of the 2sg and 2su 
combinations of 2pz orbitals. Because the changes are not great, we can continue 
to think of 1sg and 1su as being one bonding and antibonding pair and of 2sg and 
2su as being another pair.

Th e relative order of the s and p orbitals in a molecule cannot be predicted 
without detailed calculation and varies with the energy separation between the 2s 
and 2p orbitals of the atoms. In molecules built from atoms in which the 2s and 
2p orbitals are widely separated in energy (on the right of Period 2, specifi cally for 

Fig. 10.27 Th e ground electronic 
confi guration of H2 is obtained 
by accommodating the two 
electrons in the lowest available 
orbital (the bonding orbital).

Fig. 10.28 Th e ground electronic 
confi guration of the four-electron 
molecule He2 has two bonding 
electrons and two antibonding 
electrons. It has a higher energy 
than the separated atoms, and 
so He2 is unstable relative to two 
He atoms.
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O and F) and can be treated separately, the order shown in Fig. 10.30 applies. 
When the 2s and 2p atomic orbitals have similar energies (on the left  of Period 2, 
as far as N) and must be treated collectively, the order of molecular orbitals is 
more like that in Fig. 10.31. Th e change in order can be seen in Fig. 10.32, which 
shows the calculated energy levels for the Period 2 homonuclear diatomic 
molecules. In summary:

• Figure 10.30 is appropriate for O2 and F2.
• Figure 10.31 is appropriate for the preceding homonuclear diatomic mole-

cules of the period.

Fig. 10.29  (a) Th e interference 
leading to the formation of 
a s bonding orbital and (b) the 
corresponding antibonding 
orbital when two p orbitals 
overlap along an internuclear 
axis.

Fig. 10.30 A typical molecular orbital energy 
level diagram for Period 2 homonuclear 
diatomic molecules. Th e valence atomic 
orbitals are drawn in the columns on the 
left  and the right; the molecular orbitals are 
shown in the middle. Note that the p 
orbitals form doubly degenerate pairs. Th e 
sloping lines joining the molecular orbitals 
to the atomic orbitals show the principal 
composition of the molecular orbitals. Th is 
diagram is suitable for O2 and F2; the 
confi guration of O2 is shown.

Fig. 10.31 A typical molecular 
orbital energy level diagram 
for Period 2 homonuclear 
diatomic molecules up to and 
including N2.

Fig. 10.32 Th e variation of the 
orbital energies of Period 2 
homonuclear diatomic 
molecules. Only the valence shell 
orbitals are shown.
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With the orbital energy level scheme established, we can predict the ground-
state confi guration of a molecule by using the building-up principle. For N2, for 
instance, which has 10 valence electrons; we use Fig. 10.31. Th e fi rst two electrons 
pair, enter, and fi ll the 1sg orbital. Th e next two electrons enter and fi ll the 1su 
orbital. Six electrons remain. Th ere are two 1pu orbitals, so four electrons can be 
accommodated in them. Th e two remaining electrons enter the 2sg orbital. Th e 
ground state confi guration of N2 is therefore 1sg

21su
21pu

42sg
2. Th is confi guration is 

also depicted in Fig. 10.31.

(d) Bond order

Th e strength of a bond in a molecule is the net outcome of the bonding and anti-
bonding eff ects of the electrons in the orbitals. Th e bond order, b, in a diatomic 
molecule is defi ned as

b = 12(n − n*) Definition of bond order  (10.7)

where n is the number of electrons in bonding orbitals and n* is the number of 
electrons in antibonding orbitals (as judged by the presence of a nodal plane 
between the two atoms due to destructive interference of the orbitals). Each elec-
tron pair in a bonding orbital increases the bond order by 1 and each pair in an 
antibonding orbital decreases it by 1. In N2, 1sg, 2sg, and 1pu are bonding orbitals, 
and n = 2 + 2 + 4 = 8; however, 1su is antibonding, so n* = 2 and the bond order of 
N2 is b = 1

2(8 − 2) = 3. Th is value is consistent with the Lewis structure :N≡N:, in 
which there is a triple bond between the two atoms.

Th e bond order is a useful parameter for discussing the characteristics of 
bonds because it correlates with bond length, in the sense that the greater the 
bond order between atoms of a given pair of atoms, then the shorter the bond. 
Th e bond order also correlates with bond strength, in the sense that the greater 
the bond order, then the greater the strength. Th e high bond order of N2 is con-
sistent with its high dissociation energy (942 kJ mol−1).

Self-test 10.7 Write the ground-state electronic confi guration and deduce 
the bond order of F2 and Ne2. Which of these elements is expected to exist as 
a monatomic species under normal conditions?

Answer: F2: 1sg
21su

22sg
21pu

41pg
4, b = 1; Ne2: 1sg

21su
22sg

21pu
41pg

42su
2, 

b = 0 (neon is a monatomic species)

Self-test 10.8 Which can be expected to have the higher dissociation energy, 
F2 or F2

+?
Answer: F2

+

Case study 10.1 The biochemical reactivity of O2 and N2

Dinitrogen, N2, the major component of the air we breathe, is so stable (on 
account of the triple bond connecting the atoms) and unreactive that nitrogen 
fi xation, the reduction of atmospheric N2 to NH3, is among the most thermo-
dynamically demanding of biochemical reactions, in the sense that it requires 
a great deal of energy derived from metabolism. So taxing is the process that 



 10.4 HOMONUCLEAR DIATOMIC MOLECULES   383

only certain bacteria and archaea are capable of carrying it out, making 
nitrogen available fi rst to plants and other microorganisms in the form of 
ammonia. Only aft er incorporation into amino acids by plants does nitrogen 
adopt a chemical form that, when consumed, can be used by animals in the 
synthesis of proteins and other nitrogen-containing molecules.

Figure 10.30 is the appropriate molecular orbital energy level diagram for O2. 
Th ere are 12 valence electrons to accommodate: the fi rst 10 electrons recreate 
the N2 confi guration (with a reversal of the order of the 2sg and 1pu orbitals) 
and the remaining two electrons must occupy the 1pg orbitals. Th e confi gura-
tion is therefore 1sg

21su
22sg

21pu
41pg

2 (as depicted in Fig. 10.30). Because 1sg, 2sg, 
and 1pu are regarded as bonding and 1su and 1pg as antibonding, the bond 
order is b = 12(8 − 4) = 2, a value that is consistent with the classical view that O2 
has a double bond.

According to the building-up principle, the two 1pg electrons in O2 occupy 
diff erent orbitals. One enters the 1pg,x orbital formed by overlap of the 2px 
orbitals. Th e other enters its degenerate partner, the 1pg,y orbital formed from 
overlap of the 2py orbitals. Because the two electrons occupy diff erent orbitals, 
by Hund’s rule they will have parallel spins (↑↑), and an O2 molecule is some-
times said to be a biradical, a radical containing two unpaired electrons. 
However, the term must be used with caution because in a true biradical the 
two electron spins have random relative orientations; O2 is not a true biradical 
because the two spins are locked into a parallel arrangement.

A striking prediction of MO theory is that because the O2 molecule has two 
unpaired spins, it is a paramagnetic substance, a substance that is drawn into 
a magnetic fi eld. Most substances (those with paired electron spins) are 
diamagnetic and are pushed out of a magnetic fi eld. Th at O2 is in fact a para-
magnetic gas is a striking confi rmation of the superiority of the molecular 
orbital description of the molecule over the Lewis and VB descriptions (which 
require all the electrons to be paired; recall Self-test 10.1). Th e property of 
paramagnetism is utilized to monitor the oxygen content of incubators by 
measuring the magnetism of the gases they contain.

Th e reactivity of O2, while important for biological energy conversion, also 
poses serious physiological problems. During the course of metabolism, 
some electrons escape from complexes I, II, and III of the respiratory chain 
(Chapter 5) and reduce O2 to superoxide ion, O2

−. From Fig. 10.30, the ground-
state electronic confi guration of O2

− is expected to be 1sg
21su

22sg
21pu

41pg
3, so the 

ion is a radical with a bond order b = 1.5. We predict that the superoxide ion 
is a reactive species that must be scavenged to prevent damage to cellular 
components. Th e enzyme superoxide dismutase protects cells by catalyzing 
the disproportionation (or dismutation) of O2

− into O2 and H2O2:

2 O2
− + 2 H+ → H2O2 + O2

However, H2O2 (hydrogen peroxide), formed by the reaction above and by 
leakage of electrons out of the respiratory chain, is a powerful oxidizing agent 
and also harmful to cells. It is metabolized further by catalases and peroxidases. 
A catalase catalyzes the reaction

2 H2O2 → 2 H2O + O2



384   10 THE CHEMICAL BOND

and a peroxidase reduces hydrogen peroxide to water by oxidizing an organic 
molecule. For example, the enzyme glutathione peroxidase catalyzes the 
oxidation of glutathione (Atlas M4):

2 glutathionered + H2O2 → 2 glutathioneox + 2 H2O

Th ere is growing evidence for the involvement of the damage caused by reactive 
oxygen species (ROS), such as O2

−, H2O2, and OH (the hydroxyl radical), in the 
mechanism of aging and in the development of cardiovascular disease, cancer, 
stroke, infl ammatory disease, and other conditions. For this reason, much eff ort 
has been expended on studies of the biochemistry of antioxidants, substances 
that can either deactivate ROS directly (as glutathione does) or halt the progress 
of cellular damage through reactions with radicals formed by processes initiated 
by ROS. Important examples of antioxidants are vitamin C (ascorbic acid, 
Atlas M1), vitamin E (a-tocopherol, Atlas M3), and uric acid (Atlas M2).

10.5 Heteronuclear diatomic molecules
We need to understand how electronic structure affects the reactivity of molecules 
such as NO (a biochemical messenger).

Th e characteristic feature of heteronuclear diatomic molecules that will be 
familiar from introductory chemistry is that the electron distribution is not sym-
metrical between the atoms because it is energetically favorable for a bonding 
electron pair to be found closer to one atom rather than the other. Th is imbalance 
results in a polar bond, which is a covalent bond in which the electron pair is 
shared unequally by the two atoms.

(a) Polarity and electronegativity

Th e imbalance of charge distribution is commonly expressed in terms of the elec-
tronegativity, c (chi), the power of an element to draw electrons to itself when it 
is part of a compound. Linus Pauling formulated a numerical scale of electro-
negativity based on considerations of bond dissociation energies, E(A–B):

 | cA − cB| = 0.102 × (DE/kJ mol−1)1/2 Pauling
electronegativity scale

 (10.8a)

with

DE = E(A–B) − 12{E(A–A) + E(B–B)} (10.8b)

Table 10.2 lists values for the main-group elements. Robert Mulliken proposed an 
alternative defi nition in terms of the ionization energy, I, and the electron affi  nity, 
Eea, of the element expressed in electronvolts:

c = 12(I + Eea) Mulliken
electronegativity scale

 (10.8c)

Th is relation is plausible because an atom that has a high electronegativity is likely 
to be one that has a high ionization energy (so that it is unlikely to lose electrons 
to another atom in the molecule) and a high electron affi  nity (so that it is energetic-
ally favorable for an electron to move toward it). Th e Mulliken electronegativities 
are broadly in line with the Pauling electronegativities. Electronegativities show 
a periodicity, and the elements with the highest electronegativities are those close 
to fl uorine in the periodic table (with the exception of the noble gases).

Table 10.2 Electronegativities of 
the main-group elements*

H
2.1
Li Be B C N O F
1.01 1.5 2.0 2.5 3.0 3.5 4.0
Na Mg Al Si P S Cl
0.9 1.2 1.5 1.8 2.1 2.5 3.0
K Ca Ga Ge As Se Br
0.8 1.0 1.6 1.8 2.0 2.4 2.8
Rd Sr In Sn Sb Te I
8.0 1.0 1.7 1.8 1.9 2.1 2.5
Cs Ba Tl Pb Bi Po
0.7 0.9 1.8 1.8 1.9 2.0

*Pauling values.
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Th e location of the bonding electron pair close to one atom in a heteronuclear 
molecule results in that atom having a net negative charge, which is called a par-
tial negative charge and denoted d−. Th ere is a compensating partial positive 
charge, d+, on the other atom. In a typical heteronuclear diatomic molecule, 
the more electronegative element has the partial negative charge and the more 
electropositive element has the partial positive charge.

Self-test 10.9 Predict the (weak) polarity of a C–H bond.
Answer: d−C–Hd+

(b) Molecular orbitals in heteronuclear species

Molecular orbital theory takes heteronuclear diatomic molecules and their polar 
bonds in its stride. Each molecular orbital has the form

 y = cAyA + cByB A general LCAO  (10.9)

If c2
B > c2

A, then the electrons spend more time on B than on A and the bond is 
polar in the sense d+A–Bd−. A nonpolar bond, a covalent bond in which the electron 
pair is shared equally between the two atoms and there are zero partial charges on 
each atom, has c2

A = c2
B. A pure ionic bond, in which one atom has obtained virtu-

ally sole possession of the electron pair (as in Cs+F−, to a fi rst approximation), has 
one coeffi  cient zero (so that A+B− would have c2

A = 0 and c2
B = 1).

A general feature of molecular orbitals between dissimilar atoms is that the 
atomic orbital with the lower energy (that belonging to the more electronegative 
atom) makes the larger contribution to the lowest-energy molecular orbital. Th e 
opposite is true of the highest (most antibonding) orbital, for which the principal 
contribution comes from the atomic orbital with higher energy (the less electro-
negative atom):

 Bonding orbitals Antibonding orbitals
For cA > cB: c2

A > c2
B c2

B > c2
A

Figure 10.33 shows a schematic representation of this point.
Th ese features of polar bonds can be illustrated by considering the N–H bond 

in the peptide group (1). Th e electronegativity of N is greater than that of H, so we 
expect a polar bond with the charge distribution d−N–Hd+. For the purposes of 
illustrating concepts and expressing this polarity in terms of molecular orbitals, 
we treat the NH fragment in isolation, disregarding its interactions with other 
atoms in the group. Th e general form of the molecular orbitals of the NH fragment 
is  y = cHyH + cNyN, where yH is an H1s orbital and yN is an N2pz orbital. Because 
the ionization energy of a hydrogen atom is 13.6 eV, we know that the energy of 
the H1s orbital is −13.6 eV. As usual, the zero of energy is the infi nitely separated 
electron and proton (Fig. 10.34). Similarly, from the ionization energy of nitrogen, 
which is 14.5 eV, we know that the energy of the N2pz orbital is −14.5 eV, about 
0.9 eV lower than the H1s orbital. It follows that the bonding s orbital in NH is 
mainly N2pz and the antibonding s orbital is mainly H1s orbital in character. Th e 
two electrons in the bonding orbital are most likely to be found in the N2pz orbital, 
so there is a partial negative charge on the N atom and a partial positive charge on 
the H atom.

A systematic way of fi nding the coeffi  cients in the linear combinations is to 
solve the Schrödinger equation and to look for the values of the coeffi  cients that 

Fig. 10.33 A schematic 
representation of the relative 
contributions of atoms of 
diff erent electronegativities to 
bonding and antibonding 
molecular orbitals. In the 
bonding orbital, the more 
electronegative atom makes the 
greater contribution (represented 
by the larger sphere), and the 
electrons of the bond are more 
likely to be found on that atom. 
Th e opposite is true of an 
antibonding orbital. A part of 
the reason why an antibonding 
orbital is of high energy is that 
the electrons that occupy it are 
likely to be found on the more 
electropositive atom.

Fig. 10.34 Th e atomic orbital 
energy levels of H and N atoms 
and the molecular orbitals they 
form. Th e bonding orbital has 
predominantly N atom character 
and the antibonding orbital has 
predominantly H atom character. 
Energies are in electronvolts.
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result in the lowest energy. For NH, the lowest energy is obtained for the orbital1 
y = 0.54yH + 0.84yN. We see that indeed the N2pz orbital does make the greater 
contribution to the bonding s orbital.

Case study 10.2 The biochemistry of NO

Nitric oxide (nitrogen monoxide, NO) is a small molecule that diff uses quickly 
between cells, carrying chemical messages that help initiate a variety of pro-
cesses, such as regulation of blood pressure, inhibition of platelet aggregation, 
and defense against infl ammation and attacks to the immune system. Initially 
there was much opposition to the suggestion that such a small reactive molecule 
could be biologically relevant, but in due course the proposal was recognized 
by the award of the Nobel Prize for Medicine in 1998 (to R.F. Furchgott, 
L.J. Ignarro, and F. Murad). Th e molecule is synthesized from the amino acid 
arginine in a series of reactions catalyzed by nitric oxide synthase and requir-
ing O2 and NADPH.

To gain insight into the biochemistry of NO, we need to consider its electronic 
structure. Figure 10.35 shows the bonding scheme in NO and illustrates a 
number of points we have made about heteronuclear diatomic molecules. Th e 
ground confi guration is 1s22s23s21p42p1. (Th e g,u designation is not applicable 
because the molecule is heteronuclear, and we are numbering each species 
of orbital in sequence or increasing energy.) Th e 3s and 1p orbitals are pre-
dominantly of O character because that is the more electronegative element. 
Th e highest occupied molecular orbital (HOMO) is 2p, contains one elec-
tron, and has more N character than O character. It follows that NO is a radical 
with an unpaired electron that can be regarded as localized more on the N 
atom than on the O atom. Th e lowest unoccupied molecular orbital (LUMO) 
is 4s, which is also localized predominantly on N.

Because NO is a radical, we expect it to be reactive. Its half-life is estimated at 
approximately 1–5 s, so it needs to be synthesized oft en in the cell. As we saw 
in Case study 10.1, there is a biochemical price to be paid for the reactivity of 
biological radicals. Like O2, NO participates in some reactions that are not 
benefi cial to the cell. Indeed, the radicals O2

− and NO combine to form the 
peroxynitrite ion (5):

NO + O2
− → ONOO−

Th e peroxynitrite ion is a reactive oxygen species that damages proteins, DNA, 
and lipids, possibly leading to heart disease, amyotrophic lateral sclerosis (Lou 
Gehrig’s disease), Alzheimer’s disease, and multiple sclerosis. We note that 
the structure of the ion is consistent with the bonding scheme of Fig. 10.35: 
because the unpaired electron in NO is slightly more localized on the N atom, 
we expect that atom to form a bond with an O atom from the O2

− ion.

Fig. 10.35 Th e molecular orbital 
energy level diagram for NO.

1 Th e values of the coeffi  cients are best found by using soft ware of the kind described in Section 10.9. 
For the purpose of this illustration, we are ignoring overlap between the atomic orbitals.

Self-test 10.10 What percentage of its time does a electron in the NH frag-
ment spend in a N2pz orbital?

Answer: 71 per cent (= (0.84)2 × 100%)
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10.6 The structures of polyatomic molecules
Polyatomic molecules are the building blocks of living organisms, and to understand 
their electronic structures we need to use MO theory; by doing so, we shall come to 
understand the unique role of carbon.

Th e bonds in polyatomic molecules are built in the same way as in diatomic 
molecules, the only diff erences being that we use more atomic orbitals to con-
struct the molecular orbitals and these molecular orbitals spread over the entire 
molecule, not just the adjacent atoms of the bond. In general, a molecular orbital 
is a linear combination of all the atomic orbitals of all the atoms in the molecule.

In H2O, for instance, the atomic orbitals are the two H1s orbitals, the O2s 
orbital, and the three O2p orbitals (if we consider only the valence shell). From 
these six atomic orbitals we can construct six molecular orbitals that diff er in 
energy. Th e lowest-energy, most strongly bonding orbital has the least number of 
nodes between adjacent atoms. Th e highest-energy, most strongly antibonding 
orbital has the greatest numbers of nodes between neighboring atoms (Fig. 10.36). 
According to MO theory, the bonding infl uence of a single electron pair is dis-
tributed over all the atoms, and each electron pair (the maximum number of 
electrons that can occupy any single molecular orbital) helps to bind all the atoms 
together.

In the LCAO approximation, each molecular orbital is modeled as a linear 
combination of atomic orbitals of matching symmetry, with atomic orbitals 
contributed by all the atoms in the molecule. Th us, a typical molecular orbital in 
H2O constructed from H1s orbitals (denoted yA and yB) and O2s and O2py and 
O2pz orbitals will have the composition

 y = c1yA + c2yB + c3yO2s + c4yO2py
 + c5yO2pz

 (10.10)

Th e O2px orbital (with x perpendicular to the molecular frame) does not contrib-
ute because it has the wrong symmetry to overlap with the H1s  orbitals. Because 
fi ve atomic orbitals are being used to form the LCAO, there are fi ve molecular 
orbitals of this kind: the lowest-energy (most bonding) orbital will have no inter-
nuclear nodes and the highest-energy (most antibonding) orbital will have a node 
between each pair of neighboring nuclei.

10.7 Hückel theory
Many biological systems, such as those responsible for photosynthesis, vision, and 
the colors of vegetation, consist of molecules with conjugated p-electron systems. 
We need a simple way to construct their molecular orbitals and assess their energies.

An important example of the application of MO theory is to the orbitals that may 
be formed from the p orbitals perpendicular to a molecular plane, such as that of 
the phenyl ring of the amino acid phenylalanine. A computational scheme was 
proposed by Erich Hückel and provides a simple way of establishing the mole-
cular orbitals of p-electron systems, especially hydrocarbons such as ethene, 
benzene, and their derivatives. A common procedure is to treat the s-bonding 
framework using the language of VB theory, and to treat the p-electron system 
separately by MO theory. We use that approach here.

(a) Ethene

Each carbon atom in ethene, CH2=CH2, is regarded as sp2 hybridized and forming 
C–C and C–H s-bonds at 120° to each other by spin-pairing and either (Csp2,Csp2)- 
or (Csp2,H1s)-orbital overlap (note the VB language). Th e unhybridized C2pz 

Fig. 10.36 Schematic form of the 
molecular orbitals of H2O and 
their energies.
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orbitals perpendicular to the s-framework (yA and yB), each of which is occupied 
by a single electron, are then used to construct molecular orbitals (Fig. 10.37): 

y = cAyA + cByB (10.11)

We show in the following Justifi cation that to fi nd the energies and coeffi  cients of 
the two molecular orbitals that can be formed from these two atomic orbitals we 
need to solve the following simultaneous equations:

(HAA − ESAA)cA + (HAB − ESAB)cB = 0
(HBA − ESBA)cA + (HBB − ESBB)cB = 0 

Secular equations 
for ethene  

(10.12)

In the context of MO theory, these simultaneous equations are called secular 
equations. Th e HJK are expressions that include various contributions to the energy, 
including the repulsion between electrons and their attractions to the nuclei; 
the SJK are the overlap integrals between orbitals on atoms J and K.

Justification 10.3 The secular equations

We begin by substituting eqn 10.11 into the Schrödinger equation written in 
the form Ĥy = Ey:

cAĤyA + cBĤyB = cAEyA + cBEyB

Th en we multiply both sides by yA

cAyAĤyA + cByAĤyB = cAyAEyA + cByAEyB

and integrate over all space (with the term dt denoting an infi nitesimal volume 
element in three dimensions; in cartesian coordinates, dt = dxdydz):

cA � yAĤyAdt + cB � yAĤyBdt = cAE � yAyAdt + cBE � yAyBdt

E is a constant, so we have been able to take it outside the integral. Now we 
write

HAA = � yAĤyAdt HAB = � yAĤyBdt SAA = � yAyAdt SAB = � yAyBdt

Th e preceding equation then becomes

cAHAA + cBHAB = cAESAA + cBESAB

which is easy to rearrange into the fi rst of eqn 10.12. If instead of multiplying 
through by yA we multiply by yB, we obtain the second of eqn 10.12.

To simplify the solution of the secular equations Hückel introduced the follow-
ing drastic approximations:

• All HJJ are set equal to a single quantity a called the Coulomb integral.
• All HJK are set equal to zero unless atoms J and K are adjacent, when it is set 

equal to a single quantity b (a negative quantity) called the resonance integral.
• All SJJ are set equal to 1 and all SJK are set equal to 0 whether or not J and K are 

adjacent.

Fig. 10.37 Th e bonding and 
antibonding  p molecular orbitals 
of ethene and their energies.
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  Mathematical toolbox 10.1 Simultaneous equations and determinants

Two simultaneous equations of the form

ax + by = 0
cx + dy = 0

have solutions only if the ‘determinant’ of the coeffi  -
cients is equal to zero. In this case we write

44a
c  

b
d

44 = 0

where the term on the left  is the determinant and has 
the following meaning:

44a
c  

b
d

44 = ad − bc

Th ree simultaneous equations of the form

ax + by + cz = 0

dx + ey + fz = 0
gx + hy + iz = 0

have a solution only if

4
4
4

a
d
g  

b
e
h 

c
f
i

4
4
4

 = 0

Th is 3 × 3 determinant expands as follows:

4
4
4

a
d
g  

b
e
h 

c
f
i

4
4
4

 = a44e
h 

f
i
44 − b44d

g  

f
i
44 + c44d

g  

e
h

44

Note the alternation in signs for successive columns. 
Th e 2 × 2 determinants then expand like the one 
above.

With these ‘Hückel approximations’ the secular equations become

(a − E)cA + bcB = 0
bcA + (a − E)cB = 0 

Hückel approximation 
for ethene  

(10.13a)

As set out in Mathematical toolbox 10.1, these two simultaneous equations have 
a solution only if the secular determinant vanishes:

44a − E
b  

b
a − E

44 = (a − E)2 − b2 = 0 Hückel secular 
determinant for ethene

 (10.13b)

Th is condition is satisfi ed if

E = a ± b Hückel energies 
for ethene

 (10.13c)

When each value is substituted into eqn 10.13a, we fi nd:

For E = a + b cA = cB, so y = cA(yA + yB)
For E = a − b cA = −cB, so y = cA(yA − yB)

(Remember that b < 0, so E = a + b is the lower energy of the two.) Th ese 
energies and orbitals are represented in Fig. 10.37: they will be recognized as 
the bonding and antibonding combinations of the C2pz atomic orbitals. Th e value 
of the one unknown, cA, is found by ensuring that each orbital is normalized, but 
we do not need its explicit value.

Because there are two electrons to be accommodated, both enter the lower 
energy orbital and contribute 2a + 2b to the energy of the molecule. We can 
also infer that the energy needed to excite a p electron to the antibonding com-
bination is 2| b |. A typical value of b in hydrocarbons is about −2.4 eV, or 
−230 kJ mol−1.
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(b) Benzene

Exactly the same procedure can be used for benzene, C6H6. Each C atom is 
regarded as sp2 hybridized (note the VB language again) and forms a planar hex-
agonal framework of s bonds (Fig. 10.38). Th ere is an unhybridized C2pz orbital 
on each atom perpendicular to the ring from which we form molecular orbitals. 
From these six atomic orbitals we construct six molecular orbitals of the form

y = cAyA + cByB + cCyC + cDyD + cEyE + cFyF (10.14)

Th en we set up the six simultaneous equations for the coeffi  cients and the 
corresponding 6 × 6 secular determinant and apply the Hückel approximations. 
Its form resembles that for cyclobutadiene in Exercise 10.33, but with six rows 
and six columns. Full-frontal attack on it to determine the six values of E is rather 
tedious, especially as there are procedures that make use of symmetry that greatly 
simplifi es the solution. As should be verifi ed, the energies and the corresponding 
(unnormalized) molecular orbitals obtained are as follows (Fig. 10.39):

Fig. 10.38 Th e orbitals used to 
construct the molecular orbitals 
of benzene.

Fig. 10.39 Th e p orbitals of 
benzene and their energies. 
Th e lowest-energy orbital is fully 
bonding between neighboring 
atoms, but the uppermost orbital 
is fully antibonding. Th e two 
pairs of doubly degenerate 
molecular orbitals have an 
intermediate number of 
internuclear nodes. As usual, 
diff erent colors represent 
diff erent signs of the 
wavefunction.

Self-test 10.11 Write down the Hückel secular determinant for butadiene.

Answer: 

4
4
4
4

a − E
b
0
0  

b
a − E

b
0  

0
b

a − E
b  

0
0
b

a − E

4
4
4
4
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Energy Orbital
Highest (most antibonding) 
a − 2b y = yA − yB + yC − yD + yE − yF

a − b y = 21/2yA − yB − yC + 21/2yD − yE − yF

a − b y = yB − yC + yE − yF

a + b y = 21/2yA + yB + yC − 21/2yD − yE − yF

a + b y = yB + yC − yE − yF

a + 2b  y = yA + yB + yC + yD + yE + yF

Lowest (most bonding)

Note that the lowest-energy, most bonding orbital has no internuclear nodes. 
It is strongly bonding because the constructive interference between neighboring 
p orbitals results in a good accumulation of electron density between the nuclei 
(but slightly off  the internuclear axis, as in the p bonds of diatomic molecules). 
In the most antibonding orbital the alternation of signs in the linear combination 
results in destructive interference between neighbors, and the molecular orbital 
has a nodal plane between each pair of neighbors, as shown in the illustration. 
Th e four intermediate orbitals form two doubly degenerate pairs, one net bond-
ing and the other net antibonding.

Th ere are six electrons to be accommodated (one is supplied by each C atom), 
and they occupy the lowest three orbitals in Fig. 10.39. Th e resulting electron dis-
tribution is like a double donut. It is an important feature of the confi guration that 
the only molecular orbitals occupied have a net bonding character, for this is one 
contribution to the stability (in the sense of low energy) of the benzene molecule. 
It may be helpful to note the similarity between the molecular orbital energy level 
diagram for benzene and that for N2 (see Fig. 10.31): the strong bonding, and 
hence the stability, of benzene and of the phenyl ring in aromatic amino acids is 
an echo of the strong bonding in the nitrogen molecule.

A feature of the molecular orbital description of benzene is that each molecular 
orbital spreads either all around or partially around the C6 ring. Th at is, p bonding 
is delocalized, and each electron pair helps to bind together several or all of the C 
atoms. Th e delocalization of bonding infl uence is a primary feature of MO theory 
that we shall use time and again when discussing conjugated systems, such as 
those found in selected amino acid side chains (phenylalanine, tyrosine, histi-
dine, and tryptophan), the purine and pyrimidine bases in nucleic acids, the heme 
group, and the pigments involved in photosynthesis and vision. Th e stabilization 
of the benzene molecule due to delocalization can be expressed quantitatively. 
If the six p electrons occupied three localized ethene-like orbitals, then their 
energy would be 3 × (2a + 2b) = 6a + 6b. However, their energy in benzene is 
2(a + 2b) + 4(a + b) = 6a + 8b. Th e delocalization energy, the diff erence of these 
two energies, is therefore 2b, or about −460 kJ mol−1.

Case study 10.3 The unique role of carbon in biochemistry

Now we can take stock of our knowledge of chemical bonding and continue 
the discussion in Section 9.12 of the properties of carbon that make it uniquely 
suitable for building complex biological structures.

Among the elements of Period 2, carbon has an intermediate electronegativity, 
so it can form covalent bonds with many other elements, such as hydrogen, 
nitrogen, oxygen, sulfur, and, more importantly, other carbon atoms. Further-
more, because it has four valence electrons, carbon atoms can form chains and 
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rings containing single, double, or triple C–C bonds. Such a variety of bonding 
options leads to the intricate molecular architectures of proteins, mucleic 
acids, and cell membranes.

Bonds need to be suffi  ciently strong to maintain the structure of the cell yet 
need to be susceptible to dissociation and rearrangement during chemical 
reactions. To get a sense of the uniqueness of the C–C bond, consider the 
energetics of the N–N and Si–Si bonds. Th e comparison is useful because 
nitrogen and silicon are neighbors of carbon in the periodic table and are 
abundant elements on Earth. Th e atomic radius of silicon is greater than that 
of carbon, so we expect an Si–Si bond to be longer than a C–C bond and the 
orbital overlap to be weaker. Th e atomic radius of nitrogen is smaller than that 
of carbon, but the length and energy of an N–N bond, such as that in hydrazine 
(H2N–NH2), are infl uenced by the fact that sp3 hybridization leaves lone pairs 
on the nitrogen atoms. Th ese lone pairs repel each other, making an N–N bond 
weaker than a C–C bond. A C–C bond is suffi  ciently strong that it can be used 
as a motif for the formation of robust cellular components. Weaker bonds, 
such as C–N and C–O, are more reactive, breaking during catabolism and 
re-forming during anabolism.

10.8 d-Metal complexes
Ions of the d metals participate in biological electron transfer (Chapter 8), the binding 
and transport of O2, and the mechanisms of action of many enzymes. To understand 
the biochemical function of d metal atoms, we need to develop a theory for the 
formation of bonds between them and biological molecules.

In Chapter 9 we saw that the d-metal ions typically have an incomplete shell of d 
electrons. Th ese electrons play a special role in d-metal complexes, giving rise to 
their biochemical activity, their colors, and their magnetic properties. Th ere are 
two approaches: one, crystal fi eld theory, is a simple approach that accounts for 
the general structures of complexes; the other, ligand fi eld theory, is an adapta-
tion of MO theory and is much more powerful.

(a) Crystal field theory

In an octahedral d-metal complex six identical ions or molecules, the ligands, are 
at the vertices of a regular octahedron, with the metal atom at its center. An 
example of this arrangement is the complex [Fe(OH2)6]2+ (6), in which the Fe2+ 
ion, a good Lewis acid, is surrounded by six H2O molecules, which are good Lewis 
bases. In crystal fi eld theory, each ligand is regarded as a point negative charge 
that repels the d electrons of the central ion.

Th e energy of the entire system decreases when the six ligands approach the 
central metal cation on account of the favorable Coulomb interactions between 
its positive charge and the lone electron pairs of the ligands. However, because the 
point charges representing the ligands repel the d electrons present on the atom, 
there is also a relatively small modifi cation of that overall decrease in energy. 
Figure 10.40 shows that the fi ve d orbitals of the central metal ion fall into two 
groups: dx2−y2 and dz2 point directly toward the ligand positions, whereas dxy, dyz, 
and dzx point between them. According to crystal-fi eld theory, an electron occupy-
ing an orbital of the former group has a less favorable potential energy than when 
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it occupies any of the three orbitals of the other group, and so the d orbitals split 
into two sets (7): a triply degenerate set comprising the dxy, dyz, and dzx orbitals 
and labeled t2g and a doubly degenerate set comprising the dx2−y2 and dz2 orbitals 
and labeled eg. (Th e notation is derived from group theory, the mathematical 
theory of symmetry.) Th e energy diff erence between the two sets of orbitals is 
called the crystal-fi eld splitting and denoted DO. Th e splitting is about 10 per cent 
of the total energy of interaction of the ligands with the central metal ion.

If we know the number of electrons supplied by the central ion, then we can use 
the building-up principle to arrive at its electronic confi guration by letting the 
electrons occupy the d orbitals so as to achieve the lowest possible energy bearing 
in mind, as usual, the Pauli exclusion principle. If the ion has one d electron, as in 
the case of Ti3+, the confi guration of the complex is t1

2g. For two and three d elec-
trons, the confi gurations are, respectively, t2

2g (as in V3+) and t3
2g (as in Cr3+). 

According to Hund’s rule, these electrons can have parallel spins (Fig. 10.41).
A decision now has to be made: the fourth d electron (as in Mn3+) can occupy 

either the half-fi lled t2g set of orbitals or the empty eg orbitals. Th e advantage of the 
former arrangement is that the t2g orbitals lie lower in energy than the eg orbitals; 
the disadvantage is the signifi cant electron–electron repulsions in a doubly fi lled 
orbital. Th e disadvantage of the second arrangement, which gives the confi gura-
tion t3

2geg
1, is the necessity of occupying a high-energy orbital, but the advantage is 

less electron–electron repulsion. Th is advantage is more important than might be 
expected because all four electrons may have parallel spins in t3

2geg
1 and Hund’s 

rule indicates that parallel spins are energetically favorable.
Which confi guration, t3

2geg
1 or t4

2g, actually occurs depends on a variety of factors, 
an important one being the magnitude of the crystal-fi eld splitting. If DO is large, 
the t4

2g confi guration, with its spin-paired arrangement, is favored. Such a molecule 
is called a low-spin complex (Fig. 10.42a). If DO is small, the advantage of mini-
mizing electron–electron repulsion outweighs the disadvantage of occupying a 
high-energy orbital and the t3

2geg
1 confi guration is expected, giving rise to a high-

spin complex with the maximum number of unpaired electrons (Fig. 10.42b).

Fig. 10.41 Th e occupation of 
energy levels in a d3 octahedral 
complex.

Fig. 10.40 Th e classifi cation of d 
orbitals in an octahedral 
environment.
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(b) Ligand-field theory: s bonding

Crystal-fi eld theory has a major defi ciency: it attempts to ascribe the bonding of 
the complex to Coulombic interactions between d electrons localized on a central 
metal ion and electron pairs localized in orbitals confi ned to the ligands. However, 
we know from our discussion of MO theory that molecular orbitals spread over 
both metal atoms and ligands. Ligand-fi eld theory develops this point of view in 
terms of molecular orbitals. It proceeds in three steps:

• Identify combinations of the ligand orbitals that have symmetries that match 
the symmetries of the d orbitals of the central metal ion.

• Form molecular orbitals by allowing overlap between these combinations 
and d orbitals of the same symmetry.

• Use the building-up principle in the same way as in crystal-fi eld theory.

We shall represent (only for purposes of visualization) the ligand orbitals by six 
spheres, each occupied by two electrons (for concreteness, think of the spheres as 
representing the lone pairs of NH3 molecules). From these six atomic orbitals we 
construct the six combinations spreading over the six ligands shown in Fig. 10.43. 
We see that two of the six combinations have a shape that matches the two 
eg orbitals of the central ion, and four have the wrong shape for any net overlap 
with either the eg or t2g metal orbitals. As a result, only eg molecular orbitals can be 
formed between the d orbitals and the ligands, and as a result there are two 
eg bonding molecular orbitals and two eg* antibonding molecular orbitals. Th e three 

Fig. 10.42 Th e energy separation 
DO controls the electronic 
confi guration of an octahedral 
d-metal complex, as shown here 
for a metal with four d electrons. 
(a) If DO is large, a low-spin 
complex results with a t4

2g 
confi guration. (b) If DO is small, 
a high-spin complex is favored 
with a t3

2geg
1 confi guration.

Example 10.3 Low- and high-spin complexes of Fe(II) in hemoglobin

We saw in Case study 4.1 that O2 binds to and is transported through the body 
by the protein hemoglobin (Atlas P7), which contains the heme group (Atlas 
P6), a complex of the Fe2+ ion. Deoxygenated heme is a high-spin complex 
that makes a transition to a low-spin complex on binding O2 as a ligand of 
the Fe2+ ion. Predict the number of unpaired electrons in deoxygenated and 
oxygenated heme.

Strategy Determine the electronic confi guration of the Fe2+ ion according to 
the rules described in Section 9.11. Th en apply the building-up principle to the 
two sets of d orbitals, allowing the maximum number of unpaired electrons 
to be the dominant factor in high-spin complexes, but not in low-spin 
complexes.

Solution Th e ground-state electron confi guration of an Fe atom is [Ar]3d64s2, 
so the confi guration of an Fe2+ ion is [Ar]3d6. In deoxygenated heme, a high-
spin complex, DO is small, so the fi rst fi ve electrons enter the t2g and eg orbitals 
with parallel spins. Th e sixth electron occupies the t2g orbital and must pair. 
Th e confi guration is, therefore, t4

2geg
2 and there are four unpaired electrons. 

In oxygenated heme, DO is large and all six electrons occupy the t2g orbitals. 
To do so, they must have paired spins. Th e confi guration is t6

2g and there are 
no unpaired electrons.

Self-test 10.12 Cobalt is present in vitamin B12. Predict the number of 
unpaired electron spins in high-spin and low-spin complexes of a Co2+ ion.

Answer: 3 and 1, respectively
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Fig. 10.43 Th e combinations of ligand orbitals (represented here by spheres) in an octahedral complex, shown alongside the 
atomic orbitals of the metal. Only the ligand orbitals labeled eg have the right shape to give nonzero overlap with eg orbitals of 
the metal. Th e metal’s t2g orbitals do not combine with the ligand orbitals.
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metal t2g orbitals are classifi ed as non-bonding, in the sense that they do not inter-
act to form bonding and antibonding combinations. Th e four remaining ligand 
orbitals (labeled, once again using notation that comes from group theory, as a1g 
and t1u in Fig. 10.43) have the appropriate symmetry to overlap with metal s and p 
orbitals, respectively, and form bonding and antibonding combinations with 
them. Th e energies of the full array of molecular orbitals are shown in Fig. 10.44.

According to the building-up principle, we need to accommodate the appro-
priate number of electrons into the molecular orbitals of the complex. Each ligand 
provides two electrons, and the dn central ion provides n electrons, so we must 
accommodate 12 + n electrons. Of these electrons, four will occupy the two eg 
bonding molecular orbitals, eight will occupy the t1u and a1g bonding orbitals, and 
the remaining n electrons need to be distributed among the metal-centered t2g 
nonbonding orbitals and the eg* antibonding molecular orbitals. We see that there 
are similarities between the ligand-fi eld and crystal-fi eld formalisms because the 
n electrons contributed to the complex by the metal atom enter fi ve orbitals split 
into a set of three and a set of two orbitals. Th e diff erence between the theories lies 
both in the source of the energy separation DO and in the spread of the eg* orbitals 
onto the ligands; the occurrence of low-spin and high-spin complexes is accounted 
for in terms of the energy splittings that result from the formation of bonding and 
antibonding molecular orbitals and not just in terms of metal–ligand Coulombic 
interactions.

(c) Ligand-field theory: p bonding

So far, we have considered only ligand orbitals that point directly at the metal ion 
orbitals, forming s molecular orbitals. Ligand-fi eld theory also takes into account 
the eff ects of ligand orbitals that participate in the formation of p molecular 
orbitals with metal ion orbitals. Figure 10.45 shows that a p orbital on the ligand 
perpendicular to the axis of the metal–ligand bond can overlap with one of the t2g 
orbitals. Th e resulting bonding combination lies below the energy of the original 
nonbonding t2g orbitals and the antibonding combination lies above them.

Interactions between metal ion orbitals and ligand p orbitals can either decrease 
or increase DO. To see how this is so, consider the bonding schemes in Fig. 10.45. 
If a ligand p orbital and a nonbonding t2g orbital of the metal ion have similar 
energies, when they interact a likely outcome is shown in Fig. 10.45a. If the ligand 
p orbital supplies two electrons and the t2g orbital supplies one, then the result is 
a decrease in DO. On the other hand, if the metal t2g and ligand p* orbitals have 

Fig. 10.44 Th e molecular orbital 
energy level diagram for an 
octahedral complex. Th e 12 
electrons provided by the six 
ligands fi ll the lowest six orbitals, 
which are all bonding orbitals. 
Th e n d electrons provided by the 
central metal atom or ion are 
accommodated in the orbitals 
inside the box.

Fig. 10.45 Th e eff ect of p bonding 
on the magnitude of DO. (a) In 
this case, the antibonding p* 
orbital of the ligand is too high in 
energy to take part in bonding or 
it is absent; the interaction with 
the (full) p orbital of the ligand 
decreases DO. (b) In this case, the 
antibonding p* orbital of a ligand 
matches the metal orbital in 
energy; the interaction with the 
(empty) p* orbital of the ligand 
increases DO.
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similar energies, then they may interact in the manner shown in Fig. 10.45b, If the 
p* orbital is empty and t2g orbital supplies one, then the result is an increase in DO.

Fig. 10.46 Th e change in molecular 
geometry that takes place when 
an O2 molecule attaches to an Fe 
atom in a hemoglobin molecule. 
(a) Th e deoxygenated heme 
group, with the Fe(II) ion in 
its low-spin confi guration. 
(b) Th e oxygenated heme group, 
with the Fe(II) ion in its 
high-spin confi guration. Note 
how the histidine residue is 
pulled into a diff erent location by 
the motion of the iron atom.

Case study 10.4 Ligand-field theory and the binding of O2 to hemoglobin

Ligand-fi eld theory provides excellent descriptions of the interactions between 
metal ions and ligands in metalloproteins. In this Case study, we apply the 
theory to an important biological process: the binding of O2 to hemoglobin.

Nature makes unconscious use of ligand-fi eld eff ects to pump and store oxygen 
throughout our bodies. Here we concentrate on hemoglobin (Hb, Atlas P7), 
the protein used to transport oxygen through our bodies, and myoglobin 
(Mb), the protein used to store oxygen in muscle tissue and to release it on 
demand (see also Case study 4.1). Hemoglobin is a tetramer of four myoglobin-
like subunits, and each subunit, as in myoglobin, binds a single heme group, 
an almost fl at ring-like structure with an iron atom at its center (Atlas P6). 
Th e oxygenated form of hemoglobin is called the relaxed state (R state) and 
the deoxygenated form is called the tense state (T state).

Th e heme group binds oxygen when the Fe atom is present as iron(II) 
(Fig. 10.46). Th e Fe–O2 complex is held together by a s bond between an empty 
Fe(II) eg orbital and the full s orbital of O2 and a p bond between fi lled t2g orbitals 
on Fe(II) and the half-full p* orbitals of O2. Th e bound O2 molecule adopts a 
bent orientation with respect to the Fe atom, partly because that orientation 
maximizes interactions between orbitals, but also because it is consistent with 
the spatial constraints imposed by the arrangement of peptide residues in the 
pocket of the protein containing the heme group.

Another important change that occurs when the Fe atom is oxygenated is the 
transition from an Fe(II) high-spin d6 confi guration to an Fe(II) low-spin d6 
confi guration. Th is change accompanies the increase in the number of ligands 
of the Fe ion from fi ve to six. In the deoxygenated form, the fi ft h location is 
taken up by the N atom of a histidine residue (His); in the oxygenated form 
that link remains, but the O2 molecule binds on the other side of the ring 
(as shown in Fig. 10.46b). Th e change from high spin to low spin results in 
a slightly smaller atom. As a result, instead of lying 60 pm above the plane 
of the heme ring, the Fe atom can fall back almost into the plane of the ring, 
and in the oxygenated form it lies only 20 pm above the plane. As it falls back, 
it pulls the histidine residue with it.

In Case study 4.1 we discussed the thermodynamic view of the binding of O2 to 
hemoglobin. Now we can merge the thermodynamic and molecular views into 
a single model.2 When one of the subunits binds the fi rst O2 molecule, the 
heme group and its ligands reorganize as described above with the further 
consequence that one pair of subunits rotates through 15° relative to the other 
pair and becomes off set by 80 pm. Th is realignment of two of the subunits 
relative to the other two disrupts an ionic His+...Asp− interaction that helps to 
stabilize the deoxygenated form, and as a result the partially oxygenated 
hemoglobin molecule is more capable of taking up the next O2 than the fully 

2 J. Monod, J. Wyman, and J.-P. Changeux and later D. Koshland proposed the essential features of 
the model, which has been refi ned by structural studies with diff raction and spectroscopic techniques 
(discussed in Chapters 11 and 12, respectively).
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deoxygenated form was. In thermodynamic terms, the equilibrium constant 
for binding of the second O2 molecule is greater than the equilibrium constant 
for binding of the fi rst O2 molecule. As each of the four subunits become 
oxygenated, the binding of O2 to the remaining deoxygenated subunits 
becomes successively more favorable thermodynamically. In other words, in 
hemoglobin there is a cooperative uptake of O2 molecules. Th e cooperative 
binding of O2 by hemoglobin is an example of an allosteric eff ect, in which an 
adjustment of the conformation of a molecule when one substrate binds aff ects 
the ease with which a subsequent substrate molecule binds.

Oxygenated hemoglobin also unloads O2 cooperatively when conditions 
demand it. Th e result of cooperativity is that hemoglobin can release its O2 
under conditions when myoglobin cannot, which is an ideal arrangement for 
a transport protein rather than a storage protein (see Case study 4.1).

Computational biochemistry

Computational chemistry is now a standard part of chemical research. One major 
application is in pharmaceutical chemistry, where the likely pharmacological 
activity of a molecule can be assessed computationally from its shape and electron 
density distribution before expensive clinical trials are started. Commercial soft -
ware is now widely available for calculating the electronic structures of molecules 
and displaying the results graphically. All such calculations work within the 
Born–Oppenheimer approximation and express the molecular orbitals as linear 
combinations of atomic orbitals.

10.9 Computational techniques
Elaborate computational methods make reasonably accurate predictions of 
molecular properties, including their conformation, spectroscopic properties, 
and reactivity. Although these techniques tax computational resources heavily, 
they can be used in studies of moderately sized biological molecules.

Th ere are two principal approaches to solving the Schrödinger equation for 
many-electron polyatomic molecules. In the semi-empirical methods, certain 
expressions that occur in the Schrödinger equation are set equal to parameters 
that have been chosen to lead to the best fi t to experimental quantities, such as 
enthalpies of formation. Semi-empirical methods are applicable to a wide range 
of molecules with a virtually limitless number of atoms and are widely popular. In 
the more fundamental ab initio method, an attempt is made to calculate structures 
from fi rst principles, using only the atomic numbers of the atoms present. Such an 
approach is intrinsically more reliable than a semi-empirical procedure.

Both types of procedure typically adopt a self-consistent fi eld (SCF) procedure, 
in which an initial guess about the composition of the LCAO is successively 
refi ned until the solution remains unchanged in a cycle of calculation. For 
example, the potential energy of an electron at a point in the molecule depends on 
the locations of the nuclei and all the other electrons. Initially, we do not know 
the locations of those electrons (more specifi cally, we do not know the detailed 
form of the wavefunctions that describe their locations, the molecular orbitals 
they occupy). First, then, we guess the form of those wavefunctions—we guess 
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the values of the coeffi  cients in the LCAO used to build the molecular orbitals—
and solve the Schrödinger equation for the electron of interest on the basis of that 
guess. Now we have a fi rst approximation to the molecular orbital of our electron 
(a reasonable estimate of the coeffi  cients for its LCAO) and we repeat the pro-
cedure for all the other molecular orbitals in the molecule. At this stage, we have 
a new set of molecular orbitals, which in general will have coeffi  cients that diff er 
from our fi rst guess, and we also have an estimate of the energy of the molecule. 
We use that refi ned set of molecular orbitals to repeat the calculation and cal-
culate a new energy. In general, the coeffi  cients in the LCAOs and the energy 
will diff er from the new starting point. However, there comes a stage when 
repetition of the calculation leaves the coeffi  cients and energy unchanged. Th e 
orbitals are now said to be self-consistent, and we accept them as a description 
of the molecule.

(a) Semi-empirical methods

Th e Hückel method is a very primitive example of a semi-empirical method in 
which various integrals are set equal to either a or b and treated as empirical 
parameters; overlap integrals are ignored. Th e removal of the restriction of the 
Hückel method to planar hydrocarbon systems was achieved with the introduc-
tion of the extended Hückel theory (EHT) in about 1963. In heteroatomic 
non-planar systems (such as d-metal complexes) the separation of orbitals into p 
and s is no longer appropriate and each type of atom has a diff erent value of HJJ 
(which in Hückel theory is set equal to a for all atoms). In this approximation, the 
overlap integrals are not set equal to zero but are calculated explicitly. Furthermore, 
the HJK, which in Hückel theory are set equal to b, in EHT are made proportional 
to the overlap integral between the orbitals J and K.

Further approximations of the Hückel method were removed with the intro-
duction of the complete neglect of diff erential overlap (CNDO) method, which 
is a slightly more sophisticated method for dealing with the terms HJK that 
appear in the secular equations for the coeffi  cients. Th e introduction of CNDO 
opened the door to an avalanche of similar but improved methods and their 
accompanying acronyms, such as intermediate neglect of diff erential overlap 
(INDO), modifi ed neglect of diff erential overlap (MNDO), and the Austin 
Model 1 (AM1, version 2 of MINDO). Soft ware for all these procedures is now 
readily available, and reasonably sophisticated calculations can be run even on 
handheld computers.

(b) Density functional theory

A semi-empirical technique that has gained considerable ground in recent 
years to become one of the most widely used techniques for the calculation of 
molecular structure is density functional theory (DFT). Its advantages include 
less demanding computational eff ort, less computer time, and—in some cases 
(particularly d-metal complexes)—better agreement with experimental values 
than is obtained from other procedures.

Th e central focus of DFT is the electron density, r (rho), rather than the wave-
function y. When the Schrödinger equation is expressed in terms of r, it becomes 
a set of equations called the Kohn–Sham equations. As for the Schrödinger 
equation itself, this equation is solved iteratively and self-consistently. First, we 
guess the electron density. For this step it is common to use a superposition 
of atomic electron densities. Next, the Kohn–Sham equations are solved to 
obtain an initial set of orbitals. Th is set of orbitals is used to obtain a better 
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approximation to the electron density, and the process is repeated until the den-
sity and the energy are constant to within some tolerance.

(c) Ab initio methods

Th e ab initio methods also simplify the calculations, but they do so by setting up 
the problem in a diff erent manner, avoiding the need to estimate parameters by 
appeal to experimental data. In these methods, sophisticated techniques are used 
to solve the Schrödinger equation numerically. Th e diffi  culty with this procedure, 
however, is the enormous time it takes to carry out the detailed calculation. Th at 
time can be reduced by replacing the hydrogenic atomic orbitals used to form the 
LCAO by a Gaussian-type orbital (GTO) in which the exponential function e−r 
characteristic of actual orbitals is replaced by a sum of Gaussian functions of the 
form e−r2 (recall the relative shapes of exponential and Gaussian functions shown 
in Mathematical Toolkit F.2).

10.10 Graphical output
One of the most significant developments in computational chemistry and its 
application to biology has been the introduction of graphical representations 
of molecular geometries, molecular orbitals, and electron densities.

Th e raw output of a molecular structure calculation is a list of the coeffi  cients 
of the atomic orbitals in each molecular orbital and the energies of these orbitals. 
Th e graphical representation of a molecular orbital uses stylized shapes to repre-
sent the basis set and then scales their size to indicate the value of the coeffi  cient 
in the LCAO. Diff erent signs of the wavefunctions are represented by diff erent 
colors (as we saw in Figs 10.36, 10.37, and 10.39).

Once the coeffi  cients are known, we can build up a representation of the 
electron density in the molecule by noting which orbitals are occupied and then 
forming the squares of those orbitals. Th e total electron density at any point 
is then the sum of the squares of the wavefunctions evaluated at that point. Th e 
outcome is commonly represented by an isodensity surface, a surface of constant 
total electron density (Fig. 10.47). Th ere are several styles of representing an 
isodensity surface: as a solid form, as a transparent form with a ball-and-stick 
representation of the molecule within, or as a mesh. A related representation is 
a solvent-accessible surface, which is generated by plotting the location of the 
center of a sphere (representing a solvent molecule) that is imagined to roll across 
the exposed surfaces of the atoms.

One of the most important aspects of a molecule other than its geometrical shape 
is the distribution of electric potential over its surface. A common procedure 
begins with calculation of the potential energy of a ‘probe’ charge at each point on 
an isodensity surface and interpreting its energy as an interaction with an electric 
potential at that point. Th e result is an electrostatic potential surface (an ‘elpot 
surface’) in which net positive potential is shown in one color and net negative 
potential is shown in another, with intermediate gradations of color (Fig. 10.48).

10.11 The prediction of molecular properties
The results of quantum mechanical calculations are only approximate, with deviations 
from experimental values increasing with the size of the molecule. Therefore, one goal 
of computational biochemistry is to gain an insight into the trends in properties of 
biological molecules, without necessarily striving for ultimate accuracy.

A brief comment
In mathematics, when an 
entire function f(x) is 
associated with a single 
number, F, as when an entire 
wavefunction is associated 
with the energy of the state, 
the number is said to be a 
functional of the function and 
written F[ f ]. Th us, the energy 
E is a functional of the 
wavefunction and we could 
denote it E[y] to denote the 
functional dependence of 
the energy on the entire 
wavefunction. In DFT, 
the energy is regarded as a 
functional of the electron 
density, and written E[r].

Fig. 10.47 Th e isodensity surface of 
benzene.
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Computation is now used to explore far more than the electronic structures of 
molecules. We already saw in Section 1.12 that computational techniques can be 
used to estimate the enthalpies of formation of conformational isomers and the 
eff ect of solvent on the enthalpy of formation.

(a) Electrochemical properties

Molecular orbital calculations may also be used to predict trends in electrochem-
ical properties, such as standard potentials (Chapter 5). Several experimental and 
computational studies of aromatic hydrocarbons indicate that decreasing the 
energy of the LUMO enhances the ability of a molecule to accept an electron into 
the LUMO, with an attendant increase in the value of the molecule’s standard 
potential. Th e eff ect is also observed in quinones and fl avins, co-factors involved 
in biological electron transfer reactions. For example, stepwise substitution of 
the hydrogen atoms in p-benzoquinone by methyl groups (–CH3) results in a 
systematic increase in the energy of the LUMO and a decrease in the standard 
potential for formation of the semiquinone radical:

Th e standard potentials of naturally occurring quinones are also modifi ed by 
the presence of diff erent substituents, a strategy that imparts specifi c functions 
to specifi c quinones. For example, the substituents in coenzyme Q are largely 
responsible for poising its standard potential so that the molecule can function as 
an electron shuttle between specifi c electroactive proteins in the respiratory chain 
(Section 5.10).

(b) Spectroscopic properties

We remarked in Chapter 9 that a molecule can absorb or emit a photon of energy 
hc/l, resulting in a transition between two quantized molecular energy levels. Th e 
transition of lowest energy (and longest wavelength) occurs between the HOMO 
and LUMO. We can use calculations based on semi-empirical, ab initio, and DFT 
methods to correlate the HOMO–LUMO energy gap with the wavelength of 
absorption.

For example, consider the linear polyenes shown in Table 10.3: ethene (C2H4), 
butadiene (C4H6), hexatriene (C6H8), and octatetraene (C8H10), all of which absorb 
in the ultraviolet region of the spectrum. Th e table also shows that, as expected, 
the wavelength of the lowest-energy electronic transition decreases as the energy 
separation between the HOMO and LUMO increases. We also see that the smallest 
HOMO–LUMO gap and longest transition wavelength correspond to octatetraene, 
the longest polyene in the group. It follows that the wavelength of the transition 
increases with increasing number of conjugated double bonds in linear polyenes. 
Extrapolation of the trend suggests that a suffi  ciently long linear polyene should 
absorb light in the visible region of the electromagnetic spectrum. Th is is indeed 
the case for b-carotene (Atlas E1), which absorbs light with l ≈ 450 nm. Th e ability 
of b-carotene to absorb visible light is part of the strategy employed by plants to 
harvest solar energy for use in photosynthesis (Chapter 12).

Fig. 10.48 Th e electrostatic 
potential surfaces of (a) benzene 
and (b) pyridine. Note the 
accumulation of electron density 
on the N atom of pyridine at the 
expense of the other atoms.
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(c) Chemical reactivity

Th ere are several ways in which molecular orbital calculations lend insight into 
reactivity. For example, electrostatic potential surfaces may be used to identify 
an electron-poor region of a molecule that is susceptible to association with or 
chemical attack by an electron-rich region of another molecule. Such considera-
tions are important for assessing the pharmacological activity of potential drugs 
(Section 11.17(c)).

An attractive feature of computational chemistry is its ability to model species 
that may be too unstable or short-lived to be studied experimentally. For this 
reason, quantum mechanical methods are oft en used to study the transition state, 
with an eye toward describing factors that stabilize it and increase the reaction 
rate. Systems as complex as enzymes are amenable to study by computational 
methods.

Table 10.3 Summary of ab initio calculations and spectroscopic data for four linear 
polyenes

DEHOMO-LUMO/eV* ltransition/nm

18.1 163

14.5 217

 12.7 252

11.6 304

1 eV = 1.602 × 10−19 J.

Checklist of key concepts

 1. An ionic bond is formed by transfer of electrons from 
one atom to another and the attraction between the 
ions. A covalent bond is formed when two atoms 
share a pair of electrons.

 2. In the Born–Oppenheimer approximation, nuclei 
are treated as stationary while electrons move 
around them.

 3. In valence bond theory (VB theory), a bond is 
regarded as forming when an electron in an atomic 
orbital on one atom pairs its spin with that of an 
electron in an atomic orbital on another atom.

 4. A valence-bond wavefunction with cylindrical 
symmetry around the internuclear axis is a s bond. 
A p bond arises from the merging of two p orbitals 
that approach side by side and the pairing of electrons 
that they contain.

 5. Hybrid orbitals are mixtures of atomic orbitals on 
the same atom. In VB theory, hybridization is invoked 
to be consistent with molecular geometries.

 6. Resonance is the superposition of the wavefunctions 
representing diff erent electron distributions in the 
same nuclear framework.

 7. In molecular orbital theory (MO theory), electrons  are 
treated as spreading throughout the entire molecule.

 8. A bonding orbital is a molecular orbital that, if 
occupied, contributes to the strength of a bond 
between two atoms. An antibonding orbital is a 
molecular orbital that, if occupied, decreases the 
strength of a bond between two atoms.

 9. Th e building-up principle suggests procedures for
  constructing the electron confi guration of molecules on 

the basis of their molecular orbital energy level diagram.
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 10. When constructing molecular orbitals, we need to 
consider only combinations of atomic orbitals of 
similar energies and of the same symmetry around 
the internuclear axis.

 11. Th e electronegativity of an element is the power of 
its atoms to draw electrons to itself when it is part 
of a compound.

 12. In a bond between dissimilar atoms, the atomic orbital 
belonging to the more electronegative atom makes the 
larger contribution to the molecular orbital with the

  lowest energy. For the molecular orbital with the highest 
energy, the principal contribution comes from the atomic 
orbital belonging to the less electronegative atom.

 13. Hückel theory is a simple treatment of the molecular 
orbitals of p-electron systems. In hydrocarbons the 
technique consists of forming linear combinations of 
unhybridized C2p orbitals.  

 14. In crystal-fi eld theory, bonding in d-metal complexes 
arises from Coulomb interactions between electrons 
from the central metal ion and electrons from the 

ligands. In an octahedral complex, the degenerate d 
atomic orbitals of the metal are split into two sets of 
orbitals separated by an energy DO: a triply degenerate 
set comprising the dxy, dyz, and dzx orbitals and labeled 
t2g and a doubly degenerate set comprising the dx2−y2 
and dz2 orbitals and labeled eg.

 15. In a high-spin complex, the t2g and eg orbitals are fi lled 
in such a way as to maximize the number of unpaired 
d electrons. In a low-spin complex, the number of 
unpaired electrons is minimized.

 16. Ligand-fi eld theory is an adaptation of MO theory for 
complexes of the d metals.

 17. In the self-consistent fi eld procedure, an initial guess 
about the composition of the molecular orbitals is 
successively refi ned until the solution remains 
unchanged in a cycle of calculations.

 18. In semi-empirical methods for the determination of 
electronic structure, the Schrödinger equation is 
written in terms of parameters chosen to agree with 
selected experimental quantities.

Checklist of key equations

Property Equation Comment

A VB wavefunction  y(1,2) = yA(1)yB(2) + yA(2)yB(1) yA and yB are atomic orbitals on diff erent atoms
Resonance hybrid

Molecular orbital

Overlap integral

Bond order

y = ay1 + by2

y = cAyA + cByB

S = � yAyB dt

b = 12(n − n*)

y1 and y2 are wavefunctions for molecules with diff erent electron 
distributions and the same nuclear locations
An LCAO

Discussion questions

10.1 Compare the approximations built into valence bond theory and 
molecular orbital theory.

10.2 Discuss the steps involved in the construction of sp3, sp2, and sp 
hybrid orbitals.

10.3 Distinguish between the Pauling and Mulliken electronegativity 
scales.

10.4 Use molecular orbital theory to discuss the biochemical 
reactivity of O2, N2, and NO.

10.5 Identify and justify the approximations used in the Hückel 
theory of conjugated hydrocarbons.

10.6 Using information found in this and the previous chapter, 
discuss the unique role that carbon plays in biochemistry.

10.7 In the laboratory, the Fe2+ ion in the heme group of hemoglobin 
can be removed and replaced by a Zn2+ ion. Discuss whether this 
modifi ed protein is likely to bind O2 effi  ciently.

10.8 Distinguish between semi-empirical, ab initio, and density 
functional theory methods of electronic structure determination.



404   10 THE CHEMICAL BOND

Exercises

10.9 Write down the valence bond wavefunction for a nitrogen 
molecule.

10.10 Calculate the molar energy of repulsion between two hydrogen 
nuclei at the separation in H2 (74.1 pm). Th e result is the energy that 
must be overcome by the attraction from the electrons that form the 
bond.

10.11 Give the valence bond description of SO2 and SO3 molecules.

10.12 Write the Lewis structure for the peroxynitrite ion, ONOO−. 
Label each atom with its state of hybridization and specify the 
composition of each of the diff erent types of bond.

10.13 Th e structure of the visual pigment retinal is shown in (8). 
Label each atom with its state of hybridization and specify the 
composition of each of the diff erent types of bond.

normalized to 1, then y is also normalized to 1. (c) To what values of q 
do the bonding and antibonding orbitals in a homonuclear diatomic 
molecule correspond?

10.21 Draw diagrams to show the various orientations in which a p 
orbital and a d orbital on adjacent atoms may form bonding and 
antibonding molecular orbitals.

10.22 How many molecular orbitals can be constructed from a 
diatomic molecule in which s, p, d, and f orbitals are all important in 
bonding?

10.23 Give the ground state electron confi gurations of (a) H2
−, (b) N2, 

and (c) O2.

10.24 Th ree biologically important diatomic species, either because 
they promote or inhibit life, are (a) CO, (b) NO, and (c) CN−. Th e fi rst 
binds to hemoglobin, the second is a chemical messenger, and the 
third interrupts the respiratory electron transfer chain. Th eir 
biochemical action is a refl ection of their orbital structure. Deduce 
their ground-state electron confi gurations.

10.25 Some chemical reactions proceed by the initial loss or transfer 
of an electron to a diatomic species. Which of the molecules N2, NO, 
O2, C2, F2, and CN would you expect to be stabilized by (a) the 
addition of an electron to form AB− and (b) the removal of an electron 
to form AB+?

10.26 Give the (g,u) parities of the wavefunctions for the fi rst four 
levels of a particle in a box.

10.27 (a) Give the parities of the wavefunctions for the fi rst four levels 
of a harmonic oscillator. (b) How may the parity be expressed in terms 
of the quantum number v?

10.28 State the parities of the six p orbitals of benzene (see Fig. 10.39).

10.29 Two important diatomic molecules for the welfare of humanity 
are NO and N2: the former is both a pollutant and a chemical 
messenger, and the latter is the ultimate source of the nitrogen of 
proteins and other biomolecules. Use the electron confi gurations of 
NO and N2 to predict which is likely to have the greater bond 
dissociation energy and the shorter bond length.

10.30 Arrange the species O2
+, O2, O2

−, and O2
2− in order of increasing 

bond length.

10.31 Construct the molecular orbital energy level diagrams of 
(a) ethene (ethylene) and (b) ethyne (acetylene) on the basis that the 
molecules are formed from the appropriately hybridized CH2 or CH 
fragments.

10.32 Many of the colors of vegetation are due to electronic 
transitions in conjugated p-electron systems. In the free-electron 
molecular orbital (FEMO) theory, the electrons in a conjugated 
molecule are treated as independent particles in a box of length L. 
Sketch the form of the two occupied orbitals in butadiene predicted 
by this model and predict the minimum excitation energy of the 
molecule. Th e tetraene CH2=CHCH=CHCH=CHCH=CH2 can be 
treated as a box of length 8R, where R = 140 pm (as in this case, 
an extra half bond length is oft en added at each end of the box). 
Calculate the minimum excitation energy of the molecule and 
sketch the HOMO and LUMO.

10.14 Show that S = 2h1h2dt = 0, where h1 = s + px + py + pz and 
h2 = s − px − py + pz are hybrid orbitals. Hint: Each atomic orbital is 
individually normalized to 1. Also, note that S = 2spdt = 0, and that 
p orbitals with perpendicular orientations have zero overlap.

10.15 Show that the sp2 hybrid orbital (s + 21/2p)/31/2 is normalized to 
1 if the s and p orbitals are each normalized to 1.

10.16 Find another sp2 hybrid orbital that has zero overlap with the 
hybrid orbital in the preceding problem.

10.17 Benzene is commonly regarded as a resonance hybrid of the 
two Kekulé structures shown in (4), but other structures can also 
contribute. Draw three other structures in which there are only 
covalent p bonds (allowing for bonding between some non-adjacent 
C atoms), and two structures in which there is one ionic bond. Why 
may these structures be ignored in simple descriptions of the molecule?

10.18 Before doing the calculation below, sketch how the overlap 
between a 1s orbital and a 2p orbital can be expected to depend on 
their separation. Th e overlap integral between a 1s orbital and a 2p 
orbital on nuclei separated by a distance R is S = (R/a0){1 + (R/a0) + 
1
3(R/a0)2}e−R/a0. Plot this function, and fi nd the separation for which 
the overlap is a maximum.

10.19 Suppose that a molecular orbital has the form N(0.145A + 
0.844B). Find a linear combination of the orbitals A and B that has 
zero overlap with this combination.

10.20 Show, if overlap is ignored, (a) that any molecular orbital 
expressed as a linear combination of two atomic orbitals may be 
written in the form y = yA cos q + yB sin q, where q is a parameter that 
varies between 0 and 12 p, and (b) that if yA and yB are orthogonal and 
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10.33 Write down the Hückel secular determinant for 
cyclo-butadiene.

10.34 Solve the secular determinant for the allyl radical, 
CH2=CHCH2·. Hints: (a) regard the unpaired electron on the –CH2· 
fragment to be in a C2pz orbital, so that the electron can delocalize 
within the p system of the molecule. (b) See Mathematical toolkit 10.1.

10.35 It is important to understand the origins of stabilization of 
linear conjugated molecules because they play important biological 
roles in plants and animals (see Case study 9.1). According to Hückel 
theory, the energies of the bonding p molecular orbitals of butadiene, 
CH2=CH2–CH2=CH2, are E = a + 1.62b and a + 0.62b. Th e energies of 
the antibonding p* molecular orbitals are E = a − 1.62b and a − 0.62b. 
Th e total p-electron binding energy, Ep, is the sum of the energies of 
each p electron. Recalling that there are four electrons to 
accommodate in the p molecular orbitals, calculate the p-electron 
binding energies of ethene (see Section 10.7) and butadiene. Is the 
energy of the butadiene molecule lower or higher than the sum of 
two individual p bonds?

10.36 Cyclic conjugated systems occur widely in biological 
macromolecules. Examples include the phenyl group of phenyalanine 
and a host of heterocyclic molecules, such as the purine and 
pyrimidine bases found in nucleic acids. In general, the delocalization 
energy of a conjugated system is

Edeloc = Ep − Ndb(2a + 2b)

where Ndb is the number of double bonds, each contributing an energy 
2a + 2b in the absence of conjugation. Th e most notable example of 
delocalization conferring extra stability is benzene and the aromatic 
molecules based on its structure. Predict the electronic confi guration 
and delocalization energy of (a) the benzene anion and (b) the 
benzene cation.

10.37 Th e FEMO theory (Problem 10.32) of conjugated molecules is 
rather crude and better results are obtained with simple Hückel 
theory. (a) For a linear conjugated polyene with each of NC carbon 
atoms contributing an electron in a 2p orbital, the energies Ek of the 
resulting p molecular orbitals are given by

Ek = a + 2b cos kp
NC + 1

  k = 1, 2, 3, . . . , NC

Use this expression to determine a reasonable empirical estimate of 
the parameter b for the series consisting of ethene, butadiene, 
hexatriene, and octatetraene given that light-induced absorptions 
from the HOMO to the LUMO occur at 61 500, 46 080, 39 750, and 
32 900 cm−1, respectively. (b) Calculate the delocalization energy of 
octatetraene (see Exercise 10.36). (c) In the context of this Hückel 
model, the p molecular orbitals are written as linear combinations 
of the carbon 2p orbitals. Th e coeffi  cient of the jth atomic orbital in 
the kth molecular orbital is given by

ckj = AC
2

NC + 1
D
F

1/2

 sin jkp
NC + 1

 j = 1, 2, 3, . . . , NC

Determine the values of the coeffi  cients of each of the six 2p orbitals 
in each of the six p molecular orbitals of hexatriene. Match each set of 
coeffi  cients (that is, each molecular orbital) with a value of the energy 

calculated with the expression given in part (a) of the molecular 
orbital. Comment on trends that relate the energy of a molecular 
orbital with its ‘shape’, which can be inferred from the magnitudes 
and signs of the coeffi  cients in the linear combination that describes 
the molecular orbital.

10.38 For monocyclic conjugated polyenes (such as cyclobutadiene 
and benzene) with each of NC carbon atoms contributing an electron 
in a 2p orbital, simple Hückel theory gives the following expression 
for the energies Ek of the resulting p molecular orbitals:

Ek = a + 2b cos 2kp
NC

  k = 0, ±1, ±2, . . . , ±NC/2 (even N)

 k = 0, ±1, ±2, . . . , ±(NC − 1)/2 (odd N)

(a) Calculate the energies of the p molecular orbitals of benzene and 
cyclooctatetraene. Comment on the presence or absence of degenerate 
energy levels. (b) Calculate and compare the delocalization energies 
of benzene (using the expression above) and hexatriene (see Exercise 
10.36). What do you conclude from your results? (c) Calculate and 
compare the delocalization energies of cyclooctaene and octatetraene. 
Are your conclusions for this pair of molecules the same as for the pair 
of molecules investigated in part (b)?

10.39 Experimentally, it is found that the value of DO varies with the 
chemical nature of the ligand according to the spectrochemical series: 
S2− < Cl− < OH− ≈ RCO2

− < H2O ≈ RS− < NH3 ≈ imidazole (the side 
chain of histidine) < CN− < CO. (a) Draw an energy level diagram like 
those in Fig. 10.41 showing the confi guration of the d electrons on the 
metal ion in [Fe(OH2)6]3+ and [Fe(CN)6]3−. (b) Predict the number of 
unpaired electrons in each complex.

10.40 Th e terms low spin and high spin apply only to complexes of 
d-metal ions having certain numbers of d electrons. Put diff erently, 
certain d-metal ions can have only one electron confi guration and 
a distinction between low- and high-spin complexes is not possible. 
For what number of d electrons are both high- and low-spin 
octahedral complexes possible?

10.41 Figures 10.41 and 10.42 show the result of an octahedral 
arrangement of ligands around a d-metal ion. In a tetrahedral 
complex, the dx2−y2 and dz2 orbitals form a degenerate pair that is 
separated in energy from the degenerate dxy, dyz, and dzx orbitals by DT. 
In a square-planar complex with the ligand orbitals in the xy plane, 
the metal d orbitals increase in energy as follows: dxz = dyz < dz2 < dxy 
< dx2−y2. In a nickel-containing enzyme, the metal was shown to be in 
the +2 oxidation state and to have no unpaired electrons. What is 
the most probable geometry of the Ni2+ site?

10.42 Ligands that interact with d metals as shown in Fig. 10.43 are 
called s-donor ligands. When p bonding is important, p-acceptor and 
p-donor ligands behave as shown in Fig. 10.45. If a ligand generates a 
weak ligand fi eld around a d-metal ion, the result will be a small value 
of DO and a high-spin complex. Conversely, a strong ligand fi eld leads 
to a large value of DO and a low-spin complex. (a) Justify the following 
statement: Cl− is a weak-fi eld ligand because it is a p acceptor and 
CO is a strong-fi eld ligand because it is a p donor. (b) Show that O2 
is a p-acceptor ligand. (c) Using the information from parts (a) and 
(b) and from Case studies 4.1 and 10.4, propose a detailed mechanism 
for CO poisoning.
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Projects

10.43 In Section 10.2c we used VB theory to account for the planarity 
of the peptide link (1). Now we develop a molecular orbital theory 
treatment that provides a richer description of the factors that stabilize 
the planar conformation of the peptide link.
(a) Taking a hint from VB theory, we can suspect that delocalization 
of the p bond between the oxygen, carbon, and nitrogen atoms can be 
modeled by making LCAO-MOs from 2p orbitals perpendicular to 
the plane defi ne by the atoms. Th e three combinations have the form

y1 = acO + bcC + ccN  y2 = dcO − ecN  y3 = fcO − gcC + hcN

where the coeffi  cients a to h are all positive. Sketch the orbitals y1, y2, 
and y3 and characterize them as bonding, non-bonding, or 
antibonding molecular orbitals.
(b) Show that this treatment is consistent only with a planar 
conformation of the peptide link.
(c) Draw a diagram showing the relative energies of these molecular 
orbitals and determine the occupancy of the orbitals. Hint: Convince 
yourself that there are four electrons to be distributed among the 
molecular orbitals.
(d) Now consider a nonplanar conformation of the peptide link, 
in which the O2p and C2p orbitals are perpendicular to the plane 
defi ned by the O, C, and N atoms, but the N2p orbital lies on that 
plane. Th e LCAO-MOs are given by

y4 = acO + bcC  y5 = ecN  y6 = fcO − gcC

Just as before, sketch these molecular orbitals and characterize them 
as bonding, nonbonding, or antibonding. Also, draw an energy level 
diagram and determine the occupancy of the orbitals.
(e) Why is this arrangement of atomic orbitals consistent with a 
nonplanar conformation for the peptide link?
(f) Does the bonding MO associated with the planar conformation
have the same energy as the bonding MO associated with the nonplanar 
conformation? If not, which bonding MO is lower in energy? Repeat 
the analysis for the nonbonding and antibonding molecular orbitals.
(g) Use your results from parts (a)–(f) to construct arguments that 
support the planar model for the peptide link.
Th e following projects require the use of molecular modeling soft ware.

10.44 Here we explore further the application of molecular orbital 
calculations to the prediction of spectroscopic properties of 
conjugated molecules.
(a) Using data from Table 10.3, plot the HOMO-LUMO energy 
separations against the experimental frequencies for p-to-p* 
ultraviolet absorptions for ethene, butadiene, hexatriene, and 
octatetraene. Th en use mathematical soft ware to fi nd the polynomial 
equation that best fi ts the data.
(b) Using molecular modeling soft ware and the computational 
method recommended by your instructor (extended Hückel, 
semiempirical, ab initio, or DFT methods), calculate the energy 
separation between the HOMO and LUMO of decapentaene.

(c) Use your polynomial fi t from part (a) to estimate the frequency of 
the p-to-p* absorption of decapentaene from the calculated 
HOMO-LUMO energy separation.

(d) Discuss why the calibration procedure of part (a) is necessary.

(e) Electronic excitation of a molecule may weaken or strengthen 
some bonds because bonding and antibonding characteristics diff er 

between the HOMO and the LUMO. For example, a carbon–carbon 
bond in a linear polyene may have bonding character in the HOMO 
and antibonding character in the LUMO. Th erefore, promotion of an 
electron from the HOMO to the LUMO weakens this carbon–carbon 
bond in the excited electronic state relative to the ground electronic 
state. (i) Use molecular modeling soft ware to display the HOMO and 
LUMO of each molecule discussed in this project. (ii) Discuss in detail 
any changes in bond order that accompany the p-to-p* ultraviolet 
absorptions in these molecules.
10.45 Molecular orbital calculations may be used to predict trends in 
the standard potentials of conjugated molecules, such as the quinones 
and fl avins, that are involved in biological electron transfer reactions 
(Chapter 5). It is commonly assumed that decreasing the energy of the 
LUMO enhances the ability of a molecule to accept an electron into 
the LUMO, with an attendant increase in the value of the molecule’s 
standard potential. Furthermore, a number of studies indicate that 
there is a linear correlation between the LUMO energy and the 
reduction potential of aromatic hydrocarbons.
(a) Th e biological standard potentials for the one-electron reduction 
of methyl-substituted p-benzoquinones (9) to their respective 
semiquinone radical anions are
R2 R3 R5 R6 E9

cell/V
H H H H 0.078
CH3 H CH3 H 0.023
CH3 H CH3 H −0.067
CH3 CH3 CH3 H −0.065
CH3 CH3 CH3 CH3 −0.260

Using molecular modeling soft ware and the computational method 
recommended by your instructor (extended Hückel, semi-empirical, 
ab initio, or DFT methods), calculate ELUMO, the energy of the LUMO 
of each substituted p-benzoquinone, and plot ELUMO against E3

cell. Do 
your calculations support a linear relation between ELUMO and E3

cell?
(b) Th e 1,4-benzoquinone for which R2 = R3 = CH3 and R5 = R6 = 
OCH3 is a suitable model of coenzyme Q, a component of the 
respiratory electron transport chain (Section 5.10). Determine ELUMO 
of this quinone and then use your results from part (a) to estimate its 
biological standard potential.
(c) Th e p-benzoquinone for which R2 = R3 = R5 = CH3 and R6 = H is a 
suitable model of plastoquinone, a component of the photosynthetic 
electron transport chain (Section 5.11). Determine ELUMO of this 
quinone and then use your results from part (a) to estimate its 
standard potential. Is plastoquinone expected to be a better or worse 
oxidizing agent than coenzyme Q?
(d) Based on your predictions and on basic concepts of biological 
electron transport (Sections 5.10 and 5.11), suggest a reason why 
coenzyme Q is used in respiration and plastoquinone is used in 
photosynthesis.
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Biological cells are complex devices with outer shells built largely from lipids, sterols, 
and, in some organisms, complex carbohydrates. Inside the cells are information stor-
age and retrieval systems—the chromosomes—and molecular machines—enzymes, 
ion channels and pumps, and so on—made from small molecules and macro-
molecules, such as proteins, nucleic acids, and polysaccharides. The construction of 
functional structures in the cell proceeds largely through self-assembly, the spontan-
eous formation of complex aggregates of molecules or macromolecules held together 
by a variety of molecular interactions of the kind described later in the chapter. We 
have already encountered a few examples of self-assembly, such as the formation of 
biological membranes from lipids and of a DNA double helix from two polynucleotide 
chains (Fundamentals F.1). In this chapter, we describe several techniques for the 
determination of the size and shape of biological macromolecules and aggregates, and 
then explore the interactions responsible for the shapes so found. These interactions 
contribute to a whole hierarchy of structure, from ‘no structure’ in fluids all the way up 
to the elaborate and functionally important structures of proteins and nucleic acids. 
We also describe computer-aided methods for building three-dimensional models of 
macromolecules in which the molecular interactions that promote self-assembly are 
optimized.

Determination of size and shape

In this section we explore important methods used in modern biochemical 
research to determine the molar mass and structure of very large molecules. Th e 
most powerful of these techniques are based on the diff raction of X-rays from 
crystalline samples and reveal the position of almost every heavy atom (that is, 
every atom other than hydrogen) even in very large molecules.

11.1 Ultracentrifugation
Because molar mass is so important for the identification of a molecule and the 
determination of its structure, we need to discuss sophisticated and accurate 
methods for its determination.

In a gravitational fi eld, heavy particles settle toward the foot of a column of solu-
tion by the process called sedimentation. Th e rate of sedimentation depends on 
the strength of the fi eld and on the masses and shapes of the particles. Spherical 
molecules (and compact molecules in general) sediment faster than rodlike or 
extended molecules. For example, DNA helices sediment much faster when they 
are denatured to a random coil, so sedimentation rates can be used to study 

Macromolecules and 
self-assembly 11
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denaturation. When the sample is at equilibrium, the particles are dispersed over 
a range of heights because the gravitational fi eld competes with the stirring eff ect 
of thermal motion. Th e spread of heights depends on the masses of the molecules, 
so the equilibrium distribution is another way to determine molar mass.

Sedimentation is normally very slow, but it can be accelerated by ultracentri-
fugation, a technique that replaces the gravitational fi eld with a centrifugal fi eld. 
Th e eff ect can be achieved in an ultracentrifuge, which is essentially a cylinder 
that can be rotated at high speed about its axis with a sample in a cell near 
its periphery (Fig. 11.1). Modern ultracentrifuges can produce accelerations 
equivalent to about 105 that of gravity (‘105 g’). Initially the sample is uniform, but 
the ‘top’ (innermost) boundary of the solute moves outward as sedimentation 
proceeds.

(a) The sedimentation rate

Solute particles in a spinning rotor adopt a constant speed away from the rota-
tional axis because the outward, centrifugal force is balanced by a retarding, 
frictional force. Th e sedimentation constant, S, a measure of the rate at which a 
particle migrates in the centrifugal fi eld, is defi ned as

S = s
rw2

 Sedimentation constant  (11.1)

where s is the speed of sedimentation, r is the distance of the sample from the 
rotational axis, and w is the angular velocity of the rotor (in radians per second). 
For biological macromolecules, typical values of S are of the order of 10−13 s and 
depend on the shape and size of the particle, the temperature, and the viscosity 
of the solution. A common unit for S is the ‘svedberg’, denoted Sv and defi ned as 
1 Sv = 10−13 s. For example, the sedimentation constant of the protein bovine 
serum albumin is 5.02 Sv in water at 25°C. We show in the following Justifi cation 
that the molar mass of a macromolecule is related to its sedimentation constant, 
S, and diff usion constant, D, by the relation

M = SRT
bD

 Relation between the molar mass 
and the sedimentation constant

 (11.2)

where b = 1 − rvs is a correction factor that takes into account the buoyancy of 
the solution, with r the mass density of the solvent (typically in grams per cubic 
centimeter) and vs the specifi c volume of the solute (typically in cubic centimeters 
per gram).

Fig. 11.1 (a) An ultracentrifuge 
head. Th e sample on one side is 
balanced by a blank diametrically 
opposite. (b) Detail of the sample 
cavity: the ‘top’ surface is the 
inner surface, and the centrifugal 
force causes sedimentation 
toward the outer surface; a 
particle at a radius r experiences 
a force of magnitude meff rw2.

Justification 11.1 The sedimentation constant

A solute particle of mass m has an eff ective mass meff  = bm in the solution. Th e 
solute particles at a distance r from the axis of a rotor spinning at an angular 
velocity w experience a centrifugal force of magnitude meff rw2. Th e acceleration 
outward is countered by a frictional force proportional to the speed, s, of the 
particles through the medium. Th is force is written fs, where f is the frictional 
coeffi  cient. Th e particles therefore adopt a drift  speed, a constant speed through 
the medium, which is found by equating the two forces meff rw2 and fs. Th e 
forces are equal when

s = meff rw2

f
 = bmrw2

f



 11.1 ULTRACENTRIFUGATION   409

Next, we draw on the Stokes–Einstein relation, f = kT/D, between the frictional 
coeffi  cient, f, and the diff usion coeffi  cient, D, to write

s = bmrw2D
kT

 = bMrw2D
RT

where we have used the relation m = M/NA between the molecular mass and the 
molar mass M and the relation R = kNA between Boltzmann’s constant and the 
gas constant. Use of eqn 11.1 and rearrangement of this expression gives eqn 11.2.

Th e diff usion coeffi  cient is related to the rate at which molecules migrate down 
a concentration gradient (it is treated in detail in Section 8.5) and can be meas-
ured by observing the rate at which a concentration boundary moves or the rate 
at which a more concentrated solution diff uses into a less concentrated one. Th e 
diff usion coeffi  cient can also be measured by using laser light-scattering methods 
(Section 11.3). It follows that we can fi nd the molar mass by combining measure-
ments of sedimentation and diff usion rates (to obtain S and D, respectively).

Self-test 11.1 Determine the molar mass of human hemoglobin, given that 
it has a sedimentation constant of 4.48 Sv and a diff usion coeffi  cient of 
6.9 × 10−11 m2 s−1 in a solution with rvs = 0.748 at 293 K.

Answer: 63 kg mol−1

(b) Sedimentation equilibrium

It is sometimes more convenient to measure the equilibrium distribution of mol-
ecules than the rate at which they sediment. At equilibrium, when the tendency 
of the solute to settle is balanced by the spreading eff ect of thermal motion, 
the molar mass can be obtained from the ratio of concentrations c2/c1 of the 
macromolecules at two diff erent radii r2 and r1, respectively, in a centrifuge 
operating at angular frequency w:

M = 2RT
�r2

2 − r1
2)bw2

 ln c2

c1
 Molar mass from 

sedimentation data
 (11.3a)

where R is the gas constant. Th e centrifuge is run more slowly in this technique 
than in the sedimentation rate method to avoid having all the solute pressed in 
a thin fi lm against the bottom of the cell. At these slower speeds, several days may 
be needed for equilibrium to be reached.

Example 11.1 The molar mass of a protein from ultracentrifugation experiments

Th e data from an equilibrium ultracentrifugation experiment performed at 
300 K on an aqueous solution of a protein show that a graph of ln c against 
(r/cm)2 is a straight line with a slope of 0.729. Th e rotational rate of the cen-
trifuge was 50 000 rotations per minute and b = 0.70. Calculate the molar mass 
of the protein.

Strategy We need to reinterpret eqn 11.3 in terms of the slope of a plot of 
ln c against r2. To do so, we apply the relation ln(x/y) = ln x − ln y to eqn 11.3 
and obtain, aft er minor rearrangement,
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M = 2RT
bw2

 × ln c2 − ln c1

r2
2 − r1

2

If a plot of ln c against r2 is linear, then the ratio (ln c2 − ln c1)/(r2
2 − r1

2) has the 
form of the slope of the line. In practice, ln(c/g cm−3) is plotted against (r/cm)2 
to give a dimensionless slope. It follows that

M = 2RT
bw2

 × (slope × cm−2) (11.3b)

and we can use the data provided to calculate the molar mass M. Each full 
revolution of the rotor corresponds to an angular change of 2p radians, so 
to obtain the angular frequency w, we multiply the rotation rate in cycles per 
second by 2p.

Solution Th e angular frequency is

w = 2p × (50 000 min−1) × 1 min
60 s

 = 2p × 50 000
60

 s−1

It follows from eqn 11.3 with 1 cm−2 = 104 m−2 and the slope 0.729 that the 
molar mass is

M = 2 × (8.3145 J K−1 mol−1) × (300 K) × (0.729 × 104 m−2)

(1 − 0.70) × AC
2p × 50 000

60  
s−1 D

F
2

where we have used 1 J = 1 kg m2 s−2. Th e molar mass is therefore 4.4 kg mol−1.

Self-test 11.2 Th e data from a sedimentation equilibrium experiment per-
formed at 293 K on a macromolecular solute in aqueous solution show that 
a graph of ln(c/g cm−3) against (r/cm)2 is a straight line with a slope of 0.821. 
Th e rotation rate of the centrifuge was 4500 Hz (1 Hz = 1 s−1) and rvs = 0.40. 
Calculate the molar mass of the solute.

Answer: 8.3 kg mol−1, corresponding to a molecular mass of 8.3 kDa

A note on good practice 
A molar mass (the mass 
per mole of molecules) of 
4.4 kg mol−1 corresponds to 
a molecular mass (the mass 
of one molecule) of 4.4 kDa. 
Be careful to use the unit 
dalton (Da) to denote 
molecular, not molar, mass.

 

11.2 Mass spectrometry
The most precise technique for the determination of molar mass is mass 
spectrometry, and we need to know how to adapt traditional techniques 
developed for small molecules to the study of biological macromolecules.

In mass spectrometry, the sample is fi rst ionized in the gas phase and then the 
mass-to-charge number ratios, m/z, of all the resulting ions are measured. Macro-
molecules present a challenge because it is diffi  cult to produce gaseous ions of 
large species without fragmentation. However, two new techniques have emerged 
that circumvent this problem: matrix-assisted laser desorption/ionization 
(MALDI) and electrospray ionization. We shall discuss MALDI–TOF mass 
spectrometry, so-called because the MALDI technique is coupled to a time-of-
fl ight (TOF) ion detector.

Figure 11.2 shows a schematic view of a MALDI–TOF mass spectrometer. Th e 
macromolecule is fi rst embedded in a solid matrix that oft en consists of an organic 
acid such as 2,5-dihydroxybenzoic acid, nicotinic acid, or an a-cyanocarboxylic acid. 

Fig. 11.2 Diagram of a 
matrix-assisted laser desorption/
ionization time-of-fl ight 
(MALDI-TOF) mass 
spectrometer. A laser beam ejects 
macromolecules and ions from 
the solid matrix. Th e ionized 
macromolecules are accelerated 
by an electrical potential 
diff erence over a distance d 
and then travel through a drift  
region of length l. Ions with the 
smallest mass-to-charge ratio 
(m/z) reach the detector fi rst.
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Th is sample is then irradiated with a laser pulse. Th e pulse of electromagnetic 
energy ejects matrix ions, cations, and neutral macromolecules, thus creating 
a dense gas plume above the sample surface. Th e macromolecule is ionized by 
collisions and complexation with H+ cations.

In the TOF spectrometer, the ions are accelerated over a short distance d by 
an electrical fi eld of strength E and then travel through a drift  region of length l. 
We show in the following Justifi cation that the time of fl ight, t, required for an 
ion of mass m and charge number z to reach the detector at the end of the drift  
region is

t = l AC
m

2zeEd
D
F

2

 Time of flight in a 
TOF spectrometer

 (11.4)

where e is the fundamental charge. Because d, l, and E are fi xed for a given experi-
ment, the time of fl ight of the ion is a direct measure of its m/z ratio, which is 
given by

m/z = 2zeEd AC
t
l
D
F

2

 The mass-to-charge number 
ratio in a TOF spectrometer

 (11.5)

A note on good (in this case, 
common) practice 
Strictly, the units of m/z are 
kilograms; however, it is 
conventional to interpret m 
as the ratio of the molecular 
mass to the atomic mass 
constant mu, in which case 
‘m/z’ (strictly m/zmu) is 
dimensionless.

 

Justification 11.2 The time of flight of an ion in a mass spectrometer

Consider an ion of charge ze and mass m that is accelerated from rest by an 
electric fi eld of strength E applied over a distance d. Th e kinetic energy, Ek, of 
the ion is

Ek = 12 mv2 = zeEd

where v is the speed of the ion. Th e drift  region, l, and the time of fl ight, t, in the 
mass spectrometer are both suffi  ciently short that we can ignore acceleration 
and write v = l/t. Th en substitution into the expression for Ek gives

1
2 m A

C
l
t
D
F

2

 = zeEd 

Rearrangement of this equation gives eqn 11.5.

Figure 11.3 shows the MALDI-TOF mass spectrum of bovine albumin. Th e 
MALDI technique produces unfragmented molecular ions of varying charges, 
with the singly charged ion oft en giving rise to the most prominent feature in the 
spectrum. Th e spectrum of a mixture of biopolymers consists of multiple peaks 
arising from molecules with diff erent molar masses. Th e intensity of each peak is 
proportional to the abundance of each biopolymer in the sample.

Self-test 11.3 A MALDI-TOF mass spectrum consists of two intense features 
at m/z = 9912 and 4554. Does the sample contain one or two distinct biopoly-
mers? Explain your answer.

Answer: Two distinct biopolymers because the feature at lower m/z 
probably does not arise from the unfragmented +2 cation of 

the species that gives rise to the feature at higher m/z.

Fig. 11.3 Th e MALDI-TOF mass 
spectrum of bovine albumin, 
a protein with molar mass 
66.43 kg mol−1. During the 
MALDI process, the protein 
takes up one or two H+ ions, 
making molecular ions of charge 
+1 and +2, respectively. Because 
the protein does not fragment, 
the +2 ion gives rise to a peak in 
the spectrum at a m/z value that 
is one-half the value for the peak 
associated with the +1 ion. 
(Adapted from B.S. Larsen 
and C.N. McEwen in Mass 
spectrometry of biological 
materials, Marcel Dekker, 
New York (1998).)
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11.3 Laser light scattering
The analysis of the intensity of laser light scattered by a solution of a biological 
macromolecule yields information about its size and shape.

Scattering of light by particles with diameters much smaller than the wavelength 
of the incident radiation is called Rayleigh scattering. In the Rayleigh regime, the 
intensity of scattered light is proportional to the molar mass of the particle and to 
l−4, so shorter-wavelength radiation is scattered more intensely than longer wave-
lengths. For example, the blue of the sky arises from the more intense scattering of 
the blue component of white sunlight by the molecules of the atmosphere.

(a) Rayleigh scattering

Consider the experimental arrangement shown in Fig. 11.4 for the measurement 
of light scattering from solutions of macromolecules. Typically, the sample is irra-
diated with monochromatic light from a laser. Th e intensity of scattered light is 
then measured as a function of the angle q that the direction of the laser beam 
makes with the direction of the detector from the sample at a distance r. Under 
these conditions, the intensity, I(q), of light scattered is written as the Rayleigh 
ratio:

R(q) = I(q)
I0

 × r2 Definition of the 
Rayleigh ratio

 (11.6)

where I0 is the intensity of the incident laser radiation.
A detailed examination of the scattering shows that the Rayleigh ratio depends 

on the mass concentration, cM (units: kg m−3), of the macromolecule and its molar 
mass M as:

R(q) = KP(q)cMM The relation of Rayleigh 
ratio to molar mass

 (11.7)

where the constant K depends on the refractive index of the solution, the 
incident wavelength, and the distance between the detector and the sample, which 
is held constant during the experiment. Th e quantity P(q) is the structure 
factor, which is related to the size of the molecule. When the molecule is much 
smaller than the wavelength of the light, P(q) ≈ 1. However, when the size of the 
molecule is about one-tenth the wavelength of the incident radiation, it is possible 
to show that

P(q) ≈ 1 − 16p2Rg
2sin2 12 q

3l2
 Structure factor for 

small molecules
 (11.8)

Fig. 11.4 Rayleigh scattering from 
a sample of point-like particles. 
Th e intensity of scattered light 
depends on the angle q between 
the incident and scattered beams. 
Th e treatment developed in 
the text corresponds to an 
experimental arrangement in 
which the plane of polarization 
of the laser beam (the dark 
blue plane in the inset) is 
perpendicular to the plane 
defi ned by the incident ray and 
the line from the sample to the 
detector (the light blue plane 
in the inset).

A brief comment
Th e factor r2 occurs in the 
defi nition of the Rayleigh ratio 
because the light wave spreads 
out over a sphere of radius r 
and surface area 4pr2, so any 
sample of the radiation has 
its intensity I(q) decreased by 
a factor proportional to r2. 
Th erefore, the quantity 
I(q) × r2, and not simply I(q), 
should be compared to I0 in 
forming the Rayleigh ratio. 
We also note that the 
defi nition of the Rayleigh 
ratio given here applies 
only to the experimental 
conditions in Fig. 11.4.
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where Rg is the radius of gyration of the macromolecule, a measure of its size 
(Section 11.12).

Equation 11.7 applies only to ideal solutions. In practice, even relatively dilute 
solutions of macromolecules can deviate considerably from ideality, as we saw 
in In the laboratory 3.1. Being so large, macromolecules displace a large quantity 
of solvent instead of replacing individual solvent molecules with negligible dis-
turbance. To take deviations from ideality into account, it is common to rewrite 
eqn 11.7 as KcM/R(q) = 1/P(q)M and to extend it to

KcM

R(q)
 = 1

P(q)M
 + BcM (11.9)

where B is an empirical constant analogous to the osmotic virial coeffi  cient (In the 
laboratory 3.1) and indicative of the eff ect of excluded volume.

Th e preceding discussion shows that structural properties, such as the size and 
molar mass of a macromolecule, can be obtained from measurements of light 
scattering by a sample at several angles q relative to the direction of propagation 
on an incident beam. In modern instruments, lasers are used as the radiation 
sources.

Example 11.2 Determining the molar mass and size of a protein by laser light 
scattering

Th e following data for an aqueous solution of a protein with cM = 2.00 kg m−3 
were obtained at 20°C with laser light at l = 532 nm.

q/° 15.0 45.0 70.0 85.0 90.0
R(q)/m2  23.8  22.9  21.6  20.7  20.4

In a separate experiment, it was determined that K = 2.40 × 10−2 mol m5 kg−2. 
From this information, calculate R g and M for the protein. Assume that B is 
negligibly small and that the protein is small enough that eqn 11.7 holds.

Strategy Substituting the result of eqn 11.8 into eqn 11.7 we obtain, aft er some 
rearrangement:

1
R(q)

 = 1
KcMM

 + AC
16p2Rg

2

3l2

D
F  AC

1
R(q) 

sin2 12 q
D
F

Hence, a plot of 1/R(q) against {1/R(q)}sin2 1
2 q should be a straight line with 

slope 16p2Rg
2/3l2 and y-intercept 1/KcMM. As usual, the plot should be of 

dimensionless quantities, so we actually plot 1/(R(q)/m2) against {1/(R(q)/m2)} × 
sin2 1

2q, in which case the dimensionless slope is equal to the dimensionless 
quantity 16p2Rg

2/3l2 and the dimensionless intercept is equal to 1/KcMM.

Solution We construct a table of values of 1/R(q) and {1/R(q)}sin2 1
2 q and plot 

the data (Fig. 11.5).

102/(R(q)/m2) 4.20 4.37 4.63 4.83 4.90
103 × (sin2 12q)/(R(q)/m2)  0.716  6.40  15.2  22.0  24.5

Th e best straight line through the data has a slope of 0.295 and a y-intercept of 
1/(R(q)/m2) = 4.18 × 10−2. From these values, we calculate

Rg = AC
3l2 × slope

16p2

D
F

1/2

 = AC
3 × (532 nm)2 × 0.295

16p2

D
F

1/2

 = 39.8 nm Fig. 11.5 Plot of the data for 
Example 11.2.
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M = 1 m2

(2.40 × 10−2 mol m5 kg−2) × (2.00 kg m−3) × (4.18 × 10−2)
 = 4.98 × 102 kg mol−1

We conclude that the radius of gyration is 39.8 nm and the molar mass is 
498 kg mol−1.

Self-test 11.4 Th e following data for an aqueous solution of a macromolecule 
were obtained at 20°C with plane-polarized light at l = 546 nm.

q/º 26.0 36.9 66.4 90.0 113.6
R(q)/m2  19.7  18.8  17.1  16.0   14.4

In separate experiments, it was determined that K = 6.42  × 10−5 mol m5 kg−2. 
From this information, and using cM = 311 kg m−3, calculate the Rg and M of the 
macromolecule. State any assumptions you must make to solve this problem.

Answer: Rg = 46.9 nm and M = 987 kg mol−1

(b) Dynamic light scattering

A special laser scattering technique, dynamic light scattering, can be used to 
investigate the diff usion of macromolecules in solution. Consider two molecules 
being irradiated by a laser beam. Suppose that at a time t the scattered waves from 
these particles interfere constructively at the detector, leading to a large signal. 
However, as the molecules move through the solution, the scattered waves 
may interfere destructively at another time t′ and result in no signal. When this 
behavior is extended to a very large number of molecules in solution, it results in 
fl uctuations in light intensity that depend on the diff usion coeffi  cient, D. Hence, 
analysis of the fl uctuations gives the diff usion coeffi  cient and molecular size in 
cases where the molecular shape is known.

Light scattering is a convenient method for the characterization of biological 
systems from proteins to viruses. Unlike mass spectrometry, laser light-scattering 
measurements may be performed in nearly intact samples; oft en the only pre-
paration required is fi ltration of the sample.

11.4 X-ray crystallography
The success of modern biochemistry in explaining such processes as DNA 
replication, protein biosynthesis, and enzyme catalysis is a direct result of 
developments in preparatory, instrumental, and computational procedures 
that have led to the determination of large numbers of structures of biological 
macromolecules by techniques based on X-ray diffraction.

Because much of our knowledge of the three-dimensional structures of biological 
macromolecules comes from studies of crystals of proteins and nucleic acids, we 
need to study the arrangements adopted by molecules when they stack together 
to form a crystalline solid. One of the most important techniques for the determi-
nation of the structures of crystals is X-ray diff raction. In its most sophisticated 
version, known as X-ray crystallography, X-ray diff raction provides detailed 
information about the location of all the atoms in molecules as complicated as 
biological macromolecules.
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(a) Diffraction

A characteristic property of waves is that they interfere with one another, which 
means that they give a greater amplitude where their displacements add and 
a smaller amplitude where their displacements subtract (Section 9.1). Because 
the intensity of electromagnetic radiation is proportional to the square of the 
amplitude of the waves, the regions of constructive and destructive interference 
show up as regions of enhanced and diminished intensities. Th e phenomenon 
of diff raction is the interference caused by an object in the path of waves, and the 
pattern of varying intensity that results is called the diff raction pattern (Fig. 11.6). 
Diff raction occurs when the dimensions of the diff racting object are comparable 
to the wavelength of the radiation. Sound waves, with wavelengths of the order of 
1 m, are diff racted by macroscopic objects. Light waves, with wavelengths of the 
order of 500 nm, are diff racted by narrow slits. X-rays have wavelengths com-
parable to bond lengths in molecules and the spacing of atoms in crystals (about 
100 pm), so they are diff racted by them. By analyzing the diff raction pattern, it is 
possible to draw up a detailed picture of the location of atoms.

Th e short-wavelength electromagnetic radiation we call X-rays is produced 
by bombarding a metal with high-energy electrons. Th e electrons decelerate as 
they plunge into the metal and generate radiation with a continuous range of 
wavelengths. Th is radiation is called bremsstrahlung.1 Superimposed on the 
continuum are a few high-intensity, sharp peaks. Th ese peaks arise from the inter-
action of the incoming electrons with the electrons in the inner shells of the atoms. 
A collision expels an electron (Fig. 11.7), and an electron of higher energy drops 
into the vacancy, emitting the excess energy as an X-ray photon. An example of 
the process is the expulsion of an electron from the K shell (the shell with n = 1) 
of a copper atom, followed by the transition of an outer electron into the vacancy. 
If an electron from the L shell undergoes the transition, then the energy so released 
gives rise to copper’s Ka radiation of wavelength 154 pm.

In 1912, the German physicist Max von Laue suggested that X-rays might be 
diff racted when passed through a crystal, for the wavelengths of X-rays are 
comparable to the separation of atoms. Laue’s suggestion was confi rmed almost 
immediately by Walter Friedrich and Paul Knipping, and then developed by 
William and Laurence Bragg (father and son), who later jointly received the Nobel 
Prize. It has grown since then into a technique of extraordinary power.

(b) Crystal systems

X-ray diff raction is applied to crystalline arrays of molecules, so we need to 
know how to describe the arrangement of molecules in a crystal. Th e pattern that 
atoms, ions, or molecules adopt in a crystal is expressed in terms of an array of 
points making up the lattice that identify the locations of the individual species 
(Fig. 11.8). A unit cell of a crystal is the small three-dimensional fi gure obtained 
by joining typically eight of these points, which may be used to construct the 
entire crystal lattice by purely translational displacements, much as a wall may be 
constructed from bricks (Fig. 11.9). An infi nite number of diff erent unit cells can 
describe the same structure, but it is conventional to choose the cell with sides 
that have the shortest lengths and are most nearly perpendicular to one another.

Unit cells are classifi ed into one of seven crystal systems according to the 
symmetry they possess under rotations about diff erent axes. Th e cubic system, 
for example, has four threefold axes (Fig. 11.10). A threefold axis is an axis of 

Fig. 11.7 Th e formation of X-rays. 
When a metal is subjected to 
a high-energy electron beam, 
an electron in an inner shell of an 
atom is ejected. When an electron 
falls into the vacated orbital from 
an orbital of much higher energy, 
the excess energy is released as an 
X-ray photon.

Fig. 11.6 Th e X-ray diff raction 
pattern obtained from a fi ber 
of B-DNA. Th e black dots are 
the refl ections, the points of 
maximum constructive 
interference, that are used to 
determine the structure of the 
molecule (see Case study 11.1). 
(Adapted from an illustration 
that appears in J.P. Glusker and 
K.N. Trueblood, Crystal structure 
analysis: A primer. Oxford 
University Press (1972).)

1 Bremse is German for ‘brake’, Strahlung for ‘radiation’.
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a rotation that restores the unit cell to the same appearance three times during 
a complete revolution, aft er rotations through 120°, 240°, and 360°. Th e four axes 
make the tetrahedral angle to each other. Th e monoclinic system has one twofold 
axis (Fig. 11.11). A twofold axis is an axis of a rotation that leaves the cell appar-
ently unchanged twice during a complete revolution, aft er rotations through 180° 
and 360°. Th e essential symmetries, the properties that must be present for the 
unit cell to belong to a particular system, are listed in Table 11.1.

A unit cell may have lattice points other than at its corners, so each crystal 
system can occur in a number of diff erent varieties. For example, in some cases 
points may occur on the faces and in the body of the cell without destroying the 
cell’s essential symmetry. Th ese various possibilities give rise to 14 distinct types 
of unit cell, called Bravais lattices. Th ree examples are shown in Fig. 11.12.

(c) Crystal planes

To specify a unit cell fully, we need to know not only its symmetry but its size, 
such as the lengths of its sides. Th ere is a useful relation between the spacing of the 
planes passing through the lattice points, which (as we shall see) we can measure, 
and the lengths we need to know. Because two-dimensional arrays of points are 
easier to visualize than three-dimensional arrays, we shall introduce the concepts 
we need by referring to two dimensions initially and then extend the conclusions 
to three dimensions.

Consider the two-dimensional rectangular lattice formed from a rectangular 
unit cell of sides a and b (Fig. 11.13). We can distinguish the four sets of planes 
shown in the illustration by the distances at which they intersect the axes. One 
way of labeling the planes would therefore be to denote each set by the smallest 
intersection distances. For example, we could denote the four sets in the illustra-
tion as (1a,1b), (3a,2b), (−1a,1b), and (∞a,1b). If, however, we agreed always 
to quote distances along the axes as multiples of the lengths of the unit cell, then 
we could omit the a and b and label the planes more simply as (1,1), (3,2), (−1,1), 
and (∞,1).

Now suppose that the array in Fig. 11.13 is the top view of a three-dimensional 
rectangular lattice in which the unit cell has a length c in the z direction. All four 

Fig. 11.8 (a) A crystal consists 
of a uniform array of atoms, 
molecules, or ions, as represented 
by these spheres. In many cases, 
the components of the crystal 
are far from spherical, but this 
diagram illustrates the general 
idea. (b) Th e location of each 
atom, molecule, or ion can be 
represented by a single point; 
here (for convenience only), the 
locations are denoted by a point 
at the center of the sphere. Th e 
unit cell, which is shown boxed, 
is the smallest block from which 
the entire array of points can be 
constructed without rotating or 
otherwise modifying the block.

Fig. 11.9 A unit cell, here shown in 
three dimensions, is like a brick used 
to construct a wall. Once again, only 
pure translations are allowed in the 
construction of the crystal. (Some 
bonding patterns for actual walls use 
rotations of bricks, so for these patterns 
a single brick is not a unit cell.)

Fig. 11.10 A unit cell belonging to the 
cubic system has four threefold axes 
(denoted C3) arranged tetrahedrally.

Table 11.1 Th e essential 
symmetries of the seven 
crystal systems

System Essential 
symmetries

Triclinic None
Monoclinic One twofold axis
Orthorhombic Th ree 

perpendicular 
twofold axes

Rhombohedral One threefold axis
Tetragonal One fourfold axis
Hexagonal One sixfold axis
Cubic Four threefold 

axes in a 
tetrahedral 
arrangement
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sets of planes intersect the z-axis at infi nity, so the full labels of the sets of planes of 
lattice points are (1,1,∞), (3,2,∞), (−1,1,∞), and (∞,1,∞).

Th e presence of infi nity in the labels is inconvenient. We can eliminate it by 
taking the reciprocals of the numbers in the labels; this step also turns out to have 
further advantages, as we shall see. Th e resulting Miller indices, (hkl), are the 
reciprocals of the numbers in the parentheses with fractions cleared. For example, 
the (1,1,∞) planes in Fig. 11.13 are the (110) planes in the Miller notation. 
Similarly, the (3,2,∞) planes become fi rst (1

3, 1
2,0) when reciprocals are formed and 

then (2,3,0) when fractions are cleared by multiplication through by 6, so they are 
referred to as the (230) planes. We write negative indices with a bar over the num-
ber: Fig. 11.13c shows the (1̄10) planes. Figure 11.14 shows some planes in three 
dimensions, including an example of a lattice with axes that are not mutually 
perpendicular.

Fig. 11.11 A unit cell belonging to 
the monoclinic system has one 
twofold (denoted C2) axis 
(along b).

Fig. 11.12 Th e cubic unit cells. Th e 
letter P denotes a primitive unit 
cell, I a body-centered unit cell, 
and F a face-centered unit cell.

Fig. 11.13 Some of the planes 
that can be drawn through the 
points of the space lattice and 
their corresponding Miller 
indices (hkl).

Self-test 11.5 A representative member of a set of planes in a crystal inter-
sects the axes at 3a, 2b, and 2c. What are the Miller indices of the planes?

Answer: (233)

It is helpful to keep in mind the fact, as illustrated in Fig. 11.13, that the smaller 
the value of h in the Miller index (hkl), the more nearly parallel the plane is to the 
a axis. Th e same is true of k and the b axis and l and the c axis. When h = 0, the 
planes intersect the a axis at infi nity, so the (0kl) planes are parallel to the a axis. 
Similarly, the (h0l) planes are parallel to b and the (hk0) planes are parallel to c.
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Th e Miller indices are very useful for calculating the separation of planes. For 
instance, they can be used to derive the following very simple expression for the 
separation, d, of the (hkl) planes in a rectangular lattice:

1
d2

 = h
2

a2
 + k

2

b2
 + l

2

c2
 Separation of planes  (11.10)

Justification 11.3 The separation of lattice planes

Consider the (hk0) planes of a rectangular lattice with sides of lengths a and b 
(Fig. 11.15). We can write the following trigonometric expressions for the angle 
f shown in the illustration:

sin f = d
(a/h)

 = hd
a

  cos f = d
(b/k)

 = kd
b

Th en, because sin2 f + cos2 f = 1, we obtain

h2d2

a2
 + k

2d2

b2
 = 1

which we can rearrange into

1
d2

 = h
2

a2
 + k

2

b2

Now consider an orthorhombic unit cell, a unit cell with perpendicular faces 
but diff erent lengths of their edges (Fig. 11.16). In three dimensions, the expres-
sion above generalizes to eqn 11.10.

Fig. 11.14 Some representative 
planes in three dimensions and 
their Miller indices. Note that 
a 0 indicates that a plane is 
parallel to the corresponding 
axis. Th e indexing may also be 
used for unit cells with 
nonorthogonal axes.

Fig. 11.15 Th e geometrical 
construction used to relate the 
separation of planes to the 
dimensions of a rectangular 
unit cell.

Example 11.3 Using the Miller indices

Calculate the separation of (a) the (123) planes and (b) the (246) planes of an 
orthorhombic cell with a = 0.84 nm, b = 0.96 nm, and c = 0.77 nm.

Strategy For the fi rst part, we simply substitute the information into eqn 11.10. 
For the second part, instead of repeating the calculation, we should examine 
how d in eqn 11.10 changes when all three Miller indices are multiplied by 2 
(or by a more general factor, n).

Solution Substituting the data into eqn 11.10 gives

1
d2

 = 12

(0.84 nm)2
 + 22

(0.96 nm)2
 + 32

(0.77 nm)2
 = 21

nm2

It follows that d = 0.22 nm. When the indices are all increased by a factor of 2, 
the separation becomes

1
d2

 = (2 × 1)2

(0.84 nm)2
 + (2 × 2)2

(0.96 nm)2
 + (2 × 3)2

(0.77 nm)2
 = 4 × 21

nm2

So, for these planes d = 0.11 nm. In general, increasing the indices uniformly 
by a factor n decreases the separation of the planes by n.
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Fig. 11.16 An orthorhombic unit 
cell with sides of lengths a, b, 
and c.

Self-test 11.6 Calculate the separation of the (133) and (399) planes in the 
same lattice.

Answer: 0.19 nm, 0.065 nm

Fig. 11.17 Th e derivation of 
Bragg’s law treats each lattice 
plane as refl ecting the incident 
radiation. Th e path lengths diff er 
by AB + BC, which depends on 
the angle q. Constructive 
interference (a ‘refl ection’) occurs 
when AB + BC is equal to an 
integral number of wavelengths.

(d) Bragg’s law

Th e earliest approach to the analysis of X-ray diff raction patterns treated a plane 
of atoms as a semitransparent mirror and modeled the crystal as stacks of refl ect-
ing planes of separation d (Fig. 11.17). Th e model makes it easy to calculate the 
angle the crystal must make to the incoming beam of X-rays for constructive 
interference to occur. It has also given rise to the name refl ection to denote an 
intense spot arising from constructive interference.

Th e path-length diff erence of the two rays shown in the illustration is

AB + BC = 2d sin q

where the angle q is oft en expressed as the glancing angle 2q. When the path-
length diff erence is equal to one wavelength (AB + BC = l), the refl ected waves 
interfere constructively. It follows that a refl ection should be observed when the 
glancing angle satisfi es Bragg’s law:

l = 2d sin q Bragg’s law  (11.11a)

Th e primary use of Bragg’s law is to determine the spacing between the layers of 
atoms, for once the angle q corresponding to a refl ection has been determined, 
d may readily be calculated. Equation 11.11a is sometimes written

nl = 2d sin q Alternative version of Bragg’s law  (11.11b)

with n = 1, 2, . . . denoting the order of the refl ection, but the modern tendency is 
to incorporate n into the defi nition of d, as illustrated in Example 11.4.

Example 11.4 Using Bragg’s law

A refl ection from the (111) planes of a cubic crystal was observed at a glancing 
angle of 11.2° when Cu Ka X-rays of wavelength 154 pm were used. What is the 
length of the side of the unit cell?

Strategy We can fi nd the separation, d, of the lattice planes from eqn 11.11 
and the data. Th en we fi nd the length of the side of the unit cell by using 
eqn 11.10. Because the unit cell is cubic, a = b = c, so eqn 11.10 simplifi es to

1
d2

 = h
2 + k2 + l2

a2

which rearranges to

a = d × (h2 + k2 + l2)1/2

Solution According to Bragg’s law, the separation of the (111) planes respon-
sible for the diff raction is

d = l
2 sin q

 = 154 pm
2 sin 11.2°

It then follows that with h = k = l = 1,

a = 154 pm
2 sin 11.2°

 × 31/2 = 687 pm
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(e) Fourier synthesis

Bragg’s law is a very primitive approach to the interpretation of X-ray diff raction 
data. Th e huge amount of data obtained from a modern diff ractometer has a much 
richer content than the separation of lattice planes, for in principle it contains 
information about the locations of individual atoms and the distribution of 
electron density throughout a unit cell.

To derive the structure of the crystal from the intensities, Ihkl, we need to con-
vert them to the amplitude of the wave responsible for the signal. For simplicity 
we shall focus on a one-dimensional crystal (a line of atoms) and write the diff rac-
tion intensities as Ih. Because the intensity of electromagnetic radiation is given by 
the square of the amplitude, we need to form the structure factors Fh = Ih

1/2. (Note 
that this ‘structure factor’ is entirely distinct from the structure factor of Rayleigh 
scattering, Section 11.3.) Here is the fi rst diffi  culty: we do not know the sign to 
take. For instance, if Ih = 4, then Fh can be either +2 or −2. Th is ambiguity is the 
phase problem of X-ray diff raction. However, once we have the structure factors, 
we can calculate the electron density r(x) by forming the following sum:

 r(x) = 1
V

 !@F0 + 2
∞

∑
h=1

Fh cos(2hpx)#
$ Fourier synthesis  (11.12)

where V is the volume of the unit cell. Th is expression is called a Fourier synthesis 
of the electron density: we show how it is used in the following Example. Th e 
point to note is that low values of the index h give the major features of the struc-
ture (they correspond to long-wavelength cosine terms), whereas the high values 
give the fi ne detail (short-wavelength cosine terms). Clearly, if we do not know 
the sign of Fh, we do not know whether the corresponding term in the sum is 
positive or negative and we get diff erent electron densities, and hence crystal 
structures, for diff erent choices of sign.

Self-test 11.7 Calculate the angle at which the same lattice will give a refl ec-
tion from the (123) planes.

Answer: 24.8°

A brief comment
Formally, a Fourier synthesis is 
a reconstruction of a repetitive 
function as a superposition 
of sine or cosine waves. 
Long-wavelength waves 
account for the general 
features of the structure, 
and the details are gradually 
fi lled in by incorporating 
shorter-wavelength waves.

Example 11.5 Calculating an electron density by Fourier synthesis

Th e determination of the three-dimensional structure of molecules is a key 
step in the rational design of therapeutic agents that bind specifi cally to recep-
tor sites on proteins and nucleic acids (Case study 11.2). Consider the (h00) 
planes of a crystal of an organic molecule regarded as a candidate for a drug. In 
an X-ray analysis the structure factors were found as follows:

h 0 1 2 3 4 5 6 7 8 9
Fh 16 −10 2 −1 7 −10 8 −3 2 −3

h 10 11 12 13 14 15  
Fh 6 −5 3 −2 2 −3  

Construct a plot of the electron density projected on to the x-axis of the 
unit cell.

Strategy Evaluate the sum in eqn 11.12 (stopping at h = 15) for points 
0 ≤ x ≤ 1:

Vr(x) = 16 + 2
15

∑
h=1

 Fh cos(2hpx)
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Th e task is made easier by using an electronic spreadsheet, which also can 
generate a plot of the results.

Solution Aft er introducing the data, eqn 11.12 takes the form

Vr(x) = 16 − 20 cos(2px) + 4 cos(4px) − · · · − 6 cos(30px)

Th is function is shown in Fig. 11.18(a), and the locations of several types of 
atom are easy to identify as peaks in the electron density. Th e more terms 
there are included, the more accurate the density plot. Terms corresponding 
to high values of h (short-wavelength cosine terms in the sum) account for 
the fi ner details of the electron density; low values of h account for the broad 
features.

Fig. 11.18 Th e plot of the electron 
density calculated in (a) Example 
11.5 and (b) Self-test 11.8.

Self-test 11.8 Use an electronic spreadsheet to experiment with diff erent struc-
ture factors (including changes in signs as well as amplitudes). For example, 
use the same values of Fh as above, but with positive signs for all values of h.

Answer: Fig. 11.18(b)

Th e phase problem can be overcome to some extent by the method of isomor-
phous replacement, in which heavy atoms are introduced into the crystal. Th e 
technique relies on the fact that the scattering of X-rays is caused by the oscilla-
tions an incoming electromagnetic wave generates in the electrons of atoms, and 
heavy atoms with their large numbers of electrons give rise to stronger scattering 
than light atoms. Th erefore, heavy atoms dominate the diff raction pattern and 
greatly simplify its interpretation. Th e phase problem can also be resolved by 
judging whether the calculated structure is chemically plausible, whether the 
electron density is positive throughout, and by using more refi ned mathematical 
techniques, with the help of powerful computers.

Because biopolymers contain a great many atoms, overcoming the phase 
problem requires repeated rounds of isomorphous replacement and computer-
aided refi nement, a process that can take several years to complete. As suggested 
by eqn 11.12 and Example 11.5, the more values of Ihkl that are collected, the 
richer the detail of the structure: analyzing few intensities leads to a fuzzy, 
low-resolution structure, whereas collecting more refl ections results in a sharper, 
high-resolution structure. In practice, it is not the abundance of data, but rather 
the quality of the crystal—as determined by how perfectly ordered the molecules 
are packed in the solid—that limits the resolution of a structure. With current 
crystallization techniques, the best resolution of protein structures is approxi-
mately 200 pm, implying that two atoms cannot be located unambiguously if they 
are separated by less than this distance, which is greater than the average length 
of a carbon–carbon single bond (154 pm). In spite of this limitation, the identity 
and location of every atom in a biopolymer can be obtained by combining X-ray 
diff raction and sequencing data.

In the laboratory 11.1 The crystallization of biopolymers

Th e fi rst and oft en very demanding step in the structural analysis of biological 
macromolecules by X-ray diff raction methods is to form crystals in which the 
large molecules lie in orderly ranks. A technique that works well for charged 
proteins consists of adding large amounts of a salt, such as (NH4)2SO4, to a 
buff er solution containing the biopolymer. Th e increase in the ionic strength 
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of the solution decreases the solubility of the protein to such an extent that 
the protein precipitates, sometimes as crystals that are amenable to analysis by 
X-ray diff raction (see Exercise 5.14 for an explanation of this eff ect).

Other common strategies for inducing crystallization involve the gradual 
removal of solvent from a biopolymer solution, either by dialysis (Section 3.10) 
or vapor diff usion. In one implementation of the vapor diff usion method, a 
single drop of biopolymer solution hangs above an aqueous solution (the reser-
voir), as shown in Fig. 11.19. If the reservoir solution is more concentrated in a 
nonvolatile solute (for example, a salt) than is the biopolymer solution, then 
solvent will evaporate slowly from the drop until the vapor pressure of water in 
the closed container reaches a constant, equilibrium value. At the same time, 
the concentration of biopolymer in the drop increases gradually until crystals 
begin to form.

Special techniques are used to crystallize hydrophobic proteins, such as those 
spanning the bilayer of a cell membrane. In such cases, surfactant molecules, 
which, like phospholipids, contain polar head groups and hydrophobic tails, 
are used to encase the protein molecules and make them soluble in aqueous 
buff er solutions. Dialysis or vapor diff usion may then be used to induce 
crystallization.

Fig. 11.19 In a common 
implementation of the vapor 
diff usion method of biopolymer 
crystallization, a single drop of 
biopolymer solution hangs above 
a reservoir solution that is very 
concentrated in a nonvolatile 
solute. Solvent evaporates from 
the more dilute drop until the 
vapor pressure of water in the 
closed container reaches a 
constant equilibrium value. 
In the course of evaporation 
(denoted by the downward 
arrows), the biopolymer solution 
becomes more concentrated and, 
at some point, crystals may form.

In the laboratory 11.2 Data acquisition in X-ray crystallography

Aft er suitable crystals are obtained, X-ray diff raction data are collected and 
analyzed. Laue’s original method consisted of passing a beam of X-rays of a 
wide range of wavelengths into a single crystal and recording the diff raction 
pattern photographically. Th e idea behind the approach was that a crystal 
might not be suitably orientated to act as a diff raction grating for a single wave-
length, but whatever its orientation Bragg’s law would be satisfi ed for at least 
one of the wavelengths when a range of wavelengths is present in the beam.

An alternative technique was developed by Peter Debye and Paul Scherrer and 
independently by Albert Hull. Th ey used monochromatic (single-frequency) 
X-rays and a powdered sample. When the sample is a powder, we can be sure 
that some of the randomly distributed crystallites will be orientated so as to 
satisfy Bragg’s law. For example, some of them will be orientated so that their 
(111) planes, of spacing d, give rise to a refl ection at a particular angle, and 
others will be orientated so that their (230) planes give rise to a refl ection at 
a diff erent angle. Each set of (hkl) planes gives rise to refl ections at a diff erent 
angle. In the modern version of the technique, which uses a powder diff racto-
meter, the sample is spread on a fl at plate and the diff raction pattern is moni-
tored electronically. Th e major application is for qualitative analysis because 
the diff raction pattern is a kind of fi ngerprint and may be recognizable 
(Fig. 11.20). Th e technique is also used for the characterization of substances 
that cannot be crystallized or the initial determination of the dimensions and 
symmetries of unit cells.

Modern X-ray crystallography, which utilizes an X-ray diff ractometer 
(Fig. 11.21), is now a highly sophisticated technique. By far the most detailed 
information comes from developments of the techniques pioneered by the 
Braggs, in which a single crystal is employed as the diff racting object and a 



 11.4 X-RAY CRYSTALLOGRAPHY   423

monochromatic beam of X-rays is used to generate the diff raction pattern. Th e 
single crystal (which may be only a fraction of a millimeter in length) is rotated 
relative to the beam, and the diff raction pattern is monitored and recorded 
electronically for each crystal orientation. Th e primary data are therefore a set 
of intensities arising from the Miller planes (hkl), with each set of planes giving 
a refl ection of intensity Ihkl.

Fig. 11.20 A typical X-ray powder 
diff raction pattern that can be 
used to identify the material and 
determine the size of its unit cell: 
(a) NaCl, (b) KCl.

Fig. 11.21 Th e geometry of a 
four-circle diff ractometer. Th e 
settings of the orientations of the 
components are controlled by 
computer; each refl ection is 
monitored in turn, and their 
intensities are recorded.

Case study 11.1 The structure of DNA from X-ray diffraction studies

Bragg’s law helps us understand the features of one of the most seminal X-ray 
images of all time, the characteristic X-shaped pattern obtained by Rosalind 
Franklin and Maurice Wilkins from strands of DNA, and used by James 
Watson and Francis Crick in their construction of the double-helix model of 
DNA (Fig. 11.22). To interpret this image by using Bragg’s law, we have to be 
aware that it was obtained by using a fi ber consisting of many DNA molecules 
oriented with their axes parallel to the axis of the fi ber, with X-rays incident 
from a perpendicular direction. All the molecules in the fi ber are parallel 
(or nearly so) but are randomly distributed in the perpendicular directions; 
as a result, the diff raction pattern exhibits the periodic structure parallel to 
the fi ber axis superimposed on a general background of scattering from the 
distribution of molecules in the perpendicular directions.

Th ere are two principal features in Fig. 11.22: the strong ‘meridional’ scattering 
upward and downward by the fi ber and the X-shaped distribution at smaller 
scattering angles. Because scattering through large angles occurs for closely 
spaced features (from l = 2d sin q, if d is small then q has to be large to preserve 
the equality), we can infer that the meridional scattering arises from closely 
spaced components and that the inner X-shaped pattern arises from features 
with a longer periodicity. Because the meridional pattern occurs at a distance 
of about 10 times that of the innermost spots of the X pattern, the large-scale 
structure is about 10 times bigger than the small-scale structure. From the 
geometry of the instrument, the wavelength of the radiation, and Bragg’s law, 
we can infer that the periodicity of the small-scale feature is 340 pm, whereas 
that of the large-scale feature is 3400 pm (that is, 3.4 nm).

To see that the cross is characteristic of a helix, look at Fig. 11.22. Each turn of 
the helix defi nes two planes, one orientated at an angle a to the horizontal and 
the other at −a. As a result, to a fi rst approximation, a helix can be thought of 
as consisting of an array of planes at an angle a together with an array of planes 
at an angle −a with a separation within each set determined by the pitch of the 
helix. Th us, a DNA molecule is like two arrays of planes, each set correspond-
ing to those treated in the derivation of the Bragg law, with a perpendicular 
separation d = p cos a, where p is the pitch of the helix, each canted at the angles 
±a to the horizontal. Th e diff raction spots from one set of planes therefore 
occur at an angle a to the vertical, giving one leg of the X, and those of the 
other set occur at an angle −a, giving rise to the other leg of the X. Th e experi-
mental arrangement has up–down symmetry, so the diff raction pattern repeats 
to produce the lower half of the X. Th e sequence of spots outward along a leg 
corresponds to fi rst-, second-, . . . order diff raction (n = 1, 2, . . . in eqn 11.11b). 
Th erefore from the X-ray pattern, we see at once that the molecule is helical 
and we can measure the angle directly and fi nd a = 40°. Finally, with the angle 
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a and the pitch p determined, we can determine the radius r of the helix from 
tan a = p/4r, from which it follows that r = (3.4 nm)/(4 tan 40°) = 1.0 nm.

To derive the relation between the helix and the cross-like pattern, we have 
ignored the detailed structure of the helix, the fact that it is a periodic array of 
nucleotide bases, not a smooth wire. In Fig. 11.23 we represent the bases by 
points and see that there is an additional periodicity of separation h, forming 
planes that are perpendicular to the axis of the molecule (and the fi ber). 
Th ese planes give rise to the strong meridional diff raction with an angle 
that allows us to determine the layer spacing from Bragg’s law in the form 
l = 2d sin q as h = 340 pm.

The control of shape

Th e conformation of a biological molecule that has been determined by one of the 
techniques described so far is of crucial importance for its function, and we need 
to understand the forces that bring about the shape we observe. Interactions 
between molecules include the attractive and repulsive interactions between the 
partial electric charges of polar molecules and of polar functional groups in 

Fig. 11.22 Th e origin of the X 
pattern characteristic of 
diff raction by a helix. (a) A helix 
can be thought of as consisting of 
an array of planes at an angle a 
together with an array of planes 
at an angle –a. (b) Th e diff raction 
spots from one set of planes 
appear at an angle a to the 
vertical, giving one leg of the X, 
and those of the other set appear 
at an angle −a, giving rise to the 
other leg of the X. Th e lower half 
of the X appears because the helix 
has up–down symmetry in this 
arrangement. (c) Th e sequence of 
spots outward along a leg of the X 
corresponds to fi rst-, second-, . . . 
order diff raction (n = 1, 2, . . .).

Fig. 11.23 Th e eff ect of the internal 
structure of the helix on the X-ray 
diff raction pattern. (a) Th e 
residues of the macromolecule 
are represented by points. (b) 
Parallel planes passing through 
the residues are perpendicular 
to the axis of the molecule. 
(c) Th e planes give rise to strong 
diff raction with an angle that 
allows us to determine the layer 
spacing h from l = 2h sin q.
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macromolecules and the repulsive interactions that prevent the complete collapse 
of matter to densities as high as those characteristic of atomic nuclei. Th e repul-
sive interactions arise from the exclusion of electrons from regions of space where 
the orbitals of closed-shell species overlap. One class of interaction, those propor-
tional to the inverse sixth power of the separation, are termed van der Waals 
interactions. However, these are not the only interactions, and in the following 
paragraphs we describe the principal nonbonding interactions that occur between 
molecules and between diff erent parts of the same molecule. All these inter-
actions are much weaker—in some cases by several orders of magnitude—than 
those responsible for the formation of chemical bonds.

11.5 Interactions between partial charges
The Coulomb interaction between charges is our starting point for the discussion of 
the assembly of biological structures.

Atoms in molecules in general have partial charges. Table 11.2 gives the partial 
charges typically found on the atoms in peptides. If these charges were separated 
by a vacuum, they would attract or repel each other in accordance with Coulomb’s 
law (Fundamentals F.3), and we would write

V = Q1Q2

4pε0r
 Coulomb’s law 

(vacuum)
 (11.13a)

where Q1 and Q2 are the partial charges and r is their separation. However, we 
should take into account the possibility that other parts of the molecule, or other 
molecules, lie between the charges and decrease the strength of the interaction. 
We therefore write

V = Q1Q2

4pεr
 Coulomb’s law 

(in any medium)
 (11.13b)

where ε is the permittivity of the medium lying between the charges. Th e per-
mittivity is usually expressed as a multiple of the vacuum permittivity by writing 
ε = εrε0, where εr is the relative permittivity (formerly known as the dielectric 
constant). Th e eff ect of the medium can be very large: for water εr = 78, so the 
potential energy of two charges separated by bulk water is reduced by nearly 
two orders of magnitude compared to the value it would have if the charges were 
separated by a vacuum (Fig. 11.24). Th e problem is made worse in calculations 
on polypeptides and nucleic acids by the fact that two partial charges may have 
water and a biopolymer chain lying between them. Various models have been 
proposed to take this awkward eff ect into account, the simplest being to set 
εr = 3.5 and to hope for the best.

Table 11.2 Partial charges in 
polypeptides

Atom  Partial charge/e 

C(=O) +0.45
C(–CO) +0.06
H(–C) +0.02
H(–N) +0.18
H(–O) +0.42
N −0.36
O −0.38

Fig. 11.24 Th e Coulomb potential 
energy of two charges Q1 and Q2  
and its dependence on their 
separation. Th e two curves 
correspond to diff erent relative 
permittivities (εr =1 for a vacuum, 
3 for a fl uid).

A brief illustration

Th e energy of interaction between a partial charge of −0.36 (that is, Q1 = −0.36e) 
on the N atom of a peptide link and the partial charge of +0.45 (Q2 = +0.45e) on 
the carbonyl C atom at a distance of 3.0 nm on the assumption that the medium 
between them is a vacuum is

V = (−0.36e) × (0.45e)
4pε0 × (3.0 nm)

 = −0.36 × 0.45 × (1.602 × 10−19 C)2

4p × (8.854 × 10−12 J−1 C2 m−1) × (3.0 × 10−9 m)
 = −1.2 × 10−20 J
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Th is energy (aft er multiplication by Avogadro’s constant) corresponds to −7.5 kJ mol−1. 
However, if the medium has a ‘typical’ relative permittivity of 3.5, then the inter-
action energy is reduced to −2.1 kJ mol−1. For bulk water as the medium, with the 
H2O molecules able to rotate in response to a fi eld, the energy of interaction would 
be reduced by a factor of 78, to only −0.96 kJ mol−1.

11.6 Electric dipole moments
Many physical and chemical properties are related to the distribution of partial 
charges in a molecule or group (such as the peptide group), and here we start 
to identify them.

At its simplest, an electric dipole consists of two charges Q and −Q separated by 
a distance l. Th e product Ql is called the electric dipole moment, m. We represent 
dipole moments by an arrow with a length proportional to m and pointing from 
the negative charge to the positive charge (1).2 Because a dipole moment is the 
product of a charge (in coulombs, C) and a length (in meters, m), the SI unit 
of dipole moment is the coulomb meter (C m). However, it is oft en much 
more convenient to report a dipole moment in the non-SI unit debye, D, where 
1 D = 3.335 × 10−30 C m, because experimental values for molecules are then 
close to 1 D (Table 11.3).3 Th e dipole moment of two charges e and −e separated 
by 100 pm is 1.6 × 10−29 C m, corresponding to 4.8 D. Dipole moments of small 
molecules are typically smaller than that, at about 1 D.

A polar molecule is a molecule with a permanent electric dipole moment 
arising from the partial charges on its atoms (Section 10.5). A nonpolar molecule 
is a molecule that has no permanent electric dipole moment. All heteronuclear 
diatomic molecules are polar because the diff erence in electronegativities of their 
two atoms results in nonzero partial charges. Typical dipole moments are 1.08 D 
for HCl and 0.42 D for HI (Table 11.3). A very approximate relation between the 
dipole moment and the diff erence in Pauling electronegativities (Table 10.2) of 
the two atoms, Dc, is

 m/D ≈ Dc Relation between dipole 
moment and electronegativity

 (11.14)

2 Be careful with this convention: for historical reasons the opposite convention is still widely 
adopted.

3 Th e unit is named aft er Peter Debye, the Dutch pioneer of the study of dipole moments of 
molecules.

Table 11.3 Dipole moments and 
mean polarizability volumes

m/D a ′/(10−30 m3)

Ar 0  1.66
CCl4 0 10.3
C6H6 0 10.4
H2 0  0.819
H2O 1.85  1.48
NH3 1.47  2.22
HCl 1.08  2.63
HBr 0.80  3.61
HI 0.42  5.45

A brief illustration

Th e electronegativities of hydrogen and bromine are 2.1 and 2.8, respectively. 
Th e diff erence is 0.7, so we predict an electric dipole moment of about 0.7 D 
for HBr. Th e experimental value is 0.80 D.

Because it attracts the electrons more strongly, the more electronegative atom 
is usually the negative end of the dipole. However, there are exceptions, par-
ticularly when antibonding orbitals are occupied. Th us, the dipole moment of 
NO is very small (0.07 D), but the negative end of the dipole is on the N atom even 



 11.6 ELECTRIC DIPOLE MOMENTS   427

though the O atom is more electronegative. Th is apparent paradox is resolved as 
soon as we realize that antibonding orbitals are occupied in NO (see Fig. 10.35) 
and because electrons in antibonding orbitals tend to be found closer to the less 
electronegative atom, they contribute a negative partial charge to that atom. If this 
contribution is larger than the opposite contribution from the electrons in bond-
ing orbitals, then the net eff ect will be a small negative partial charge on the less 
electronegative atom.

Molecular symmetry is of the greatest importance in deciding whether a poly-
atomic molecule is polar or not. Indeed, molecular symmetry is more important 
than the question of whether or not the atoms in the molecule belong to the same 
element. Homonuclear polyatomic molecules may be polar if they have low 
symmetry and the atoms are in inequivalent positions. For instance, the angular 
molecule ozone, O3 (2), is homonuclear; however, it is polar because the central O 
atom is diff erent from the outer two (it is bonded to two atoms, they are bonded 
only to one). Moreover, the dipole moments associated with each bond make an 
angle to each other and do not cancel (see Mathematical toolkit 11.1). Heteronuclear 
polyatomic molecules may be nonpolar if they have high symmetry, because 
individual bond dipoles may then cancel. Th e heteronuclear linear triatomic 
molecule CO2, for example, is nonpolar because, although there are partial 
charges on all three atoms, the dipole moment associated with the OC bond 
points in the opposite direction to the dipole moment associated with the CO 
bond, and the two cancel (3).

  Mathematical toolbox 11.1 Addition and subtraction of vectors

Consider two vectors �1 and �2 making an angle q 
shown below

Th e fi rst step in the addition of �2 to �1 consists of join-
ing the tail of �2 to the head of �1:

In the second step, we draw a vector �res, the resultant 
vector, originating from the tail of �1 to the head of �2:

Th e subtraction of vectors follows the same principles 
outlined above for addition by noting that subtraction 
of �2 from �1 amounts to addition of −�2 to �1:

Self-test 11.9 Ozone, carbon dioxide, water, and methane are all components 
of the Earth’s atmosphere that absorb heat emanating from the surface of the 
planet, thus maintaining temperatures consistent with the proliferation of life. 
Predict whether methane and water molecules are polar or nonpolar.

Answer: An H2O molecule is angular and polar; a CH4 
molecule is tetrahedral and nonpolar
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A useful approach to the calculation of dipole moments is to take into account 
the locations and magnitudes of the partial charges on all the atoms. Th ese partial 
charges are included in the output of many molecular structure soft ware pack-
ages. Indeed, the programs calculate the dipole moments of the molecules by not-
ing that an electric dipole moment is actually a vector, m, with three components, 
mx, my, and mz (4). Th e direction of m shows the orientation of the dipole in the 
molecule, and the length of the vector is the magnitude, m, of the dipole moment. 
In common with all vectors (Mathematical toolkit 9.1), the magnitude is related 
to the three components by

 m = (mx
2 + my

2 + mz
2)1/2 Magnitude of the dipole 

moment vector
 (11.15a)

To calculate m, we need to calculate the three components and then substitute 
them into this expression. To calculate the x-component, for instance, we need 
to know the magnitude of the partial charge on each atom and the atom’s 
x-coordinate relative to a point in the molecule and form the sum

 mx = ∑
J

QJxJ Calculation of a component 
of the dipole moment vector

 (11.15b)

Here QJ is the partial charge of atom J, xJ is the x-coordinate of atom J, and 
the sum is over all the atoms in the molecule. Similar expressions are used for 
the y- and z-components. For an electrically neutral molecule, the origin of the 
coordinates is arbitrary, so it is best chosen to simplify the measurements.

Example 11.6 Calculating the dipole moment of the peptide group

Estimate the electric dipole moment of the peptide group (5) by using the 
partial charges and the locations of the atoms shown in pm.

Strategy We use eqn 11.15b to calculate each of the components of the dipole 
moment. Th en we use eqn 11.15a to assemble the three components into the 
magnitude of the dipole moment. Note that the partial charges are multiples of 
the fundamental charge e = 1.602 × 10−19 C.

Solution Th e expression for mx is

mx = (−0.36e) × (132 pm) + (0.45e) × (0 pm)
   + (0.18e) × (182 pm) + (−0.38e) × (−62.0 pm)
 = 8.8e pm = 8.8 × (1.602 × 10−19 C) × (10−2 m) = 1.4 × 10−30 C m

corresponding to mx = +0.42 D. Th e expression for my is

 my = (−0.36e) × (0 pm) + (0.45e) × (0 pm) + (0.18e) × (−87 pm) 
   + (−0.38e) × (107 pm)
 = −56e pm = −9.0 × 10−30 C m

It follows that my = −2.7 D. Th erefore, because mz = 0,

m = {(0.42 D)2 + (−2.7 D)2}1/2 = 2.7 D

We can fi nd the orientation of the dipole moment by arranging an arrow of 
length 2.7 units of length to have x-, y-, and z-components of 0.42, −2.7, and 
0 units; the orientation is superimposed on (5).
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11.7 Interactions between dipoles
When molecules or groups are widely separated, it is simpler to express their 
interaction in terms of the dipole moments rather than with each partial charge. 
We need to know how to handle these interactions because they are important 
for the assembly of biological macromolecules.

Th e potential energy of a dipole m1 in the presence of a charge Q2 is calculated by 
taking into account the interaction of the charge with the two partial charges 
of the dipole, one resulting in a repulsion and the other an attraction. Th e result 
for the arrangement shown in (7) is

V = − Q2m1

4pε0r2
 Charge–dipole interaction 

energy (as in 7)
 (11.16a)

Justification 11.4 The interaction of a charge with a dipole

When the charge and dipole are collinear, as in (7), the potential energy is

V = Q1Q2

4pε0(r + 12l)
 − Q1Q2

4pε0(r − 12l)

 = Q1Q2

4pε0r AC1 + l
2r

D
F

 − Q1Q2

4pε0r AC1 − l
2r

D
F

 = Q1Q2

4pε0r
 ABBC

1

1 + l
2r 

−

 

1

1 − l
2r

DEEF
Next, we suppose that the separation of charges in the dipole is much smaller 
than the distance of the charge Q2 in the sense that l/2r << 1. Th en we can use 
(see Mathematical toolkit 3.2)

1
1 + x

 ≈ 1 − x  1
1 − x

 ≈ 1 + x

to write

V ≈ Q1Q2

4pε0r
 !@

A
C1 − l

2r
D
F  − AC1 + l

2r
D
F

#
$ = − Q1Q2l

4pε0r2

Now we recognize that Q1l = m1, the dipole moment of molecule 1, and obtain 
eqn 11.16a.

A similar calculation for the more general orientation shown in (8) gives

V = m1Q2 cos q
4pε0r2

 Charge–dipole interaction 
energy (as in 8)

 (11.16b)

Self-test 11.10 Calculate the electric dipole moment of formaldehyde, using 
the information in (6).

Answer: 3.2 D
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If Q2 is positive, the energy is lowest when q = 0 (and cos q = 1) because then the 
partial negative charge of the dipole lies closer than the partial positive charge 
to the point charge and the attraction outweighs the repulsion. Th is interaction 
energy decreases more rapidly with distance than that between two point charges 
(as 1/r2 rather than 1/r) because, from the viewpoint of the single charge, the partial 
charges of the point dipole seem to merge and cancel as the distance r increases.

We can calculate the interaction energy between two dipoles m1 and m2 in the 
orientation shown in (9) in a similar way, by taking into account all four charges 
of the two dipoles. Th e outcome is4

V = m1m2(1 − 3 cos2 q)
4pε0r3

 Dipole–dipole interaction 
energy (as in 99)

 (11.17)

Th is potential energy decreases even more rapidly than in eqn 11.16 (as 1/r3) 
because the charges of both dipoles seem to merge as the separation of the dipoles 
increases. Th e angular factor takes into account how the like or opposite charges 
come closer to one another as the relative orientation of the dipoles is changed. 
Th e energy is lowest when q = 0 or 180° (when 1 − 3 cos2 q = −2) because opposite 
partial charges then lie closer together than like partial charges.

4 For a derivation of eqn 11.17, see our Physical chemistry (2010).

A brief illustration

We can use eqn 11.17 to calculate the molar potential energy of the dipolar 
interaction between two peptide groups. Supposing that the groups are separ-
ated by 3.0 nm in diff erent regions of a polypeptide chain with q = 180°, we 
take m1 = m2 = 2.7 D, corresponding to 9.1 × 10−30 C m, and fi nd

V = (9.0 × 10−30 C m)2 × (−2)
4p × (8.854 × 10−12 J−1 C2 m−1) × (3.0 × 10−9 m)3

 = (9.0 × 10−30)2 × (−2)
4p × (8.854 × 10−12) × (3.0 × 10−9)3

 

C2 m2

J−1 C2 m−1 m3

 = −5.4 × 10−23 J

where we have used 1 V C = 1 J. Th is value corresponds to −32 J mol−1. If 
the medium lying between the two dipoles has a relative permittivity of 3.5, 
then the interaction energy will be reduced by this factor, to −9.3 J mol−1. 
Note, however, that this energy is considerably less than that between two 
partial charges at the same separation (see the brief illustration at the end of 
Section 11.5).

Equation 11.17 shows that the potential energy is negative (attractive) in some 
orientations when q < 54.7° (the angle at which 1 − 3 cos2q = 0, cos q = (1

3)1/2) 
because opposite charges are closer than like charges. It is positive (repulsive) 
when q > 54.7° because then like charges are closer than unlike charges. Th e 
potential energy is zero on the lines at 54.7° and 180° − 54.7° = 125.3° because 
at those angles the two attractions and the two repulsions cancel (10).

Th e average potential energy of interaction between polar molecules that are 
freely rotating in a fl uid (a gas or liquid) is zero because the attractions and 
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repulsions cancel. However, because the potential energy of a dipole near another 
dipole depends on their relative orientations, the molecules exert forces on each 
other and therefore do not in fact rotate completely freely, even in a gas. As a 
result, the lower energy orientations are marginally favored, so there is a nonzero 
interaction between rotating polar molecules (Fig. 11.25). Th e detailed calcula-
tion of the average interaction energy is quite complicated, but the fi nal answer is 
very simple:

V = − 2m1
2m2

2

3(4pε0)2kTr6
 Average dipole–dipole interaction 

energy (freely rotating dipoles)
 (11.18)

Th e important features of this expression are the dependence of the average 
interaction energy on the inverse sixth power of the separation (which identifi es 
it as a van der Waals interaction) and its inverse dependence on the temperature. 
Th e temperature dependence refl ects the way that the greater thermal motion 
overcomes the mutual orientating eff ects of the dipoles at higher temperatures. 
Equation 11.18 is applicable when both molecules are free to rotate or when one 
is fi xed and only the other is free to rotate, as for a small polar molecule near a 
macromolecule.

Fig. 11.25 A dipole–dipole 
interaction. When a pair of 
molecules can adopt all relative 
orientations with equal 
probability, the favorable 
orientations and the unfavorable 
ones cancel, and the average 
interaction is zero. In an actual 
fl uid, the favorable interactions 
slightly predominate.

A note on good practice 
Note how the units are 
included in the calculation 
and cancel to give the result 
in joules. It is far better to 
include the units at each stage 
of the calculation and treat 
them as algebraic quantities 
that can be multiplied and 
canceled than to guess the 
units at the end of the 
calculation.

A brief illustration

Suppose a water molecule (m = 1.85 D) can rotate freely at 1.0 nm from 
a peptide group (m = 2.7 D): the energy of their interaction at 25°C (298 K) is

V = − 2 × (1.85 × 3.336 × 10−30 C m)2 × (2.7 × 3.336 × 10−30 C m)2

3(4p × (8.854 × 10−12 J−1 C2 m−1)2 × 1.381 × 10−23 J K−1 × 298 K × (1.0 × 10−9 m)6

 = −4.0 × 10−23 C4 m4

J−2 C4 m−2 J K−1 K m6

 = −4.0 × 10−23 J

Th is interaction energy corresponds (aft er multiplication by Avogadro’s 
constant) to −24 J mol−1. When the temperature is raised to body temperature, 
37°C (310 K), the H2O molecule rotates more vigorously and the average inter-
action is reduced to −23 J mol−1.

11.8 Induced dipole moments
The structures and properties of biological assemblies also emerge from interactions 
that involve nonpolar species, such as nonpolar groups on the peptide residues of 
a protein.

A nonpolar molecule may acquire a temporary induced dipole moment, m*, as 
a result of the infl uence of an electric fi eld generated by a nearby ion or polar 
molecule. Th e fi eld distorts the electron distribution of the molecule and gives 
rise to an electric dipole in it. Th e molecule is said to be polarizable. Th e magni-
tude of the induced dipole moment is proportional to the strength of the electric 
fi eld, E, and we write 

m* = aE Polarizability  (11.19)

Th e proportionality constant a is the polarizability of the molecule. Th e larger 
the polarizability of the molecule, the greater is the distortion caused by a given 
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strength of electric fi eld. If the molecule has few electrons, they are tightly con-
trolled by the nuclear charges and the polarizability of the molecule is low. If 
the molecule contains large atoms with electrons some distance from the nucleus, 
the nuclear control is less and the polarizability of the molecule is greater. Th e 
polarizability also depends on the orientation of the molecule with respect to the 
fi eld unless the molecule is tetrahedral (such as CCl4), octahedral (such as SF6), 
or icosahedral (such as C60). Atoms, tetrahedral, octahedral, and icosahedral 
molecules have isotropic (orientation-independent) polarizabilities; all other 
molecules have anisotropic (orientation-dependent) polarizabilities.

Th e polarizabilities reported in Table 11.3 are given as polarizability 
volumes, a′:

a′ = a
4pε0

 Polarizability volume  (11.20)

Th e polarizability volume has the dimensions of volume (hence its name) and is 
comparable in magnitude to the volume of the molecule.

Fig. 11.26 A dipole–induced-
dipole interaction. Th e induced 
dipole follows the changing 
orientation of the permanent 
dipole.

(a) Dipole–induced-dipole interactions

A polar molecule with dipole moment m1 can induce a dipole moment in a polar-
izable molecule (which may itself be either polar or nonpolar) because the partial 
charges of the polar molecule give rise to an electric fi eld that distorts the second 
molecule. Th at induced dipole interacts with the permanent dipole of the fi rst 
molecule, and the two are attracted together (Fig. 11.26). Th e formula for the 
dipole–induced-dipole interaction energy is

V = − m1
2a2′

4pε0r6
 Dipole–induced-dipole

interaction energy
 (11.21)

where a2 is the polarizability of molecule 2. Th e negative sign shows that the inter-
action is attractive. For a molecule with m = 1 D (such as HCl) near a molecule of 
polarizability volume a′ = 1.0 × 10−29 m3 (such as benzene, Table 11.3), the average 
interaction energy is about −0.8 kJ mol−1 when the separation is 0.3 nm.

(b) Dispersion interactions

Despite the absence of partial charges, we know that uncharged, nonpolar species 
can interact because they form condensed phases, such as benzene, liquid 
hydrogen, and liquid xenon. Th e dispersion interaction, or London interaction, 
between nonpolar species arises from the transient dipoles that they possess as a 
result of fl uctuations in the instantaneous positions of their electrons (Fig. 11.27). 
Suppose, for instance, that the electrons in one molecule fl icker into an arrange-
ment that results in partial positive and negative charges and thus gives it an 
instantaneous dipole moment m1. While it exists, this dipole can polarize the other 
molecule and induce in it an instantaneous dipole moment m2. Th e two dipoles 
attract each other and the potential energy of the pair is lowered. Although the 
fi rst molecule will go on to change the size and direction of its dipole (perhaps 

Self-test 11.11 What strength of electric fi eld is required to induce an electric 
dipole moment of 1.0 mD in a molecule of polarizability volume 2.6 × 10−30 m3 
(like CO2)?

Answer: 11 kV m−1
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within 10−16 s), the second will follow it; that is, the two dipoles are correlated in 
direction like two meshing gears, with a positive partial charge on one molecule 
appearing close to a negative partial charge on the other molecule and vice versa. 
Because of this correlation of the relative positions of the partial charges, and 
their resulting attractive interaction, the attraction between the two instantan-
eous dipoles does not average to zero. Instead, it gives rise to a net attractive 
interaction. Polar molecules interact by a dispersion interaction as well as by 
dipole–dipole interactions.

Th e strength of the dispersion interaction depends on the polarizability of the 
fi rst molecule because the magnitude of the instantaneous dipole moment m1 
depends on the looseness of the control that the nuclear charge has over the outer 
electrons. If that control is loose, the electron distribution can undergo relatively 
large fl uctuations. Moreover, if the control is loose, then the electron distribution 
can also respond strongly to applied electric fi elds and hence have a high polariz-
ability. It follows that a high polarizability is a sign of large fl uctuations in local 
charge density. Th e strength also depends on the polarizability of the second 
molecule, for that polarizability determines how readily a dipole can be induced 
in molecule 2 by molecule 1. We therefore expect that V ∝ a1a2. Th e actual 
calculation of the dispersion interaction is quite involved, but a reasonable 
approximation to the interaction energy is the London formula:

V = − 3
2 × a1′a2′

r6
 × I1I2

I1 + I2 
 London formula  (11.22)

where I1 and I2 are the ionization energies of the two molecules.

Fig. 11.27 In the dispersion 
interaction, an instantaneous 
dipole on one molecule induces a 
dipole on another molecule, and 
the two dipoles then interact to 
lower the energy. Th e directions 
of the two instantaneous dipoles 
are correlated and, although they 
occur in diff erent orientations at 
diff erent instants, the interaction 
does not average to zero.

A brief illustration

If two phenylalanine residues are separated by 3.0 nm in a polypeptide, 
the dispersion interaction between their phenyl groups is calculated from 
eqn 11.22 by setting a1′ = a2′ and I1 = I2 = I:

V = − 3
4 × a1′2

r6
 × I

We treat the phenyl groups as benzene rings of polarizability volume 1.0 × 
10−29 m3:

V = − 3
4 × (1.0 × 10−29 m3)2

(3.0 × 10−9 m)6
 × I = −1.0 × 10−7 × I

If we suppose that the ionization energy of the phenyl group is about 5 eV 
(about 500 kJ mol−1), this energy is approximately −23 mJ mol−1.

11.9 Hydrogen bonding
Strong interactions of the type X–H···Y (with X, Y = N or O) are responsible for the 
formation of well-defined three-dimensional structures in proteins and nucleic acids. 
We need to understand the origin of the strength of these very important interactions.

Th e strongest intermolecular interaction arises from the formation of a hydrogen 
bond, in which a hydrogen atom lies between two strongly electronegative atoms 
and binds them together. Th e bond is normally denoted X–H···Y, with X and Y 
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being N, O, or F. Unlike the other interactions we have considered, hydrogen 
bonding is not universal but is restricted to molecules that contain these atoms.

Th e most elementary description of the formation of a hydrogen bond is that it 
is the result of a Coulombic interaction between the partly exposed positive charge 
of a proton bound to an electron-withdrawing X atom (in the fragment X–H) and 
the negative charge of a lone pair on the second atom Y, as in d−X–Hd+ :Yd−. A 
slightly more sophisticated version of the electrostatic description is to regard 
hydrogen bond formation as the formation of a Lewis acid–base complex in 
which the partly exposed proton of the X–H group is the Lewis acid and :Y, with 
its lone pair, is the Lewis base, as in X–H + :Y → X–H:Y.

A brief illustration

A common hydrogen bond is that formed between O–H groups and O atoms, 
as in liquid water and ice. In Exercise 11.42, you are invited to use the electro-
static model to calculate the dependence of the potential energy of interaction 
on the OOH angle, denoted q in (11), and the results are plotted in Fig. 11.28. 
We see that at q = 0 when the OHO atoms lie in a straight line; the molar poten-
tial energy is −19 kJ mol−1. Note how sharply the energy depends on angle: it is 
negative only with ±12° of linearity.

Molecular orbital theory provides an alternative description that is more in line 
with the concept of delocalized bonding and the ability of an electron pair to bind 
more than one pair of atoms (Section 10.6). Th us, if the X–H bond is regarded 
as formed from the overlap of an orbital on X, yX, and a hydrogen 1s orbital, yH, 
and the lone pair on Y occupies an orbital on Y, yY, then when the two molecules 
are close together, we can build three molecular orbitals from the three basis 
orbitals:

y = c1yX + c2yH + c3yY

One of the molecular orbitals is bonding, one almost nonbonding, and the third 
antibonding (Fig. 11.29). Th ese three orbitals need to accommodate four electrons 
(two from the original X–H bond and two from the lone pair of Y), so two enter 
the bonding orbital and two enter the nonbonding orbital. Because the antibond-
ing orbital remains empty, the net eff ect—depending on the precise location of the 
almost nonbonding orbital—may be a lowering of energy.

Experimental evidence and theoretical arguments have been presented in favor 
of both the electrostatic and molecular orbital view of hydrogen bonding. For 
example, recent experiments suggest that the hydrogen bonds in ice have signifi c-
ant covalent character, providing support for the molecular orbital treatment. 
However, the matter has not yet been resolved.

Hydrogen bond formation dominates all other interactions between electri-
cally neutral molecules when it can occur (Table 11.4). It has a typical strength of 
the order of 20 kJ mol−1, as can be inferred from the enthalpy of vaporization of 
water, 40.7 kJ mol−1, for vaporization involves the breaking of two hydrogen bonds 
to each water molecule. Hydrogen bonding accounts for the rigidity of molecular 
solids such as sucrose and ice; the low vapor pressure, high viscosity, and surface 
tension of liquids such as water; the secondary structure of proteins (the forma-
tion of helices and sheets of polypeptide chains); the structure of DNA and hence 

Fig. 11.28 Th e variation of the 
energy of interaction (on the 
electrostatic model) of a 
hydrogen bond as the angle 
between the O–H and :O groups 
is changed.
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the transmission of genetic information; and the attachment of drugs to receptors 
sites in proteins (Case study 11.2). Hydrogen bonding also contributes to the 
solubility in water of species such as ammonia and compounds containing 
hydroxyl groups and to the hydration of anions. In this last case, even ions such as 
Cl− and HS− can participate in hydrogen bond formation with water, for their 
charge enables them to interact with the hydroxylic protons of H2O.

11.10 The total interaction
To treat the myriad interactions in biological assemblies quantitatively, we need simple 
formulas that express the strengths of the attractions and repulsions.

Table 11.4 summarizes the strengths and distance dependence of the attractive 
interactions that we have considered so far. Th e total attractive interaction energy 
between rotating molecules that cannot participate in hydrogen bonding is the 
sum of the contributions from the dipole–dipole, dipole–induced-dipole, and 
dispersion interactions. Only the dispersion interaction contributes if both 
molecules are nonpolar. All three interactions vary as the inverse sixth power of 
the separation, so we may write

V = − C
r6

 (11.23)

where C is a coeffi  cient that depends on the identity of the molecules and the type 
of interaction between them. As we have remarked, the energy of a hydrogen 
bond X–H···Y is typically 20 kJ mol−1 and occurs on contact for X, Y = N, O, or F.

Repulsive terms become important and begin to dominate the attractive forces 
when molecules are squeezed together (Fig. 11.30), for instance, during the 
impact of a collision, under the force exerted by a weight pressing on a substance, 
or simply as a result of the attractive forces drawing the molecules together. Th ese 
repulsive interactions arise in large measure from the Pauli exclusion principle, 
which forbids pairs of electrons being in the same region of space. Th e repulsions 
increase steeply with decreasing separation in a way that can be deduced only 
by very extensive, complicated molecular structure calculations. In many cases, 
however, progress can be made by using a greatly simplifi ed representation of 

Fig. 11.29 A schematic portrayal 
of the molecular orbitals that can 
be formed from an X, H, and Y 
orbital and that give rise to 
an X–H···Y hydrogen bond. Th e 
lowest-energy combination is 
fully bonding, the next 
nonbonding, and the uppermost 
is antibonding. Th e antibonding 
orbital is not occupied by the 
electrons provided by the X–H 
bond and the :Y lone pair, so the 
confi guration shown may result 
in a net lowering of energy in 
certain cases (namely, when the X 
and Y atoms are N, O, or F).

Table 11.4 Interaction potential energies

Interaction type Distance dependence 
of potential energy

Typical energy 
(kJ mol−1)

Comment

Ion–ion 1/r 250 Only between ions
Hydrogen bond  20 Occurs in X–H· · ·Y, 

where X, Y = N, O, or F
Ion–dipole 1/r2  15
Dipole–dipole 1/r3  2 Between stationary 

polar molecules
1/r6  0.6 Between rotating 

polar molecules
London (dispersion) 1/r6  2 Between all types of 

molecules and ions

Fig. 11.30 Th e general form of an 
intermolecular potential energy 
curve (the graph of the potential 
energy of two closed shell species 
as the distance between them is 
changed). Th e attractive 
(negative) contribution has 
a long range, but the repulsive 
(positive) interaction increases 
more sharply once the molecules 
come into contact.
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the potential energy, where the details are ignored and the general features are 
expressed by a few adjustable parameters.

One such approximation is to express the short-range repulsive potential 
energy as inversely proportional to a high power of r:

 V = + C*
rn

 (11.24)

where C* is another constant (the asterisk signifi es repulsion). Typically, n is set 
equal to 12, in which case the repulsion dominates the 1/r6 attractions strongly 
at short separations because then C*/r12 >> C/r6. Th e sum of the repulsive inter-
action with n = 12 and the attractive interaction given by eqn 11.23 is called the 
Lennard-Jones (12,6) potential. It is normally written in the form

V = 4ε !@
A
C

s
r
D
F

12

 − AC
s
r
D
F

6 #
$ Lennard-Jones 

(12,6) potential
 (11.25)

and is drawn in Fig. 11.31. Th e two parameters are ε (epsilon), the depth of 
the well, and s, the separation at which V = 0; some typical values are listed 
in Table 11.5. Th e well minimum occurs at r = 21/6s. Although the (12,6) poten-
tial has been used in many calculations, there is plenty of evidence to show 
that 1/r12 is a very poor representation of the repulsive potential and that the 
exponential form e−r/s is superior. An exponential function is more faithful to 
the exponential decay of atomic wavefunctions at large distances and hence 
to the distance dependence of the overlap that is responsible for repulsion. 
However, a disadvantage of the exponential form is that it is slower to compute, 
which is important when considering the interactions between the large numbers 
of atoms in liquids and macromolecules. A further computational advantage of 
the (12,6) potential is that once r6 has been calculated, r12 is obtained simply by 
taking the square.

With the advent of atomic force microscopy (AFM), in which the force between 
a molecular sized probe and a surface is monitored (see In the laboratory 9.2), 
it has become possible to measure directly the forces acting between molecules. 
Th e force, F, is the negative slope of the potential energy (F = −dV/dr), so for a 
Lennard-Jones potential between individual molecules we write

F = − dV
dr

 = 24ε
s

 !@2 AC
s
r
D
F

13

 − AC
s
r
D
F

7 #
$ (11.26)

Th e net attractive force is greatest (from dF/dr = 0) at r = (26
7 )1/6s, or 1.244s, and at 

that distance is equal to −144( 7
26)7/6ε/13s, or −2.397ε/s. For typical parameters, 

the magnitude of this force is about 10 pN.

Table 11.5 Lennard-Jones 
parameters for the (12,6) 
potential

ε/(kJ mol−1) s/pm

Ar 128 342
Br2 536 427
C6H6 454 527
Cl2 368 412
H2  34 297
He  11 258
Xe 236 406

Fig. 11.31 Th e Lennard-Jones 
potential is another 
approximation to the true 
intermolecular potential energy 
curves. It models the attractive 
component by a contribution 
that is proportional to 1/r6 and 
the repulsive component by a 
contribution that is proportional 
to 1/r12. Specifi cally, these choices 
result in the Lennard-Jones (12,6) 
potential. Although there are 
good theoretical reasons for 
the former, there is plenty of 
evidence to show that 1/r12 is only 
a very poor approximation to 
the repulsive part of the curve.

Self-test 11.12 At what separation does the minimum of the potential energy 
curve occur for a Lennard-Jones potential? Hint: Solve for r aft er setting the 
fi rst derivative of the potential energy function to zero.

Answer: r = 21/6s
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Case study 11.2 Molecular recognition in biology and pharmacology

Molecular interactions are responsible for the assembly of many biological 
structures. Hydrogen bonding and hydrophobic interactions are primarily 
responsible for the three-dimensional structures of biopolymers, such as pro-
teins, nucleic acids, and cell membranes. Th e binding of a ligand, or guest, to 
a biopolymer, or host, is also governed by molecular interactions. Examples 
of biological host–guest complexes include enzyme–substrate complexes, anti-
gen–antibody complexes, and drug–receptor complexes. In all these cases, a 
site on the guest contains functional groups that can interact with complemen-
tary functional groups of the host. For example, a hydrogen bond donor group 
of the guest must be positioned near a hydrogen bond acceptor group of the 
host for tight binding to occur. It is generally true that many specifi c inter-
molecular contacts must be made in a biological host–guest complex and, as 
a result, a guest binds only hosts that are chemically similar. Th e strict rules 
governing molecular recognition of a guest by a host control every biological 
process, from metabolism to immunological response, and provide important 
clues for the design of eff ective drugs for the treatment of disease.

Interactions between nonpolar groups can be important in the binding of a 
guest to a host. For example, many enzyme active sites have hydrophobic 
pockets that bind nonpolar groups of a substrate. Coulombic interactions can 
be important in the interior of a biopolymer host, where the relative permit-
tivity can be much lower than that of the aqueous exterior. For example, at 
physiological pH, amino acid side chains containing carboxylic acid or amine 
groups are negatively and positively charged, respectively, and can attract 
each other. Dipole–dipole interactions are also possible because many of the 
building blocks of biopolymers are polar, including the peptide link, –CONH– 
(see Example 11.6). However, hydrogen bonding interactions are by far the 
most prevalent in biological host–guest complexes. Many eff ective drugs bind 
tightly and inhibit the action of enzymes that are associated with the progress 
of a disease. In many cases, a successful inhibitor will be able to form the same 
hydrogen bonds with the binding site that the normal substrate of the enzyme 
can form, except that the drug is chemically inert toward the enzyme. Th is 
strategy has been used in the design of drugs for the treatment of HIV-AIDS. 
Here we describe the properties of a drug that fi ghts HIV infection, high-
lighting the importance of molecular interactions.

For mature HIV particles to form in cells of the host organism, several large 
proteins encoded by the viral genetic material must be cleaved by a protease 
enzyme. Th e drug Crixivan (12) is a competitive inhibitor of HIV protease and 
has several molecular features that optimize binding to the enzyme’s active 
site. First, the hydroxyl group highlighted in (12) displaces an H2O molecule 
that acts as the nucleophile in the hydrolysis of the substrate. Second, the car-
bon atom to which the key –OH group is bound has a tetrahedral geometry 
that mimics the structure of the transition state of the peptide hydrolysis 
reaction. However, the tetrahedral moiety in the drug is not cleaved by the 
enzyme. Th ird, the inhibitor is anchored fi rmly to the active site by a network 
of hydrogen bonds involving the carbonyl groups of the drug, a water mole-
cule, and peptide NH groups from the enzyme, as shown in (12).
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Levels of structure

Th e concept of the ‘structure’ of a macromolecule takes on diff erent meanings 
at the diff erent levels at which we think about the arrangement of the chain or 
network of monomers. Th e term confi guration refers to the structural features 
that can be changed only by breaking chemical bonds and forming new ones. 
Th us, the chains –A–B–C– and –A–C–B– have diff erent confi gurations. Th e term 
conformation refers to the spatial arrangement of the diff erent parts of a chain, 
and one conformation can be changed into another by rotating one part of a chain 
around a bond.

In the following sections we explore the molecular interactions responsible 
for the diff erent levels of structure of biological macromolecules (primary, 
secondary, etc., as explained in Fundamentals F.1) and assemblies (such as 
biological membranes; see Fundamentals F.1). We draw from the concepts 
developed in Sections 11.5–11.10 and describe computational techniques that 
can help with the prediction of the three-dimensional structure of polypeptides 
and polynucleotides.

11.11 Minimal order: gases and liquids
Many biochemical processes take place in the aqueous intracellular space, so we 
need to understand the structure of liquids in general and of water in particular.

Th e form of matter with the least order is a gas. In a perfect gas there are no inter-
molecular interactions and the distribution of molecules is completely random. 
In a real gas there are weak attractions and repulsions that have minimal eff ect on 
the relative locations of the molecules but that cause deviations from the perfect 
gas law for the dependence of pressure on the volume, temperature, and amount. 
Normally there is no need to consider such deviations in biological applications.

Th e attractions between molecules are responsible for the condensation of 
gases into liquids at low temperatures. First, at low enough temperatures the 
molecules of a gas have insuffi  cient kinetic energy to escape from each other’s 
attraction and they stick together. Second, although molecules attract each other 
when they are a few diameters apart, as soon as they come into contact, they repel 
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each other. Th is repulsion is responsible for the fact that liquids and solids have 
a defi nite bulk and do not collapse to an infi nitesimal point. Th e molecules are 
held together by molecular interactions, but their kinetic energies are comparable 
to their potential energies. As a result, although the molecules of a liquid are not 
free to escape completely from the bulk, the whole structure is very mobile and we 
can speak only of the average relative locations of molecules.

Th e average locations of the molecules in a liquid are described in terms of the 
radial distribution function, g(r). Th is function is defi ned so that g(r)dr is the 
probability that a molecule will be found at a distance between r and r + dr from 
another molecule.5 It follows that if g(r) passes through a maximum at a radius of, 
for instance, 0.5 nm, then the most probable distance (regardless of direction) at 
which a second molecule will be found will be at 0.5 nm from the fi rst molecule.

In a crystal, g(r) is an array of sharp spikes, representing the certainty (in the 
absence of defects and thermal motion) that particles lie at defi nite locations. Th is 
regularity continues out to large distances (to the edge of the crystal, billions of 
molecules away), so we say that crystals have long-range order. When the crystal 
melts, the long-range order is lost and wherever we look at long distances from 
a given particle there is equal probability of fi nding a second particle. Close to the 
fi rst particle, however, there may be a remnant of order (Fig. 11.32). Its nearest 
neighbors might still adopt approximately their original positions, and even if 
they are displaced by newcomers, the new particles might adopt their vacated 
positions. It may still be possible to detect, on average, a sphere of nearest neigh-
bors at a distance r1 and perhaps beyond them a sphere of next-nearest neighbors 
at r2. Th e existence of this short-range order means that g(r) can be expected to 
have a broad but pronounced peak at r1, a smaller and broader peak at r2, and 
perhaps some more structure beyond that. As an illustration, Fig. 11.33 shows the 
radial distribution function for water at a series of temperatures. Th e shells of 
local structure shown are unmistakable. Closer analysis shows that any given H2O 
molecule is surrounded by other molecules at the corners of a tetrahedron, 
similar to the arrangement in ice (Fig. 11.34). Th e form of g(r) at 100°C shows that 
the intermolecular forces (in this case, largely hydrogen bonds) are strong enough 
to aff ect the local structure right up to the boiling point.

5 Recall the analogous quantity used to describe the distance of an electron from an atom, Sec-
tion 9.8.

Fig. 11.32 (a) In a perfect crystal at T = 0, the distribution of molecules (or ions) is highly 
regular, and the radial distribution function has a series of sharp peaks that show the 
regular organization of rings of neighbors around any selected central molecule or ion. 
(b) In a liquid, there remain some elements of structure close to each molecule, but the 
greater the distance, the less the correlation. Th e radial distribution function now shows 
a pronounced (but broadened) peak corresponding to the nearest neighbors of the 
molecule of interest (which are only slightly more disordered than in the solid) and a 
suggestion of a peak for the next ring of molecules, but little structure at greater distances.

Fig. 11.33 Th e experimentally 
determined radial distribution 
function of the oxygen atoms 
in liquid water at three 
temperatures. Note the expansion 
as the temperature is raised.
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11.12 Random coils
The next stage for understanding the link between the structure and properties of 
a biological macromolecule is to consider the least organized structure of a chain 
of atoms, a dynamically active random coil.

Unlike the molecules of a liquid, the atoms and subunits of a macromolecule are 
tied together by chemical bonds. However, the atoms may still have considerable 
freedom of location on account of the ability of the units to rotate relative to their 
neighbors. A random coil is a disorganized conformation of a fl exible macro-
molecule. Th e simplest model of a random coil is a freely jointed chain, in which 
any bond is free to make any angle with respect to the preceding one (Fig. 11.35). 
We assume that the residues occupy zero volume, so diff erent parts of the chain 
can occupy the same region of space. Th e model is obviously an oversimplifi ca-
tion because a bond is actually constrained to a cone of angles around a direction 
defi ned by its neighbor. In a hypothetical one-dimensional freely jointed chain all 
the residues lie in a straight line, and the angle between neighbors is either 0° or 
180°. Th e residues in a three-dimensional freely jointed chain are not restricted to 
lie in a line or a plane.

Th e probability, f(r)dr, that the distance between the ends of a three-
dimensional freely jointed chain of N units of length l lies in the range r to r + dr is6

f(r)dr = 4p AC
a

p1/2

D
F

3

 r2e−a2r2dr, a = AC
3

2Nl2

D
F

1/2

 
Distribution of the 
separation of the ends of 
a three-dimensional chain

 (11.27)

In some coils, the ends may be far apart, whereas in others their separation is 
small. Note that it is very unlikely that the two ends will be found either very close 
together (r = 0), because the factor r2 vanishes, or stretched out in an almost 
straight line, because the exponential factor then vanishes. An alternative inter-
pretation of f(r) is to regard each coil in a sample as ceaselessly writhing from one 
conformation to another; then f(r)dr is the probability that at any instant the 
chain will be found with the separation of its ends between r and r + dr.

(a) Measures of size

Th ere are several measures of the geometrical size of a three-dimensional random 
coil. Th e root mean square separation, Rrms, is a measure of the average separa-
tion of the ends of the coil:

Rrms = N 1/2l Root mean square separation  (11.28)

We see that as the number of residues N (each of length l) increases, the root 
mean square separation of its ends increases as N1/2, and consequently the volume 

6 See our Physical chemistry (2010) for full derivations of eqns 11.27, 11.28, and 11.31.

Fig. 11.35 A freely jointed chain is 
like a three-dimensional random 
walk, each step being in an 
arbitrary direction but of the 
same length.

Fig. 11.34 A fragment of the 
crystal structure of ice. Each 
O atom is at the center of a 
tetrahedron of four O atoms at a 
distance of 276 pm. Th e central 
O atom is attached by two short 
O–H bonds to two H atoms and 
by two relatively long O···H 
bonds to two neighboring H2O 
molecules. Overall, the structure 
consists of planes of hexagonal 
puckered rings of H2O molecules 
(like the chair form of 
cyclohexane).
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of the coil increases as N 3/2. Th e contour length, Rc, is the length of the macro-
molecule measured along its backbone from atom to atom:

Rc = Nl Contour length  (11.29)

Another convenient measure of size is the radius of gyration of the macro-
molecule, the radius of a thin hollow spherical shell of the same mass and moment 
of inertia as the molecule (Fig. 11.36). For example, a solid sphere of radius R has 
Rg = (3

5)1/2R and a long thin rod of length l has Rg = l/121/2 for rotation about an 
axis perpendicular to the long axis. For a random coil,

Rg = AC
N
6

D
F

1/2

l Radius of gyration  (11.30)

and we see that, for specifi ed values of N and l, Rrms > Rg (Fig. 11.37). Table 11.6 
lists some experimental values of Rg.

Fig. 11.36 A spherical molecule of 
radius R and the smaller hollow 
spherical shell that has the same 
rotational characteristics. Th e 
radius of the hollow shell is the 
radius of gyration Rg of the 
molecule.

Fig. 11.37 A random coil in three 
dimensions. Th is one contains 
about 200 units. Th e root mean 
square distance between the ends 
(Rrms) and the radius of gyration 
(Rg) are indicated.

Table 11.6 Radii of gyration of 
biological macromolecules and 
assemblies

M/(kg mol−1) Rg/nm

DNA 4 × 103 117.0
Myosin 493  46.8
Serum 
albumin

 66   2.98

Tobacco 
mosaic virus

3.9 × 104  92.4

A brief illustration

With a powerful microscope it is possible to see that a long piece of double-
stranded DNA is fl exible and writhes as if it were a random coil. However, 
small segments of the macromolecule resist bending, so it is more appropriate 
to visualize DNA as a freely jointed chain with N and l as the number and length, 
respectively, of these rigid units. Th e length l, the persistence length, is approxi-
mately 45 nm, corresponding to approximately 130 base pairs. It follows that 
for a piece of DNA with N = 200, we estimate (by using 103 nm = 1 mm)

from eqn 11.29: Rc = 200 × 45 nm = 9.0 mm
from eqn 11.28: Rrms = (200)1/2 × 45 nm = 0.64 mm

from eqn 11.30: Rg = AC
200

6
D
F

1/2

 × 45 nm = 0.26 mm

Th e random coil model ignores the role of the solvent: a ‘poor’ solvent will tend 
to cause the coil to tighten so that solute–solvent contacts are minimized; a ‘good’ 
solvent does the opposite. Th erefore, calculations based on this model are better 
regarded as lower bounds to the dimensions for a coil in a good solvent and as an 
upper bound for a coil in a poor solvent.

(b) Conformational entropy

Because a random coil is the least structured conformation of an idealized poly-
mer chain, it corresponds to the state of greatest entropy. Any stretching of the 
coil introduces order and reduces the entropy. Conversely, the formation of a 
random coil from a more extended form is a spontaneous process (provided 
enthalpy contributions do not interfere). Th e change in conformational entropy, 
the entropy arising from the arrangement of bonds, when a coil containing N 
bonds of length l is stretched or compressed by nl is

 DS = − 12 kN ln {(1 + n)1+n(1 − n)1−n} n = n/N Conformational
entropy

 (11.31)

where k is Boltzmann’s constant and the maximum value of n is N, corresponding 
to maximum extension. Th is function is plotted in Fig. 11.38, and we see that 
minimum extension—fully coiled—corresponds to maximum entropy.
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11.13 Proteins
We now need to understand how proteins attain complex structures.

For a protein to function correctly, it needs to have a well-defi ned conformation. 
For example, an enzyme has its greatest catalytic effi  ciency only when it is in a 
specifi c conformation. In this section we explore the covalent and noncovalent 
interactions that cause polypeptides to fold into complex assemblies.

(a) The secondary structure of a protein

Th e origin of the secondary structure of a protein is found in the rules formulated 
by Linus Pauling and Robert Corey in 1951. Th e essential feature is the stabiliza-
tion of structures by hydrogen bonds involving the peptide link. Th e latter can act 
both as a donor of the H atom (the NH part of the link) and as an acceptor (the 
CO part). Th e Corey–Pauling rules are as follows (Fig. 11.39):

1. Th e four atoms of the peptide link lie in a relatively rigid plane. Th e planar-
ity of the link is due to delocalization of p electrons over the O, C, and N 
atoms and the maintenance of maximum overlap of their p orbitals (see 
Exercise 10.41).

2. Th e N, H, and O atoms of a hydrogen bond lie in a straight line (with dis-
placements of H tolerated up to not more than 30° from the N–O vector).

3. All NH and CO groups are engaged in hydrogen bonding.

Th e rules are satisfi ed by two structures. One, in which hydrogen bonding 
between peptide links leads to a helical structure, is the a helix. Th e other, in 
which hydrogen bonding between peptide links leads to a planar structure, is 
the b sheet;7 this form is the secondary structure of the protein fi broin, the con-
stituent of silk.

Th e a-helix is illustrated in Fig. 11.40. Each turn of the helix contains 3.6 amino 
acid residues, so the period of the helix corresponds to fi ve turns (18 residues). 
Th e pitch of a single turn (the distance between points separated by 360°) is 
544 pm. Th e N–H···O bonds lie parallel to the axis and link every fourth group 
(so residue i is linked to residues i − 4 and i + 4). All the R groups point away from 
the major axis of the helix.

Th ere is freedom for the helix to be arranged as either a right- or a left -handed 
screw, but the overwhelming majority of natural polypeptides are right-handed 
on account of the preponderance of the l-confi guration of the naturally occur-
ring amino acids, as we explain below. Th e reason for their preponderance is not 
known.

A polypeptide chain adopts a conformation corresponding to a minimum 
Gibbs energy, which depends on the conformational energy, the energy of 

7 Th e sheet is oft en called the pleated sheet.

Fig. 11.39 Th e (a) angles and 
(b) bond lengths (pm) that 
characterize the peptide link. 
Th e C–NH–CO–C atoms defi ne 
a plane (the C–N bond has 
partial double-bond character), 
but there is rotational freedom 
around the C–CO and N–C 
bonds.

A brief illustration

Suppose that N = 1000 and l = 150 pm. Th e change in entropy when the (one-
dimensional) random coil is stretched through 1500 pm (corresponding to 
n = 1500 pm/150 pm = 10 and n = 1/100) is DS = −0.050k. Th e change in molar 
entropy is therefore DSm = −0.050R or −0.42 J K−1 mol−1 (we have used R = NAk).

Fig. 11.38 Th e change in molar 
entropy of a freely jointed chain 
as its extension changes; n = 1 
corresponds to complete 
extension; n = 0, the 
conformation of highest entropy, 
corresponds to the random coil.
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interaction between diff erent parts of the chain, and the energy of interaction 
between the chain and surrounding solvent molecules. In the aqueous environ-
ment of biological cells, the outer surface of a protein molecule is covered by 
a mobile sheath of water molecules, and its interior contains pockets of water 
molecules. Th ese water molecules play an important role in determining the con-
formation that the chain adopts through hydrophobic interactions and hydrogen 
bonding to amino acids in the chain.

Th e simplest calculations of the conformational energy of a polypeptide chain 
ignore entropy and solvent eff ects and concentrate on the total potential energy of 
all the interactions between nonbonded atoms. For example, these calculations 
predict that a right-handed a-helix of l-amino acids is marginally more stable 
than a left -handed helix of the same amino acids.

To calculate the energy of a conformation, we need to make use of many of 
the molecular interactions described earlier in the chapter and also of some 
additional interactions:

1. Bond stretching. Bonds are not rigid, and it may be advantageous for some 
bonds to stretch and others to be compressed slightly as parts of the chain 
press against one another.

If we liken the bond to a spring, then the potential energy takes the form 
corresponding to a Hooke’s law of force (restoring force proportional to the 
displacement; eqn 9.28) and is

Vstretch = 12 kf,stretch(R − Re)2 Contribution of bond stretching 
to the conformational energy

 (11.32)

where Re is the equilibrium bond length and kf,stretch is the stretching force con-
stant, a measure of the stiff ness of the bond in question.

Fig. 11.40 Th e polypeptide a-helix, 
with poly-l-alanine as an 
example. Th ere are 3.6 residues 
per turn and a translation along 
the helix of 150 pm per residue, 
giving a pitch of 544 pm. Th e 
diameter (ignoring side chains) is 
about 600 pm.

2. Bond bending. An O–C–H bond angle (or some other angle) may open out 
or close in slightly to enable the molecule as a whole to fi t together better.

If the equilibrium bond angle is qe, we write

Vbend = 12 kf,bend(q − qe)2 Contribution of bond bending 
to the conformational energy

 (11.33)

where kf,bend is the bending force constant, a measure of how diffi  cult it is to change 
the bond angle.

Self-test 11.14 Th eoretical studies have estimated that the lumifl avin iso-
alloazine ring system (13) has an energy minimum at the bending angle of 15°, 
but that it requires only 8.5 kJ mol−1 to increase the angle to 30°. If there are no 
other compensating interactions, what is the force constant for lumifl avin 
bending?

Answer: 1.26 × 10−22 J deg−2, equivalent to 75.6 J mol−1 deg−2

Self-test 11.13 Th e equilibrium bond length of a carbon–carbon single bond 
is 152 pm. Given a C–C force constant of 400 N m−1, how much energy, in 
kilojoules per mole, would it take to stretch the bond to 165 pm?

Answer: 3.38 × 10−20 J, equivalent to 20.3 kJ mol−1
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3. Bond torsion. Th ere is a barrier to internal rotation of one bond relative to 
another (just like the barrier to internal rotation in ethane).

Because the planar peptide link is relatively rigid, the geometry of a polypeptide 
chain can be specifi ed by the two angles that two neighboring planar peptide links 
make to each other. Figure 11.41 shows the two angles f and y commonly used to 
specify this relative orientation. Th e sign convention is that a positive angle means 
that the front atom must be rotated clockwise to bring it into an eclipsed position 
relative to the rear atom. For an all-trans form of the chain, all f and y are 180°. 
A helix is obtained when all the f are equal and when all the y are equal. For a 
right-handed a-helix, all f = 57° and all y = 47°. For a left -handed a-helix, both 
angles are positive. Th e torsional contribution to the total potential energy is

Vtorsion = A(1 + cos 3f) + B(1 + cos 3y) Contribution of bond torsion 
to the conformational energy

 (11.34)

in which A and B are constants of the order of 1 kJ mol−1. Because only two angles 
are needed to specify the conformation of a helix, and they range from −180° to 
+180°, the torsional potential energy of the entire molecule can be represented 
on a Ramachandran plot, a contour diagram in which one axis represents f and 
the other represents y.

4. Interaction between partial charges. If the partial charges Qi and Qj on the 
atoms i and j are known, a Coulombic contribution of the form given in 
eqn 11.13 can be included, using the partial charges quoted in Table 11.2.

Th e interaction between partial charges does away with the need to take dipole–
dipole interactions into account, for they are taken care of by dealing with each 
partial charge explicitly.

5. Dispersive and repulsive interactions. Th e interaction energy of two atoms 
separated by a distance r (which we know once f and y are specifi ed) can be 
given by the Lennard-Jones (12,6) form, eqn 11.25.

6. Hydrogen bonding. In some models of structure, the interaction between 
partial charges is judged to take into account the eff ect of hydrogen 
bonding.

In other models, hydrogen bonding is added as another interaction of the form

VH−bonding = E
r12

 − F
r10

 Contribution of hydrogen bonding 
to the conformational energy

 (11.35)

Th e total potential energy of a given conformation (f,y) can be calculated by 
summing the contributions given by eqns 11.32 through 11.35 and the contribu-
tions from Coulombic and dispersion interactions for all bond angles (including 
torsional angles) and pairs of atoms in the molecule. Figure 11.42 shows the 
potential energy contours for the helical form of polypeptide chains formed from 
the nonchiral amino acid glycine (R = H) and the chiral amino acid l-alanine 
(R = CH3). Th e contours were computed by summing all the contributions described 
above for each choice of angles and then plotting contours of equal potential 
energy. Th e glycine map is symmetrical, with minima corresponding to the for-
mation of right- and left -handed helices. In contrast, the map for l-alanine is 
unsymmetrical, with the lowest being consistent with the formation of an a-helix.

A b sheet is formed by hydrogen bonding between two extended polypeptide 
chains (large absolute values of the torsion angles f and y). Some of the R groups 

Fig. 11.42 Contour plots of 
potential energy against the 
torsional angles y and f, also 
known as Ramachandran plots, 
for (a) a glycyl residue of a 
polypeptide chain and (b) an 
alanyl residue. Th e glycyl 
diagram is symmetrical, but that 
for alanyl is unsymmetrical, 
with the area shaded in red 
corresponding to an a-helix. 
(Aft er T. Hovmoller et al., Acta 
Cryst. D58, 768 (2002).)

Fig. 11.41 Th e defi nition of the 
torsional angles y and f between 
two peptide units.
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point above and some point below the sheet. Two types of structures can be 
distinguished from the pattern of hydrogen bonding between the constituent 
chains.

In an antiparallel b sheet (Fig. 11.43a), f = −139°, y = +113°, and the N–H–O 
atoms of the hydrogen bonds form a straight line. Th is arrangement is a con-
sequence of the antiparallel arrangement of the chains: every N–H bond on one 
chain is aligned with a C–O bond from another chain. Antiparallel b sheets 
are very common in proteins. In a parallel b sheet (Fig. 11.43b), f = −119° and 
y = +113°, and the N–H–O atoms of the hydrogen bonds are not perfectly 
aligned. Th is arrangement is a result of the parallel arrangement of the chains: 
each N–H bond on one chain is aligned with an N–H bond of another chain and, 
as a result, each C–O bond of one chain is aligned with a C–O bond of another 
chain. Th ese structures are not common in proteins.

Although we do not know all the rules that govern protein folding, X-ray 
diff raction studies of water-soluble natural proteins and synthetic polypep-
tides show that some amino acid residues appear in helical segments more fre-
quently than in sheets, whereas others exhibit the opposite behavior. Table 11.7 
summarizes the available data.

(b) Higher-order structures of proteins

In an aqueous environment, chains fold in such a way as to place nonpolar R 
groups in the interior (which is oft en not very accessible to solvent) and charged 
R groups on the surface (in direct contact with the polar solvent). A wide variety 
of structures can result from these broad rules. Among them, a four-helix bundle 
(Fig. 11.44), which is found in proteins such as cytochrome b562 (an electron-
transport protein, Atlas P5), forms when each helix has a nonpolar region along 
its length. Th e four nonpolar regions pack together to form a nonpolar interior. 
Similarly, interconnected b sheets may interact to form a b barrel (Fig. 11.45), the 
interior of which is populated by nonpolar R groups and which has an exterior 
rich in charged residues. Th e retinol-binding protein of blood plasma (Atlas P11), 
which is responsible for transporting vitamin A, is an example of a b barrel 
structure.

Factors that promote the folding of proteins include covalent –S–S– disulfi de 
links between cysteine residues (14), Coulombic interactions between ions (which 
depend on the degree of protonation of groups and therefore on the pH), hydro-
gen bonding (such as O–H···O), van der Waals interactions, and hydrophobic 
interactions. Th e clustering of nonpolar, hydrophobic amino acids into the 
interior of a protein is driven primarily by hydrophobic interactions (Section 2.7).

Proteins with M > 50 kg mol−1 are oft en found to be aggregates of two or more 
polypeptide chains. Hemoglobin, which consists of four myoglobin-like chains 
(Fig. 11.46 and Atlas P7), is an example of a quaternary structure. Myoglobin 
(Atlas P10) is an oxygen-storage protein. Th e subtle diff erences that arise when 
four such molecules coalesce to form hemoglobin result in the latter being an 
oxygen transport protein, able to load O2 cooperatively and to unload it coopera-
tively too (see Case studies 4.1 and 10.4).

Proteins can also self-assemble into rather large aggregates. Collagen (Atlas 
P4), the most abundant protein in mammals and responsible for imparting 
mechanical strength to tissues and organs, consists of three long helices wound 
around each other. Th e protein actin forms thin, rodlike fi laments that, when 
associated with several copies of the protein myosin, play an important role in 
the mechanism of muscle contraction. Th e microtubules that participate in the 

Fig. 11.43 (a) An antiparallel b 
sheet (f = −139°, y = +113°), in 
which the N–H–O atoms of the 
hydrogen bonds form a straight 
line. (b) A parallel b sheet 
(f = −119° and y = +113°), in 
which the N–H–O atoms of 
the hydrogen bonds are not 
perfectly aligned.
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separation of chromosomes during cell division, provide structural rigidity in 
cells, and participate in the motile function of fl agella are hollow cylinders formed 
by aggregation of the protein tubulin.

Not all protein aggregates are benefi cial. In patients affl  icted with sickle-cell 
anemia, hemoglobin molecules aggregate into rods, rendering the red blood cell 
unable to transport O2 effi  ciently. Also, the presence of aggregates of proteins in 
the brain appears to be associated with several serious conditions. For example, 
the amyloid plaques found in postmortem analysis of the brains of patients with 
Alzheimer’s disease are a mixture of damaged neurons and aggregates of the b 
amyloid protein, which is an extended antiparallel b sheet.

11.14 Nucleic acids
Of crucial biological importance are the conformations adopted by nucleic acids, the 
key components of the mechanism of storage and transfer of genetic information in 
biological cells.

We saw in Fundamentals F.1 that DNA and RNA are polynucleotides, polymers of 
base–sugar–phosphate units linked by phosphodiester bonds, that self-assemble 

Table 11.7 Relative frequencies of 
amino acid residues in helices 
and sheets

Amino acid a helix b sheet

Alanine 1.29 0.90
Arginine 0.96 0.99
Asparagine 0.90 0.76
Aspartic acid 1.04 0.72
Cysteine 1.11 0.74
Glutamic acid 1.44 0.75
Glutamine 1.27 0.80
Glycine 0.56 0.92
Histidine 1.22 1.08
Isoleucine 0.97 1.45
Leucine 1.30 1.02
Lysine 1.23 0.77
Methionine 1.47 0.97
Phenylalanine 1.07 1.32
Proline 0.52 0.64
Serine 0.82 0.95
Th reonine 0.82 1.21
Tryptophan 0.99 1.14
Tyrosine 0.72 1.25
Valine 0.91 1.49

Data from T.E. Creighton, Proteins: 
structures and molecular properties, 
W. H. Freeman and Co., New York (1992).

Fig. 11.44 A four-helix bundle forms from 
the interactions between nonpolar amino 
acids on the surfaces of each helix, with 
the polar amino acids exposed to the 
aqueous environment of the solvent.

Fig. 11.45 Eight antiparallel b sheets, each 
represented by an arrow and linked by 
short random coils fold together as a 
barrel. Nonpolar amino acids are in the 
interior of the barrel.

Fig. 11.46 A hemoglobin molecule 
consists of four myoglobin-like 
units. An O2 molecule attaches to 
the ion atom in the heme group 
indicated by the arrow.
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into complex three-dimensional structures. An example of secondary structure 
in nucleic acids is the winding of two polynucleotide chains around each other to 
form a DNA double helix, as shown in Fig. 11.47.

Figure 11.47 also shows that diff erent forms of the double helix are possible. In 
B-DNA, the most abundant form of DNA in the cell (Fig. 11.47a), the rodlike 
double helix is right-handed with a diameter of 2.37 nm and a pitch of 3.54 nm. 
Th e base pairs are approximately parallel to each other and perpendicular to the 
long axis of the rod. In A-DNA (Fig. 11.47b), the double helix is right-handed but 
slightly wider, with a diameter of approximately 2.55 nm and a pitch of 2.53 nm. 
Th e base pairs are parallel to each other but not perpendicular to the long axis of 
the helix. Double-stranded RNA and hybrid RNA-DNA, the assembly of one 
strand of ribonucleic acid strand with a DNA strand, assume the A form. A third 
form of DNA, called Z-DNA, is a left -handed helix with a diameter of 1.84 nm, 
a pitch of 4.56 nm, and a slightly tilted arrangement of the base pairs relative to 
the long axis of the helix. Th e physiological role of Z-DNA is not certain.

We saw in Section 3.5 that base pairing by hydrogen bonding is largely respon-
sible for the thermal stability of DNA. A more subtle interaction that confers 
stability to DNA is base stacking, in which dispersion interactions bring together 
the planar systems of bases. Experiments show that stacking interactions are 
stronger between C–G base pairs than between A–T base pairs. It follows that two 
factors render DNA sequences rich in C–G base pairs more stable than sequences 
rich in A–T base pairs: more hydrogen bonds between the bases (Section 3.5) and 
stronger stacking interactions between base pairs. Some drugs with planar p 
systems, shown as a gray rectangle in the illustration, are eff ective because they 
intercalate between base pairs through stacking interactions, causing the helix 
to unwind slightly and altering the function of DNA (Fig. 11.48).

Because a long stretch of DNA is fl exible, it can undergo further folding into 
a variety of tertiary structures. Two examples are shown in Fig. 11.49. Supercoiled 
DNA is found in the chromosome and can be visualized as the twisting of closed 
circular DNA (ccDNA), much like the twisting of a rubber band. Before it can 
participate in the transmission of genetic information, supercoiled DNA must 
be uncoiled. Both coiling and uncoiling are catalyzed by enzymes belonging to 
the topoisomerase family.

Th ere are important diff erences in the chemical compositions of RNA and 
DNA that translate into diff erent secondary and tertiary structures. In RNA the 
sugar is b-d-ribose (Atlas S1), whereas in DNA it is b-d-2-deoxyribose (Atlas S2). 
Although adenine, cytosine, and guanine are found in both DNA and RNA, in 
RNA uracil (Atlas B5) replaces thymine. As in DNA, the secondary and tertiary 
structures of RNA arise primarily from the pattern of hydrogen bonding between 
bases of one or more chains. Th e extra –OH group in b-d-ribose imparts enough 
steric strain to a polynucleotide chain that stable double helices cannot form in 
RNA. Th erefore, RNA exists primarily as single chains that can fold into complex 

Fig. 11.47 Th e structural features 
of the most abundant forms of 
DNA in the cell: (a) B-DNA, (b) 
A-DNA.

Fig. 11.48 Some drugs with planar 
p systems, shown as a rectangle, 
intercalate between base pairs of 
DNA.

Fig. 11.49 A long section of DNA 
may form closed circular DNA 
(ccDNA) by covalent linkage of 
the two ends of the chain. 
Twisting of ccDNA leads to the 
formation of supercoiled DNA.
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structures by formation of A–U and G–C base pairs. One example of this eff ect 
is the structure of transfer RNA (tRNA), shown schematically in Fig. 11.50, in 
which base-paired regions are connected by loops and coils. Transfer RNAs help 
assemble polypeptide chains during protein synthesis in the cell.

11.15 Polysaccharides
To understand the connection between structure and biological function of 
carbohydrates, we need to examine the conformations adopted by their polymers.

We saw in Fundamentals F.1 that polysaccharides are polymers of simple carbo-
hydrates. Carbohydrate units are linked together in polysaccharides by glycosidic 
bonds that form between hydroxyl groups and result in C–O–C ether moieties. 
Th e orientation of one linked ring relative to another depends on which hydroxyl 
groups are linked and on their stereochemistry. Consider the a and b isomers of 
glucose (15a and 15b, respectively), which diff er in the confi guration of the C1 
carbon. Linking the C1 and C4 carbons by glycosidic bonds, so-called 1,4-glycosidic 
bonds, results in either a bent (16) or a linear (17) chain, depending on whether 
the monomer is a- or b-glucose, respectively. Branched structures are also 
possible when a monomer makes three glycosidic bonds, as shown in (18).

Fig. 11.50 Th e structure of a 
transfer RNA (tRNA).
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Like polypeptides and polynucleotides, polysaccharides also possess diff erent 
levels of structure. In cellulose, linear chains of glucose, such as those shown in (17), 
interact through hydrogen bonds involving hydroxyl groups and ring oxygen 
atoms. Th e resulting structure is a thin but strong fi ber that is used to construct 
the wall of a plant cell. In amylase, which stores glucose molecules for future use 
by the plant cells, a bent chain, such as that in (16), coils into a helical structure 
held together by hydrogen bonds. Glycogen, which stores glucose in animals and 
microbes, and amylopectin, which—like amylase—performs the same function 
in plants, also feature a-1,4-linkages, but because of branching points (as in 18), 
these polymers do not adopt regular secondary structures.

11.16 Micelles and biological membranes
We need to understand the factors that optimize the self-assembly of cell 
membranes.

We saw in Fundamentals F.1 that phospholipids are amphipathic molecules that 
can group together through hydrophobic interactions to form bilayer structures 
and cell membranes (Fig. F.1). Here we explore details of the self-assembly of 
amphipathic molecules into a variety of structures with signifi cance to biology 
and medicine.

(a) Micelles

In aqueous environments amphipathic molecules can group together as micelles, 
in which hydrophobic tails congregate, leaving hydrophilic heads exposed to the 
solvent (Fig. 11.51). Micelles are important in industry and biology on account of 
their solubilizing function: matter can be transported by water aft er it has been 
dissolved in their hydrocarbon interiors.

Micelles form only above a certain concentration of amphiphiles called 
the critical micelle concentration (CMC) and above the Krafft   temperature. 
Nonionic amphipathic molecules may cluster together in clumps of 1000 or more, 
but ionic species tend to be disrupted by the electrostatic repulsions between head 
groups and are normally limited to groups of fewer than about 100. Th e interior of 
a micelle is like a droplet of oil, and experiments show that the hydrophobic tails 
are mobile, but slightly more restricted than in the bulk.

Diff erent molecules tend to form micelles of diff erent shapes. For example, 
ionic species such as sodium dodecyl sulfate (SDS) and cetyl trimethylammo-
nium bromide (CTAB) form rods at moderate concentrations, whereas sugar 
molecules form small, approximately spherical micelles. Broadly speaking, the 
shapes of micelles vary with the shape of the constituent molecules, their concen-
tration, and the temperature. A useful predictor of the shape of the micelle, the 
surfactant parameter, Ns, is defi ned as

Ns = V
Al

 Surfactant parameter  (11.36)

where V is the volume of the hydrophobic tail, A is the area of the hydrophilic 
head group, and l is the maximum length of the tail. Table 11.8 summarizes the 
dependence of micelle shape on the surfactant parameter.

Under certain experimental conditions, a liposome may form, with an inward 
pointing inner surface of molecules surrounded by an outward pointing outer 
layer (Fig. 11.52). Liposomes may be used to carry nonpolar drug molecules in 
blood. Reverse micelles form in nonpolar solvents, with small polar head groups 

Table 11.8 Variation of micelle 
shape with the surfactant 
parameter 

Value or range of 
the surfactant 
parameter, Ns

Micelle shape

< 0.33 Spherical
0.33–0.50 Cylindrical rods
0.50–1.00 Vesicles
1.00 Planar bilayers
> 1.00 Reverse micelles 

and other shapes

Fig. 11.51 A representation of a 
spherical micelle. Th e hydrophilic 
groups are represented by the red 
spheres and the hydrophobic 
hydrocarbon chains are 
represented by the stalks. 
Th e latter are mobile.

Fig. 11.52 Th e cross-sectional 
structure of a spherical liposome.
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in a micellar core and more voluminous hydrophobic tails extending into the 
organic bulk phase. Th ese spherical aggregates can solubilize water in organic 
solvents by creating a pool of trapped water molecules in the micellar core.

(b) Bilayers, vesicles, and membranes

Some micelles at concentrations well above the CMC form extended parallel 
sheets two molecules thick, called planar bilayers. Th e individual molecules lie 
perpendicular to the sheets, with hydrophilic groups on the outside in aqueous 
solution and on the inside in nonpolar media. When segments of planar bilayers 
fold back on themselves, unilamellar vesicles may form where the spherical 
hydrophobic bilayer shell separates an inner aqueous compartment from the 
external aqueous environment.

Bilayers show a close resemblance to biological membranes and are oft en a use-
ful model on which to base investigations of biological structure. However, actual 
membranes are highly sophisticated structures, in which phospholipid molecules 
form layers instead of micelles because the hydrocarbon chains are too bulky to 
allow packing into nearly spherical clusters.

Th e bilayer is a highly mobile structure. Not only are the hydrocarbon chains 
ceaselessly twisting and turning in the region between the polar groups, but the 
phospholipid and cholesterol molecules migrate over the surface. It is better to 
think of the membrane as a viscous fl uid rather than a permanent structure, with 
a viscosity about 100 times that of water. In common with diff usional behavior in 
general (Section 8.5), the average distance a phospholipid molecule diff uses is 
proportional to the square root of the time; more precisely, for a molecule con-
fi ned to a two-dimensional plane, the average distance traveled in a time t is equal 
to (4Dt)1/2, where D is the diff usion constant. Typically, a phospholipid molecule 
migrates through about 1 mm in about 1 min.

(c) Interactions between proteins and biological membranes

Peripheral proteins are proteins attached to the bilayer. Integral proteins are pro-
teins embedded in the mobile but viscous bilayer. Examples include complexes 
I–IV of oxidative phosphorylation (Section 5.10), ion channels, and ion pumps 
(Section 5.3). Integral proteins may span the depth of the bilayer and consist of 
tightly packed a helices or, in some cases, b sheets containing hydrophobic 
residues that sit comfortably within the hydrocarbon region of the bilayer. Th e 
hydrophobicity of a residue can be assessed by measuring the Gibbs energy of 
transfer of the corresponding amino acid from an aqueous solution to the interior 
of a membrane (Table 11.9). Amino acids with negative values of the Gibbs energy 
of transfer are likely to be found in the membrane-spanning regions of integral 
proteins.

Th ere are two views of the motion of integral proteins in the bilayer. In the fl uid 
mosaic model shown in Fig. 11.53, the proteins are mobile, but their diff usion 
coeffi  cients are much smaller than those of the lipids. In the lipid raft  model, 
a number of lipid and cholesterol molecules form ordered structures, or ‘raft s,’ 
that envelop proteins and help carry them to specifi c parts of the cell.

Th e mobility of the bilayer enables it to fl ow around a molecule close to the 
outer surface, to engulf it, and to incorporate it into the cell by the process of 
endocytosis. Alternatively, material from the cell interior wrapped in cell mem-
brane may coalesce with the cell membrane itself, which then withdraws and 
ejects the material in the process of exocytosis. An important function of the pro-
teins embedded in the bilayer, however, is to act as devices for transporting matter 
into and out of the cell in a more subtle manner, as discussed in Section 8.6.

Table 11.9 Gibbs energies of 
transfer of amino acid residues 
in a helix from the interior of a 
membrane to water

Amino acid DtransferG/
(kJ mol−1)

Phenylalanine 15.5
Methionine 14.3
Isoleucine 13.0
Leucine 11.8
Valine 10.9
Cysteine 8.4
Tryptophan 8.0
Alanine 6.7
Th reonine 5.0
Glycine 4.2
Serine 2.5
Proline −0.8
Tyrosine −2.9
Histidine −12.6
Glutamine −17.2
Asparagine −20.2
Glutamic acid −34.4
Lysine −37.0
Aspartic acid −38.6
Arginine −51.7

Data from D.M. Engelman, T.A. Steitz, 
and A. Goldman, Ann. Rev. Biophys. 
Biophys. Chem. 15, 330 (1986).
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11.17 Computer-aided simulation
To understand the various approaches to the prediction of structure, we need 
to see how to take into account a balance of interactions that give a biological 
macromolecule its native conformation or hold a drug and receptor together.

We saw in Chapter 10 that ideas derived from quantum mechanics can be used to 
predict the structures and the physical and chemical properties of molecules. 
Semi-empirical, ab initio, and density functional methods work very well for 
molecules of modest size but require too much computational power and time 
to be suitable for predicting the structures of macromolecules. Th e problem is 
particularly acute when the surrounding water plays an important role in govern-
ing structure. For this reason, biochemists oft en rely on other techniques to 
generate three-dimensional models of proteins, nucleic acids, lipid bilayers, and 
drug–receptor complexes. Computational methods based on the principles of 
classical physics lead to the visual representation of atomic motions in biopoly-
mers, thereby opening a window onto the molecular factors that are responsible 
for such dynamic processes as protein folding and enzyme catalysis. Yet other 
strategies can give insight into the structural features of a drug that optimize its 
docking to a receptor site.

(a) Molecular mechanics calculations

We saw in Section 11.13 that the conformational energy, VC, of a biopolymer can 
be calculated by adding the contributions from steric interactions (bond stretch-
ing, bending, and torsion and dispersive interactions), electrostatic interactions, 
and hydrogen bonding:

VC = Vstretch + Vbend + Vtorsion + VCoulomb  Conformational
energy

 
(11.37)

 + VLJ + VH-bonding

In a molecular mechanics simulation, the locations of the atoms are changed 
until the conformation with the lowest value of VC is found. For a macromolecule, 
a plot of the conformational energy against bond distance or bond angle oft en 
shows several local minima and a global minimum, which is associated with the 
preferred conformation (Fig. 11.54). Commercially available molecular model-
ing soft ware packages include schemes for modifying and searching for these 
minima systematically.

Molecular mechanics calculations are fast and do not require a great deal of 
computing power. However, they are of limited utility because the structure cor-
responding to the global minimum is a snapshot of the molecule at T = 0. Th at is, 
only the potential energy is included in the calculation; contributions to the 
total energy from kinetic energy are excluded. Also, the method does not handle 
interactions with a solvent.

(b) Molecular dynamics and Monte Carlo simulations

Biological macromolecules (like all except the smallest molecules) are fl exible 
and move ceaselessly. Atomic fl uctuations and side-chain motions have ampli-
tudes of 1–500 pm and characteristic times ranging from 1 fs to 0.1 s. Rigid body 
motions, such as the motions of helices and subunits, have amplitudes of 0.1–1.0 
pm and characteristic times of 1 ns to 1 s. Folding transitions and the formation of 
quaternary structure from large structures have amplitudes greater than 0.5 nm 
and occur over a time span of from 100 ns to several hours.

In a molecular dynamics simulation, the molecule is set in motion by treat-
ing it as though it has been heated to a specifi ed temperature and the possible 

Fig. 11.53 In the fl uid mosaic 
model of a biological cell 
membrane, integral proteins 
diff use through the lipid bilayer. 
In the alternative lipid raft  model, 
a number of lipid and cholesterol 
molecules envelop and transport 
the protein around the 
membrane.

Fig. 11.54 For large molecules, 
a plot of potential energy against 
the molecular geometry oft en 
shows several local minima and 
a global minimum.
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trajectories of all atoms under the infl uence of the intermolecular potentials are 
calculated. To appreciate what is involved, we consider the motion of an atom in 
one dimension. We show in the following Justifi cation that aft er a time interval Dt, 
the position of an atom changes from xi−1 to a new value xi given by

xi = xi−1 + vi−1Dt (11. 38)

where vi−1 is the velocity of the atom when it was at xi−1, its location at the start 
of the interval. Th e velocity at xi is related to vi−1, the velocity at the start of the 
interval, by

vi = vi−1 − m−1dVC(x)
dx

  
xi−1

Dt (11. 39)

where the derivative of the conformational energy VC(x) is evaluated at xi−1. Th e 
time interval Dt is approximately 1 fs (10−15 s), which is shorter than the average 
time for the fastest atomic motions in a macromolecule. Th e calculation of xi and 
vi is then repeated for tens of thousands of such steps.

Self-test 11.15 Consider a particle of mass m connected to a stationary wall 
with a spring of force constant k f. Write an expression for the velocity of 
this particle once it is set into motion in the x direction from an equilibrium 
position x0.

Answer: vi = vi−1 + (kf/m)(xi−1 − x0)Dt

Justification 11.5 The atomic trajectories according to molecular dynamics

Consider an atom of mass m moving along the x direction with an initial velo-
city v1 given by vi = Dx/Dt. If the initial and new positions of the atom are x1 and 
x2, then Dx = x2 − x1 and x2 = x1 + v1Dt. Th is expression generalizes to eqn 11.38 
for the calculation of a position xi from a previous position xi−1 and velocity vi−1.

Th e atom moves under the infl uence of a force arising from interactions 
with other atoms in the molecule. From Newton’s second law of motion, we 
write the force F1 at x1 as F1 = ma1, where the acceleration a1 at x1 is given by 
a1 = Dv/Dt. If the initial and new velocities are v1 and v2, then Dv = v2 − v1 and

v2 = v1 + a1Dt = v1 + F1

m
 Dt

Because F = −dV/dx, the force acting on the atom is related to the potential 
energy of interaction with other nearby atoms, the conformational energy 
VC(x), by

F1 = − 
dVC(x)

dx
  

x1

where the derivative is evaluated at x1. It follows that

v2 = v1 − m−1dVC(x)
dx

  
x1

Dt

Th is expression generalizes to eqn 11.39 for the calculation of a velocity vi from 
a previous velocity vi−1.
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Commercially available soft ware packages use versions of eqns 11.38 and 11.39 
to calculate the trajectories of a large number of atoms in three dimensions. Th e 
trajectories correspond to the conformations that the molecule can sample at 
the temperature selected for the simulation. At very low temperatures, the mole-
cule cannot overcome some of the potential energy barrier given by eqn 11.37, 
atomic motion is restricted, and only a few conformations are possible. At high 
temperatures, more potential energy barriers can be overcome and more con-
formations are accessible. Computational methods also allow for the simulation 
of a solvent cage around the macromolecule.

In the Monte Carlo method, the atoms of a macromolecule are moved through 
small but otherwise random distances, and the change in conformational energy, 
DVC, is calculated. If the conformational energy is not greater than before the 
change, then the conformation is accepted. However, if the conformational energy 
is greater than before the change, it is necessary to check if the new conformation 
is reasonable and can exist in equilibrium with structures of lower conformational 
energy at the temperature of the simulation. To make progress, we use the 
Boltzmann distribution (Fundamentals F.3) to write that at equilibrium, the ratio 
of populations of two states with energy separation DVC is e−DVC/kT, where k is 
Boltzmann’s constant. Because we are testing the viability of a structure with 
a higher conformational energy than the previous structure in the calculation, 
DVC > 0 and the exponential factor varies between 0 and 1. In the Monte Carlo 
method, the exponential factor is compared with a random number between 0 
and 1; if the factor is larger than the random number, the conformation is accepted; 
if the factor is not larger, the conformation is rejected.

Molecular dynamics and Monte Carlo simulations are much faster than quan-
tum chemical calculations and can handle with relative ease the eff ect of solvent 
on the structure of a biopolymer. However, neither method is likely to yield the 
native structure of a large biopolymer from its sequence because of the very large 
number of states that must be sampled during the calculation. Nevertheless, the 
methods can be used to predict the eff ect of a minor change in the sequence of 
a nucleic acid or protein of known structure. Because in such a case the chemical 
substitution is not expected to result in a large deviation from the native structure, 
the calculation needs to sample only a manageable (but still large) number of con-
formations. Th is approach allows for the systematic investigation of a very large 
number of biopolymers, potentially leading to the determination of the chemical 
rules for stabilization of biomolecular structure. In much the same vein, the com-
bination of molecular dynamics and Monte Carlo simulations can be used to 
investigate the thermodynamics of interaction between a drug and a biopolymer.

(c) Quantitative structure–activity relationships

Computational approaches are having a considerable impact on the processes of 
drug discovery. To devise effi  cient therapies, it is necessary to know how to char-
acterize and optimize both the three-dimensional structure of the drug and the 
molecular interactions between the drug and its target. Computational studies 
of the types described in Chapter 10 and this chapter can identify regions of 
a molecule that have high or low electron densities and result in specifi c inter-
actions between the host protein and the guest agent. Th e graphical representation 
of numerical results brings these interactions vividly to life and allows modifi ca-
tions to be analyzed in the hope of improving specifi city.

In structure-based design, new drugs are developed on the basis of the known 
structure of the receptor site of a known target. However, in many cases a number 
of so-called lead compounds are known to have some biological activity but little 
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information is available about the target. To design a molecule with improved 
pharmacological effi  cacy, quantitative structure–activity relationships (QSAR) 
are oft en established by correlating data on activity of lead compounds with 
molecular properties, also called molecular descriptors, which can be determined 
either experimentally or computationally.

Th e fi rst stage of the QSAR method consists of compiling molecular descrip-
tors for a very large number of lead compounds. Descriptors such as molar mass, 
molecular dimensions and volume, and relative solubility in water and nonpolar 
solvents are available from routine experimental procedures. Quantum mechan-
ical descriptors determined by calculations of the type described in Chapter 10 
include bond orders and HOMO and LUMO energies.

In the second stage of the process, biological activity is expressed as a function 
of the molecular descriptors. An example of a QSAR equation is:

activity = c0 + c1d1 + c2d1
2 + c3d2 + c4d2

2 + · · · A QSAR correlation 
equation

 (11.40)

where di is the value of the descriptor and ci is a coeffi  cient calculated by fi tting 
the data by regression analysis. Th e quadratic terms account for the fact that bio-
logical activity can have a maximum or minimum value at a specifi c descriptor 
value. For example, a molecule might not cross a biological membrane and 
become available for binding to targets in the interior of the cell if it is too hydro-
philic, in which case it will not partition into the hydrophobic layer of the cell 
membrane, or too hydrophobic, for then it may bind too tightly to the membrane. 
It follows that the activity will peak at some intermediate value of a parameter that 
measures the relative solubility of the drug in water and organic solvents.

In the fi nal stage of the QSAR process, the activity of a drug candidate can be 
estimated from its molecular descriptors and the QSAR equation either by inter-
polation or extrapolation of the data. Th e predictions are more reliable when a 
large number of lead compounds and molecular descriptors are used to generate 
the QSAR equation.

Th e traditional QSAR technique has been refi ned into 3D QSAR, in which 
sophisticated computational methods are used to gain further insight into the 
three-dimensional features of drug candidates that lead to tight binding to the 
receptor site of a target. Th e process begins by using a computer to superimpose 
three-dimensional structural models of lead compounds and looking for com-
mon features, such as similarities in shape, location of functional groups, and 
electrostatic potential plots. Th e key assumption of the method is that common 
structural features are indicative of molecular properties that enhance binding of 
the drug to the receptor. Th e collection of superimposed molecules is then placed 
inside a three-dimensional grid of points. An atomic probe, typically an sp3-
hybridized carbon atom, visits each grid point and two energies of interaction are 
calculated: Esteric, the steric energy refl ecting interactions between the probe and 
electrons in uncharged regions of the drug, and Eelec, the electrostatic energy aris-
ing from interactions between the probe and a region of the molecule carrying a 
partial charge. Th e measured equilibrium constant for binding of the drug to the 
target, Kbind, is then assumed to be related to the interaction energies at each point 
r by the 3D QSAR equation

log Kbind = c0 + ∑
r  

{csteric(r)Esteric(r) + celec(r)Eelec(r)} A 3D-QSAR 
equation

 (11.41)

where the c(r) are coeffi  cients calculated by regression analysis, with the coeffi  -
cients csteric and celec refl ecting the relative importance of steric and electrostatic 
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interactions, respectively, at the grid point r. Visualization of the regression 
analysis is facilitated by coloring each grid point according to the magnitude of 
the coeffi  cients. Figure 11.55 shows results of a 3D QSAR analysis of the binding 
of steroids, molecules with the carbon skeleton shown, to human corticosteroid-
binding globulin (CBG). Indeed, we see that the technique lives up to the promise 
of opening a window into the chemical nature of the binding site even when its 
structure is not known.

Fig. 11.55 A 3D QSAR analysis 
of the steroids to human 
corticosteroid-binding globulin 
(CBG). Th e tinted regions 
indicate areas in the protein’s 
binding site with positive and 
negative electrostatic potentials 
and with little or much steric 
crowding. [Adapted from 
P. Krogsgaard-Larsen, T. Liljefors, 
and U Marsden (cd.) A textbook of 
drug design and discovery, Taylor 
& Francis, London (2002).]

Checklist of key concepts

 1. In ultracentrifugation, a sample is exposed to a strong 
centrifugal fi eld generated by rotation at high speeds 
and the molar mass of a biopolymer is calculated 
from the sedimentation constant.

 2. MALDI-TOF mass spectrometry is a technique for 
the determination of molar masses in which a sample 
is ionized in the gas phase and the mass-to-charge 
number ratios of all ions are measured.

 3. In laser light scattering the size and shape of a 
macromolecule are obtained from analysis of the 
intensity of light scattered by the sample.

 4. X-ray crystallography is a collection of X-ray 
diff raction techniques based on applications 
of Bragg’s law to the determination of the 
three-dimensional structures of small and 
large molecules, including biopolymers.

 5. Unit cells are classifi ed into seven crystal systems 
according to their rotational symmetries.

 6. Crystal planes are specifi ed by a set of Miller 
indices (hkl).

 7. In X-ray crystallography the electron density is 
calculated from the intensities Ih of scattered X-rays 
and the structure factors.

 8. Crystals of proteins amenable to analysis by X-ray 
diff raction techniques can be made by adding a large 
amount of a salt, such as (NH4)2SO4, to a solution 
containing a charged protein. Detergents are oft en 
used to crystallize hydrophobic proteins.

 9. A van der Waals interaction between closed-shell 
molecules is inversely proportional to the sixth power 
of their separation.

 10. A polar molecule is a molecule with a permanent 
electric dipole moment; the magnitude of a dipole 
moment is the product of the partial charge and the 
separation.

 11. Th e following interactions are important in biological 
self-assembly: charge–charge, charge–dipole, 
dipole–dipole, dipole–induced-dipole, dispersion 
(London), hydrogen bonding.

 12. A hydrogen bond is an interaction of the form 
X–H···Y, where X and Y are N, O, or F.

 13. Th e Lennard-Jones (12,6) potential is a model of the 
total intermolecular potential energy.

 14. Th e relative locations of molecules in a liquid are 
reported in terms of the radial distribution function, 
g(r).

 15. Th e least structured model of a macromolecule, such 
as a long stretch of DNA or a denatured protein, is as 
a random coil.

 16. Th e conformational entropy of a random coil is the 
entropy arising from the arrangement of bonds.

 17. Th e secondary structure of a polypeptide chain can 
be specifi ed by the two angles, f and y, that two 
neighboring planar peptide links make to each other.

 18. Th e diff erent forms of double-helical DNA (B-, A-, 
and Z-) diff er in diameter, pitch, and tilt of the base 
pairs relative to the long axis of the helix.

 19. Supercoiled DNA is formed by twisting of closed 
circular DNA (ccDNA).

 20. RNA exists primarily as single chains that can fold 
into complex structures by formation of base pairs.
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 21. Carbohydrate units are linked together in 
polysaccharides by glycosidic bonds between 
hydroxyl groups; bent, linear, or branched chains 
can result depending on which hydroxyl groups 
are linked.

 22. Micelles form in aqueous environments when 
the hydrophobic tails of amphipathic molecules 
congregate and their hydrophilic heads are exposed 
to the surrounding water molecules.

 23. In the fl uid mosaic model of the cell membrane, 
integral proteins are mobile. In the lipid raft  model, 
a number of lipid and cholesterol molecules form 
ordered structures, or ‘raft s’, that envelop proteins 
and help carry them to specifi c parts of the cell.

 24. A biopolymer adopts a conformation corresponding 
to a minimum Gibbs energy, which depends on the 
conformational energy, the energy of interaction 

between diff erent parts of the polymer, and the energy 
of interaction between the polymer and surrounding 
solvent molecules.

 25. In a molecular mechanics simulation, the locations of 
the atoms are changed until the conformation with the 
lowest value of the total potential energy is found.

 26. In a molecular dynamics simulation, the molecule is 
set in motion by supposing that it has been heated to 
a specifi ed temperature and the possible trajectories 
of all atoms under the infl uence of the intermolecular 
potentials are calculated.

 27. In a Monte Carlo simulation, the atoms of a 
macromolecule are moved through small but 
otherwise random distances, and the change in 
conformational energy is calculated.

 28. In the QSAR technique, pharmacological activity is 
correlated with a variety of molecular characteristics.

Checklist of key equations

Property Equation Comment

Molar mass obtained from:
 sedimentation rate
 equilibrium sedimentation
Mass-to-charge ratio in a TOF spectrometer
Molar mass from the Rayleigh ratio
Separation between crystal planes
Bragg’s law

Fourier synthesis

Coulomb’s law in any medium
Dipole moment in terms of electronegativity diff erence
Charge–dipole interaction energy

Dipole–dipole interaction energy

Polarizability volume
Dipole–induced-dipole interaction energy
London formula
Lennard-Jones (12,6) potential energy
Measures of size:
 root mean square separation
 contour length
 radius of gyration
Conformational entropy
Conformational energy
 bond stretching
 bond bending
 bond torsion
 hydrogen bonding
Surfactant parameter

M = SRT/bD, S = s/rw2

M = [2RT/{(r2
2 − r1

2)bw2}]ln(c2/c1)
m/z = 2eEd(t/l)2

R(q) = KP(q)cMM
1/d2 = h2/a2 + k2/b2 + l2/c2 Orthogonal lattice
l = 2d sin q

r(x) = (1/V)�F0 + 2
∞

∑
h=1

Fh cos(2hpx)�
V = Q1Q2/4pεr
m/D ≈ Dc
V = −Q2m1/(4pε0r2) See 7
V = −Q2m1 cos q/(4pε0r2) See 8
V = m1m2(1 − 3 cos2 q)/(4pε0r3) See 9
V = −2m1

2m2
2/{3(4pε0)2kTr6} Freely rotating dipoles

a′ = a/4pε0

V = −m1
2a2/(4pε0r6)

V = − 3
2 × (a1′a2′/r6) × {I1I2/(I1 + I2)}

V = 4ε{(s/r)12 − (s/r)6}
 Random coil
Rrms = N1/2l
Rc = Nl
Rg = (N/6)1/2l
DS = 12kN ln{(1 + n)1+n(1 − n)1−n} Random coil
VC = Vstretch + Vbend + Vtorsion + VCoulomb + VLJ + VH-bonding

Vstretch = 12kf,stretch(R − Re)2

Vbend = 12kf,bend(q − qe)2

Vtorsion = A(1 + cos 3f) + B(1 + cos 3y)
VH-bonding = E/r12 − F/r10

Ns = V/Al Defi nition
A QSAR equation Activity = c0 + c1d1 + c2d1

2 + c3d2 + c4d2
2 + . . .
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Discussion questions

11.1 What features in an X-ray diff raction pattern suggest a helical 
conformation for a biological macromolecule?

11.2 Describe the phase problem in X-ray diff raction and explain 
how it may be overcome.

11.3 Explain how the permanent dipole moment and the 
polarizability of a molecule arise.

11.4 Describe the formation of a hydrogen bond in terms of 
(a) an electrostatic interaction and (b) molecular orbital theory.

11.5 Distinguish between contour length, root-mean-square 
separation, and radius of gyration of a random coil.

11.6 Identify the terms in and limit the generality of the following 
expressions: (a) V = −Q2m1/4pε0r2, (b) V = Q2m1 cos q/4pε0r2, 
(c) V = m2m1(1 − 3 cos2 q)/4pε0r3, (d) Rrms = N1/2l, and (e) Rg = (N/6)1/2l.

11.7 Distinguish between an a helix, an anti-parallel b sheet, and a 
parallel b sheet.

11.8 Which amino acids have side chains that can interact with 
molecules (such as other amino acids or enzyme substrates) at 
pH 7 through (a) Coulombic interactions, (b) hydrogen bonding, 

or (c) hydrophobic interactions (Section 2.7)? Hint: Consult data from 
Tables 4.6 and 11.9.

11.9 Why are DNA sequences rich in C–G base pairs more stable than 
sequences rich in A–T base pairs?

11.10 Discuss the factors that lead to bent, linear, and branched 
structures in polysaccharides.

11.11 (a) Distinguish between micelles, liposomes, bilayers, vesicles, 
and membranes. (b) Discuss the role of the surfactant parameter as 
a predictor of the shape of a micelle.

11.12 It is observed that the critical micelle concentration of sodium 
dodecyl sulfate in aqueous solution decreases as the concentration of 
added sodium chloride increases. Explain this eff ect.

11.13 Distinguish between the fl uid mosaic and lipid raft  models for 
motion of integral proteins in a biological membrane.

11.14 Distinguish between molecular mechanics, molecular 
dynamics, and Monte Carlo calculations. Why are these methods 
generally more popular in biochemical research than the quantum 
mechanical procedures discussed in Chapter 10?

Exercises

11.15 Th e data from a sedimentation equilibrium experiment 
performed at 300 K on a macromolecular solute in aqueous 
solution show that a graph of ln c against r2 is a straight line 
with slope 729 cm−2. Th e rotational rate of the centrifuge was 
50 000 r.p.m. Th e specifi c volume of the solute is vs = 0.61 cm3 g−1. 
Calculate the molar mass of the solute. Hint: Use eqn 11.3 and 
take r =1.00 g cm−3.

11.16 Find the drift  speed of a particle of radius 20 m and density 
1750 kg m−3 that is settling from suspension in water (density = 
1000 kg m−3) under the infl uence of gravity alone. Th e viscosity 
of water is 8.9 × 10 4 kg m−1 s−1.

11.17 At 20°C the diff usion coeffi  cient of a macromolecule is 
found to be 8.3 × 10−11 m2 s−1. Its sedimentation constant is 3.2 Sv 
in a solution of density 1.06 g cm−3. Th e specifi c volume of the 
macromolecule is 0.656 cm3 g−1. Determine the molar mass of 
the macromolecule.

11.18 Calculate the speed of operation (in r.p.m.) of an 
ultracentrifuge needed to obtain a readily measurable concentration 
gradient in a sedimentation equilibrium experiment. Take that 
gradient to be a concentration at the bottom of the cell about fi ve 
times greater than that at the top. Use rtop = 5.0 cm, rbottom = 7.0 cm, 
M ≈ 105 g mol−1, rvs ≈ 0.75, T = 298 K.

11.19 Mass spectrometry can be used for sizing DNA molecules. 
To appreciate the power of the technique, consider the analysis by 
MALDI-TOF of a mixture of fragments of pBR 322 DNA. It was 
observed that the time of fl ight, t, varied with nbp, the number of 
base pairs, as follows:

t/ms 39.03 66.43 96.28 121.25 154.01
nbp 9 34 76 123 201

t/ms 189.67 217.23 247.81 269.05
nbp 307 404 527 622

(a) Plot nbp against t and then against t2. Which plot is linear? Explain 
the physical origin of the linear relationship. (b) What time of fl ight 
would be observed for a fragment with 238 base pairs?

11.20 Draw a set of points as a rectangular array based on unit cells of 
side a and b, and mark the planes with Miller indices (10), (01), (11), 
(12), (23), (41), and (41).

11.21 Repeat Exercise 11.20 for an array of points in which the a and 
b axes make 60° to each other.

11.22 In a certain unit cell, planes cut through the crystal axes at 
(2a,3b,c), (a,b,c), (6a,3b,3c), and (2a,−3b,−3c). Identify the Miller 
indices of the planes.

11.23 Draw an orthorhombic unit cell and mark on it the (100), (010), 
(001), (011), (101), and (101) planes.

11.24 (a) Calculate the separations of the planes (111), (211), and 
(100) in a crystal in which the cubic unit cell has sides of length 
532 pm. (b) Calculate the separations of the planes (123) and (236) 
in an orthorhombic crystal in which the unit cell has sides of lengths 
0.754, 0.623, and 0.433 nm.

11.25 Th e glancing angle of a Bragg refl ection from a set of crystal 
planes separated by 97.3 pm is 19.85°. Calculate the wavelength of 
the X-rays.
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11.26 Construct the electron density along the x-axis of a crystal 
given the following structure factors:

h 0 1 2 3 4
Fh +30.0 +8.2 +6.5 +4.1 +5.5

h 5 6 7 8 9
Fh −2.4 +5.4 +3.2 −1.0 +1.1

h 10 11 12 13 14 15
Fh +6.5 +5.2 −4.3 −1.2 +0.1 +2.1

11.27 Consider the electrostatic model of the hydrogen bond. 
Th e N–C distance of the hydrogen bonded groups in proteins, such 
as occur in an a helix, is 0.29 nm. How much energy (in kJ mol−1) 
is required to break the hydrogen bond (a) in a vacuum (εr = 1), 
(b) in a membrane (essentially a liquid hydrocarbon with εr = 2.0), 
and (c) in water (εr = 80.0)?

11.28 Estimate the dipole moment of an HCl molecule from the 
electronegativities of the elements and express the answer in debye 
and coulomb meters (C m).

11.29 Th e technique of vector addition can be used to predict the 
dipole moment of a molecule. Th e resultant mres of two dipole 
moments m1 and m2 that make an angle q to each other is approximately

mres ≈ (m1
2 + m2

2 + 2m1m2 cos q)1/2

(a) Calculate the resultant of two dipoles of magnitude 1.50 D and 
0.80 D that make an angle 109.5° to each other. (b) Estimate the ratio 
of the electric dipole moments of ortho (1,2-) and meta (1,3-) 
disubstituted benzenes.

11.30 Calculate the electric dipole moment of a glycine molecule 
using the partial charges in Table 11.2 and the locations of the atoms 
shown in (19).

11.34 (a) What are the units of the polarizability a? (b) Show that 
the units of polarizability volume are cubic meters (m3).

11.35 Th e magnitude of the electric fi eld at a distance r from a point 
charge Q is equal to Q/4pε0r2. How close to a water molecule (of 
polarizability volume 1.48 × 10−30 m3) must a proton approach before 
the dipole moment it induces is equal to the permanent dipole 
moment of the molecule (1.85 D)?

11.36 Phenylanine (21 and Atlas A14) is a naturally occurring amino 
acid with a benzene ring. What is the energy of interaction between its 
benzene ring and the electric dipole moment of a neighboring peptide 
group? Take the distance between the groups as 4.0 nm and treat 
the benzene ring as benzene itself and the phenyl group as benzene 
molecules. Th e dipole moment of the peptide group is m = 2.7 D 
and the polarizability volume of benzene is a′ = 1.04 × 10−29 m3.

11.31 (a) Plot the magnitude of the electric dipole moment of 
hydrogen peroxide as the H–O–O–H (azimuthal) angle f changes. 
Use the dimensions shown in (20). (b) Devise a way for depicting 
how the angle as well as the magnitude changes.

11.32 Calculate the molar energy required to reverse the direction of 
a water molecule located (a) 100 pm and (b) 300 pm from a Li+ ion 
initially with the O atom closest to the ion. Take the dipole moment 
of water as 1.85 D.

11.33 Show, by following the procedure in Justifi cation 11.4, that 
eqn 11.17 describes the potential energy of two electric dipole 
moments in the orientation shown in structure (9) of the text.

11.37 Now consider the London interaction between the benzene 
rings of two Phe residues (see Exercise 11.36). Estimate the potential 
energy of attraction between two such rings (treated as benzene 
molecules) separated by 4.0 nm. For the ionization energy, use 
I = 5.0 eV.

11.38 In a region of the oxygen-storage protein myoglobin, the OH 
group of a tyrosine residue is hydrogen bonded to the N atom of 
a histidine residue in the geometry shown in (22). Use the partial 
charges in Table 11.2 to estimate the potential energy of this 
interaction.

11.39 Given that force is the negative slope of the potential energy, 
calculate the distance dependence of the force acting between 
two nonbonded groups of atoms in a polypeptide chain that have a 
London dispersion interaction with each other. What is the separation 
at which the force is zero? Hint: Calculate the slope by considering 
the potential energy at R and R + dR, with dR << R, and evaluating 
{V(R + dR) − V(R)}/dR. You should use the expansion in 
Justifi cation 11.4 together with

 (1 ± x + · · ·)6 = 1 ± 6x + · · ·
 (1 ± x + · · ·)12 = 1 ± 12x + · · ·

At the end of the calculation, let dR become vanishingly small.
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11.40 Repeat Exercise 11.39 by noting that F = −dV/dr and 
diff erentiating the expression for V.

11.41 Acetic acid vapor contains a proportion of planar, hydrogen-
bonded dimers (23). Th e apparent dipole moment of molecules in 
pure gaseous acetic acid increases with increasing temperature. 
Suggest an interpretation of the latter observation.

the radius of gyration of a solid sphere from part (a) to classify the 
species below as globular or rod-like.

 M/(g mol−1)  Vs/(cm3 g−1)  Rg/nm
Serum albumin 66 × 103 0.752  2.98
Bushy stunt virus 10.6 × 106 0.741  12.0
DNA 4 × 106 0.556 117.0 

11.49 Suppose that a rodlike DNA molecule of length 250 nm 
undergoes a conformational change to a closed-circular (cc) form. 
(a) Use the information in Exercise 11.48 and an incident wavelength 
l = 488 nm to calculate the ratio of scattering intensities by each of these 
conformations, Irod/Icc, when q = 20°, 45°, and 90°. (b) Suppose that you 
wish to use light scattering as a technique for the study of conformational 
changes in DNA molecules. Based on your answer to part (a), at which 
angle would you conduct the experiments? Justify your choice.

11.50 What is the change in conformational entropy when a random 
coil is stretched from fully coiled by 10 per cent?

11.51 Th e success of a molecular mechanics or molecular dynamics 
simulation depends on the proper choice of expressions for the 
calculation of the conformational energy. Suppose you distrusted the 
Lennard-Jones (12,6) potential for assessing a particular polypeptide 
conformation and replaced the repulsive term by an exponential 
function of the form e−r/s. (a) Sketch the form of the potential energy 
and locate the distance at which it is a minimum. (b) Identify the 
distance at which the exponential-6 potential energy is a minimum.

11.52 Derivatives of the compound TIBO (25) inhibit the enzyme 
reverse transcriptase, which catalyzes the conversion of retroviral 
RNA to DNA. A QSAR analysis of the activity A of a number of TIBO 
derivatives suggests the following equation:

log A = b0 + b1S + b2W

11.42 Consider the arrangement shown in Fig. 11.28 for a system 
consisting of an O–H group and an O atom, and then use the 
electrostatic model of the hydrogen bond to calculate the dependence 
of the molar potential energy of interaction on the angle q. Set the 
partial charges on H and O to +0.45e and −0.83e, respectively, and 
take R = 200 pm and r = 95.7 pm.

11.43 Considering the pattern of hydrogen bonding in b sheets and 
your answer to Exercise 11.42, explain why parallel b sheets are not 
common in proteins.

11.44 We can explore bond torsion in ethane to understand the 
barrier to internal rotation of one bond relative to another in saturated 
carbon chains, such as those found in lipids. Th e potential energy of 
a CH3 group in ethane as it is rotated around the C–C bond can be 
written V = 12V0(1 + cos 3f), where f is the azimuthal angle (24) and 
V0 = 11.6 kJ mol−1. (a) What is the change in potential energy between 
the trans and fully eclipsed conformations? (b) Show that for small 
variations in angle, the torsional (twisting) motion around the C–C 
bond can be expected to be that of a harmonic oscillator. (c) Estimate 
the vibrational frequency of this torsional oscillation.

11.45 A certain macromolecule consists of 700 segments, each 
0.90 nm long. If the chain were ideally fl exible, what would be the 
r.m.s. separation of the ends of the chain?

11.46 Calculate the contour length (the length of the extended chain) 
and the root mean square separation (the end-to-end distance) for 
a macromolecule consisting of C–C links and with a molar mass of 
280 kg mol−1.

11.47 Th e radius of gyration of a macromolecule is found to be 
7.3 nm. Th e chain consists of C–C links. Assume the chain is 
randomly coiled and estimate the number of links in the chain.

11.48 Th e radius of gyration of a solid sphere of radius R is 
Rg = (3

5)1/2R. (a) Write an expression for the molar volume of a 
spherical macromolecule in terms of its radius and then show that

Rg/nm = 0.0566 902 × {(vs/cm3 g−1)(M/g mol−1)}1/3

where vs is the specifi c volume (the reciprocal of the density) and M 
the molar mass. (b) Use the information below and the expression for 

where S is a parameter related to the drug’s solubility in water and W 
is a parameter related to the width of the fi rst atom in a substituent X 
shown in (25). (a) Use the following data to determine the values of b0, 
b1, and b2. Hint: Th e QSAR equation relates one dependent variable, 
log A, to two independent variables, S and W. To fi t the data, you must 
use the mathematical procedure of multiple regression, which can be 
performed with mathematical soft ware or an electronic spreadsheet.

X H Cl SCH3 OCH3 CN
log A 7.36 8.37 8.3 7.47 7.25
S 3.53 4.24 4.09 3.45 2.96
W 1.00 1.80 1.70 1.35 1.60
X CHO Br CH3 CCH 
log A 6.73 8.52 7.87 7.53 
S 2.89 4.39 4.03 3.80 
W 1.60 1.95 1.60 1.60 

(b) What should be the value of W for a drug with S = 4.84 and 
log A = 7.60?
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Projects

11.53 Molecular orbital calculations may be used to predict the dipole 
moments of molecules.

(a) Using molecular modeling soft ware and the computational method 
recommended by your instructor (extended Hückel, semi-empirical, 
ab initio, or DFT methods), calculate the dipole moment of the 
peptide link, modeled as a trans-N-methylacetamide (26).

semi-empirical, ab initio, or DFT methods), calculate the atomic 
charges of all atoms in methyl adenine and methyl thymine.

(b) Based on your tabulation of atomic charges, identify the atoms 
in methyl adenine and methyl thymine that are likely to participate 
in hydrogen bonds.

(c) Draw all possible adenine–thymine pairs that can be linked by 
hydrogen bonds, keeping in mind that linear arrangements of the 
A–H···B fragments are preferred in DNA. For this step, you may want 
to use your molecular modeling soft ware to align the molecules 
properly.

(d) Which of the pairs that you drew in part (c) occur naturally in 
DNA molecules?

(e) Repeat parts (a)–(d) for cytosine and guanine, which also form 
base pairs in DNA.

11.55 Now you will use molecular mechanics soft ware of your 
instructor’s choice to gain some appreciation for the complexity of the 
calculations that lead to plots such as those in Fig. 11.42. Our model 
for the protein is the dipeptide (29) in which the terminal methyl 
groups replace the rest of the polypeptide chain.

(b) Plot the energy of interaction between two dipoles with dipole 
moments calculated in part (a) against the angle q for r = 3.0 nm 
(see eqn 11.17).

(c) Compare the maximum value of the dipole–dipole interaction 
energy from part (b) to 20 kJ mol−1, a typical value for the energy of 
a hydrogen-bonding interaction in biological systems. Comment 
on the similarity or disparity between the two values.

11.54 Molecular orbital calculations can be used to predict structures 
of intermolecular complexes. Hydrogen bonds between purine and 
pyrimidine bases are responsible for the double helix structure of 
DNA. Consider methyl adenine (27, with R = CH3) and methyl 
thymine (28, with R = CH3) as models of two bases that can 
form hydrogen bonds in DNA (where R would be replaced by 
deoxyribose).

(a) Using molecular modeling soft ware and the computational 
method recommended by your instructor (extended Hückel, 

(a) Draw three initial conformers of (29) with R = H: one with 
f = 75°, y = −65°, a second with f = y = 180°, and a third with f = 65°, 
y = 35°. Use a molecular mechanics routine to optimize the geometry 
of each conformer and measure the total potential energy and the fi nal 
f and y angles in each case. Did all of the initial conformers converge 
to the same fi nal conformation? If not, what do these fi nal conformers 
represent? Rationalize any observed diff erences in total potential 
energy of the fi nal conformers.

(b) Use the approach in part (a) to investigate the case R = CH3, 
with the same three initial conformers as starting points for the 
calculations. Rationalize any similarities and diff erences between 
the fi nal conformers of the dipeptides with R = H and R = CH3.



PART 4 Biochemical
spectroscopy

We now begin our study of molecular spectroscopy, the analysis of the 
electromagnetic radiation emitted, absorbed, or scattered by molecules. 
The starting point for the discussion in the next two chapters is the 
observation summarized in Chapter 9 that photons of radiation ranging 
from the infrared to the ultraviolet bring information to us about molecules 
as a result of electronic and vibrational transitions. In Chapter 12 we 
describe techniques used to study these transitions in biological systems 
and see how electronic transitions prepare molecules for such important 
light-induced processes as vision and photosynthesis. In Chapter 13 we 
see that the combined effect of an external magnetic field and molecular 
excitation with photons in the radiofrequency or microwave ranges leads 
to important spectroscopic techniques, collectively known as magnetic 
resonance spectroscopy, that are widely used in biochemical studies and 
diagnostic procedures. In short, molecular spectra are complicated but 
contain a great deal of information, including bond lengths, bond angles, 
and bond strengths, that can be used to analyze biological systems 
ranging in size from small co-factors to biopolymers and to whole 
biological cells. Along the way, we also see how molecular spectra 
complement information on biomolecular structure obtained from the 
diffraction techniques discussed in Chapter 11.
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In this chapter we consider electromagnetic radiation as a probe that provides informa-
tion on molecular structure that is complementary to that provided by X-ray diffraction 
(Chapter 11). Indeed, there are several reasons why spectroscopy, the study of 
absorption, emission, and scattering of electromagnetic radiation, is sometimes the 
only suitable technique at the disposal of a biochemist. In the first place, the sample 
might be a mixture of molecules, in which case sharp X-ray diffraction images are not 
obtained. Even if all the molecules in the sample are identical, it might prove impossible 
to obtain a single crystal of sufficient quality. Furthermore, although work on proteins 
and nucleic acids has shown how immensely interesting and motivating X-ray diffrac-
tion data can be, the information is incomplete. For instance, what can be said about 
the shape of the molecule in its natural environment, a biological cell? What can be said 
about the response of its shape to changes in its environment? To answer these ques-
tions, we begin the chapter with a discussion of the general principles of molecular 
spectroscopy with radiation of frequencies that span over eight orders of magnitude, 
from radiofrequencies (108 Hz) up to the ultraviolet (1016 Hz). We focus on vibrational
spectra, which report on molecular vibrations excited by the absorption or scattering of 
electromagnetic radiation, and ultraviolet and visible spectra, which probe the elec-
tronic distribution in a molecule and result from the absorption or emission of ultraviolet 
and visible radiation.

An understanding of the ability of molecules to absorb light is essential for under-
standing how light can induce physical and chemical change, and we end the chapter 
with a description of light as an initiator of many biochemical reactions. As remarked 
in the Prolog, essentially all the energy required for the sustenance of life on Earth is 
absorbed during photosynthesis in plants, algae, and some bacteria. Here we see how 
these organisms optimize the rates of the reactions that capture and make initial use of 
solar energy. But light also plays additional roles in biology and medicine, so we 
describe vision, damage of DNA by ultraviolet radiation, and one of many laser-based 
therapies now available.

General features of spectroscopy

Th ere are three varieties of spectroscopy:

• emission spectroscopy, in which a molecule undergoes a transition from a 
state of high energy, E2, to a state of lower energy, E1, and emits the excess 
energy as a photon (Fig. 12.1)

• absorption spectroscopy, in which the absorption of radiation is monitored 
as the frequency of the radiation is swept over a range

Optical spectroscopy 
and photobiology 12
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• Raman spectroscopy, in which an intense, monochromatic (single-
frequency) incident beam is passed through the sample and the frequencies 
present in the radiation scattered by the sample are recorded (Fig. 12.2).

Th e energy of a photon emitted or absorbed, and therefore the frequency, n 
(nu), of the radiation emitted or absorbed, is given by the Bohr frequency condi-
tion (Section 9.1):

hn = | E1 − E2 | Bohr frequency condition  (12.1)

Here E1 and E2 are the energies of the two states between which the transition 
occurs and h is Planck’s constant.1 Th is relation is oft en expressed in terms of the 
wavelength, l (lambda), of the radiation by using the relation

 l = c
n

 Relation between 
wavelength and frequency  

(12.2a)

where c is the speed of light or, in terms of the wavenumber, 6 (nu tilde):

 6 = 1
l

 = n
c

 Definition of wavenumber  (12.2b)

Th e units of wavenumber are almost always chosen as reciprocal centimeters 
(cm−1), so we can picture the wavenumber of radiation as the number of complete 
wavelengths per centimeter. Th e frequencies, wavelengths, and wavenumbers of 
the various regions of the electromagnetic spectrum were summarized in Fig. F.7. 
In this chapter we concentrate on vibrational and electronic transitions, which 
can be excited by the absorption of infrared and ultraviolet–visible radiation, 
respectively.

In Raman spectroscopy, molecular energy levels are explored by examining 
the frequencies present in the radiation scattered by molecules. About 1 in 107 of 
the incident photons collide with the molecules, give up some of their energy, 
and emerge with a lower energy. Th ese scattered photons constitute the lower-
frequency Stokes radiation from the sample. Other incident photons may collect 
energy from the molecules (if they are already vibrationally excited) and emerge 
as higher-frequency anti-Stokes radiation. Th e component of radiation scattered 
into the forward direction without change of frequency is called Rayleigh radi-
ation. Raman spectra may be examined using visible and ultraviolet lasers, in 
which case a diff raction grating is used to distinguish between Rayleigh, Stokes, 
and anti-Stokes radiation. In Fourier-transform Raman spectrometers, radiation 
scattered by the sample passes through a Michelson interferometer.

Fig. 12.1 In emission spectroscopy, 
a molecule returns to a lower 
state (typically the ground state) 
from an excited state and emits 
the excess energy as a photon. 
Th e same transition can be 
observed in absorption, when 
the incident radiation supplies 
a photon that can excite the 
molecule from its ground state 
to an excited state.

Fig. 12.2 In Raman spectroscopy, 
an incident photon is scattered 
from a molecule with either an 
increase in frequency (if the 
radiation collects energy from 
the molecule) or with a lower 
frequency if it loses energy to the 
molecule. Th e process can be 
regarded as taking place by an 
excitation of the molecule to a 
wide range of states (represented 
by the shaded band) and the 
subsequent return of the 
molecule to a lower state; the net 
energy change is then carried 
away by the photon.

1 Raman scattering is a special case, and we deal with it later.

In the laboratory 12.1 Experimental techniques

To design and interpret spectroscopic measurements on biological systems, 
we need to become acquainted with the instruments that generate and detect 
electromagnetic radiation in the infrared, visible, and ultraviolet regions. A 
spectrometer is an instrument that detects the characteristics of light scat-
tered, emitted, or absorbed by atoms and molecules. Figure 12.3 shows the 
general layout of an absorption spectrometer operating in the ultraviolet and 
visible regions of the spectrum. Radiation from an appropriate source is 
directed toward a sample. In most spectrometers, light transmitted, emitted, 
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or scattered by the sample is collected by mirrors or lenses and strikes a 
dispersing element that separates radiation into diff erent frequencies. Th e 
intensity of light at each frequency is then analyzed by a suitable detector.

Th e source in a spectrometer typically produces radiation spanning a range of 
frequencies, but in a few cases (including lasers) it generates nearly monochro-
matic radiation. For the far-infrared (35 cm−1 < 6 < 200 cm−1), the source is 
commonly a mercury arc inside a quartz envelope, most of the radiation being 
generated by the hot quartz. A Nernst fi lament or globar is used to generate 
radiation in the mid-infrared (200 cm−1 < 6 < 4000 cm−1) and consists of a 
heated ceramic fi lament containing lanthanoid oxides. For the visible region 
of the spectrum, a tungsten–iodine lamp is used, which gives out intense white 
light. A discharge through deuterium gas or xenon in quartz is still widely used 
for the near-ultraviolet.

Th e dispersing element of choice in modern instruments operating in the 
ultraviolet and visible ranges uses a diff raction grating, a glass or ceramic plate 
into which fi ne grooves have been cut about 1000 nm apart (a spacing com-
parable to the wavelength of visible light) and covered with a refl ective alumi-
num coating. Th e grating causes interference between waves refl ected from its 
surface, and constructive interference occurs at specifi c angles that depend on 
the wavelength of the radiation being used. Th us, each wavelength of light is 
directed into a specifi c direction (Fig. 12.4). In a monochromator, a narrow exit 
slit allows only a narrow range of wavelengths to reach the detector and rotat-
ing the grating on an axis perpendicular to the incident and diff racted beams 
allows diff erent wavelengths to be analyzed; in this way, the absorption or 
emission spectrum is built up one narrow wavelength range at a time. In a 
polychromator there is no slit and a broad range of wavelengths can be ana-
lyzed simultaneously by array detectors, such as those discussed below.

Modern spectrometers operating in the infrared and near-infrared almost 
always use Fourier transform techniques of spectral detection and analysis. 
Th e heart of a Fourier-transform (FT) spectrometer is a Michelson interfero-
meter, a device for analyzing the frequencies present in a composite signal. Th e 
total signal from a sample is like a chord played on a piano, and the Fourier 
transform of the signal is equivalent to the separation of the chord into its indi-
vidual notes, its spectrum. A major advantage of the Fourier transform proced-
ure is that all the radiation emitted by the source is monitored continuously. 
Th is is in contrast to a conventional spectrometer, in which a monochromator 
discards most of the generated radiation. As a result, Fourier transform spec-
trometers have a higher sensitivity than conventional spectrometers.

Th e detector is a device that converts radiation into an electric current or 
potential diff erence for appropriate signal processing and display. Detectors 
may consist of a single radiation sensing element or of several small elements 
arranged in one- or two-dimensional arrays. A common detector is the photo-
diode, a solid-state device that conducts electricity when struck by photons 
because light-induced electron transfer reactions in the detector material cre-
ate mobile charge carriers (negatively charged electrons and positively charged 
‘holes’). With appropriate choice of material, photodiodes can be used to detect 
light spanning a wide range of wavelengths. For example, silicon is sensitive 
in the visible region and germanium is used in most spectrometers operating 
in the near-infrared region of the spectrum.

Fig. 12.3 Th e layout of a typical 
absorption spectrometer, in 
which the exciting beams of 
radiation pass alternately through 
a sample and a reference cell, and 
the detector is synchronized 
with them so that the relative 
absorption can be determined.

Fig. 12.4 A beam of light is 
dispersed by a diff raction 
grating into three component 
wavelengths l1, l2, and l3. In 
the confi guration shown, only 
radiation with l2 passes through 
a narrow slit and reaches the 
detector. Rotating the diff raction 
grating in the direction shown by 
the double arrows allows other 
wavelengths to reach the detector.
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A charge-coupled device (CCD) is a two-dimensional array of millions of 
small photodiode detectors. With a CCD, a wide range of wavelengths that 
emerge from a polychromator are detected simultaneously, thus eliminating 
the need to measure light intensity one narrow wavelength range at a time. 
CCD detectors are used widely to measure absorption, emission, and Raman 
scattering.

Th e most common detectors found in commercial infrared spectrometers are 
sensitive in the mid-infrared region. An example is the mercury–cadmium–
telluride (MCT) detector, a photovoltaic device for which the potential diff er-
ence changes on exposure to infrared radiation.

In a typical Raman experiment, a laser beam is passed through the sample 
and the radiation scattered from the front face of the sample is monitored 
(Fig. 12.5). Th is detection geometry allows for the study of gases, pure liquids, 
solutions, suspensions, and solids.

12.1 The intensities of spectroscopic transitions: 
empirical aspects

To put spectrometers to good use in biochemical studies, we need to understand 
the factors that control the intensity of a spectroscopic transition.

We now focus on absorption spectroscopy.

(a) The Beer–Lambert law

Th e intensity of absorption of radiation at a particular wavelength passing through 
a uniform sample is related to the concentration [J] of the absorbing species J by 
the empirical Beer–Lambert law (Fig. 12.6, and commonly simply ‘Beer’s law’; 
we fi rst encountered the law in In the laboratory 6.1 as a way of monitoring the 
concentrations of species in reactions. Th e law is commonly written

I = I010−ε[J]L Beer–Lambert law  (12.3)

where I0 and I are the incident and transmitted intensities, respectively, L is the 
length of the sample, and ε (epsilon) is the molar absorption coeffi  cient, which 
depends on the wavelength of the incident radiation. Th e dimensions of ε are 
l/(concentration × length), and it is normally convenient to express it in cubic 
decimeters (liters) per mole per centimeter (dm3 mol−1 cm−1), which are sensible 
when [J] is expressed in moles per cubic decimeter and L is in centimeters. Th e 
Beer–Lambert law is an empirical result. However, as we show in the following 
Justifi cation, it is simple to account for its form. Th e law may be expressed in terms 
of the absorbance, A, of the sample or the transmittance, T :

A = log I0

I
 Definition of absorbance  (12.4a)

T = I
I0

 Definition of transmittance  (12.4b)

It then follows from eqn 12.3 that

A = ε[J]L  A = −log T  T = 10−ε[J]L (12.5)

Fig. 12.5 A common arrangement 
adopted in Raman spectroscopy. 
A laser beam fi rst passes through 
a lens and then through a small 
hole in a mirror with a curved 
refl ecting surface. Th e focused 
beam strikes the sample and 
scattered light is both defl ected 
and focused by the mirror. 
Th e spectrum is analyzed by 
a monochromator or an 
interferometer.

Fig. 12.6 Th e intensity of light 
transmitted by a uniform 
absorbing sample decreases 
exponentially with the path 
length through the sample 
(the length is proportional to 
the absorbance when ε[J] is 
a constant).
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Justification 12.1 The Beer–Lambert law

We think of the sample as consisting of a stack of infi nitesimal slices, like sliced 
bread (Fig. 12.7). Th e thickness of each slice is dx. Th e change in intensity, 
dI, that occurs when electromagnetic radiation passes through one particular 
slice is proportional to the thickness of the slice, the concentration of the 
absorber J, and the intensity of the incident radiation at that slice of the sample, 
so dI ∝ [J]Idx. Because dI is negative (the intensity is reduced by absorption), 
we can write

dI = −k[J]Idx

where k (kappa) is the proportionality coeffi  cient. Division by I gives

dI
I

 = −k[J]dx

Th is expression applies to each successive slice. To obtain the intensity that 
emerges from a sample of thickness L when the intensity incident on one 
face of the sample is I0, we sum all the successive changes. Because a sum over 
infi nitesimally small increments is an integral, we write

�
I

I0

 dI
I

 = −k�
L

0

 [J]dx

If the concentration is uniform, [J] is independent of location and can be taken 
outside the integral, and we obtain

ln I
I0

 = −k[J]L

Because the relation between natural and common logarithms is ln x = 
ln 10 × log x, we can write ε = k/ln 10 and obtain

log I
I0

 = −ε[J]L

which, on taking antilogarithms, is the Beer–Lambert law (eqn 12.3).

Fig. 12.7 To establish the 
theoretical basis of the empirical 
Beer–Lambert law, the sample is 
supposed to be sliced into a large 
number of planes. Th e reduction 
in intensity caused by one plane 
is proportional to the intensity 
incident on it (aft er passing 
through the preceding planes), 
the thickness of the plane, and 
the concentration of absorbing 
species.

Example 12.1 The molar absorption coefficient of tryptophan

Radiation of wavelength 280 nm passed through 1.0 mm of a solution that 
contained an aqueous solution of the amino acid tryptophan at a concen-
tration of 0.50 mmol dm−3. Th e light intensity is reduced to 54 per cent of its 
initial value (so T = 0.54). Calculate the absorbance and the molar absorption 
coeffi  cient of tryptophan at 280 nm. What would be the transmittance through 
a cell of thickness 2.0 mm?

Strategy From A = –log T = ε[J]L, it follows that

ε = − log T
[J]L

For the transmittance through the thicker cell, we use T = 10−A and the value of 
ε calculated here.
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Solution Th e molar absorption coeffi  cient is

 ε = − log 0.54
(5.0 × 10−4 mol dm−3) × (1.0 mm)

 = 5.4 × 102 dm3 mol−1 mm−1

Th ese units are convenient for the rest of the calculation (but the outcome 
could be reported as 5.4 × 103 dm3 mol−1 cm−1 if desired). Th e absorbance is

A = −log 0.54 = 0.27

Th e absorbance of a sample of length 2.0 mm is

A = (5.4 × 102 dm3 mol−1 mm−1) × (5.0 × 10−4 mol dm−3) × (2.0 mm) = 0.54

It follows that the transmittance is now

T = 10−A = 10−0.54 = 0.29

Th at is, the emergent light is reduced to 29 per cent of its incident intensity.

Self-test 12.1 Th e transmittance of an aqueous solution that contained the 
amino acid tyrosine at a molar concentration of 0.10 mmol dm−3 was 
measured as 0.14 at 240 nm in a cell of length 5.0 mm. Calculate the molar 
absorption coeffi  cient of tyrosine at that wavelength and the absorbance of the 
solution. What would be the transmittance through a cell of length 1.0 mm?

Answer: 1.7 × 104 dm3 mol−1 cm−1, A = 0.17, T = 0.68

Fig. 12.8 Th e integrated absorption 
coeffi  cient of a transition is the 
area under a plot of the molar 
absorption coeffi  cient against 
the wavenumber of the incident 
radiation.

One measure of the intensity of a transition is the maximum value of the molar 
absorption coeffi  cient, εmax. However, because absorption bands generally spread 
over a range of wavenumbers, the absorption at a single wavenumber might not 
give a true indication of the intensity. Th e latter is best reported as the integrated 
absorption coeffi  cient, A, the area under the plot of the molar absorption coeffi  -
cient against wavenumber (Fig. 12.8).

(b) The determination of concentration

Beer’s law is used to determine the concentrations of species of known molar 
absorption coeffi  cients. To do so, we measure the absorbance of a sample and 
rearrange the fi rst relation in eqn 12.5 into

[J] = A
εL

 The determination 
of concentration  

(12.6)

It follows from this equation that we can observe the appearance or depletion of a 
species during a reaction by monitoring changes in the absorbance of the reaction 
mixture. Th is was the expression used in Chapter 6 to monitor concentrations to 
establish a rate law.

In biological applications, it is common to make measurements of absorbance 
at two wavelengths and use them to fi nd the individual concentrations of two 
components A and B in a mixture. For this analysis, we write the total absorbance 
at a given wavelength as

A = AA + AB = εA[A]L + εB[B]L = (εA[A] + εB[B])L

Th en, for two measurements of the total absorbance at wavelengths 1 and 2 at 
which the molar absorption coeffi  cients are 1 and 2 (Fig. 12.9), we have

Fig. 12.9 Th e concentrations 
of two absorbing species in a 
mixture can be determined 
from their molar absorption 
coeffi  cients and the measurement 
of their absorbances at two 
diff erent wavelengths lying 
within their joint absorption 
region.
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A1 = (εA1[A] + εB1[B])L  A2 = (εA2[A] + εB2[B])L

We can solve these two simultaneous equations for the two unknowns (the molar 
concentrations of A and B) and fi nd

[A] =  εB2A1 − εB1A2

(εA1εB2 − εA2εB1)L
 

[B] = εA1A2 − εA2A1

(εA1εB2 − εA2εB1)L
 Determination of two 

concentrations  
(12.7)

Th ere may be a wavelength, lo, called the isosbestic wavelength,2 at which the 
molar extinction coeffi  cients of the two species are equal; we write this common 
value as εo. Th e total absorbance of the mixture at the isosbestic wavelength is

Ao = εo([A] + [B])L Absorbance at the 
isosbestic point  

(12.8)

Even if A and B are interconverted in a reaction of the form A → B or its reverse, 
then because their total concentration remains constant, so does Ao. As a result, 
one or more isosbestic points, which are invariant points in the absorption 
spectrum, may be observed (Fig. 12.10). It is very unlikely that three or more 
species would have the same molar extinction coeffi  cients at a single wavelength. 
Th erefore, the observation of an isosbestic point, or at least not more than one 
such point, is compelling evidence that a solution consists of only two solutes in 
equilibrium with each other with no intermediates.

12.2 The intensities of transitions: theoretical aspects
Th e intensity of a spectroscopic transition depends on a variety of factors, includ-
ing the form of the wavefunctions of the initial and fi nal states of the molecule 
and the population of the initial energy levels.

(a) The transition dipole moment

Whether or not an absorption band has a large integrated absorption coeffi  cient 
(and, consequently, can be driven by the surrounding electromagnetic fi eld) 
depends on a quantity called the transition dipole moment, mfi . Th e underlying 
classical idea is that, for the molecule to be able to interact with the electro-
magnetic fi eld and absorb or create a photon of frequency n, it must possess, at 
least transiently, a dipole oscillating at that frequency. Th is transient dipole is 
expressed quantum mechanically as

 mfi  = � yf*mmyi dt Transition dipole moment  (12.9)

where m is the electric dipole moment operator, and yi and yf are the wave-
functions for the initial and fi nal states, respectively. Th e size of the transition 
dipole can be regarded as a measure of the charge redistribution that accom-
panies a transition: a transition will be active (and generate or absorb photons) 
only if the accompanying charge redistribution is dipolar (Fig. 12.11). Th e 
intensity of the transition is proportional to the square of the transition dipole 
moment.

Fig. 12.11 Th e transition moment 
is a measure of the magnitude 
of the shift  in charge during 
a transition. (a) A spherical 
redistribution of charge as in 
this transition has no associated 
dipole moment and does not give 
rise to electromagnetic radiation. 
(b) Th is redistribution of charge 
has an associated dipole moment.

Fig. 12.10 One or more isosbestic 
points are formed when there 
are two interrelated absorbing 
species in solution. Th e three 
curves correspond to three 
diff erent stages of the reaction 
A → B.

2 Th e name isosbestic comes from the Greek words for ‘the same’ and ‘extinguished’.
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A selection rule is a statement about when the transition dipole can be non-
zero. A gross selection rule specifi es the general features a molecule must have if 
it is to have a spectrum of a given kind. For instance, we shall see that a molecule 
gives a vibrational absorption spectrum only if its electric dipole moment changes 
as the molecule vibrates. Once the gross selection rule has been recognized, we 
consider the specifi c selection rule, a statement about which changes in quantum 
number may occur in a transition. A transition that is permitted by a specifi c 
selection rule is classifi ed as allowed. Transitions that are disallowed by a specifi c 
selection rule are called forbidden. Forbidden transitions sometimes occur 
weakly because the selection rule is based on an approximation that turns out to 
be slightly invalid.

(b) Stimulated and spontaneous transitions

Th e intensity of an absorption line is related to the rate at which energy from 
electromagnetic radiation at a specifi ed frequency is absorbed by a molecule. 
Albert Einstein identifi ed three contributions to the rates of transitions between 
states. Stimulated absorption is a transition from a low energy state to one of 
higher energy that is driven by the electromagnetic fi eld oscillating at the transi-
tion frequency. Einstein reasoned that the more intense the electromagnetic 
fi eld (the more intense the incident radiation), the greater the rate at which transi-
tions are induced and hence the stronger the absorption by the sample, so he 
wrote the rate of stimulated absorption as

rate of stimulated absorption = NBI

where N is the number of molecules in the lower state, the constant B is the Einstein 
coeffi  cient of stimulated absorption, and I is the intensity of radiation at the fre-
quency of the transition. If B is large, then a given intensity of incident radiation 
will induce transitions strongly and the sample will be strongly absorbing.

Einstein considered that the radiation was also able to induce the molecule in 
the upper state to undergo a transition to the lower state and hence to generate a 
photon of frequency n. Th us, he wrote the rate of this stimulated emission as

rate of stimulated emission = N ′B′I

A brief illustration

For a one-electron, one-dimensional system, like (to a good approximation) a 
carotene molecule, mx = −ex, so

mx,fi  = −e � yf*xyi dt

For a conjugated hydrocarbon of N carbon atoms and length L = (N − 1)lCC, the 
fi rst excitation energy is from the p orbital with n = 12 N to the one above, so

mx,fi  = −e AC
2
L

D
F  �

L

0

 sin AC
(1

2N + 1)px
L

D
F  x sin AC

1
2 Npx

L

D
F  dx

For N an odd number, this expression evaluates (using mathematical soft ware) 
to 2eL/p2 =  0.2eL; virtually the same numerical value is obtained when N is an 
even number. Th is value suggests that the electron migrates through a distance 
of about 20 per cent of the length of the molecule when the transition takes 
place.
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where N ′ is the number of molecules in the excited state and B′ is the Einstein 
coeffi  cient of stimulated emission. Note that only radiation of the same fre-
quency as the transition can stimulate an excited state to fall to a lower state. 
However, Einstein realized that stimulated emission was not the only means by 
which the excited state could generate radiation and return to the lower state, and 
suggested that an excited state could undergo spontaneous emission at a rate 
that was independent of the intensity of the radiation (of any frequency) that 
is already present. He therefore wrote the total rate of transition from the upper 
to the lower state as

overall rate of emission = N ′(A + B′I)

Th e constant A is the Einstein coeffi  cient of spontaneous emission. It can be 
shown that the coeffi  cients of stimulated absorption and emission are equal and 
that the coeffi  cient of spontaneous emission is related to them by

A = AC
8phn3

c3

D
F  B Relation between 

coefficients  
(12.10)

Th e presence of n3 in this relation implies that spontaneous emission can be 
largely ignored at the relatively low frequencies of vibrational transitions but may 
be important for transitions in the visible and ultraviolet regions. We shall see 
later (Sections 12.9 and 12.10) that spontaneous emission accounts for the phe-
nomena of fl uorescence and phosphorescence. Stimulated emission underlies the 
functioning of lasers (‘laser’ is an acronym formed from ‘light amplifi cation by 
the stimulated emission of radiation’).

(c) Populations and intensities

Th e intensity of a spectroscopic transition depends on the number of molecules 
that are in the initial state. If we confi ne our attention to vibrational and electronic 
spectroscopy of molecules close to room temperature, then the situation is very 
simple: almost all vibrational absorptions and all electronic absorptions occur from 
the ground state of a molecule, because according to the Boltzmann distribution 
that is the only state signifi cantly populated at room temperature. However, 
molecules can be prepared in short-lived excited states as a result of chemical 
reaction, electric discharge, or irradiation with an intense light source, including 
sunlight. In these cases the populations may be quite diff erent from those at ther-
mal equilibrium, and absorption and emission spectra—if they can be recorded 
quickly enough—then arise from transitions from all the populated levels.

A brief illustration

In Fundamentals F.3(b), we saw that the ratio of populations of states of 
energies E and E′ is given by

N′
N

 = e−DE/kT  DE = E′ − E

where k is Boltzmann’s constant. Hence, for two vibrational states of a 
molecule separated by 45 zJ, which corresponds to 2300 cm−1, we calculate 
N ′/N = 1.9 × 10−5 at T = 300 K. We conclude that, at normal temperatures, 
almost all the molecules are in the ground vibrational state. It follows that the 
great majority of molecules are also in the ground electronic state because 
electronic states are typically more widely separated than vibrational states.
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(d) Linewidths

In condensed media, the ‘width’ of an electronic transition (that is, the range 
of wavenumbers, wavelengths, or frequencies over which there is a substantial 
absorption) results from the simultaneous excitation of molecular vibrations. 
When a vibration is stimulated by the migration of the electron from one orbital 
to another, the transition occurs at higher wavenumber than when no vibrational 
excitation occurs, so the absorption is slightly displaced. If several vibrational 
modes are stimulated, each with a diff erent frequency, and if several vibra-
tional levels of each one are stimulated, then the absorption occurs over a range 
of frequencies and the electronic transition appears as a broad feature in the 
spectrum (Fig. 12.12). We treat the excitation of vibration during an electronic 
transition in more detail in Section 12.6.

Even if only a single vibrational mode and a single level of that mode is stimu-
lated during the electronic transition, the absorption would not be infi nitely nar-
row. An important source of the broadening of the individual lines is the fi nite 
lifetime of the states involved in the transition. When the Schrödinger equation 
is solved for a system that is changing with time, it is found that the states of 
the system do not have precisely defi ned energies. If a state decays exponentially 
as e−t/t with a time constant t (tau), which is called the lifetime of the state, then 
its energy levels are blurred by dE, where

 dE ≈ ħ
t

 Lifetime broadening  (12.11a)

We see that the shorter the lifetime of a state, the less well defi ned its energy. 
Th e energy spread inherent to the states of systems that have fi nite lifetimes is 
called lifetime broadening.3 When we express the energy spread as a wavenum-
ber by writing dE = hcd6 and use the values of the fundamental constants, the 
practical form of this relation becomes

d6 ≈ 5.3 cm−1

t/ps
 (12.11b)

Only if t is infi nite can the energy of a state be specifi ed exactly (with dE = 0). 
However, no excited state has an infi nite lifetime; therefore, all states are subject 
to some lifetime broadening, and the shorter the lifetimes of the states involved in 
a transition, the broader the spectral lines.

3 Lifetime broadening is also called uncertainty broadening.

Self-test 12.2 What is the width (expressed as a wavenumber) of a transition 
from a state with a lifetime of 5.0 ps?

Answer: 1.1 cm−1

Two processes are principally responsible for the fi nite lifetimes of excited 
states and hence for the widths of transitions to or from them. One is collisional 
deactivation, which arises from collisions between molecules. Th e second is 
spontaneous emission. Because the rate of spontaneous emission cannot be 
changed (without changing the molecule), it is a natural limit to the lifetime of 
an excited state. Th e resulting lifetime broadening is the natural linewidth of 

Fig. 12.12 An electronic 
absorption band consists of 
many superimposed bands that 
merge together to give a single 
broad band with unresolved 
vibrational structure.
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the transition. We have seen (eqn 12.10) that the rate of spontaneous emission 
increases as n3, so the natural lifetimes of electronic states (which are excited 
with ultraviolet to visible radiation) are very much shorter than for vibrational 
transitions (which are excited with infrared radiation). It follows that the natural 
linewidths of electronic transitions are much greater than those of vibrational 
transitions. For example, a typical electronic excited state natural lifetime is about 
10−8 s (10 ns), corresponding to a natural width of about 5 × 10−4 cm−1 (equivalent 
to 15 MHz).

In the laboratory 12.2 Biosensor analysis

Biosensor analysis is a very sensitive and sophisticated optical technique 
that is now used routinely to measure the kinetics and thermodynamics of 
interactions between biopolymers. A biosensor detects changes in the optical 
properties of a surface in contact with a biopolymer.

Th e mobility of delocalized valence electrons accounts for the electrical con-
ductivity of metals, and these mobile electrons form a plasma, a dense gas of 
charged particles. Bombardment of the plasma by light or an electron beam 
can cause transient changes in the distribution of electrons, with some regions 
becoming slightly more dense than others. Coulomb repulsion in the regions 
of high density causes electrons to move away from each other, so lowering 
their density. Th e resulting oscillations in electron density, called plasmons, 
can be excited both in the bulk and on the surface of a metal. Plasmons in the 
bulk may be visualized as waves that propagate through the solid. A surface 
plasmon also propagates away from the surface, but the amplitude of the wave, 
also called an evanescent wave, decreases sharply with distance from the 
surface. Th e decay constant for the decrease in amplitude is approximately the 
wavelength of the light being used.

Biosensor analysis is based on the phenomenon of surface plasmon resonance 
(SPR), the absorption of energy from an incident beam of electromagnetic 
radiation by surface plasmons. Absorption, or ‘resonance’, can be observed 
with appropriate choice of the wavelength and angle of incidence of the excita-
tion beam. It is common practice to use a monochromatic beam and to vary 
the angle of incidence q (Fig. 12.13). Th e beam passes through a prism that 
strikes one side of a thin fi lm of gold or silver. Th e angle corresponding to light 
absorption depends on the refractive index of the medium in direct contact 
with the opposing side of the metallic fi lm. Th is variation of the resonance 
angle with the state of the surface arises from the ability of the evanescent wave 
to interact with material a short distance away from the surface. For example, 
changing the identity and quantity of material on the surface changes the reson-
ance angle. Hence, biosensor analysis can be used in the study of the binding 
of molecules to a surface or binding of ligands to a biopolymer attached to 
the surface; this interaction mimics the biological recognition processes that 
occur in cells. Examples of complexes amenable to analysis include antibody–
antigen and protein–DNA interactions. Th e most important advantage of 
biosensor analysis is its sensitivity: it is possible to measure the deposition of 
nanograms of material on to a surface. Th e main disadvantage of the technique 
is its requirement for immobilization of at least one of the components of the 
system under study.

Fig. 12.13 Th e experimental 
arrangement for the observation 
of surface plasmon resonance, 
as explained in the text.

A brief comment
Th e refractive index, nr, of 
the medium, the ratio of the 
speed of light in a vacuum, c, 
to its speed c′ in the medium 
is nr = c/c′. A beam of light 
changes direction (‘bends’) 
when it passes from a region 
of one refractive index to a 
region with a diff erent 
refractive index.
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Vibrational  spectra

All molecules are capable of vibrating, and complicated molecules may do so in 
a large number of diff erent ways. Even a benzene molecule, with 12 atoms, can 
vibrate in 30 diff erent modes, some of which involve the periodic swelling and 
shrinking of the ring and others its buckling into various distorted shapes. A 
molecule as big as a protein can vibrate in tens of thousands of diff erent ways, 
twisting, stretching, and buckling in diff erent regions and in diff erent manners. 
Vibrations can be excited by the absorption of electromagnetic radiation. Th e 
observation of the frequencies at which this absorption occurs gives very valuable 
information about the identity of the molecule and provides quantitative infor-
mation about the fl exibility of its bonds.

12.3 The vibrations of diatomic molecules
We need to know how to treat the vibrations of diatomic molecules quantitatively 
because the vibrational characteristics of even the largest biological molecules can 
be understood in terms of the harmonic motion of each atom relative to its neighbors.

We base our discussion on Fig. 12.14, which shows a typical potential energy 
curve of a diatomic molecule as its bond is lengthened by pulling one atom away 
from the other or pressing it into the other. In regions close to the equilibrium 
bond length Re (at the minimum of the curve) we can approximate the potential 
energy by a parabola (a curve of the form y = x2) and write

V = 12kf(R − Re)2 Harmonic oscillator potential  (12.12)

where kf is the force constant of the bond (units: newtons per metre, N m−1), as in 
the discussion of vibrations in Section 9.6. Th e steeper the walls of the potential 
(the stiff er the bond), the greater is the force constant (Fig. 12.15).

Th e potential energy in eqn 12.12 has the same form as that for the harmonic 
oscillator, so we can use the solutions of the Schrödinger equation given in Sec-
tion 9.6. Th e only complication is that both atoms joined by the bond move, so 
the ‘mass’ of the oscillator has to be interpreted carefully. Detailed calculation 
shows that for two atoms of masses mA and mB joined by a bond of force constant 
kf, the energy levels are4

Ev = (v + 12)hn  v = 0, 1, 2, . . . Harmonic oscillator 
energy levels  

(12.13a)

where

n = 1
2p 

A
C

kf

m
D
F

1/2

  m = mAmB

mA + mB
 (12.13b)

and m is called the eff ective mass of the molecule (some call it the reduced mass). 
Figure 12.16 (a repeat of Fig. 9.38) illustrates these energy levels: we see that they 
form a uniform ladder of separation hn between neighbors.

At fi rst sight it might be puzzling that the eff ective mass appears rather than 
the total mass of the two atoms. However, the presence of m is physically plausible. 
If atom A were as heavy as a brick wall, it would not move at all during the 

Fig. 12.15 A low value of the force 
constant kf indicates a loose 
bond; a high value indicates a 
stiff  bond. Although the value 
of kf is not directly related to 
the strength of the bond, this 
illustration indicates that it is 
likely that a strong bond (one 
with a deep minimum) has a 
large force constant.

Fig. 12.14 A molecular potential 
energy curve can be 
approximated by a parabola 
near the bottom of the well. 
A parabolic potential results in 
harmonic oscillation. At high 
vibrational excitation energies 
the parabolic approximation 
is poor.

4 We have previously warned about the importance of distinguishing between the quantum num-
ber v (vee) and the frequency n (nu).
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vibration and the vibrational frequency would be determined by the lighter, 
mobile atom. Indeed, if A were a brick wall, we could neglect mB compared with 
mA in the denominator of m and fi nd m ≈ mB, the mass of the lighter atom. Th is 
is approximately the case in HI, for example, where the I atom barely moves and 
m ≈ mH. In the case of a homonuclear diatomic molecule, for which mA = mB = m, 
the eff ective mass is half the mass of one atom: m = 12m.

Fig. 12.16 Th e energy levels of 
a harmonic oscillator. Th e 
quantum number v ranges from 
0 to infi nity, and the permitted 
energy levels form a uniform 
ladder with spacing hn.

Example 12.2 The effect of isotopic substitution on the vibrational frequency 
of O2

Predict the vibrational frequency of 18O2, given that the vibrational frequency 
of 16O2 is 47.37 THz.

Strategy Use eqn 12.13b, with the same value of kf for both molecules, to 
express the ratio n(18O2)/n(16O2) in terms of the ratio m(16O)/m(18O). Th en 
calculate n(18O2) from the known value of n(16O2).

Solution From eqn 12.13b, the vibrational frequencies of 16O2 and 18O2 are 
given by

n(16O2) = 1
2p 

A
C

kf

m(16O2)
D
F

1/2

  m(16O2) = 12m(16O)

 n(18O2) = 1
2p 

A
C

kf

m(18O2)
D
F

1/2

  m(18O2) = 12m(18O)

where we have used the fact that the force constant kf is the same for both 
molecules. It follows that

n(18O2)
n(16O2) 

 = AC
m(16O2)
m(18O2)

D
F

1/2

 = AC
m(16O)
m(18O)

D
F

1/2

 = AC
16.00mu

18.00mu

D
F

1/2

 = AC
16.00
18.00

D
F

1/2

(Th is ratio evaluates to 0.9428.) Th erefore,

n(18O2) = AC
16.00
18.00

D
F

1/2

 × n(16O2) = AC
16.00
18.00

D
F

1/2

 × 47.37 THz = 44.66 THz

Th at is, substitution with heavier isotopes leads to a decrease in the vibrational 
frequency of the O=O bond.

Self-test 12.3 Carbon monoxide is a poisonous gas because it binds strongly 
to hemoglobin, preventing the transport of oxygen by blood. Th e bond in a 
12C16O molecule has a force constant of 1860 N m−1. Calculate the vibrational 
frequency, n, of the molecule and the energy separation between any two 
neighboring vibrational energy levels.

Answer: 64.32 THz; 42.62 zJ; 1 zJ = 10−21 J

Equation 12.13 suggests that substitution of one or more of the atoms in a 
bond with diff erent isotopes to give species known as isotopologs (such as CH3OH 
and CH2DOH) changes the vibrational frequency. Th e eff ect arises primarily 
from a change in the eff ective mass. Th e force constant is not aff ected by isotopic 
substitution because the key factors that determine the strength of a bond—the 
electronic structure and nuclear charges of the bonded atoms—do not change as 
neutrons are added to or removed from the nuclei.

A note on good practice 
To calculate the vibrational 
frequency precisely, we need 
to specify the nuclide. Also, 
the mass to use is the actual 
atomic mass, not the element’s 
molar mass. In this Example, 
the units canceled.
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12.4 Vibrational transitions
To prepare for a discussion of the spectra of biological macromolecules, we need 
to describe the selection rules that govern vibrational transitions.

Because a typical vibrational excitation energy is of the order of 10−20–10−19 J, the 
frequency of the radiation should be of the order of 1013–1014 Hz (from DE = hn). 
Th is frequency range corresponds to infrared radiation, so vibrational transitions 
are observed by infrared spectroscopy. In infrared spectroscopy, transitions are 
normally expressed in terms of their wavenumbers and lie typically in the range 
300–3000 cm−1.

(a) Infrared transitions

Th e gross selection rule for infrared absorption spectra is that the electric dipole 
moment of the molecule must change during the vibration. Th e basis of this rule 
is that the molecule can shake the electromagnetic fi eld into oscillation only if it 
has an electric dipole moment that oscillates as the molecule vibrates (Fig. 12.17). 
Th e molecule need not have a permanent dipole: the rule requires only a change 
in dipole moment, possibly from zero. Th e stretching motion of a homonuclear 
diatomic molecule does not change its electric dipole moment from zero, so the 
vibrations of such molecules neither absorb nor generate radiation. We say that a 
homonuclear diatomic molecule is infrared inactive because its dipole moment 
remains zero however long the bond. A heteronuclear diatomic molecule, which 
has a dipole moment that changes as the bond lengthens and contracts, is 
infrared active.

Th e gross selection rule for infrared absorption plays an important role in dis-
cussions of climate change. Th e Earth’s average temperature is maintained by an 
energy balance between solar radiation it absorbs and the infrared radiation it 
emits back into space, with most of the intensity of the latter in the range 200–
2500 cm−1. Th e trapping of infrared radiation by certain gases in the atmosphere 
warms the Earth, raises the average surface temperature well above the freezing 
point of water, and creates an environment in which life is possible. As you will be 
aware, there is currently great concern that human activity has led to signifi cant 
increases in the concentrations of certain gases in the atmosphere, such as CO2 
and CH4, which absorb infrared radiation and so result in the further warming of 
the planet with the potential of serious damage to the biosphere.

Example 12.3 Identifying species that contribute to climate change

Identify which of the following constituents of the atmosphere absorb infrared 
radiation: O2, N2, H2O, CO2, and CH4. Is there a basis for the concern that 
increased levels of atmospheric CO2 and CH4 lead to climate change?

Strategy Molecules that are infrared active (that is, have vibrational spectra) 
have dipole moments that change during the course of a vibration. Th erefore, 
judge whether a distortion of the molecule can change its dipole moment 
(including changing it from zero).

Self-test 12.4 From your answer to Self-test 12.3, predict the vibrational 
frequency of the 13C16O molecule.

Answer: 62.89 THz

Fig. 12.17 Th e oscillation of a 
molecule, even if it is nonpolar, 
may result in an oscillating 
dipole that can interact with the 
electromagnetic fi eld. Here we 
see a representation of a bending 
mode of CO2.
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Solution Only N2 and O2 do not possess vibrational modes that result in a 
change of dipole moment, so CO2, H2O, and CH4 are infrared active. Not all 
the modes of complicated molecules are infrared active. For example, a vibra-
tion of CO2 in which the O–C–O bonds stretch and contract symmetrically is 
inactive because it leaves the dipole moment unchanged (at zero). A bending 
motion of the molecule, however, is active and can absorb radiation. It follows 
that the continued release of CO2 and CH4 into the atmosphere can contribute 
to climate change. Water also contributes, but it is already present in large 
amounts.

Self-test 12.6 Th e force constant of the bond in the CO group of a peptide 
link is approximately 1.2 kN m−1. At what wavenumber would you expect it to 
absorb? Hint: For the eff ective mass, treat the group as a 12C16O molecule; see 
Self-test 12.3.

Answer: 1.7 × 103 cm−1

Self-test 12.5 Ethene, CH2=CH2, is a hormone responsible for the ripening 
of fruit, and nitric oxide, NO, is a neurotransmitter. Are these molecules infra-
red active?

Answer: Both are infrared active.

Th e specifi c selection rule for infrared absorption spectra is

Dv = ±1 Vibrational selection rule  (12.14)

Th e change in energy for the transition from a state with quantum number v to 
one with quantum number v + 1 is

DE = (v + 32)hn  − (v + 12)hn = hn Vibrational transition energies  (12.15)

It follows that absorption occurs when the incident radiation provides photons 
with this energy and therefore when the incident radiation has a frequency n 
given by eqn 12.13b (and wavenumber 6 = n/c). Molecules with stiff  bonds (large 
kf) joining atoms with low masses (small m) have high vibrational frequencies. 
Bending modes are usually less stiff  than stretching modes, so bends tend to occur 
at lower frequencies in the spectrum than stretches. At room temperature, almost 
all the molecules are in their vibrational ground states initially (the state with 
v = 0). Th erefore, the most important spectral transition is from v = 0 to v = 1.

Th e vibrational energies in eqn 12.13 are only approximate because they are 
based on a parabolic approximation to the actual potential energy curve. A par-
abola cannot be correct at all extensions because it does not allow a molecule 
to dissociate. At high vibrational excitations the swing of the atoms allows the 
molecule to explore regions of the potential energy curve where the parabolic 
approximation is poor. Th e motion then becomes anharmonic, in the sense that 
the restoring force is no longer proportional to the displacement. Because the 
actual curve is less confi ning than a parabola, we can anticipate that the energy 
levels become less widely spaced at high excitation (Fig. 12.18). Th e anharmonic 
nature of the motion accounts for the appearance of additional weak absorp-
tion lines called overtones corresponding to the transitions with Dv = +2, +3, . . . 

Fig. 12.18 Th e vibrational energy 
levels associated with the general 
shape of a molecular potential 
energy curve are less widely 
spaced at high excitation. 
Th e number of levels is fi nite, 
terminating at vmax.
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Th ese overtones appear because the usual selection rule is derived from the 
properties of harmonic oscillator wavefunctions, which are only approximately 
valid in the presence of anharmonicity.

(b) Raman transitions

Now we turn to vibrational Raman spectroscopy, in which the incident photon 
leaves some of its energy in the vibrational modes of the molecule it strikes or col-
lects additional energy from a vibration that has already been excited. Th e gross 
selection rule for vibrational Raman transitions is that the molecular polarizability 
must change as the molecule vibrates. Th e polarizability plays a role in vibrational 
Raman spectroscopy because the molecule must be squeezed and stretched by 
the incident radiation in order that a vibrational excitation may occur during 
the photon–molecule collision. Both homonuclear and heteronuclear diatomic 
molecules swell and contract during a vibration, and the control of the nuclei over 
the electrons, and hence the molecular polarizability, changes too. Both types of 
diatomic molecule are therefore vibrationally Raman active. It follows that the 
information available from vibrational Raman spectra adds to that from infrared 
spectroscopy.

Th e specifi c selection rule for vibrational Raman transitions is the same as 
for infrared transitions (Dv = ±1). Th e photons that are scattered with a lower 
wavenumber than that of the incident light, the Stokes lines, are those for which 
Dv = +1. Th e anti-Stokes lines (for which Dv = −1) are less intense than the Stokes 
lines because very few molecules are in an excited vibrational state initially.

12.5 The vibrations of polyatomic molecules
We need to see how the concepts developed in previous sections can be used to 
interpret the information contained in the infrared and Raman spectra of biological 
macromolecules.

How many modes of vibration, Nvib, does a polyatomic molecule have? We can 
answer this question by thinking about how each atom may change its location, 
and we show in the following Justifi cation that

for nonlinear molecules: Nvib = 3N − 6
for linear molecules: Nvib = 3N − 5

Fig. 12.19  (a) Th e orientation of 
a linear molecule requires the 
specifi cation of two angles (the 
latitude and longitude of its axis). 
(b) Th e orientation of a nonlinear 
molecule requires the 
specifi cation of three angles 
(the latitude and longitude of its 
axis and the angle of twist—the 
azimuthal angle—around that 
axis).

Justification 12.2 The number of vibrational modes

Each atom may move relative to any of three perpendicular axes. Th erefore, the 
total number of such displacements in a molecule consisting of N atoms is 3N. 
Th ree of these displacements correspond to the translational motion of the 
molecule as a whole. Th e remaining 3N − 3 displacements are ‘internal’ modes 
of the molecule that leave its center of mass unchanged. Th ree angles are 
needed to specify the orientation of a nonlinear molecule in space (Fig. 12.19). 
Th erefore three of the 3N − 3 internal displacements leave all bond angles and 
bond lengths unchanged but change the orientation of the molecule as a whole. 
Th ese three displacements are therefore rotations. Th at leaves 3N − 6 displace-
ments that can be identifi ed as vibrational modes. A similar calculation for a 
linear molecule, which requires only two angles to specify its orientation in 
space, gives 3N − 5 as the number of vibrational modes.
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(a) Normal modes

Th e description of the vibrational motion of a polyatomic molecule is much 
simpler if we consider combinations of the stretching and bending motions of 
individual bonds. For example, although we could describe two of the four vibra-
tions of a CO2 molecule as individual carbon–oxygen bond stretches, nL and nR in 
Fig. 12.20, the description of the motion is much simpler if we use two combina-
tions of these vibrations. One combination is n1 in Fig. 12.21: this combination is 
the symmetric stretch. Th e other combination is n3, the antisymmetric stretch, 
in which the two O atoms always move in the same directions and opposite to 
the C atom. Th e two modes are independent in the sense that if one is excited, 
then its motion does not excite the other. Th ey are two of the four ‘normal modes’ 
of the molecule, its independent, collective vibrational displacements. Th e two 
other normal modes are the bending modes, n2. In general, a normal mode is 
an independent, synchronous motion of atoms or groups of atoms that may be 
excited without leading to the excitation of any other normal mode. Th e number 

Fig. 12.20 Th e stretching vibrations of a 
CO2 molecule can be represented in a 
number of ways. In this representation 
(a) one O=C bond (on the left ) vibrates and 
the remaining O atom is stationary, and 
(b) the C=O bond (on the right) vibrates 
while the other O atom is stationary. 
Because the stationary atom is linked to 
the C atom, it does not remain stationary 
for long. Th at is, if one vibration begins, it 
rapidly stimulates the other to occur.

A brief illustration

A water molecule, H2O, is triatomic (N = 3) and nonlinear and has three modes 
of vibration. Naphthalene, C10H8 (N = 18), has 48 distinct modes of vibration 
(some are degenerate in the sense of having the same frequency). Any diatomic 
molecule (N = 2) has one vibrational mode; carbon dioxide (N = 3) has four 
vibrational modes.

Fig. 12.21 Alternatively, linear 
combinations of the two modes can be 
taken to give these two normal modes 
of the molecule. Th e mode in (a) is the 
symmetric stretch and that in (b) is the 
antisymmetric stretch. Th e two modes 
are independent, and if either of them is 
stimulated, the other remains unexcited. 
Normal modes greatly simplify the 
description of the vibrations of the 
molecule.



480   12 OPTICAL SPECTROSCOPY AND PHOTOBIOLOGY

(b) Infrared transitions

Th e gross selection rule for the infrared activity of a normal mode is that the 
motion corresponding to a normal mode must give rise to a changing dipole moment. 
Deciding whether this is so can sometimes be done by inspection. For example, 
the symmetric stretch of CO2 leaves the dipole moment unchanged (at zero), 
so this mode is infrared inactive and makes no contribution to the molecule’s 
infrared spectrum. Th e antisymmetric stretch, however, changes the dipole 
moment because the molecule becomes unsymmetrical as it vibrates, so this 
mode is infrared active. Both bending modes are also infrared active: they are 
accompanied by a changing dipole moment as the molecule oscillates between a 
linear (nonpolar) and bent (polar) geometry (as in Fig. 12.17). Th e fact that these 
modes do absorb infrared radiation enables carbon dioxide to absorb infrared 
radiation emitted from the surface of the Earth (see Example 12.3).

Self-test 12.8 Dinitrogen monoxide (nitrous oxide, N2O) is another minor 
constituent of the atmosphere that can contribute to global warming; it has 
also been used as an anesthetic. State the ways in which the infrared spectrum 
of dinitrogen monoxide will diff er from that of carbon dioxide.

Answer: Diff erent frequencies on account of diff erent atomic masses 
and force constants; all four modes infrared active

Self-test 12.9 Consider the normal modes of methane, CH4, some of which 
are shown in Fig. 12.22. Which of the modes are infrared active?

Answer: Th e modes denoted (c) and (d) are infrared active.

Self-test 12.7 How many normal modes of vibration are there in (a) ethyne 
(HC≡CH) and (b) a protein molecule of 4000 atoms?

Answer: (a) 7, (b) 11 994

of normal modes of vibration is the same as the number of vibrational modes 
calculated above, for normal modes are linear combinations of vibrational dis-
placements of atoms.

Th e four normal modes of CO2, and the 3N − 6 (or 3N − 5) normal modes of 
polyatomic molecules in general, are the key to the description of molecular 
vibrations. Each normal mode behaves like an independent harmonic oscillator 
and the energies of the vibrational levels are given by the same expression as in 
eqn 12.13, but with an eff ective mass that depends on the extent to which each 
of the atoms contributes to the vibration. Atoms that do not move, such as the C 
atom in the symmetric stretch of CO2, do not contribute to the eff ective mass. 
Th e force constant also depends in a complicated way on the extent to which 
bonds bend and stretch during a vibration. Typically, a normal mode that is 
largely a bending motion has a lower force constant (and hence a lower frequency) 
than a normal mode that is largely a stretching motion.

To a good approximation, some of the normal modes of organic molecules 
can be regarded as motions of individual functional groups. Others are better 
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regarded as collective motions of the molecule as a whole. Th e latter are generally 
of relatively low frequency and occur below about 1500 cm−1 in the spectrum. 
Th e resulting whole-molecule region of the absorption spectrum is called the 
fi ngerprint region of the spectrum, for it is characteristic of the molecule. Th e 
matching of the fi ngerprint region with a spectrum of a known compound in a 
library of infrared spectra is a very powerful way of confi rming the presence of 
a particular substance.

Th e characteristic vibrations of functional groups that occur outside the fi nger-
print region are very useful for the identifi cation of an unknown compound. 
Most of these vibrations can be regarded as stretching modes, for the lower 
frequency bending modes usually occur in the fi ngerprint region and so are less 
readily identifi ed. Th e characteristic wavenumbers of some functional groups are 
listed in Table 12.1.

(c) Raman transitions

Th e gross selection rule for the vibrational Raman spectrum of a polyatomic 
molecule is that the normal mode of vibration is accompanied by a changing 
polarizability. However, it is oft en quite diffi  cult to judge by inspection when this 
is so. Th e symmetric stretch of CO2, for example, alternately swells and contracts 
the molecule: this motion changes its polarizability, so the mode is Raman active. 
Th e other modes of CO2 leave the polarizability unchanged (although that is hard 
to justify pictorially), so they are Raman inactive.

In some cases it is possible to make use of a very general rule about the infrared 
and Raman activity of vibrational modes:

Th e exclusion rule states that if the molecule has a centre of inversion, then no 
mode can be both infrared and Raman active.

(A mode may be inactive in both.) A molecule has a center of inversion if it looks 
unchanged when each atom is projected through a single point and out an equal 
distance on the other side (Fig. 12.23). Because we can oft en judge intuitively 
when a mode changes the molecular dipole moment, we can use this rule to 
identify modes that are not Raman active. Th e rule applies to CO2 but to neither 
H2O nor CH4 because they have no center of inversion.

Fig. 12.23 In an inversion 
operation, we consider every 
point in a molecule, and project 
them all through the center of 
the molecule out to an equal 
distance on the other side.

Fig. 12.22 Four representative 
normal modes of a tetrahedral 
molecule.

Table 12.1 Typical vibrational 
wavenumbers

Vibration type 6/cm−1

C–H 2850–2960
C–H 1340–1465
C–C stretch, bend  700–1250
C=C stretch 1620–1680

C≡C stretch 2100–2260
O–H stretch 3590–3650
C=O stretch 1640–1780

C≡N stretch 2215–2275
N–H stretch 3200–3500
Hydrogen bonds 3200–3570

Self-test 12.10 One vibrational mode of benzene is a ‘breathing mode’ in 
which the ring alternately expands and contracts. Can it be vibrationally 
Raman active?

Answer: Yes
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A modifi cation of the basic Raman eff ect involves using incident radiation 
that nearly coincides with the frequency of an electronic transition of the sample 
(Fig. 12.24; compare with Fig. 12.2, where the incident radiation does not 
coincide with an electronic transition). Th e technique is then called resonance 
Raman spectroscopy. It is characterized by a much greater intensity in the 
scattered radiation. Furthermore, because it is oft en the case that only a few 
vibrational modes contribute to the more intense scattering, the spectrum is 
greatly simplifi ed.

Case study 12.1 Vibrational spectroscopy of proteins

Insight into the vibrational spectrum of the peptide link, –CONH–, can be 
obtained by accounting for the major features in the infrared spectrum of 
N-methylacetamide, CH3CONHCH3 (Fig. 12.25). Above 2800 cm−1 we fi nd a 
cluster of three bands, labeled (a), that correspond, in order of increasing 
wavenumber, to the symmetric and antisymmetric methyl C–H stretches from 
the C-methyl group, the symmetric and antisymmetric methyl C–H stretches 
from the N-methyl group, and the broad N–H stretch. In the fi ngerprint region 
we fi nd two bands associated with the amide group and, more generally, with 
peptide groups in proteins. Th e amide I band, labeled (b), consists mostly of 
a CO stretch and occurs in the range 1640–1670 cm−1. Th e amide II band, 
labeled (c), is a combination of a CO stretch and an NH bend and occurs in 
the range 1620–1650 cm−1.

Th e vibrational spectra of proteins are rich in information because of the large 
number of absorption bands that can be associated not only with the peptide 
link but also the amino acid side chains (Fig. 12.26). However, biochemists 
focus primarily on the amide I and II bands of the peptide link because their 
wavenumbers are sensitive to hydrogen bonding and thus indicative of sec-
ondary structure. Hydrogen bonding between the CO group of one peptide 
link with the NH group of another leads to a shift  of the amide I band to lower 
wavenumber because the delocalized N–H···O=C bond lowers the force con-
stant of the C=O bond. On the other hand, hydrogen bonding constrains the 
bending motion of the N–H group, eff ectively increasing the C–N–H bending 
force constant and shift ing the wavenumber of the amide II band to higher 
values. Furthermore, experiments have shown that the wavenumbers of the 
amide I and II bands are slightly diff erent in a helices, b sheets, and random 
coils (Table 12.2). It follows that vibrational spectroscopy can be used to moni-
tor conformational changes in proteins.

Fig. 12.24 In the resonance Raman 
eff ect, the incident radiation has 
a frequency corresponding to an 
actual electronic excitation of the 
molecule. A photon is emitted 
when the molecule returns to a 
state close to the ground state.

Fig. 12.25 Th e infrared spectrum 
of a thin liquid fi lm of 
N-methylacetamide.

Table 12.2 Typical vibrational wavenumbers for the amide I and II bands in 
polypeptides

Vibrational wavenumber (6/cm−1)

Vibration type a helix b sheet Random coil

Amide I 1653 1640 1656
Amide II 1545 1525 1535
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It is diffi  cult to fi nd features in the complex infrared and conventional Raman 
spectra of proteins that can be assigned to co-factors. Biochemists oft en turn 
to resonance Raman spectroscopy to study co-factors that absorb strongly in 
the ultraviolet and visible regions of the spectrum. Examples include the heme 
groups in hemoglobin (Atlas P7) and the cytochromes (Atlas P5) and the 
pigments b-carotene (Atlas E1) and chlorophyll (Atlas R3), which capture 
solar energy during plant photosynthesis.

Th e resonance Raman spectra of Fig. 12.27 show vibrational transitions from 
only the few pigment molecules that are bound to very large proteins dissolved 
in an aqueous buff er solution. Th is selectivity arises from the fact that water 
(the solvent), amino acid residues, and the peptide group do not have elec-
tronic transitions at the laser wavelengths used in the experiment, so their 
conventional Raman spectra are weak compared to the enhanced spectra of 
the pigments. Comparison of the top and bottom spectra also shows that, with 
proper choice of excitation wavelength, it is possible to examine individual 
classes of pigments bound to the same protein: excitation at 488 nm, where 
b-carotene absorbs strongly, shows vibrational bands from b-carotene only, 
whereas excitation at 407 nm, where chlorophyll a and b-carotene absorb, 
reveals features from both types of pigments.

Fig. 12.27 Th e resonance Raman 
spectra of a protein complex that 
is responsible for some of the 
initial electron transfer events in 
plant photosynthesis. Th e Raman 
shift  is the diff erence between 
the wavenumber of the scattered 
light and the wavenumber of 
the exciting laser radiation. 
(a) Laser excitation of the sample 
at 407 nm shows Raman bands 
due to both chlorophyll a and 
b-carotene molecules bound 
to the protein because both 
pigments absorb light at this 
wavelength. (b) Laser excitation 
at 488 nm shows Raman bands 
from b-carotene only because 
chlorophyll a does not absorb 
light very strongly at this 
wavelength. (Adapted from 
D.F. Ghanotakis et al., Biochim. 
Biophys. Acta 974, 44 [1989].)

Fig. 12.26 Th e vibrational Raman 
spectrum of lysozyme in water. 
(From Raman spectroscopy, 
D.A. Long. Copyright 1977, 
McGraw-Hill, Inc. Used with the 
permission of the McGraw-Hill 
Book Company.)

In the laboratory 12.3 Vibrational microscopy

Whereas scanning probe microscopy (In the laboratory 9.2) is a good probe of 
atoms and molecules on surfaces, conventional optical microscopy, which 
uses light to carry information about the specimen, can be used to study a 
wider variety of samples, from solids to fl owing liquids. Hence, there is great 
interest in new modes of optical microscopy that can probe specimens as small 
as single molecules.

In conventional optical microscopy a beam of light is focused on to a specimen 
by a condenser lens and light transmitted or refl ected by the sample is col-
lected by the objective lens (Fig. 12.28). Th e magnifi ed image of the specimen 
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is either viewed directly with the help of an eyepiece or captured by a video 
camera and displayed on a monitor. Th e image is constructed from a pattern of 
diff racted light waves that emanate from the specimen and reach the objective 
lens. As a result, some information about the specimen is lost by destructive 
interference of scattered light waves. Ultimately, this ‘diff raction limit’ prevents 
the study of samples that are much smaller than the wavelength of light used as 
a probe. In practice, two objects will appear as distinct images under a micro-
scope if the distance between their centers is greater than the ‘Airy radius’, 
gAiry = 0.61l/a, where l is the wavelength of the incident beam of radiation and 
a is the aperture of the objective lens, which is defi ned as a = nr sin a where nr 
is the refractive index of the material lying between the object and the objec-
tive lens, and a is the half-angle of the widest cone of scattered light that can 
collected by the lens (so the lens collects light beams within a cone of angle 2a; 
see Fig. 12.28).

It is now possible to combine optical microscopes with infrared and Raman 
spectrometers to obtain vibrational spectra of very small specimens. Th e tech-
niques of vibrational microscopy provide details of cellular events that cannot 
be observed with electron microscopy.

In infrared and Raman microscopes the sample is moved by very small incre-
ments along a plane perpendicular to the direction of illumination and the 
process is repeated until vibrational spectra for all sections of the sample are 
obtained. Th e size of a sample that can be studied by vibrational microscopy 
depends on a number of factors, such as the area of illumination, the power of 
the radiation delivered to the illuminated area, and the wavelength of the inci-
dent radiation. Up until the diff raction limit is reached, the smaller the area 
that is illuminated, the smaller the area from which a spectrum can be obtained. 
High radiant power is required to increase the rate of arrival of photons at the 
detector from small illuminated areas. For this reason, lasers and synchrotron 
radiation are the preferred radiation sources. Use of the best equipment makes 
it possible to examine areas as small as 9 mm2 by vibrational microscopy.

For Raman microscopy, the most common spectrometer system consists of a 
visible laser coupled to a polychromator and a CCD detector, although near-
infrared Fourier transform spectrometers are also used. Th e CCD detector 
can be used in a variation of Raman microscopy known as Raman imaging: a 
special optical fi lter allows only one Stokes line to reach the two-dimensional 
detector, which then contains a map of the distribution of the intensity of that 
line in the illuminated area.

Fourier transform spectrometers are common in infrared microscopy. 
Figure 12.29 shows the infrared spectra of a single mouse cell, living and dying. 
Both spectra have features at 1545 cm−1 and 1650 cm−1 that are due to the 
peptide carbonyl groups of proteins and a feature at 1240 cm−1 that is due to 
the phosphodiester (–PO2

−) groups of lipids. Th e dying cell shows an additional 
absorption at 1730 cm−1, which is due to the ester carbonyl group from an 
unidentifi ed compound. From a plot of the intensities of individual absorption 
features as a function of position in the cell it has been possible to map the 
distribution of proteins and lipids during cell division and cell death.

Vibrational microscopy has also been used in biomedical and pharmaceutical 
laboratories. Examples include the determination of the size and distribution 

Fig. 12.28 Th e light path in a 
typical microscope. Light is 
focused by the condenser lens 
(typically a system of two lenses), 
scattered by the sample, and 
refocused by an objective lens. 
Th e ability of the objective lens to 
resolve two objects into distinct 
images depends on the numerical 
aperture, which is related to the 
refractive index of the lens 
material and the angle a, as 
discussed in the text.
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of a drug in a tablet, the observation of conformational changes in proteins 
of cancerous cells on administration of antitumor drugs, and the measure-
ment of diff erences between diseased and normal tissue, such as diseased 
arteries and the white matter from brains of patients suff ering from multiple 
sclerosis.

Ultraviolet and visible spectra

Th e energy needed to change the distribution of an electron in a molecule is of the 
order of several electronvolts. Consequently, the photons emitted or absorbed 
when such changes occur lie in the visible and ultraviolet regions of the spectrum, 
which spread from about 14 000 cm−1 for red light to 21 000 cm−1 for blue, and on 
to 50 000 cm−1 for ultraviolet radiation (Table 12.3). Indeed, many of the colors of 
the objects in the world around us, including the green of vegetation, the colors 
of fl owers and of synthetic dyes, and the colors of pigments and minerals, stem 
from transitions in which an electron makes a transition from one orbital of 
a molecule or ion into another orbital. Th e change in location of an electron 
that takes place when chlorophyll absorbs red and blue light (leaving green to be 
refl ected) is the primary energy-harvesting step by which our planet captures 
energy from the Sun and uses it to drive the nonspontaneous reactions of photo-
synthesis (Case study 12.3). In some cases the relocation of an electron may be 
so extensive that it results in the breaking of a bond and the dissociation of the 
molecule: such processes give rise to the numerous reactions of photochemistry, 
including the reactions that sustain or damage the atmosphere.

White light is a mixture of light of all diff erent colors. Th e removal, by absorp-
tion, of any one of these colors from white light results in the ‘complementary 
color’ being observed. For instance, the absorption of red light from white light by 
an object results in that object appearing green, the complementary color of red. 
Conversely, the absorption of green results in the object appearing red. Th e pairs 
of complementary colors are neatly summarized by the artist’s color wheel 
shown in Fig. 12.30, where complementary colors lie opposite each other along 
a diameter.

Fig. 12.29 Infrared absorption 
spectra of a single mouse cell: 
(red line) living cell, (blue line) 
dying cell. (Adapted from 
N. Jamin et al., Proc. Natl. Acad. 
Sci. USA 95, 4837 (1998).)

Fig. 12.30 An artist’s color wheel: 
complementary colors are 
opposite each other on a 
diameter. Th e numbers 
correspond to wavelengths 
of light in nanometers.Table 12.3 Color, frequency, and energy of light

Color l/nm n/(1014 Hz) 6/(104 cm−1) E/eV E/(kJ mol−1)

Infrared 1000 3.00 1.00 1.24 120
Red  700 4.28 1.43 1.77 171
Orange  620 4.84 1.61 2.00 193
Yellow  580 5.17 1.72 2.14 206
Green  530 5.66 1.89 2.34 226
Blue  470 6.38 2.13 2.64 254
Violet  420 7.14 2.38 2.95 285
Near-ultraviolet  300 10.0 3.33 4.13 399
Far-ultraviolet  200 15.0 5.00 6.20 598
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It should be stressed, however, that the perception of color is a very subtle phe-
nomenon. Although an object may appear green because it absorbs red light, it 
may also appear green because it absorbs all colors from the incident light except 
green. Th is is the origin of the color of vegetation, because chlorophyll absorbs in 
two regions of the spectrum, leaving green to be refl ected (Fig. 12.31). Moreover, 
an absorption band may be very broad, and although it may be a maximum at 
one particular wavelength, it may have a long tail that spreads into other regions 
(Fig. 12.32). In such cases, it is very diffi  cult to predict the perceived color from 
the location of the absorption maximum.

12.6 The Franck–Condon principle
To understand how Nature makes use of colored materials in such important 
processes as photosynthesis and vision, we need to know the factors that control 
the intensity of electronic transitions and the shapes of absorption bands.

Whenever an electronic transition takes place, it is accompanied by the excitation 
of vibrations of the molecule. In the electronic ground state of a molecule, the 
nuclei take up locations in response to the Coulombic forces acting on them. 
Th ese forces arise from the electrons and the other nuclei. Aft er an electronic 
transition, when an electron has migrated to a diff erent part of the molecule, 
the nuclei are subjected to diff erent Coulombic forces from the surrounding 
electrons. Th e molecule may respond to the sudden change in forces by bursting 
into vibration. As a result, some of the energy used to redistribute an electron is 
in fact used to stimulate the vibrations of the absorbing molecules. Th erefore, 
instead of a single, sharp, and purely electronic absorption line being observed, 
the absorption spectrum consists of many lines. Th is vibrational structure of an 
electronic transition can be resolved if the sample is gaseous, but as we remarked 
in Section 12.2d, in a liquid or solid the lines usually merge together and result in 
a broad, almost featureless band.

Th e vibrational structure of a band is explained by the Franck–Condon principle:

Because nuclei are so much more massive than electrons, an electronic transi-
tion takes place faster than the nuclei can respond.

In an electronic transition, electron density is lost rapidly from some regions of 
the molecule and is built up rapidly in others. As a result, the initially stationary 
nuclei suddenly experience a new force fi eld. Th ey respond by beginning to 
vibrate, and (in classical terms) swing backwards and forwards from their ori-
ginal separation, which they maintained during the rapid electronic excitation. 
Th e equilibrium separation of the nuclei in the initial electronic state therefore 
becomes a turning point, one of the end points of a nuclear swing, in the fi nal 
electronic state (Fig. 12.33).

To predict the most likely fi nal vibrational state we draw a vertical line from the 
minimum of the lower curve (the starting point for the transition) up to the point 
at which the line intersects the curve representing the upper electronic state 
(the turning point of the newly stimulated vibration). Th is procedure gives rise 
to the name vertical transition for a transition that takes place in accord with the 
Franck–Condon principle. In practice, the electronically excited molecule may 
be formed in one of several excited vibrational states, so the absorption occurs at 
several diff erent frequencies. As remarked above, in a condensed medium, the 
individual transitions merge together to give a broad, largely featureless band of 
absorption.

Fig. 12.31 Th e absorption spectra 
of chlorophylls a and b (Atlas 
R3), the main pigments in plants, 
in the visible region. Note that 
the chlorophylls absorb in the 
orange–red and blue regions and 
that green light is not absorbed 
signifi cantly.

Fig. 12.32 An electronic 
absorption band of a species in 
solution is typically very broad 
and consists of several broad 
bands.
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12.7 Chromophores

Biological systems contain organic compounds and complexes of metal ions 
with characteristic electronic transitions. We need to see how to investigate these 
transitions and use ultraviolet and visible spectroscopy to elucidate biochemical 
processes.

Th e absorption of a photon can oft en be traced to the excitation of an electron 
that is localized on a small group of atoms. For example, an absorption at about 
290 nm is normally observed when a carbonyl group is present, as in the peptide 
link. Groups with characteristic optical absorptions are called chromophores 
(from the Greek for ‘color bringer’), and their presence oft en accounts for the 
colors of many substances.

A d-metal complex may absorb light as a result of transfer of an electron 
between d orbitals split by a ligand fi eld (see Section 10.8). Th e energy separation 
between d orbitals in a complex is not very large, so d–d transitions between sets 
of orbitals typically occur in the visible region of the spectrum. Also possible is 
the transfer of an electron from the ligands into the d orbitals of the central atom, 
or vice versa. In such charge-transfer transitions the electron moves through a 
considerable distance, which means that the redistribution of charge as measured 
by the transition dipole moment may be large and the absorption correspond-
ingly intense. Th is mode of chromophore activity is shown by the copper-
containing site of the bacterial protein azurin: the charge redistribution that 
accompanies the migration of an electron from a sulfur atom of a cysteine ligand 
to the Cu2+ ion accounts for its intense blue color (resulting from absorption in 
the range 500–700 nm).

Th e transition responsible for absorption in carbonyl compounds can be traced 
to the lone pairs of electrons on the O atom. One of these electrons may be excited 
into an empty p* orbital of the carbonyl group (Fig. 12.34), which gives rise to 
an n-to-p* transition, where n denotes a nonbonding orbital (an orbital that is 
neither bonding nor antibonding, such as that occupied by a lone pair). Typical 
absorption energies are about 4 eV.

A C=C double bond acts as a chromophore because the absorption of a photon 
excites a p electron into an antibonding p* orbital (Fig. 12.35). Th e chromophore 
activity is therefore due to a p-to-p* transition. Its energy is around 7 eV for an 
unconjugated double bond, which corresponds to an absorption at 180 nm (in 
the ultraviolet). When the double bond is part of a conjugated chain, the energies 
of the molecular orbitals lie closer together and the transition shift s into the vis-
ible region of the spectrum (see Section 10.11). Many of the reds and yellows of 
vegetation are due to transitions of this kind. For example, the carotenes, long 
polyenes present in green leaves (but concealed by the intense absorption of the 
chlorophyll until the latter decays in the fall), collect some of the solar radiation 
incident on the leaf by a p-to-p* transition in their long conjugated hydrocarbon 
chains. A similar type of absorption is responsible for the primary process of 
vision (Case study 12.2).

Table 12.4 lists values of εmax and lmax (the wavelength at which ε = εmax) for 
a number of biological molecules. Th e band positions and intensities are both 
sensitive to molecular interactions. For example, the ultraviolet spectrum of an 
a helix has two p-to-p* transitions instead of one. Th e eff ect is due to exciton 
coupling, which can be traced to interactions between transition dipoles and 
leads to excited states with lower and higher energies with respect to the energy of 
the monomer excited state.

Fig. 12.33 According to the 
Franck–Condon principle, the 
most intense electronic transition 
is from the ground vibrational 
state to the vibrational state 
that lies vertically above it in 
the upper electronic state. 
Transitions to other vibrational 
levels also occur, but with lower 
intensity.

Fig. 12.34 A carbonyl group acts 
as a chromophore primarily on 
account of the excitation of a 
nonbonding O lone-pair electron 
to an antibonding CO p* orbital.
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12.8 Optical activity and circular dichroism
Th e electronic spectra of biopolymers can reveal additional structural details 
when experiments are conducted with polarized light, electromagnetic radiation 
with electric and magnetic fi elds that oscillate only in certain directions. Light is 
plane polarized when the electric and magnetic fi elds each oscillate in a single 
plane (Fig. 12.36). Th e plane of polarization may be oriented in any direction 
around the direction of propagation (the x-direction in Fig. 12.36), with the elec-
tric and magnetic fi elds perpendicular to that direction (and perpendicular to 
each other). An alternative mode of polarization is circular polarization, in 
which the electric and magnetic fi elds rotate around the direction of propagation 
in either a clockwise or a counterclockwise sense but remain perpendicular to it 
and each other.

When plane-polarized radiation passes through samples of certain kinds of 
matter, the plane of polarization is rotated around the direction of propagation. 
Th is rotation is the phenomenon of optical activity. Optical activity is observed 
when the molecules in the sample are chiral, which means they are distinguish-
able from their mirror image (Fig. 12.37). In many cases, organic chiral com-
pounds are easy to identify because they contain a carbon atom to which are 
bonded four diff erent groups. Th e amino acid alanine, NH2CH(CH3)COOH, 
is an example. Mirror image pairs of chiral molecules, which are called enan-
tiomers (from the Greek words for ‘both parts’), rotate light of a given frequency 
through exactly the same angle but in opposite directions.

Chiral molecules have a second characteristic: they absorb left  and right cir-
cularly polarized light to diff erent extents. In a circularly polarized ray of light, the 
electric fi eld describes a helical path as the wave travels through space (Fig. 12.38), 
and the rotation may be either clockwise or counterclockwise. Th e diff erential 
absorption of left - and right-circularly polarized light is called circular dichro-
ism. In terms of the absorbances for the two components, AL and AR, the circular 
dichroism of a sample of molar concentration [J] is reported as

 Dε = εL − εR = AL − AR

[J]L
 Circular dichroism  (12.16)

where L is the path length through the sample.
Circular dichroism is a useful adjunct to visible and ultraviolet spectro-

scopy. For example, CD spectra give information about secondary structure of 

Table 12.4 Electronic absorption properties of amino acids, purine, and pyrimidine 
bases in water at pH = 7

Compound lmax/nm εmax/(103 dm3 mol−1 cm−1)

Tryptophan 280 5.6
Tyrosine 274 1.4
Phenylalanine 257 0.2
Adenine 260 13.4
Guanine 275 8.1
Cytosine 267 6.1
Uracil 260 9.5

Fig. 12.35 A carbon–carbon 
double bond acts as a 
chromophore. One of its 
important transitions is the 
p-to-p* transition illustrated 
here, in which an electron is 
promoted from a p orbital to 
the corresponding antibonding 
orbital.

Fig. 12.36 Electromagnetic 
radiation consists of a wave of 
electric and magnetic fi elds 
perpendicular to the direction 
of propagation (in this case 
the x-direction) and mutually 
perpendicular to each other. 
Th is illustration shows a 
plane-polarized wave, with the 
electric and magnetic fi elds 
oscillating in the xy and xz 
planes, respectively.
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polypeptides and nucleic acids. Consider a helical polypeptide. Not only are the 
individual monomer units chiral, but so is the helix. Th erefore, we expect the a 
helix to have a unique CD spectrum related to the secondary structure of the 
polypeptide. Because b sheets and random coils also have distinguishable spectral 
features (Fig. 12.39a), circular dichroism is a very important technique for the 
study of protein conformation. Circular dichroism is also a powerful tool for 
the study of nucleic acids (Fig. 12.39b).

Th e Raman optical activity (ROA) technique depends on the detection of a 
small diff erence in the intensity of Raman scattering when left  and right circularly 
polarized incident radiation is used (the incident circularly polarized, ICP, tech-
nique). Th e amide III region (Case study 12.1) at 1230–1310 cm−1 is important for 
ROA studies because the coupling between N–H and Ca–H deformations is very 
sensitive to the local molecular geometry. Th e signal depends largely on the nature 
of the polypeptide skeleton rather than the details of the amino acid side chains, 
so it reveals information about the secondary structure. Th us, amide I contribu-
tions to ROA close to 1650 cm−1 are a good indicator of the presence of an a-helix 
regions in polypeptides; the ROA technique can also provide a signature at close 
to 1240 cm−1 of b-sheet regions (Fig. 12.40).

Fig. 12.39 Representative CD 
spectra of polypeptides and 
polynucleotides: (a) random 
coils, a helices, and b sheets have 
diff erent CD features in the 
spectral region where the peptide 
link absorbs; (b) B- and A-DNA 
can be distinguished on the basis 
of CD spectroscopy in the 
spectral region where the bases 
absorb.

Fig. 12.37 A chiral molecule is one that is 
not superimposable on its mirror image. 
A carbon atom attached to four diff erent 
groups is an example of a chiral center 
in a molecule. Such molecules are 
optically active.

Fig. 12.38 In circularly polarized light, the 
electric fi eld at diff erent points along the 
direction of propagation rotates. Th e 
arrays of arrows in these illustrations 
show the view of the electric fi eld when 
looking toward the oncoming ray: 
(a) right circularly polarized, 
(b) left  circularly polarized light.

Fig. 12.40 Th e ROA spectrum of 
(a) human serum globulin, 
a protein with many a-helical 
regions, and (b) human 
immunoglobulin, 
a protein with many b-sheet 
regions. From L.D. Barron et al., 
J. Mol. Structure, 7, 834 (2007).
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Radiative and nonradiative decay

In most cases, the excitation energy of a molecule that has absorbed a photon 
is degraded into the disordered thermal motion of its surroundings. However, 
one process by which an electronically excited molecule can discard its excess 
energy is by radiative decay, in which an electron makes a transition into a lower-
energy orbital and in the process generates a photon. As a result, an observer 
sees the sample glowing (if the emitted radiation is in the visible region of the 
spectrum).

Th ere are two principal modes of radiative decay, fl uorescence and phospho-
rescence (Fig. 12.41). In fl uorescence, the spontaneously emitted radiation ceases 
very soon aft er the exciting radiation is extinguished. In phosphorescence, the 
spontaneous emission may persist for long periods (even hours, but characteristic-
ally seconds or fractions of seconds). Th e diff erence suggests that fl uorescence 
is an immediate conversion of absorbed light into re-emitted radiant energy and 
that phosphorescence involves the storage of energy in a reservoir from which 
it slowly leaks.

Other than thermal degradation, a nonradiative fate for an electronically 
excited molecule is dissociation, or fragmentation (Fig. 12.42). Th e onset of dis-
sociation can be detected in an absorption spectrum by seeing that the vibrational 
structure of a band terminates at a certain energy. Absorption occurs in a continu-
ous band above this dissociation limit, the highest frequency before the onset 
of continuous absorption, because the fi nal state is unquantized translational 
motion of the fragments. Locating the dissociation limit is a valuable way of 
determining the bond dissociation energy.

12.9 Fluorescence
Figure 12.43 is a simple example of a Jablonski diagram, a schematic portrayal 
of molecular electronic and vibrational energy levels, which shows the sequence 
of steps involved in fl uorescence. Th e initial absorption takes the molecule to an 
excited electronic state, and if the absorption spectrum were monitored, it would 
look like the one shown in Fig. 12.44a. Th e excited molecule is subjected to colli-
sions with the surrounding molecules, and as it gives up energy it steps down the 
ladder of vibrational levels. Th e surrounding molecules, however, might be unable 
to accept the larger energy needed to lower the molecule to the ground electronic 
state. Th e excited state might therefore survive long enough to generate a photon 
and emit the remaining excess energy as radiation. Th e downward electronic 
transition is vertical, which means it is in accord with the Franck–Condon prin-
ciple, and the fl uorescence spectrum has a vibrational structure characteristic of 
the lower electronic state (Fig. 12.44b).

Fluorescence occurs at a lower frequency than that of the incident radiation 
for two reasons. First, fl uorescence radiation is emitted aft er some vibrational 
energy has been discarded into the surroundings. Th e vivid oranges and greens of 
fl uorescent dyes are an everyday manifestation of this eff ect: they absorb in the 
ultraviolet and blue and fl uoresce in the visible. Th e mechanism also suggests 
that the intensity of the fl uorescence ought to depend on the ability of the solvent 
molecules to accept the electronic and vibrational quanta. It is indeed found that 
a solvent composed of molecules with widely spaced vibrational levels (such as 
water) may be able to accept the large quantum of electronic energy and so 

Fig. 12.41 Th e empirical 
(observation-based) distinction 
between fl uorescence and 
phosphorescence is that the 
former is extinguished very 
quickly aft er the exciting source 
is removed, whereas the latter 
continues with relatively slowly 
diminishing intensity.

Fig. 12.42 When absorption 
occurs to unbound states of the 
upper electronic state, the 
molecule dissociates and the 
absorption is a continuum. 
Below the dissociation limit 
the electronic spectrum has a 
normal vibrational structure.
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decrease the intensity of the solute’s fl uorescence. Th e second reason for the shift  
in frequency between absorption and fl uorescence peaks is the possibility that 
the solvent interacts diff erently with the solute in the ground and excited states 
(for instance, the hydrogen bonding pattern might diff er). Because the solvent 
molecules do not have time to rearrange during the fast electronic transition, the 
absorption occurs in an environment characteristic of the solvated ground state; 
however, the fl uorescence occurs in an environment characteristic of the solvated 
excited state (Fig. 12.45).

12.10 Phosphorescence
Figure 12.46 is a Jablonski diagram showing the events leading to phosphores-
cence. Th e fi rst steps are the same as in fl uorescence, but the presence of a triplet 
state plays a decisive role. A triplet state is a state in which two electrons in diff er-
ent orbitals have parallel spins: the ground state of O2, which was discussed in 
Case study 10.1, is an example. Th e name ‘triplet’ refl ects the (quantum mechan-
ical) fact that the total spin of two parallel electron spins (↑↑) can adopt only 
three orientations with respect to an axis. An ordinary spin-paired state (↑↓) 
is called a singlet state because the pair has zero net spin angular momentum 
and such a resultant cannot adopt diff erent orientations in space.

Th e ground state of a typical phosphorescent molecule is a singlet because its 
electrons are all paired; the excited state to which the absorption excites the 
molecule is also a singlet. Th e peculiar feature of a phosphorescent molecule, 

Fig. 12.43 A Jablonski diagram showing the 
sequence of steps leading to fl uorescence. 
Aft er the initial absorption the upper 
vibrational states undergo radiationless 
decay—the process of vibrational 
relaxation—by giving up energy to the 
surroundings. A radiative transition then 
occurs from the ground state of the upper 
electronic state. In practice, the separation 
of the ground states of the electronic 
states (the lowest horizontal line in each 
set) is 10 to 100 times greater than the 
separation of the vibrational levels.

Fig. 12.44 Th e absorption 
spectrum (a) shows a vibrational 
structure characteristic of the 
upper state. Th e fl uorescence 
spectrum (b) shows a structure 
characteristic of the lower state; 
it is also displaced to lower 
frequencies and resembles a 
mirror image of the absorption.

Fig. 12.45 Th e solvent can shift  the 
fl uorescence spectrum relative 
to the absorption spectrum. On 
the left  we see that the absorption 
occurs with the solvent (the 
ellipses) in the arrangement 
characteristic of the ground 
electronic state of the molecule 
(the sphere). However, before 
fl uorescence occurs, the 
solvent molecules relax into 
a new arrangement, and that 
arrangement is preserved during 
the subsequent radiative 
transition.
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however, is that it possesses an excited triplet state with an energy similar to that 
of the excited singlet state and into which the excited singlet state may convert. 
Hence, if there is a mechanism for unpairing two electron spins (and so con-
verting ↑↓ into ↑↑), then the molecule may undergo intersystem crossing and 
become a triplet state. Th e unpairing of electron spins is possible because the 
angular momentum needed to convert a singlet state into a triplet state may 
be acquired from the orbital motion of the electrons. Th e mixing of spin and 
orbital angular momentum is called spin–orbit coupling and is enhanced by the 
presence of heavy atoms such as sulfur and phosphorus. We can understand 
this increase by thinking about the source of the orbital magnetic fi eld. To do so, 
imagine that we are riding on the electron as it orbits the nucleus. From our 
viewpoint, the nucleus appears to orbit around us (rather as the pre-Copernicans 
thought the Sun revolved around the Earth). If the nucleus has a high atomic 
number, it will have a high charge, we shall be at the center of a strong electric 
current, and we experience a strong magnetic fi eld. If the nucleus has a low atomic 
number, we experience a feeble magnetic fi eld arising from the low current that 
encircles us.

Aft er an excited singlet molecule crosses into a triplet state, it continues to 
discard energy into the surroundings and to step down the ladder of vibra-
tional states. However, it is now stepping down the triplet’s ladder, and at the 
lowest vibrational energy level it is trapped. Th e solvent cannot extract the 
fi nal, large quantum of electronic excitation energy. Moreover, the molecule 
cannot radiate its energy because return to the ground state is forbidden: 
detailed analysis shows that a triplet state cannot convert radiatively into a singlet 
state. Th is rule stems from the fact that light does not aff ect the spin directly, so 
the spin of one electron cannot reverse in direction relative to the other electron 
during the absorption or emission of a photon. Th e radiative transition, how-
ever, is not totally forbidden because the spin–orbit coupling responsible for 
the intersystem crossing also breaks this rule. Th e molecules are therefore able to 
emit weakly and the emission may continue long aft er the original excited state 
was formed.

Th e mechanism of phosphorescence summarized in Fig. 12.46 accounts 
for the observation that the excitation energy seems to become trapped in a 
slowly leaking reservoir. It also suggests (as is confi rmed experimentally) that 
phosphorescence should be most intense from solid samples: energy transfer 
is then less effi  cient and the intersystem crossing has time to occur as the 
singlet excited state loses vibrational energy. Th e mechanism also suggests that 
the phosphorescence effi  ciency should depend on the extent of spin–orbit 
coupling in the molecule: both the yield of the triplet state and its decay rate 
are increased by the presence of a moderately heavy atom (with its ability to 
fl ip electron spins).

Fig. 12.46 Th e sequence of steps 
leading to phosphorescence. Th e 
important step is the intersystem 
crossing from an excited singlet 
to an excited triplet state. Th e 
triplet state acts as a slowly 
radiating reservoir because 
the return to the ground state 
is very slow.

In the laboratory 12.4 Fluorescence microscopy

Apart from a small number of cofactors, such as the chlorophylls and fl avins, 
the majority of the building blocks of proteins and nucleic acids do not 
fl uoresce strongly. Four notable exceptions are the amino acids tryptophan 
(labs ≈ 280 nm and lfl uor ≈ 348 nm in water), tyrosine (labs ≈ 274 nm and lfl uor ≈ 
303 nm in water), and phenylalanine (labs ≈ 257 nm and lfl uor ≈ 282 nm in 
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In the laboratory 12.5 Single-molecule spectroscopy

Fluorescence and vibrational microscopy with conventional spectrometers 
and microscopes can provide only as much molecular detail as allowed by the 
diff raction limit. Most molecules—including biopolymers—have dimensions 
that are much smaller than visible wavelengths, so special techniques had to 
be developed to visualize single molecules with optical microscopes. Here we 
outline the most popular strategies comprising a collection of tools known as 
single-molecule spectroscopy.

Th e bulk of the work done in single-molecule spectroscopy is based on fl uor-
escence microscopy done with laser excitation of the specimen. Th e laser is 
the radiation source of choice because it provides the high intensity required 
to increase the rate of arrival of photons at the detector from small illuminated 
areas. Two techniques are commonly used to circumvent the diff raction limit. 
First, the concentration of the sample is kept so low that, on average, only one 
fl uorescent molecule is in the illuminated area. Second, special strategies 
are used to illuminate very small volumes. In near-fi eld scanning optical 
microscopy (NSOM), a very thin metal-coated fi ber is used to deliver light 
to a small area. It is possible to construct fi bers with tip diameters in the range 
of 50 to 100 nm, which are indeed smaller than visible wavelengths. Th e fi ber 
tip is placed very close to the sample, in a region known as the near fi eld, where, 
according to classical physics, photons do not diff ract.

In far-fi eld confocal microscopy, laser light focused by an objective lens is 
used to illuminate about 1 mm3 of a very dilute sample placed beyond the 
near fi eld. Th is illumination scheme is limited by diff raction and, as a result, 
data from far-fi eld microscopy have less structural detail than data from 
NSOM. However, far-fi eld microscopes are very easy to construct and the 
technique can be used to probe single molecules as long as there is one mole-
cule, on average, in the illuminated area.

In the wide-fi eld epifl uorescence method, a CCD detects fl uorescence excited 
by a laser and scattered back from the sample (Fig. 12.47a). If the fl uorescing 
molecules are well separated in the specimen, then it is possible to obtain a 
map of the distribution of fl uorescent molecules in the illuminated area. 
For example, Fig. 12.47b shows how epifl uorescence microscopy can be used 

water) and the oxidized form of the sequence serine–tyrosine–glycine (1) 
found in the green fl uorescent protein (GFP) of certain jellyfi sh. Th e wild 
type of GFP from Aequora Victoria absorbs strongly at 395 nm and emits 
maximally at 509 nm.

In fl uorescence microscopy, images of biological cells at work are obtained by 
attaching a large number of fl uorescent molecules to proteins, nucleic acids, 
and membranes and then measuring the distribution of fl uorescence intensity 
within the illuminated area. A common fl uorescent label is GFP. With proper 
fi ltering to remove light due to Rayleigh scattering of the incident beam, it is 
possible to collect light from the sample that contains only fl uorescence from 
the label. However, great care is required to eliminate fl uorescent impurities 
from the sample.

Fig. 12.47  (a) Layout of an 
epifl uorescence microscope. 
Laser radiation is diverted to 
a sample by a special optical fi lter 
that refl ects radiation with a 
specifi ed wavelength (in this case, 
the laser excitation wavelength) 
but transmits radiation with 
other wavelengths (in this case, 
wavelengths at which the 
fl uorescent label emits). A CCD 
detector analyzes the spatial 
distribution of the fl uorescence 
signal from the illuminated area. 
(b) Observation of fl uorescence 
from single MHC proteins 
that have been labeled with 
a fl uorescent marker and are 
bound to the surface of a cell 
(the area shown has dimensions 
of 12 mm × 12 mm). (Image 
provided by Professor W.E. 
Moerner, Stanford University.)
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to observe single molecules of the major histocompatibility (MHC) protein 
on the surface of a cell.

Single-molecule spectroscopy has been used to address important problems 
in biology. One notable example is the visualization of some of the steps 
involved in the synthesis of ATP by the enzyme ATPase, which we discussed 
in Chapter 5.

Photobiology

So far, we have considered the decay of excited electronic states of molecules 
by the emission of light or degradation into thermal motion (‘heat’). However, in 
photochemical reactions the energy in excited states can also be used to drive 
chemical reactions. Th e most important of all are the photochemical processes 
that capture the Sun’s radiant energy. Some of these reactions lead to the heating 
of the atmosphere during the daytime by absorption in the ultraviolet region as 
a result of reactions like those depicted in Fig. 12.48. Others include the absorp-
tion of red and blue light by chlorophyll and the subsequent use of the energy to 
bring about the photosynthesis of carbohydrates from carbon dioxide and water. 
Indeed, without light-initiated chemical processes the world would be simply a 
warm, sterile rock. Photobiology is the study of biochemical reactions that are 
initiated by the absorption of light. In the following sections we explore the mech-
anisms of some important photobiological processes: photosynthesis, vision, 
light-induced DNA damage, and light-based therapies.

12.11 The kinetics of decay of excited states
To treat photobiology quantitatively we often invoke concepts of chemical kinetics, so 
we need to see how the mathematical techniques discussed in Chapters 6–8 can be 
used to describe the fates of excited electronic states as they participate in such 
processes as vision and photosynthesis.

A molecule acquires enough energy to react by absorbing a photon. However, not 
every excited molecule may form a specifi c primary product (atoms, radicals, or 

Fig. 12.48 Th e temperature profi le 
through the atmosphere and 
some of the reactions that take 
place in each region.
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ions, for instance) because we have seen that there are many ways in which the 
excitation may be lost other than by dissociation or ionization. We therefore speak 
of the primary quantum yield, f (phi), which is the number of events (physical 
changes or chemical reactions) that lead to primary products (photons, atoms, or 
ions, for instance) divided by the number of photons absorbed by the molecule in 
the same time interval:

f = number of events
number of photons absorbed

 Primary quantum yield  (12.17)

If each molecule that absorbs a photon undergoes dissociation (for instance), 
then f = 1. If none does, because the excitation energy is lost before the molecule 
has time to dissociate, then f = 0.

If we divide the numerator and denominator of eqn 12.17 by the time interval 
during which the photochemical event occurs, we see that primary quantum yield 
is also the rate of radiation-induced primary events divided by the rate of photon 
absorption. Furthermore, if we equate the rate of photon absorption with the 
intensity, Iabs, of light absorbed by the molecule, we may write

f = rate
Iabs

 (12.18)

A molecule in an excited state must either decay to the ground state or form 
a photochemical product. Th erefore, the total number of molecules deactivated 
by radiative processes, nonradiative processes, and photochemical reactions must 
be equal to the number of excited species produced by absorption of light. We 
conclude that the sum of primary quantum yield fi for all physical changes and 
photochemical reactions i must be equal to 1, regardless of the number of reac-
tions involving the excited state. It follows that

 ∑
i  

fi = ∑
i

 ratei

Iabs
 = 1 (12.19)

One successfully excited molecule might initiate the consumption of more 
than one reactant molecule. We therefore need to introduce the overall quantum 
yield, F (uppercase phi), which is the number of reactant molecules that react 
for each photon absorbed. In the photochemical dissociation of HI, for example, 
the processes are

HI + hn → H + I
H + HI → H2 + I
I + I + M → I2 + M

(where M is a ‘third body,’ an inert species that removes excess energy). Th e overall 
quantum yield is 2 because the absorption of one photon leads to the destruction 
of two HI molecules.

In many cases, the proper description of the rates and mechanisms of photo-
chemical reactions also requires knowledge of processes such as fl uorescence 
and phosphorescence that can deactivate an excited state before the reaction has 
a chance to occur. Electronic absorption takes place in about 10−16–10−15 s, and 
because fl uorescence lifetimes are typically 10−12–10−6 s, an excited singlet state 
can initiate very fast photochemical reactions in the range from femtoseconds 
(10−15 s, the time it takes to excite a molecule) to picoseconds (10−12 s, the lifetime 
of the excited state). Examples of such ultrafast reactions are the initial events 
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of vision and photosynthesis (Case studies 12.2 and 12.3). Typical phosphores-
cence lifetimes for large organic molecules are 10−6–10−1 s, respectively. As a 
consequence, excited triplet states can be photochemically important. Indeed, 
because the phosphorescence lifetime is several orders of magnitude longer than 
the time required for most typical reactions, species in excited triplet states can 
undergo a very large number of collisions with other reactants before they lose 
their energy by radiation or are deactivated nonradiatively.

We begin our exploration of the interplay between reaction rates and excited 
state decay rates by considering the mechanism of deactivation of an excited 
singlet state in the absence of a chemical reaction. Th e following steps are 
involved:

Absorption: S + hni → S* vabs = Iabs

Fluorescence: S* → S + hnf  vf = kf[S*]
Intersystem crossing: S* → T* vISC = kISC[S*]
Internal conversion: S* → S vIC = kIC[S*]

in which S is an absorbing species, S* is an excited singlet state, T* is an excited 
triplet state, and hni and hnf are the energies of the incident and fl uorescent 
photons, respectively. From the methods developed in Chapter 7 and the rates 
of the steps that form and destroy the excited singlet state S*, we write the rate of 
formation and decay of S* as

Rate of formation of [S*] = Iabs

Rate of decay of [S*] = −kF[S*] − kISC[S*] − kIC[S*] = −(kF  + kISC + kIC)[S*]

It follows that the excited state decays by a fi rst-order process, so when the light is 
turned off , the concentration of S* varies with time t as

 [S*]t = [S*]0e−t/t0 (12.20)

where the observed fl uorescence lifetime, t0, is defi ned as

t0 = 1
kF + kISC + kIC

 Observed
fluorescence lifetime  

(12.21)

We show in the following Justifi cation that the quantum yield of fl uorescence is

fF = kF

kF + kISC + kIC
 Quantum yield of 

fluorescence  
(12.22)

Justification 12.3 The quantum yield of fluorescence

Most fl uorescence measurements are conducted by illuminating a relatively 
dilute sample with a continuous and intense beam of light. It follows that 
[S*] is small and constant, so we may invoke the steady-state approximation 
(Section 7.3(c)) and write

d[S*]
dt

 = Iabs − kF[S*] − kISC[S*] − kIC[S*] = Iabs − (kF + kISC + kIC)[S*] = 0

Consequently,

Iabs = (kF + kISC + kIC)[S*]
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By using this expression and eqn 12.18, the quantum yield of fl uorescence is 
written as

fF = rate of fl uorescence
Iabs

 = kF[S*]
(kF + kISC + kIC)[S*]

which, by canceling the [S*], simplifi es to eqn 12.22.

A brief illustration

In water, the fl uorescence quantum yield and observed fl uorescence lifetime of 
tryptophan are fF = 0.20 and t0 = 2.6 ns, respectively. It follows from eqn 12.23 
that the fl uorescence rate constant kF is

kF = fF

t0
 = 0.20

2.6 × 10−9 s
 = 7.7 × 107 s−1

  

12.12 Fluorescence quenching
The dependence of the fluorescence intensity on the presence of other species 
gives valuable information about photobiological processes and can also be used 
to measure molecular distances in biological systems.

Now we consider the kinetic information about photochemical processes that can 
be obtained by ‘quenching’ studies. Fluorescence quenching is the nonradiative 
removal of the excitation energy from a fl uorescent molecule and the elimination 
of its fl uorescence. Quenching may be either a desired process, such as in energy 
or electron transfer, or an undesired side reaction that can decrease the quantum 
yield of a desired photochemical process. Quenching eff ects may be studied by 
monitoring the fl uorescence of a species involved in the photochemical reaction.

(a) The experimental analysis

Th e Stern–Volmer equation, which is derived in the following Justifi cation, relates 
the fl uorescence quantum yields fF,0 and fF measured in the absence and pre-
sence, respectively, of a quencher Q at a molar concentration [Q]:

fF,0

fF
 = 1 + t0kQ[Q] Stern–Volmer equation  (12.24)

Th is equation tells us that a plot of fF,0/fF against [Q] should be a straight line 
with slope t0kQ. Such a plot is called a Stern–Volmer plot (Fig. 12.49). Th e method 
may also be applied to the quenching of phosphorescence.

Th e observed fl uorescence lifetime can be measured with a pulsed laser 
technique. First, the sample is excited with a short light pulse from a laser using 
a wavelength at which S absorbs strongly. Th en, the exponential decay of the 
fl uorescence intensity aft er the pulse is monitored. From eqns 12.21 and 12.22, 
it follows that

t0 = 1
kF + kISC + kIC

 = AC
kF

kF + kISC + kIC

D
F  × 1

kF
 = fF

kF
 (12.23)

Fig. 12.49 Th e format of a 
Stern–Volmer plot and the 
interpretation of the slope in 
terms of the rate constant for 
quenching and the observed 
fl uorescence lifetime in the 
absence of quenching.
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Justification 12.4 The Stern–Volmer equation

Th e addition of a quencher, Q, opens an additional channel for deactivation 
of S*:

Quenching: S* + Q → S + Q  Rate of quenching = kQ[Q][S*]

Th e steady-state approximation for [S*] now gives

d[S*]
dt

 = Iabs − (kF + kISC + kIC + kQ[Q])[S*] = 0

and the fl uorescence quantum yield in the presence of the quencher is

fF = kF

kF + kISC + kIC + kQ[Q]

We can identify the fl uorescence lifetime in the presence of quencher as 
t = 1/(kF + kISC + kIC + kQ[Q]). When [Q] = 0, the quantum yield is

 fF,0 = kF

kF + kISC + kIC

It follows that

fF,0

fF
 = AC

kF

kF + kISC + kIC

D
F  × AC

kF + kISC + kIC + kQ[Q]
kF

D
F

 = kF + kISC + kIC + kQ[Q]
kF + kISC + kIC

 

 = 1 + kQ

kF + kISC + kIC  
[Q]

By using eqn 12.23, this expression simplifi es to eqn 12.24.

Because the fl uorescence intensity and lifetime are both proportional to the 
fl uorescence quantum yield (specifi cally, from eqn 12.23, t = fF/kF), plots of IF,0/IF 
and t0/t (where the subscript 0 indicates a measurement in the absence of 
quencher) against [Q] should also be linear with the same slope and intercept as 
those shown for eqn 12.24.

Example 12.4 Determining the quenching rate constant

Th e quenching of tryptophan fl uorescence by dissolved O2 gas was monitored 
by measuring emission lifetimes at 348 nm in aqueous solutions. Determine 
the quenching rate constant for this process from the following data:

[O2]/(10−2 mol dm−3)  0 2.3 5.5 8 10.8
t/(10−9 s) 2.6 1.5 0.92 0.71  0.57

Strategy We rewrite the Stern–Volmer equation (eqn 12.24) for use with life-
time data and then fi t the data to a straight line.

Solution On substitution of t0/t for fF,0/fF in eqn 12.24 and aft er rearrange-
ment, we obtain

1
t

 = 1
t0

 + kQ[Q]  (12.25)



 12.12 FLUORESCENCE QUENCHING   499

Figure 12.50 shows a plot of 1/t against [O2] and the results of a fi t to eqn 12.25. 
Th e slope of the line is 1.3 × 1010, so kQ = 1.3 × 1010 dm3 mol−1 s−1.

Fig. 12.50 Th e Stern–Volmer plot 
of the data for Example 12.5.

Self-test 12.11 From the data above, predict the value of [O2] required to 
decrease the intensity of tryptophan emission to 50 per cent of the unquenched 
value.

Answer: 3.0 × 10−2 mol dm−3

(b) Mechanisms of quenching

Th ree common mechanisms for quenching of an excited singlet (or triplet) state 
are

Collisional deactivation: S* + Q → S + Q
Electron transfer: S* + Q → S+ + Q− or S− + Q+

Resonance energy transfer: S* + Q → S + Q*

Th e quenching rate constant itself does not give much insight into the mechanism 
of quenching. However, there are some criteria that govern the relative effi  ciencies 
of collisional deactivation, energy transfer, and electron transfer. Energy transfer 
is a special case and we treat it in detail shortly. For now, we consider collisional 
deactivation and light-induced electron transfer.

Collisional quenching is particularly effi  cient when the quencher is a heavy 
species, such as iodide ion, that receives energy from the fl uorescing species 
and then decays nonradiatively to the ground state. Th is fact may be used to 
determine the accessibility of amino acid residues of a folded protein to solvent. 
For example, fl uorescence from a tryptophan residue is quenched by iodide ion 
when the residue is on the surface of the protein and hence accessible to the 
solvent. Conversely, residues in the hydrophobic interior of the protein are not 
quenched eff ectively by I−.

According to the Marcus theory of electron transfer discussed in Sections 8.9–
8.12, the rate of electron transfer from ground or excited states, and therefore in 
this context the rate of fl uorescence quenching, depends on

1. Th e distance between the donor and acceptor, with electron transfer becom-
ing more effi  cient as the distance between donor and acceptor decreases.

2. Th e reaction Gibbs energy, D rG, with electron transfer becoming more 
effi  cient as the reaction becomes more exergonic. For example, effi  cient 
photo-oxidation of S requires that the reduction potential of S* be lower 
than the reduction potential of Q.

3. Th e reorganization energy, the energy cost incurred by molecular rearrange-
ments of donor, acceptor, and medium during electron transfer. Th e electron 
transfer rate is predicted to increase if this reorganization energy is matched 
closely by the reaction Gibbs energy.

Electron transfer can be studied by time-resolved spectroscopy (In the labora-
tory 7.2) because the oxidized and reduced products oft en have electronic absorp-
tion spectra distinct from those of their neutral parent compounds. Th erefore, 
the rapid appearance of such known features in the absorption spectrum aft er 
excitation by a laser pulse may be taken as an indication of quenching by electron 
transfer.
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12.13 Fluorescence resonance energy transfer
Now we turn to resonance energy transfer. We visualize the process S* + Q → 
S + Q* as follows. Th e oscillating electric fi eld of the incoming electromagnetic 
radiation induces an oscillating electric dipole moment in S. Energy is absorbed 
by S if the frequency of the incident radiation, n, is such that n = DES/h, where 
DES is the energy separation between the ground and excited electronic states of 
S and h is Planck’s constant. Th is is the ‘resonance condition’ for absorption of 
radiation. Th e oscillating dipole on S now can aff ect electrons bound to a nearby 
Q molecule by inducing an oscillating dipole moment in the latter. If the fre-
quency of oscillation of it is such that n = EQ/h (where DEQ is the energy separa-
tion between the ground and excited electronic states of Q), then Q will absorb 
energy from S.

Th e effi  ciency, hT, of resonance energy transfer is defi ned as

 hT = 1 − fF

fF,0
 Efficiency of 

energy transfer  
(12.26)

According to the Förster theory of resonance energy transfer, which was pro-
posed by T. Förster in 1959, energy transfer is effi  cient when

1. the energy donor and acceptor are separated by a short distance (of the order 
of nanometers);

2. photons emitted by the excited state of the donor can be absorbed directly 
by the acceptor.

For donor–acceptor systems that are held rigidly either by covalent bonds or by 
a protein ‘scaff old’, hT increases with decreasing distance, R, according to

hT = R0
6

R0
6 + R6

 Förster efficiency  (12.27)

where R0 is a parameter (with units of distance) that is characteristic of each 
donor–acceptor pair. Equation 12.27 has been verifi ed experimentally, and values 
of R0 are available for a number of donor–acceptor pairs (Table 12.5).

Th e emission and absorption spectra of molecules span a range of wavelengths, 
so the second requirement of the Förster theory is met when the emission spec-
trum of the donor molecule overlaps signifi cantly with the absorption spectrum 

Table 12.5 Values of R0 for some donor–acceptor pairs*

Donor Acceptor R0/nm

Naphthalene Dansyl 2.2
Dansyl ODR 4.3
Pyrene Coumarin 3.9
1.5-I-AEDANS FITC 4.9
Tryptophan 1.5-I-AEDANS 2.2
Tryptophan Haem 2.9

*Abbreviations: dansyl, 5-dimethylamino-l-naphthalenesulfonic acid; FITC, fl uorescein,5-isothiocyanate; 
1.5-I-AEDANS: 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid; ODR, 
octadecyl-rhodamine.
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of the acceptor. In the overlap region, photons emitted by the donor have the 
proper energy to be absorbed by the acceptor (Fig. 12.51).

If the donor and acceptor molecules diff use in solution or in the gas phase, 
Förster theory predicts that the effi  ciency of quenching by energy transfer 
increases as the average distance traveled between collisions of donor and 
acceptor decreases. Th at is, the quenching effi  ciency increases with concentration 
of quencher, as predicted by the Stern–Volmer equation.

In many cases, it is possible to prove that energy transfer is the predominant 
mechanism of quenching if the excited state of the acceptor fl uoresces or phos-
phoresces at a characteristic wavelength. In a pulsed laser experiment, the rise in 
fl uorescence intensity from Q* with a time constant that is the same as that for the 
decay of the fl uorescence of S* is oft en taken as indication of energy transfer from 
S to Q.

Equation 12.26 forms the basis for fl uorescence resonance energy transfer 
(FRET), in which the dependence of the energy transfer effi  ciency, hT, on the dis-
tance, R, between energy donor and acceptor can be used to measure distances 
in biological systems. In a typical FRET experiment, a site on a biopolymer or 
membrane is labeled covalently with an energy donor and another site is labeled 
covalently with an energy acceptor. In certain cases, the donor or acceptor may 
be natural constituents of the system, such as amino acid groups, co-factors, 
or enzyme substrates. Th e distance between the labels is then calculated from 
the known value of R0 and eqn 12.27. Several tests have shown that the FRET 
technique is useful for measuring distances ranging from 1 to 9 nm.

Fig. 12.51 According to the Förster 
theory, the rate of energy transfer 
from a molecule S* in an excited 
state to a quencher molecule 
Q is optimized at radiation 
frequencies in which the 
emission spectrum of S* overlaps 
with the absorption spectrum of 
Q, as shown in the shaded region.

A brief illustration

As an illustration of the FRET technique, consider a study of the protein rho-
dopsin (Case study 12.2). When an amino acid on the surface of rhodopsin 
was labeled covalently with the energy donor 1.5-I-AEDANS (2), the fl uores-
cence quantum yield of the label decreased from 0.75 to 0.68 due to quenching 
by the visual pigment 11-cis-retinal (Atlas E3 and 3). From eqn 12.26, we cal-
culate hT = 1 − (0.68/0.75) = 0.093, and from eqn 12.27 and the known value of 
R0 = 5.4 nm for the 1.5-I-AEDANS/11-cis-retinal pair we calculate R = 7.9 nm. 
Th erefore, we take 7.9 nm to be the distance between the surface of the protein 
and 11-cis-retinal.

Case study 12.2 Vision

Th e eye is an exquisite photochemical organ that acts as a transducer, convert-
ing radiant energy into electrical signals that travel along neurons. Here we 
concentrate on the events taking place in the human eye, but similar processes 
occur in all animals. Indeed, a single type of protein, rhodopsin, is the primary 
receptor for light throughout the animal kingdom, which indicates that vision 
emerged very early in evolutionary history, no doubt because of its enormous 
value for survival.
Photons enter the eye through the cornea, pass through the ocular fl uid that 
fi lls the eye, and fall on the retina. Th e ocular fl uid is principally water, and 
passage of light through this medium is largely responsible for the chromatic 
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Fig. 12.52 Th e structure of 
rhodopsin, showing the a helices 
that anchor retinal, the visual 
pigment.

aberration of the eye, the blurring of the image as a result of diff erent frequen-
cies being brought to slightly diff erent focuses. Th e chromatic aberration 
is reduced to some extent by the tinted region called the macular pigment, 
which covers part of the retina. Th e pigments in this region are the carotene-
like xanthophylls (4), which absorb some of the blue light and hence help to 
sharpen the image. Th ey also protect the photoreceptor molecules from too 
great a fl ux of potentially dangerous high-energy photons. Th e xanthophylls 
have delocalized electrons that spread along the chain of conjugated double 
bonds, and the p-to-p* transition lies in the visible.
About 57 per cent of the photons that enter the eye reach the retina; the rest are 
scattered or absorbed by the ocular fl uid. Here the primary act of vision takes 
place, in which the chromophore of a rhodopsin molecule absorbs a photon 
in another p-to-p* transition. A rhodopsin molecule consists of an opsin pro-
tein molecule to which is attached an 11-cis-retinal molecule (Atlas E3 and 3). 
Th e latter resembles half a carotene molecule, showing Nature’s economy in 
its use of available materials. Th e attachment is by the formation of a proton-
ated Schiff ’s base, utilizing the CHO group of the chromophore and the 
terminal NH2 group of the side chain of a lysine residue from opsin (5). Th e 
free 11-cis-retinal molecule absorbs in the ultraviolet, but attachment to 
the opsin protein molecule shift s the absorption into the visible region. Th e 
rhodopsin molecules are situated in the membranes of special cells (the ‘rods’ 
and the ‘cones’) that cover the retina. Th e opsin molecule is anchored into the 
cell membrane by two hydrophobic groups and largely surrounds the chro-
mophore (Fig. 12.52).

Immediately aft er the absorption of a photon, the 11-cis-retinal molecule 
undergoes photoisomerization into all-trans-retinal (Atlas E2 and 6). Photo-
isomerization takes about 200 fs, and about 67 pigment molecules isomerize 
for every 100 photons that are absorbed. Th e process occurs because the 
p-to-p* excitation of an electron loosens one of the p-bonds (the one indicated 
by the arrow in 5), its torsional rigidity is lost, and one part of the molecule 
swings around into its new position. At that point, the molecule returns to 
its ground state but is now trapped in its new conformation. Th e straightened 
tail of all-trans-retinal results in the molecule taking up more space than 
11-cis-retinal did, so the molecule presses against the coils of the opsin 
molecule that surrounds it. In about 0.25–0.50 ms from the initial absorption 
event, the rhodopsin molecule is activated both by the isomerization of retinal 
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and deprotonation of its Schiff ’s base tether to opsin, forming an intermediate 
known as metarhodopsin II.

In a sequence of biochemical events known as the biochemical cascade, 
metarhodopsin II activates the protein transducin (Atlas P13), which in turn 
activates a phosphodiesterase enzyme that hydrolyzes cyclic guanine mono-
phosphate (cGMP) to GMP. Th e reduction in the concentration of cGMP 
causes cGMP-gated ion channels to close, and the result is a sizable change in 
the transmembrane potential. Th e pulse of electric potential travels through 
the optical nerve and into the optical cortex, where it is interpreted as a signal 
and incorporated into the web of events we call ‘vision’.

Th e resting state of the rhodopsin molecule is restored by a series of non-
radiative chemical events powered by ATP. Th e process involves the escape of 
all-trans-retinal as all-trans-retinol (in which –CHO has been reduced to 
–CH2OH) from the opsin molecule by a process catalyzed by the enzyme 
rhodopsin kinase and the attachment of another protein molecule, arrestin. 
Th e free all-trans-retinol molecule now undergoes enzyme-catalyzed isomer-
ization into 11-cis-retinol followed by dehydrogenation to form 11-cis-retinal, 
which is then delivered back into an opsin molecule. At this point, the cycle of 
excitation, photoisomerization, and regeneration is ready to begin again.

Case study 12.3 Photosynthesis

Up to about 1 kW m−2 of solar radiation reaches the Earth’s surface, with the 
exact intensity depending on latitude, time of day, and weather. A signifi cant 
amount of this energy is harnessed during photosynthesis. Other photochem-
ical processes also occur in both photosynthetic and nonphotosynthetic 
organisms. Among the benefi cial processes in humans are vision and the bio-
synthesis of vitamin D3 from 7-dehydrocholesterol in skin. Other processes, 
such as DNA damage caused by prolonged exposure to ultraviolet radiation, 
are deleterious to both higher and lower organisms. When controlled care-
fully, however, these potentially harmful photochemical processes may be 
turned into benefi cial forms of therapy.

A large proportion of solar radiation with wavelengths below 400 nm and above 
1000 nm is absorbed by atmospheric gases such as ozone and O2, which absorb 
ultraviolet radiation, and CO2 and H2O, which absorb infrared radiation 
(see Example 12.3). As a result, plants, algae, and some species of bacteria 
have evolved photosynthetic apparatus that capture visible and near-infrared 
radiation. Plants use radiation in the wavelength range 400–700 nm to drive 
the endergonic reduction of CO2 with concomitant oxidation of water to 
O2 (DrG3 = +2880 kJ mol−1). We have already examined the thermodynamics 
of plant photosynthesis (Section 5.11); here we shall describe the kinetics of 
the capture and utilization of solar energy.

In the chloroplast, chlorophylls a and b (Atlas R3) and carotenoids (of which 
b-carotene, Atlas E1, is an example) bind to integral proteins called light-
harvesting complexes, which absorb solar energy and transfer it to protein 
complexes known as reaction centers, where light-induced electron transfer 
reactions occur. Th e combination of a light harvesting complex and a reaction 
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center complex is called a photosystem. Plants have two photosystems, photo-
systems I and II, that drive the reduction of NADP+ by water (Section 5.11):

2 NADP+ + 2 H2O  lightffg O2 + 2 NADPH + 2H+

Light-harvesting complexes bind large numbers of pigments in order to pro-
vide a suffi  ciently large area for capture of radiation. In photosystems I and II, 
absorption of a photon raises a chlorophyll or carotenoid molecule to an 
excited singlet state and within 0.1–5 ps the energy hops to a nearby pigment 
by the Förster mechanism (Section 12.13). About 100–200 ps later, which cor-
responds to thousands of hops within the light-harvesting complex, more than 
90 per cent of the absorbed energy reaches the reaction center. Th ere, a chloro-
phyll a dimer becomes electronically excited and initiates ultrafast electron 
transfer reactions. For example, the transfer of an electron from the excited 
singlet state of P680, the chlorophyll dimer of the photosystem II reaction 
center, to its immediate electron acceptor, a pheophytin a molecule,5 occurs 
within 3 ps. Once the excited state of P680 has been quenched effi  ciently by 
this fi rst reaction, subsequent steps that lead to the oxidation of water and 
reduction of plastoquinone occur more slowly, with reaction times varying 
from 200 ps to 1 ms. Th e electrochemical reactions within the photosystem 
I reaction center also occur in this time regime.

In summary, the initial energy and electron transfer events of photosynthesis 
are under tight kinetic control. Photosynthesis captures solar energy effi  ciently 
because the excited singlet state of chlorophyll is quenched rapidly by pro-
cesses that occur with time constants that are much shorter than the fl uores-
cence lifetime, which is about 5 ns in diethyl ether at room temperature.

Case study 12.4 Damage of DNA by ultraviolet radiation

Ozone trapped in the Earth’s stratosphere, a region spanning from 15 km to 
50 km above the surface of the Earth, partially shields the biosphere from 
harmful ultraviolet radiation in the ‘UVB range’, 290–320 nm. Th e depletion 
of stratospheric ozone by reactions with atmospheric pollutants (most notably 
the chlorofl uorocarbons) has increased the amount of UVB radiation at the 
Earth’s surface. Because the physiological consequences of prolonged exposure 
to UVB radiation include DNA damage, genetic mutations, cell destruction, 
sunburn, and skin cancers, there is concern that the depletion of the protec-
tive ozone layer may lead to an increase in mortality not only of animals but 
also the plants and lower organisms that form the base of the food chain.

Th e principal mechanism of DNA damage involves the photodimerization 
of adjacent thymine bases to yield either a cyclobutane–thymine dimer or a 
6,4 photoproduct (Fig. 12.53). Th e former has been linked directly to cell 
death, and the latter may lead to DNA mutations and, consequently, to the 
formation of tumors.

Th ere are several natural mechanisms for protection from and repair of 
photochemical damage. For example, the enzyme DNA photolyase, present 
in organisms from all kingdoms but not in humans, catalyzes the destruction 

5 Pheophytin a is a chlorophyll a molecule where the central Mg2+ ion is replaced by two protons, 
which are bound to two of the pyrrole nitrogens in the ring.
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of cyclobutane thymine dimers. Also, ultraviolet radiation can induce the 
production of the pigment melanin (in a process more commonly known as 
‘tanning’), which shields the skin from damage. However, repair and pro-
tective mechanisms become increasingly less eff ective with persistent and 
prolonged exposure to solar radiation.

Case study 12.5 Photodynamic therapy

Th e reactions of a molecule that does not absorb light directly can be made 
to occur if another absorbing molecule is present because the latter may be 
able to transfer its energy to the former during a collision. An example of this 
photosensitization is the reaction used to generate excited state O2 in a type of 
treatment known as photodynamic therapy (PDT). In PDT, laser radiation is 
absorbed by a drug that, in its fi rst excited triplet state 3P, photosensitizes the 
formation of an excited singlet state of O2, 1O2, from its triplet ground state, 
3O2. Th e 1O2 molecules are very reactive and destroy cellular components, and 
it is thought that cell membranes are the primary cellular targets. Hence, the 
photochemical cycle below leads to the shrinkage (and sometimes total 
destruction) of diseased tissue.

Absorption: P + hn → P*
Intersystem crossing: P* → 3P
Photosensitization: 3P + 3O2 → P + 1O2

Oxidation reactions: 1O2 + reactants → products

Th e photosensitizer is hence a ‘photocatalyst’ for the production of 1O2. It is 
common practice to use a porphyrin photosensitizer, such as compounds 
derived from hematoporphyrin (7). However, much eff ort is being expended 
to develop better drugs with enhanced photochemical properties.

Fig. 12.53 Th e photodimerization 
of thymine bases to form either 
(a) a cyclobutane–thymine dimer 
or (b) a 6,4 photoproduct.
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A potential PDT drug must meet many criteria. From the point of view of 
pharmacological eff ectiveness, the drug must be soluble in tissue fl uids so it 
can be transported to the diseased organ through blood and secreted from the 
body through urine. Th e therapy should also result in very few side eff ects. Th e 
drug must also have unique photochemical properties. It must be activated 
photochemically at wavelengths that are not absorbed by blood and skin. 
In practice, this means that the drug should have a strong absorption band at 
l > 650 nm. Drugs based on hematoporphyrin do not meet this criterion 
very well, so novel porphyrin and related macrocycles with more desirable 
electronic properties are being synthesized and tested. At the same time, the 
quantum yield of triplet formation and of 1O2 formation must be high so many 
drug molecules can be activated and many oxidation reactions can occur dur-
ing a short period of laser irradiation. Photodynamic therapy has been used 
successfully in the treatment of macular degeneration, a disease of the retina 
that leads to blindness, and in a number of cancers, including those of the lung, 
bladder, skin, and esophagus.
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Checklist of key concepts

 1. Spectroscopy is the analysis of the electromagnetic 
radiation emitted, absorbed, or scattered by atoms 
and molecules.

 2. A spectrometer consists of a source of radiation, 
a dispersing element (or an interferometer), and 
a detector.

 3. In a Raman spectrum lines shift ed to lower frequency 
than the incident radiation are called Stokes lines and 
lines shift ed to higher frequency are called anti-Stokes 
lines.

 4. Th e intensity of a transition is proportional to the 
square of the transition dipole moment.

 5. A selection rule is a statement about when the 
transition dipole can be nonzero.

 6. A gross selection rule specifi es the general features 
a molecule must have if it is to have a spectrum of a 
given kind.

 7. A specifi c selection rule is a statement about which 
changes in quantum number may occur in a 
transition.

 8. Th e gross selection rule for infrared absorption 
spectra is that the electric dipole moment of the 
molecule must change during the vibration.

 9. Th e specifi c selection rule for vibrational transitions 
is Dv = ±1.

 10. Th e gross selection rule for the vibrational Raman 
spectrum of a polyatomic molecule is that the normal 
mode of vibration is accompanied by a changing 
polarizability.

 11. Th e exclusion rule states that if the molecule has a 
center of inversion, then no modes can be both 
infrared and Raman active.

 12. In resonance Raman spectroscopy, radiation that 
nearly coincides with the frequency of an electronic 
transition is used to excite the sample and the 
result is a much greater intensity in the scattered 
radiation.

 13. In conventional microscopy, the diff raction limit 
prevents the study of specimens that are much 
smaller than the wavelength of light used as 
a probe.

 14. In vibrational microscopy, an infrared or Raman 
spectrometer is combined with a microscope to yield 
the vibrational spectrum of molecules in small 
specimens, such as single cells.

 15. Th e Franck–Condon principle states that because 
nuclei are so much more massive than electrons, an 
electronic transition takes place faster than the nuclei 
can respond.

 16. A chromophore is a group with characteristic 
optical absorption: chromophores include d-metal 
complexes, the carbonyl group, and the carbon–
carbon double bond.

 17. Chiral molecules may show optical activity and 
circular dichroism, the diff erential absorption of 
left - and right-circularly polarized light.

 18. In fl uorescence, the spontaneously emitted radiation 
ceases quickly aft er the exciting radiation is 
extinguished.

 19. In phosphorescence, the spontaneous emission may 
persist for long periods; the process involves 
intersystem crossing into a triplet state.

 20. In fl uorescence microscopy, images of biological cells 
at work are obtained by attaching a large number of 
fl uorescent molecules to proteins, nucleic acids, and 
membranes, and then measuring the distribution of 
fl uorescence intensity within the illuminated area. 
Special techniques permit the observation of 
fl uorescence from single molecules in cells.

 21. Th e primary quantum yield of a photochemical 
reaction is the number of events producing specifi ed 
primary products for each photon absorbed; the 
overall quantum yield is the number of reactant 
molecules that react for each photon absorbed.

 22. Collisional deactivation, electron transfer, and 
resonance energy transfer are common fl uorescence 
quenching processes. Th e rate constants of electron 
and resonance energy transfer decrease with 
increasing separation between donor and acceptor 
molecules.

 23. Fluorescence resonance energy transfer (FRET) forms 
the basis of a technique for measuring distances 
between molecules in biological systems.
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Discussion questions

12.1 Describe the physical origins of linewidths in absorption and 
emission spectra.

12.2 (a) Discuss the physical origins of the gross selection rules for 
infrared spectroscopy and Raman spectroscopy. (b) Suppose that you 
wish to characterize the normal modes of benzene in the gas phase. 
Why is it important to obtain both infrared absorption and Raman 
spectra of your sample?

12.3 Explain how color can arise from molecules.

12.4 Explain the origin of the Franck–Condon principle and how 
it leads to the appearance of vibrational structure in an electronic 
transition.

12.5 Provide examples of common chromophores.

12.6 Describe the mechanisms of photon emission by fl uorescence 
and phosphorescence.

12.7 (a) Summarize the main features of the Förster theory of 
resonance energy transfer. (b) Discuss FRET and photosynthetic 
light harvesting in terms of Förster theory.

Exercises

12.8 Express a wavelength of 670 nm as (a) a frequency and 
(b) a wavenumber.

12.9 What is (a) the wavenumber and (b) the wavelength of 
the radiation used by an FM radio transmitter broadcasting 
at 92.0 MHz?

12.10 When light of wavelength 410 nm passes through 2.5 mm 
of a solution of the dye responsible for the yellow of daff odils at a 
concentration 0.433 mmol dm−3, the transmission is 71.5 per cent. 

Calculate the molar absorption coeffi  cient of the coloring matter 
at this wavelength and express the answer in centimeters squared 
per mole (cm2 mol−1).

12.11 An aqueous solution of a triphosphate derivative of molar 
mass 602 g mol−1 was prepared by dissolving 30.2 mg in 500 cm3 of 
water and a sample was transferred to a cell of length 1.00 cm. Th e 
absorbance was measured as 1.011. (a) Calculate the molar absorption 
coeffi  cient. (b) Calculate the transmittance, expressed as a percentage, 
for a solution of twice the concentration.

Checklist of key equations

Property Equation Comment

Beer–Lambert law I = I0e−ε[J]L Uniform solution
Absorbance
Transmittance

Transition dipole moment

Lifetime broadening
Vibrational selection rule
Number of vibrational modes

Primary quantum yield
Observed fl uorescence lifetime
Stern–Volmer equation
Energy transfer effi  ciency

A = ε[J]L
T = I/I0

mfi  = � yf*mmyi dt

dE ≈ ħ/t
Dv = ±1
(a) 3N − 6, (b) 3N − 5

f = rate/Iabs

t0 = fF/kF

fF,0/fF = 1 + t0kQ[Q]
hT = 1 − fF/fF,0

Defi nition
Defi nition

Defi nition

In practice: d6 ≈ (5.3 cm−1)/(t/ps)
Harmonic oscillator model
(a) Nonlinear molecules,
(b) linear molecules

Defi nition
Förster theory hT = R0

6/(R0
6 + R6)
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12.12 A swimmer enters a gloomier world (in one sense) on diving to 
greater depths. Given that the mean molar absorption coeffi  cient of 
seawater in the visible region is 6.2 × 10−5 dm3 mol−1 cm−1, calculate 
the depth at which a diver will experience (a) half the surface intensity 
of light and (b) one-tenth that intensity.

12.13 Consider a solution of two unrelated substances A and B. Let 
their molar absorption coeffi  cients be equal at a certain wavelength 
and write their total absorbance A. Show that we can infer the 
concentration of A and B from the total absorbance at some other 
wavelength provided we know the molar absorption coeffi  cients at 
that diff erent wavelength. (See eqn 12.7.)

12.14 Th e molar absorption coeffi  cients of tryptophan and tyrosine at 
240 nm are 2.00 × 103 dm3 mol−1 cm−1 and 1.12 × 104 dm3 mol−1 cm−1, 
respectively, and at 280 nm they are 5.40 × 103 dm3 mol−1 cm−1 and 
1.50 × 103 dm3 mol−1 cm−1. Th e absorbance of a sample obtained by 
hydrolysis of a protein was measured in a cell of thickness 1.00 cm 
and was found to be 0.660 at 240 nm and 0.221 at 280 nm. What are 
the concentrations of the two amino acids?

12.15 A solution was prepared by dissolving tryptophan and tyrosine 
in 0.15 m NaOH(aq) and a sample was transferred to a cell of length 
1.00 cm. Th e two amino acids share the same molar absorption 
coeffi  cient at 294 nm (2.38 × 103 dm3 mol−1 cm−1), and the absorbance 
of the solution at that wavelength is 0.468. At 280 nm the molar 
absorption coeffi  cients are 5.23 × 103 and 1.58 × 103 dm3 mol−1 cm−1, 
respectively and the total absorbance of the solution is 0.676. What are 
the concentrations of the two amino acids? Hint: It would be sensible 
to use the result derived in Exercise 12.13, but this specifi c example 
could be worked through without using that general case.

12.16 In many cases it is possible to assume that an absorption band 
has a Gaussian line shape (one proportional to e−x2) centered on the 
band maximum. (a) Assume such a line shape and show that

A = �ε(6)d6 ≈ 1.0645εmaxD61/2

where D61/2 is the width at half-height. (b) Th e electronic absorption 
bands of many molecules in solution have half-widths at half-height 
of about 5000 cm−1. Estimate the integrated absorption coeffi  cients 
of bands for which (i) εmax ≈ 1 × 104 dm3 mol−1 cm−1 and 
(ii) εmax ≈ 5 × 102 dm3 mol−1 cm−1.

12.17 *Ozone absorbs ultraviolet radiation in a part of the 
electromagnetic spectrum energetic enough to disrupt DNA in 
biological organisms and absorbed by no other abundant atmospheric 
constituent. Th is spectral range, denoted UVB, spans wavelengths 
from about 290 nm to 320 nm. (a) Th e abundance of ozone is typically 
inferred from measurements of UV absorption and is oft en expressed 
in terms of Dobson units (DU): 1 DU is equivalent to a layer of pure 
ozone 10 mm thick at 1 atm and 0°C. Compute the absorbance of UV 
radiation at 300 nm expected for an ozone abundance of 300 DU 
(a typical value) and 100 DU (a value reached during seasonal 
Antarctic ozone depletions) given a molar absorption coeffi  cient 
of 476 dm3 mol−1 cm−1. (b) Th e molar extinction coeffi  cient of 
ozone over the UVB range is given in the table below. Compute 
the integrated absorption coeffi  cient of ozone over the wavelength 
range 290–320 nm. Hint: ε(6) can be fi tted to an exponential function 
quite well.

l/nm  292.0 296.3 300.8 305.4
ε/(dm3 mol−1 cm−1) 1512 865 477 257
l/nm  310.1 315.0 320.0 
ε/(dm3 mol−1 cm−1)  135.9  69.5  34.5

12.18 Th e Beer–Lambert law is derived on the basis that the 
concentration of absorbing species is uniform (see Justifi cation 12.1). 
Suppose instead that the concentration falls exponentially as 
[J] = [J]0e−x/l. Derive an expression for the variation of I with sample 
length: suppose that l >> l. Hint: Work through Justifi cation 12.1, 
but use this expression for the concentration.

12.19 Assume that the electronic states of the p electrons of a 
conjugated molecule can be approximated by the wavefunctions of a 
particle in a one-dimensional box and that the dipole moment can be 
related to the displacement along this length by m = −ex. Show that 
the transition probability for the transition n = 1 → n = 2 is nonzero, 
whereas that for n = 1 → n = 3 is zero. Hint: Th e following relations 
will be useful:

sin x sin y = 12 cos(x − y) − 12 cos(x + y)

�x cos ax dx = 1
a2

 cos ax + x
a

 sin ax

12.20 Estimate the lifetime of a state that gives rise to a line of width 
(a) 0.1 cm−1, (b) 1 cm−1, and (c) 1.0 GHz.

12.21 A molecule in a liquid undergoes about 1 × 1013 collisions 
in each second. Suppose that (a) every collision is eff ective in 
deactivating the molecule vibrationally and (b) that one collision 
in 200 is eff ective. Calculate the width (in cm−1) of vibrational 
transitions in the molecule.

12.22 Suppose that the C=O group in a peptide bond can be regarded 
as isolated from the rest of the molecule. Given that the force constant 
of the bond in a carbonyl group is 908 N m−1, calculate the vibrational 
frequency of (a) 12C=16O and (b) 13C=16O.

12.23 Th e hydrogen halides have the following fundamental 
vibrational wavenumbers:

 HF HCl HBr HI
6/cm−1 4141.3 2988.9 2649.7 2309.5

(a) Calculate the force constants of the hydrogen–halogen bonds. 
(b) From the data in part (a), predict the fundamental vibrational 
wavenumbers of the deuterium halides.

12.24 Which of the following molecules may show infrared 
absorption spectra: (a) H2, (b) HCl, (c) CO2, (d) H2O, (e) CH3CH3, 
(f) CH4, (g) CH3Cl, and (h) N2?

12.25 How many normal modes of vibration are there for (a) NO2, 
(b) N2O, (c) cyclohexane, and (d) hexane?

12.26 Consider the vibrational mode that corresponds to the uniform 
expansion of the benzene ring. Is it (a) Raman or (b) infrared active?

12.27 Suppose that three conformations are proposed for the 
nonlinear molecule H2O2 (8, 9, and 10). Th e infrared absorption 
spectrum of gaseous H2O2 has bands at 870, 1370, 2869, and 

* Adapted from a problem supplied by Charles Trapp and Carmen 
Giunta.
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3417 cm−1. Th e Raman spectrum of the same sample has bands at 
877, 1408, 1435, and 3407 cm−1. All bands correspond to fundamental 
vibrational wavenumbers, and you may assume that (i) the 870 and 
877 cm−1 bands arise from the same normal mode and (ii) the 3417 
and 3407 cm−1 bands arise from the same normal mode. (a) If H2O2 
were linear, how many normal modes of vibration would it have? 
(b) Determine which of the proposed conformations is inconsistent 
with the spectroscopic data. Explain your reasoning.

12.28 Th e compound CH3CH=CHCHO has a strong absorption in 
the ultraviolet at 46 950 cm−1 and a weak absorption at 30 000 cm−1. 
Justify these features in terms of the structure of the compound.

12.29 Figure 12.54 shows the UV–visible absorption spectra of 
a selection of amino acids. Suggest reasons for their diff erent 
appearances in terms of the structures of the molecules.

12.32 Consider some of the precautions that must be taken when 
conducting single-molecule spectroscopy experiments. (a) What is 
the molar concentration of a solution in which there is, on average, 
one solute molecule in 1.0 mm3 (1.0 fL) of solution? (b) It is important 
to use pure solvents in single-molecule spectroscopy because optical 
signals from fl uorescent impurities in the solvent may mask optical 
signals from the solute. Suppose that water containing a fl uorescent 
impurity of molar mass 100 g mol−1 is used as solvent and that analysis 
indicates the presence of 0.10 mg of impurity per 1.0 kg of solvent. On 
average, how many impurity molecules will be present in 1.0 mm3 of 
solution? You may take the density of water as 1.0 g cm−3. Comment 
on the suitability of this solvent for single-molecule spectroscopy 
experiments.

12.33 Light-induced degradation of molecules, also called 
photobleaching, is a serious problem in single-molecule spectroscopy. 
A molecule of a fl uorescent dye commonly used to label biopolymers 
can withstand about 106 excitations by photons before light-induced 
reactions destroy its p system and the molecule no longer fl uoresces. 
For how long will a single dye molecule fl uoresce while being excited 
by 1.0 mW of 488 nm radiation from a laser? You may assume that the 
dye has an absorption spectrum that peaks at 488 nm and that every 
photon delivered by the laser is absorbed by the molecule.

12.34 Consider a unimolecular photochemical reaction with rate 
constant kr = 1.7 × 104 s−1 that involves a reactant with an observed 
fl uorescence lifetime of 1.0 ns and an observed phosphorescence 
lifetime of 1.0 ms. Is the excited singlet state or the excited triplet state 
the most likely precursor of the photochemical reaction?

12.35 In a photochemical reaction A → 2 B + C, the quantum yield 
with 500 nm light is 2.1 × 102 mol einstein−1 (1 einstein = 1 mol 
photons). Aft er exposure of 300 mmol of A to the light, 2.28 mmol 
of B is formed. How many photons were absorbed by A?

12.36 In an experiment to measure the quantum yield of a 
photochemical reaction, the absorbing substance was exposed to 
490 nm light from a 100 W source for 45 min. Th e intensity of the 
transmitted light was 40 per cent of the intensity of the incident light. 
As a result of irradiation, 0.344 mol of the absorbing substance 
decomposed. Determine the quantum yield.

12.37 When benzophenone is illuminated with ultraviolet radiation, 
it is excited into a singlet state. Th is singlet changes rapidly into a 
triplet, which phosphoresces. Triethylamine acts as a quencher for the 
triplet. In an experiment in methanol as solvent, the phosphorescence 
intensity Iphos varied with amine concentration as shown below. A 
time-resolved laser spectroscopy experiment had also shown that the 
half-life of the fl uorescence in the absence of quencher is 29 ms. What 
is the value of kQ?

[Q]/(mol dm−3) 0.0010 0.0050 0.0100
Iphos/(arbitrary units) 0.41 0.25  0.16

12.38 Th e fl uorescence intensity If of a solution of a plant pigment 
illuminated by 330 nm radiation was studied in the presence of a 
quenching agent, with the following results

[Q]/(mmol dm−3) 1.0 2.0 3.0 4.0 5.0
If/Iabs 0.31 0.18 0.13 0.10 0.081

In a second series of experiments, the fl uorescence lifetimes of the 
pigment were determined by time-resolved spectroscopy:

[Q]/(mmol dm−3)  1.0  2.0  3.0  4.0  5.0
t/ns 76 45 32 25 20

Fig. 12.54  

12.30 Suppose that you are a color chemist and have been asked to 
intensify the color of a dye without changing the type of compound 
and that the dye in question is a polyene. (a) Would you choose to 
lengthen or to shorten the chain? (b) Would the modifi cation to the 
length shift  the apparent color of the dye toward the red or the blue?

12.31 Dansyl chloride (11), which absorbs maximally at 330 nm and 
fl uoresces maximally at 510 nm, can be used to label amino acids in 
fl uorescence microscopy and FRET studies. Tabulated below is the 
variation of the fl uorescence intensity of an aqueous solution of dansyl 
chloride with time aft er excitation by a short laser pulse (with I0 the 
initial fl uorescence intensity):

t/ns 5.0 10.0 15.0 20.0
If/I0 0.45  0.21  0.11  0.05

(a) Calculate the observed fl uorescence lifetime of dansyl chloride in 
water. (b) Th e fl uorescence quantum yield of dansyl chloride in water 
is 0.70. What is the fl uorescence rate constant?
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Projects

12.45 At the current stage of your study, you have enough knowledge 
of physical chemistry and biochemistry to begin reading the current 
literature with a critical eye. Consult monographs, journal articles, 
and reliable internet resources, such as those listed in the web site 
for this text, and write a brief report (similar in length and depth of 
coverage to one of the many Case studies in this text) on each of the 
following topics.

(a) In confocal Raman microscopy, light must pass through several 
holes of very small diameter before reaching the detector. In this way 
light that is out of focus does not interfere with an image that is in 
focus. Prepare a brief report on the advantages and disadvantages of 
confocal Raman microscopy over conventional Raman microscopy 
in the study of biological systems. Hint: A good place to start is P. 
Colarusso, L.H. Lidder, I.W. Levin, E.N. Lewis, Raman and IR 
microspectroscopy. In Encyclopedia of spectroscopy and spectrometry 
(ed. J.C. Lindon, G.E. Tranter, and J.L. Holmes), 3, 1945. Academic 
Press, San Diego (2000).

(b) We have seen throughout the text that it is possible to observe the 
cooperativity of biopolymer denaturation by determining the extent 
of denaturation as a function of some parameter that aff ects its 
stability, such as temperature or denaturant concentration. Prepare a 
report summarizing the use of a spectroscopic technique in the study 
of protein denaturation. Your report should include (i) a description 
of experimental methods, (ii) a discussion of the information that 
can be obtained from the measurements, (iii) an example from the 
literature of the use of the technique in protein stability work, and 

(iv) a brief discussion of the advantages and disadvantages of the 
technique of your choice over diff erential scanning calorimetry 
(In the laboratory 1.1), a very popular technique for the study of 
biopolymer stability.

12.46 Th e protein hemerythrin (Her) is responsible for binding and 
carrying O2 in some invertebrates. Each protein molecule has two 
Fe2+ ions that are in very close proximity and work together to bind 
one molecule of O2. Th e Fe2O2 group of oxygenated hemerythrin 
is colored and has an electronic absorption band at 500 nm.

(a) Figure 12.55 shows the UV–visible absorption spectrum of a 
derivative of hemerythrin in the presence of diff erent concentrations 
of CNS− ions. What may be inferred from the spectrum?

Fig. 12.55  

Determine the quenching rate constant and the half-life of the 
fl uorescence.

12.39 Th e Förster theory of resonance energy transfer and the basis 
for the FRET technique can be tested by performing fl uorescence 
measurements on a series of compounds in which an energy donor 
and an energy acceptor are covalently linked by a rigid molecular 
linker of variable and known length. L. Stryer and R.P. Haugland, 
Proc. Natl. Acad. Sci. USA 58, 719 (1967), collected the following 
data on a family of compounds with the general composition 
dansyl-(l-prolyl)n-naphthyl, in which the distance R between the 
naphthyl donor and the dansyl acceptor was varied by increasing 
the number of prolyl units in the linker:

R/nm 1.2 1.5 1.8 2.8 3.1 3.4 3.7 4.0 4.3 4.6
hT 0.99 0.94 0.97 0.82 0.74 0.65 0.40 0.28 0.24 0.16

Are the data described adequately by the Förster theory (eqns 12.26 
and 12.27)? If so, what is the value of R0 for the naphthyl–dansyl pair?

12.40 An amino acid on the surface of a protein was labeled 
covalently with 1.5-I-AEDANS and another was labeled covalently 
with FITC. Th e fl uorescence quantum yield of 1.5-I-AEDANS 
decreased by 10 per cent due to quenching by FITC. What is the 
distance between the amino acids? Hint: see Table 21.6.

12.41 Th e fl ux of visible photons reaching Earth from the North Star 
is about 4 × 103 mm−2 s−1. Of these photons, 30 per cent are absorbed 
or scattered by the atmosphere and 25 per cent of the surviving 
photons are scattered by the surface of the cornea of the eye. A further 
9 per cent are absorbed inside the cornea. Th e area of the pupil at 

night is about 40 mm2 and the response time of the eye is about 0.1 s. 
Of the photons passing through the pupil, about 43 per cent are 
absorbed in the ocular medium. How many photons from the North 
Star are focused onto the retina in 0.1 s? For a continuation of this 
story, see R.W. Rodieck, Th e fi rst steps in seeing, Sinauer, Sunderland 
(1998).

12.42 In light-harvesting complexes, the fl uorescence of a chlorophyll 
molecule is quenched by nearby chlorophyll molecules. Given that for 
a pair of chlorophyll a molecules R0 = 5.6 nm, by what distance should 
two chlorophyll a molecules be separated to shorten the fl uorescence 
lifetime from 1 ns (a typical value for monomeric chlorophyll a in 
organic solvents) to 10 ps?

12.43 Th e light-induced electron transfer reactions in photosynthesis 
occur because chlorophyll molecules (whether in monomeric or 
dimeric forms) are better reducing agents in their electronic excited 
states. Justify this observation with the help of molecular orbital 
theory.

12.44 Th e emission spectrum of a porphyrin dissolved in 
O2-saturated water shows a strong band at 650 nm and a weak band at 
1270 nm. In separate experiments, it was observed that the electronic 
absorption spectrum of the porphyrin sample showed bands at 
420 nm and 550 nm and the electronic absorption spectrum of 
O2-saturated water showed no bands in the visible range of the 
spectrum (and therefore no emission spectrum when excited in 
the same range). Based on these data alone, make a preliminary 
assignment of the emission band at 1270 nm. Propose additional 
experiments that test your hypothesis.
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(b) Th e resonance Raman spectrum of oxygenated hemerythrin 
obtained with laser excitation at 500 nm has a band at 844 cm−1 that 
has been attributed to the O—O stretching mode of bound 16O2. Why 
is resonance Raman spectroscopy and not infrared spectroscopy the 
method of choice for the study of the binding of O2 to hemerythrin?

(c) Proof that the 844 cm−1 band in the resonance Raman spectrum 
of oxygenated hemerythrin arises from a bound O2 species may be 
obtained by conducting experiments on samples of hemerythrin that 
have been mixed with 18O2 instead of 16O2. Predict the fundamental 
vibrational wavenumber of the 18O–18O stretching mode in a sample 
of hemerythrin that has been treated with 18O2.

(d) Th e fundamental vibrational wavenumbers for the O–O 
stretching modes of O2, O2

− (superoxide anion), and O2
2− (peroxide 

anion) are 1555, 1107, and 878 cm−1, respectively. (i) Explain this 
trend in terms of the electronic structures of O2, O2

−, and O2
2−. Hint: 

Review Case study 10.1. (ii) What are the bond orders of O2, O2
−, 

and O2
2−?

(e) Based on the data given in part (d), which of the following species 
best describes the Fe2O2 group of hemerythrin: Fe2

2+O2, Fe2+Fe3+O2
−, or 

Fe2
3+O2

2−? Explain your reasoning.

(f) Th e resonance Raman spectrum of hemerythrin mixed with 
16O18O has two bands that can be attributed to the O–O stretching 
mode of bound oxygen. Discuss how this observation may be used 
to exclude one or more of the four proposed schemes (12–15) for 
binding of O2 to the Fe2 site of hemerythrin.

formation of the AB complex. Write an expression for dR/dt and then 
show that

Req = Rmax 
A
C

a0K
a0K + 1

D
F

where Req is the value or R at equilibrium, Rmax is the maximum 
value that R can have, and a0 is the total concentration of A. To 
make progress with the derivation, consider that (i) in a typical SPR 
experiment, the fl ow rate of A is suffi  ciently high that [A] = a0 is 
essentially constant, (ii) we can write [B] = b0 − [AB], where b0 is the 
total concentration of B, (iii) the SPR signal is oft en observed to be 
proportional to [AB], and (iv) the maximum value that R can have is 
Rmax  ∝ b0, which would be measured if all B molecules were ligated 
to A.

(b) Discuss how a plot of a0/Req against a0 can be used to evaluate Rmax 
and K.

(c) Show that, for the association part of the experiment in Fig. 12.56, 
R(t) = Req(1 − e−kobst).

(d) Derive an expression for R(t) that applies to the dissociation part 
of the experiment in Fig. 12.56.

12.48 Th e Beer–Lambert law states that the absorbance of a sample 
at a wavenumber is proportional to the molar concentration [J] of 
the absorbing species J and to the length L of the sample (eqn 12.5). 
In this problem you will show that the intensity of fl uorescence 
emission from a sample of J is also proportional to [J] and L. Consider 
a sample of J that is illuminated with a beam of intensity I0(6) at the 
wavenumber 6. Before fl uorescence can occur, a fraction of I0(6) must 
be absorbed and an intensity I(6) will be transmitted. However, not 
all the absorbed intensity is emitted, and the intensity of fl uorescence 
depends on the fl uorescence quantum yield, fF, the effi  ciency of 
photon emission. Th e fl uorescence quantum yield ranges from 0 to 1 
and is proportional to the ratio of the integral of the fl uorescence 
spectrum over the integrated absorption coeffi  cient. Because of a 
shift  of magnitude D6, fl uorescence occurs at a wavenumber 6. F, with 
6. F + D6.  = 6. It follows that the fl uorescence intensity at nF, IF(6F), is 
proportional to fF and to the intensity of exciting radiation that is 
absorbed by J, Iabs(6) = I0(6) − I(6).

(a) Use the Beer–Lambert law to express Iabs(6) in terms of I0(6), [J], 
L, and ε(6), the molar absorption coeffi  cient of J at 6.

(b) Use your result from part (a) to show that IF(6) ∝ I0(6)ε(6)fF[J]L.

(c) In fl uorescence excitation spectroscopy, the intensity of emitted 
radiation at a constant emission wavelength (typically the wavelength 
at which emission is maximal) is monitored while the excitation 
wavelength is scanned. Use your results from parts (a) and (b) to 

Fig. 12.56  

12.47 As an example of the steps taken in biosensor analysis, consider 
the association of two proteins, A and B. In a typical experiment, a 
stream of solution containing a known concentration of A fl ows above 
the sensor’s surface to which B is attached covalently. Figure 12.56 
shows that the kinetics of binding of A to B may be followed by 
monitoring the time dependence of the surface plasmon resonance 
(SPR) signal, denoted by R, which is typically the shift  in resonance 
angle. Typically, the system is fi rst allowed to reach equilibrium, which 
is denoted by the plateau in Fig. 12.56. Th en a solution containing no 
A is fl owed above the surface and the AB complex dissociates. Now we 
see that analysis of the decay of the SPR signal reveals the kinetics of 
dissociation of the AB complex.

(a) First, show that the equilibrium constant for formation of the AB 
complex can be measured directly from data of the type displayed in 
Fig. 12.56. Consider the equilibrium

A + B 7 AB  K = kon/koff 

where kon and koff  are, respectively, the rate constants for formation and 
dissociation of the AB complex and K is the equilibrium constant for 
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justify the statement that for a system consisting of a single species, 
the resulting excitation spectrum is identical to the absorption 
spectrum of the emitting species.

(d) Discuss how fl uorescence excitation spectroscopy may be used to 
provide evidence for resonance energy transfer between a donor and 
acceptor molecule.

Th e following projects require the use of molecular modeling soft ware.

12.49 We saw in Example 12.3 that water, carbon dioxide, and 
methane are able to absorb some of the Earth’s infrared emissions, 
whereas nitrogen and oxygen cannot. Th e semiempirical, ab initio, 
and DFT methods discussed in Chapter 10 can also be used to 
simulate vibrational spectra, and from the results of the calculation 
it is possible to determine the correspondence between a vibrational 
frequency and the atomic displacements that give rise to a normal 
mode.

(a) Using molecular modeling soft ware and the computational 
method of your instructor’s choice, visualize the vibrational normal 
modes of CH4, CO2, and H2O in the gas phase.

(b) Which vibrational modes of CH4, CO2, and H2O are responsible 
for absorption of infrared radiation?

12.50 Use molecule (16) as a model of the trans conformation of the 
chromophore found in rhodopsin. In this model, the methyl group 
bound to the nitrogen atom of the protonated Schiff ’s base replaces 
the protein.

(a) Using molecular modeling soft ware and the computational 
method of your instructor’s choice, calculate the energy separation 
between the HOMO and LUMO of (16).

(b) Repeat the calculation for the 11-cis form of (16).

(c) Based on your results from parts (a) and (b), do you expect the 
experimental frequency for the p-to-p* visible absorption of the trans 
form of (16) to be higher or lower than that for the 11-cis form of (16)?
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One of the most widely used and helpful forms of spectroscopy, and a technique that 
has transformed the practice of chemistry, biochemistry, and medicine, makes use of 
an effect that is familiar from classical physics. When two pendulums are joined by the 
same slightly flexible support and one is set in motion, the other is forced into oscillation 
by the motion of the common axle, and energy flows between the two. The energy 
transfer occurs most efficiently when the frequencies of the two oscillators are iden-
tical. The condition of strong effective coupling when the frequencies are identical is 
called resonance, and the excitation energy is said to ‘resonate’ between the coupled 
oscillators.

Resonance is the basis of a number of everyday phenomena, including the response 
of radios to the weak oscillations of the electromagnetic field generated by a distant 
transmitter. Historically, spectroscopic techniques that measure transitions between 
nuclear and electron spin states have carried the term ‘resonance’ in their names 
because they have depended on matching a set of energy levels to a source of mono-
chromatic radiation and observing the strong absorption that occurs at resonance.

In this chapter we explore magnetic resonance, a form of spectroscopy that when 
originally developed (and in some cases still) depends on matching a set of energy 
levels to a source of monochromatic radiation in the radiofrequency and microwave 
ranges and observing the strong absorption by magnetic nuclei in nuclear magnetic 
resonance (NMR) or by unpaired electrons in electron paramagnetic resonance
(EPR) that occurs at resonance. Nuclear magnetic resonance is a radiofrequency 
technique; EPR is a microwave technique.

A growing number of structures of biopolymers are now determined by NMR. So 
powerful is the technique that a clever variation, known as magnetic resonance 
imaging (MRI), makes possible the spectroscopic characterization of living tissue and 
has become a major diagnostic tool in medicine.

Principles of magnetic resonance

Th e application of resonance that we describe here depends on the fact that elec-
trons and many nuclei possess spin angular momentum (Table 13.1). An electron 
in a magnetic fi eld can take two orientations, corresponding to ms = + 12 (denoted 
a or ↑) and ms = − 12 (denoted b or ↓). A nucleus with nuclear spin quantum num-
ber I (the analog of s for electrons and that can be an integer or a half-integer) may 
take 2I + 1 diff erent orientations relative to an arbitrary axis. Th ese orientations 
are distinguished by the quantum number mI, which can take on the values mI = I, 
I − 1, . . . , −I. A proton has I = 12 (the same spin as an electron) and can adopt either 
of two orientations (mI = + 12 and − 12). A 14N nucleus has I = 1 and can adopt any of 

Magnetic resonance13
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three orientations (mI = +1, 0, −1). Spin-1
2 nuclei include protons (1H) and 13C, 19F, 

and 31P nuclei (Table 13.2). As for electrons, the state with mI = + 12 (↑) is denoted 
a and that with mI = − 12 (↓) is denoted b.

13.1 Electrons and nuclei in magnetic fields
To understand the principles of EPR and NMR we need to understand the magnetic 
properties of electrons and nuclei.

An electron possesses a magnetic moment due to its spin, and this moment 
interacts with an external magnetic fi eld. Th at is, an electron behaves like a tiny 
bar magnet. Th e orientation of this magnet is determined by the value of ms, and 
in a magnetic fi eld B0 the two orientations have diff erent energies. Th ese energies 
are given by

Ems
 = −gegħB0ms Energy of an electron 

in a magnetic field
 (13.1)

where g is the magnetogyric ratio of the electron,

g = − e
2me

 Magnetogyric ratio  (13.2)

Table 13.1 Nuclear constitution and the nuclear spin quantum number

Number of protons Number of neutrons I

Even
Odd
Even
Odd

Even
Odd
Odd
Even

0
Integer (1, 2, 3, . . .)
Half-integer (1

2 , 32 , 52 , . . .)
Half-integer (1

2 , 32 , 52 , . . .)

Table 13.2 Nuclear spin properties

Nucleus Natural 
abundance/percent

Spin, I gI gN/(107 T−1 s−1)

1H  99.98 1
2

1
0
1
2

1
0
5
2
1
2
1
2
3
2
3
2

5.5857
0.857 44

1.4046
0.403 56

−0.7572
5.2567
2.2634
0.5479
0.4561

26.752
2H (D)   0.0156 4.1067
12C  98.99 —
13C   1.11 6.7272
14N  99.64 1.9328
16O  99.96 —
17O   0.037 3.627
19F 100 25.177
31P 100 10.840
35Cl  75.4 2.624
37Cl  24.6 2.184
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and ge is a factor, the g-value of the electron, which is close to 2.0023 for a free 
electron.1 Th e energies are sometimes expressed in terms of the Bohr magneton

 mB = eħ
2me

  mB = 9.274 × 10−24 J T−1  Bohr magneton  (13.3)

a fundamental unit of magnetism. Th e symbol T, for tesla, is the unit for reporting 
the intensity of a magnetic fi eld (1 T = 1 kg s−2A−1). It follows from eqns 13.1 and 
13.3 that

Ems
 = ge mBB0ms Alternative expression for the energy 

of an electron in a magnetic field
 (13.4)

For an electron, the b state lies below the a state.
A nucleus with nonzero spin also has a magnetic moment and behaves like a 

tiny magnet. Th e orientation of this magnet is determined by the value of mI, and 
in a magnetic fi eld B0 the 2I + 1 orientations of the nucleus have diff erent energies. 
Th ese energies are given by

EmI
 = −gNħB0mI Energy of a nucleus 

in a magnetic field
 (13.5)

where gN is the nuclear magnetogyric ratio. For spin-1
2 nuclei with positive 

magnetogyric ratios (such as 1H), the a state lies below the b state. Th e energy is 
sometimes written in terms of the nuclear magneton, mN,

 mN = eħ
2mp

  mN = 5.051 × 10−27 J T−1 Nuclear magneton  (13.6)

and an empirical constant called the nuclear g-factor, gI, when it becomes

EmI
 = −gImNB0mI Alternative expression for the energy 

of a nucleus in a magnetic field
 (13.7)

Nuclear g-factors are experimentally determined dimensionless quantities that 
vary between −6 and +6 (see Table 13.2). Positive values of gN (and gI) indicate 
that the nuclear magnet lies in the same direction as the nuclear spin (this is the 
case for protons). Negative values indicate that the magnet points in the opposite 
direction. A nuclear magnet is about 2000 times weaker than the magnet associ-
ated with electron spin. Two very common nuclei, 12C and 16O, have zero spin and 
hence are not aff ected by external magnetic fi elds.

Th e energy separation of the two spin states of an electron (Fig. 13.1) is

DE = Ea − Eb = 12 gemBB0 − (− 1
2 gemBB0) = gemBB0 

Energy difference 
between the spin 
states of an electron 
in a magnetic field

 (13.8)

We infer from the Boltzmann distribution (Fundamentals F.3) that the populations 
of the a and b states, Na and Nb, are proportional to e−Ea/kT and e−Eb/kT, respectively, 
so the ratio of populations at equilibrium is

Na

Nb

 = e−(Ea−Eb)/kT (13.9)

1 Th e 2 comes from Dirac’s relativistic theory of the electron; the 0.0023 comes from additional 
correction terms.

Fig. 13.1 Th e energy levels of an 
electron in a magnetic fi eld. 
Resonance occurs when the 
energy separation of the levels 
matches the energy of the 
photons in the electromagnetic 
fi eld.
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Because Ea − Eb > 0 (the b state lies below the a state), Na/Nb < 1 and there are 
slightly more b spins than a spins. If the sample is exposed to radiation of fre-
quency n, the energy separations come into resonance with the radiation when 
the frequency satisfi es the resonance condition:

hn = gemBB0 or n = gemBB0

h
 Resonance condition 

for an electron
 (13.10)

At resonance there is strong coupling between the electron spin and the radi-
ation, and strong absorption occurs as the spins fl ip from b (low energy) to a 
(high energy). We refer to these transitions as electron paramagnetic resonance 
(EPR), or electron spin resonance (ESR), transitions.

Th e behavior of nuclei is very similar. Th e energy separation of the two states of 
a spin-1

2 nucleus (Fig. 13.2) is

DE = Eb − Ea = 12gNħB0 − (− 12gNħB0) = gNħB0 
Energy difference 
between the spin 
states of a nucleus 
in a magnetic field

 (13.11)

Because for nuclei with positive gN the a state lies below the b state, Eb − Ea > 0 and 
it follows from eqn 13.9 that Nb/Na < 1: there are slightly more a spins than b spins 
(the opposite of an electron). If the sample is exposed to radiation of frequency n, 
the energy separations come into resonance with the radiation when the fre-
quency satisfi es the resonance condition:

hn = gNħB0 or n = gNB0

2p
 Resonance condition 

for a nucleus
 (13.12)

At resonance there is strong coupling between the nuclear spins and the radi-
ation, and strong absorption occurs as the spins fl ip from a (low energy) to b 
(high energy). We refer to these transitions as nuclear magnetic resonance (NMR) 
transitions.

Fig. 13.2 Th e energy levels of 
a spin-1

2 nucleus (for example, 
1H or 13C) in a magnetic fi eld. 
Resonance occurs when the 
energy separation of the levels 
matches the energy of the 
photons in the electromagnetic 
fi eld.

Self-test 13.1 Calculate the frequency at which radiation comes into reson-
ance with proton spins in a 12 T magnetic fi eld.

Answer: 510 MHz

13.2 The intensities of NMR and EPR transitions
To appreciate the power of NMR and EPR for investigating biochemical structures 
and reactions, we need to understand the factors that control the intensities of 
spin-flipping transitions.

Th e intensity of an NMR transition depends on a number of factors. We show in 
the following Justifi cation that

intensity ∝ (Na − Nb)B0 (13.13)

where

Na − Nb ≈ NgNħB0

2kT
 (13.14)
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with N the total number of spins (N = Na + Nb). It follows that decreasing the 
temperature increases the intensity by increasing the population diff erence. By 
combining eqns 13.13 and 13.14, we see that the intensity is proportional to B0

2 so 
NMR transitions can be enhanced signifi cantly by increasing the strength of the 
applied magnetic fi eld. Similar arguments apply to EPR transitions. We also con-
clude that absorptions of nuclei with large magnetogyric ratios (1H, for instance) 
are more intense than those with small magnetogyric ratios (13C, for instance).

Justification 13.1 Intensities in NMR spectra 

From the general considerations of transition intensities in Section 12.2, we 
know that the rate of absorption of electromagnetic radiation is proportional 
to the population of the lower energy state (Na in the case of a proton NMR 
transition) and the rate of stimulated emission is proportional to the popula-
tion of the upper state (Nb). At the low frequencies typical of magnetic reson-
ance, we can neglect spontaneous emission as it is very slow. Th erefore, the 
net rate of absorption is proportional to the diff erence in populations, and we 
can write

rate of absorption ∝ Na − Nb

Th e intensity of absorption, the rate at which energy is absorbed, is propor-
tional to the product of the rate of absorption (the rate at which photons are 
absorbed) and the energy of each photon, and the latter is proportional to the 
frequency n of the incident radiation (through E = hn). At resonance, this 
frequency is proportional to the applied magnetic fi eld (through n = gNB0/2p), 
so we can write

intensity of absorption ∝ (Na − Nb)B0

To write an expression for the population diff erence, we begin with eqn 13.9, 
written as

Nb

Na

 = e−DE/kT ≈ 1 − DE
kT

 = 1 − gNB0

kT

where DE = Eb − Ea. Th e expansion of the exponential term is appropriate 
for DE << kT, a condition usually met for electron and nuclear spins. It follows 
aft er rearrangement that

Na − Nb

Na + Nb

 = Na(1 − Nb/Na)
Na(1 + Nb/Na)

 = 1 − Nb/Na

1 + Nb/Na

 ≈ 1 − (1 − gNħB0/kT)
1 + (1 − gNħB0/kT)

 ≈ gNħB0/kT
2

Th en, with Na + Nb = N, the total number of spins, we have

Na − Nb ≈ NgNħB0

2kT

Th e essence of this result is that the population diff erence is proportional to 
the applied fi eld. Consequently, the intensity of absorption at resonance is 
proportional to B0

2, as stated in the text.

A brief comment
Th e Taylor expansion 
(Mathematical toolkit 3.2) 
of an exponential function 
used in Justifi cation 13.1 is 
e−x = 1 − x + 12x2 − · · · . If x <<<<1, 
then e−x ≈ 1 − x.
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The information in NMR spectra

In its simplest form NMR is the observation of the frequency at which magnetic 
nuclei in molecules come into resonance with an electromagnetic fi eld when the 
molecule is exposed to a strong magnetic fi eld. When applied to proton spins, 
the technique is occasionally called proton magnetic resonance (1H-NMR). In 
the early days of the technique the only nuclei that could be studied were protons 
(which behave like relatively strong magnets because gN is large), but now a wide 
variety of nuclei, especially 13C and 31P, are investigated routinely.

An NMR spectrometer consists of a magnet that can produce a uniform, 
intense fi eld and the appropriate sources of radiofrequency radiation (Fig. 13.3). 
In simple instruments the magnetic fi eld is provided by an electromagnet; for 
serious work, a superconducting magnet capable of producing fi elds of the order 
of 10 T and more is used. Th e use of high magnetic fi elds has two advantages. One 
is that the fi eld increases the intensities of transitions (eqn 13.13). Second, a high 
fi eld simplifi es the appearance of certain spectra. Proton resonance occurs 
at about 400 MHz in fi elds of 9.4 T, so NMR is a radiofrequency technique 
(400 MHz corresponds to a wavelength of 75 cm).

In the following sections we describe the chemical factors that control the 
appearance of NMR spectra. Th e discussion will set the stage for the exploration 
of powerful techniques that make use of radiofrequency pulses and form the basis 
for all modern applications of NMR in biochemistry.

13.3 The chemical shift
We need to understand the molecular origins of the local magnetic field experienced 
by nuclei to see how careful analysis of the NMR spectrum reveals details of the 
structure of a biological molecule and its environment.

We need to know that an applied magnetic fi eld induces the circulation of elec-
tronic currents. Th ese currents give rise to a magnetic fi eld that, in diamagnetic 
substances, opposes the applied fi eld and, in paramagnetic substances, augments 
the applied fi eld. It follows that in an NMR experiment, the applied magnetic 
fi eld can induce a circulating motion of the electrons in the molecule, and that 
motion gives rise to a small additional magnetic fi eld, dB. Th is additional fi eld is 
proportional to the applied fi eld, and it is conventional to express it as

dB = −sB0 (13.15)

where the dimensionless quantity s (sigma) is the shielding constant. Th e shield-
ing constant may be positive or negative according to whether the induced 
fi eld adds to or subtracts from the applied fi eld. Th e ability of the applied fi eld 
to induce the circulation of electrons through the nuclear framework of the 
molecule depends on the details of the electronic structure near the magnetic 
nucleus of interest, so nuclei in diff erent chemical groups have diff erent shield-
ing constants.

Because the total local fi eld is

B loc = B0 + dB = (1 − s)B0

the resonance condition is

n = gNB loc

2p
 = gN

2p
 (1 − s)B0  Resonance condition in terms 

of the shielding constant
 (13.16)

Fig. 13.3 Th e layout of a typical 
NMR spectrometer. Th e link 
from the transmitter to the 
detector indicates that the high 
frequency of the transmitter is 
subtracted from the high-
frequency received signal to 
give a low-frequency signal 
for processing.

A brief comment
A superconductor is a material 
that conducts electricity with 
zero resistance and can sustain 
large currents, an important 
requirement for a strong 
magnet. A magnetic fi eld of 
10 T is indeed very strong: 
a small magnet, for example, 
gives a magnetic fi eld of only 
a few millitesla.
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Because s varies with the environment, diff erent nuclei (even of the same 
element in diff erent parts of a molecule) come into resonance at diff erent 
frequencies.

(a) The d scale

Th e chemical shift  of a nucleus is the diff erence between its resonance frequency 
and that of a reference standard. Th e standard for protons is the proton resonance 
in tetramethylsilane, Si(CH3)4, commonly referred to as TMS, which bristles 
with protons and dissolves without reaction in many solutions. Other references 
are used for other nuclei. For 13C, the reference frequency is the 13C resonance in 
TMS, and for 31P it is the 31P resonance in 85 per cent H3PO4(aq). Th e separation 
of the resonance of a particular group of nuclei from the standard increases with 
the strength of the applied magnetic fi eld because the induced fi eld is propor-
tional to the applied fi eld, and the stronger the latter the greater the shift .

Chemical shift s are reported on the d scale, which is defi ned as

 d = n − no

no
 × 106 The d scale  (13.17)

where no is the resonance frequency of the standard. Th e advantage of the d scale 
is that shift s reported on it are independent of the applied fi eld (because both 
numerator and denominator are proportional to the applied fi eld). Th e resonance 
frequencies themselves, however, do depend on the applied fi eld through

n = no + (no/106)d The resonance frequency 
in terms of the d scale

 (13.18)

A note on good practice 
In much of the literature that 
uses NMR, chemical shift s are 
reported in parts per million, 
ppm, in recognition of the 
factor of 106 in the defi nition. 
Th is practice is unnecessary.

 

A brief illustration

Th e protons belonging to the methyl group (–CH3) of the amino acid 
alanine have a resonance at d = 1.39. In a spectrometer operating at 500 MHz 
(1 MHz = 106 Hz) the shift  relative to the reference is

n − no = 500 MHz
106

 × 1.39 = 500 Hz × 1.39 = 695 Hz

In a spectrometer operating at 100 MHz, the shift  relative to the reference 
would be only 139 Hz.

Self-test 13.2 Th e protons belonging to the –CH2 group of the amino acid 
glycine have a resonance at d = 3.97. What is the shift  of the resonance from 
TMS at an operating frequency of 350 MHz?

Answer: 1.39 kHz

If d > 0, we say that the nucleus is deshielded; if d < 0, then it is shielded. A posi-
tive d indicates that the resonance frequency of the group of nuclei in question is 
higher than that of the standard. Hence d > 0 indicates that the local magnetic 
fi eld is stronger than that experienced by the nuclei in the standard under the 
same conditions. Figure 13.4 shows some typical chemical shift s.

Nuclear magnetic resonance spectra are plotted with d increasing from right 
to left . Consequently, in a given applied magnetic fi eld the resonance frequency 
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also increases from right to left . In a continuous wave (CW) spectrometer, in 
which the radiofrequency is held constant and the magnetic fi eld is varied (a ‘fi eld 
sweep experiment’), the spectrum is displayed with the applied magnetic fi eld 
increasing from left  to right: a nucleus with a small chemical shift  experiences 
a relatively low local magnetic fi eld, so it needs a higher applied magnetic fi eld 
to bring it into resonance with the radiofrequency fi eld. Consequently, the right-
hand (low chemical shift ) end of the spectrum was previously known as the 
‘high-fi eld end’ of the spectrum.

Fig. 13.4 Th e range of typical 
chemical shift s for 1H resonances.

A brief illustration

Th e existence of a chemical shift  explains the general features of the NMR 
spectrum of ethanol shown in Fig. 13.5. Th e CH3 protons form one group of 
nuclei with d = 1. Th e two CH2 protons are in a diff erent part of the molecule, 
experience a diff erent local magnetic fi eld, and hence resonate at d = 3. Finally, 
the OH proton is in another environment and has a chemical shift  of d = 4.

We can use the relative intensities of the signal (the areas under the absorption 
lines) to help distinguish which group of lines corresponds to which chemical 
group, and spectrometers can integrate the absorption—that is, determine the 
areas under the absorption signal—automatically (as is shown in Fig. 13.5). In 
ethanol the group intensities are in the ratio 3:2:1 because there are three CH3 
protons, two CH2 protons, and one OH proton in each molecule. Counting the 
number of magnetic nuclei as well as noting their chemical shift s is valuable ana-
lytically because it helps us identify the compound present in a sample and to 
identify substances in diff erent environments.

(b) Contributions to the shift

Th e observed shielding constant is the sum of three contributions:

s = s(local) + s(neighbor) + s(solvent) (13.19)

Th e local contribution, s(local), is essentially the contribution of the electrons 
of the atom that contains the nucleus in question. Th e neighboring group contri-
bution, s(neighbor), is the contribution from the groups of atoms that form the 

Fig. 13.5 Th e NMR spectrum of 
ethanol. Th e red letters denote 
the protons giving rise to the 
resonance peak and the step-like 
curves are the integrated signals 
for each group of lines.
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rest of the molecule. Th e solvent contribution, s(solvent), is the contribution 
from the solvent molecules.

Th e local contribution is broadly proportional to the electron density of the 
atom containing the nucleus of interest. It follows that the shielding is decreased 
if the electron density on the atom is reduced by the infl uence of an electro-
negative atom nearby. Th at reduction in shielding translates into an increase in 
deshielding and hence to an increase in the chemical shift  d as the electronegativ-
ity of a neighboring atom increases (Fig. 13.6). Th at is, as the electronegativity 
increases, d increases for protons adjacent to the electronegative atom. Another 
contribution to s(local) arises from the ability of the applied fi eld to force the 
electrons to circulate through the molecule by making use of orbitals that are 
unoccupied in the ground state and is large in molecules with low-lying excited 
states and is dominant for atoms other than hydrogen. Th is contribution is zero in 
free atoms and around the axes of linear molecules (such as ethyne, HC≡CH), 
where the electrons can circulate freely and a fi eld applied along the internuclear 
axis is unable to force them into other orbitals.

Th e neighboring group contribution arises from the currents induced in nearby 
groups of atoms. Th e strength of the additional magnetic fi eld the proton experi-
ences is inversely proportional to the cube of the distance r between H and the 
neighboring group. A special case of a neighboring group eff ect is found in aro-
matic compounds. Th e fi eld induces a ring current, a circulation of electrons 
around the ring, when it is applied perpendicular to the molecular plane. Protons 
in the plane are deshielded (Fig. 13.7), but any that happen to lie above or below 
the plane (as members of substituents of the ring) are shielded.

A solvent can infl uence the local magnetic fi eld experienced by a nucleus in a 
variety of ways. Some of these eff ects arise from specifi c interactions between the 
solute and the solvent (such as hydrogen-bond formation and other forms of 
Lewis acid–base complex formation). Moreover, if there are steric interactions 
that result in a loose but specifi c interaction between a solute molecule and a 
solvent molecule, then protons in the solute molecule may experience shielding 
or deshielding eff ects according to their location relative to the solvent molecule 
(Fig. 13.8). We shall see that the NMR spectra of species that contain protons with 
widely diff erent chemical shift s are easier to interpret than those in which the 
shift s are similar, so the appropriate choice of solvent may help to simplify the 
appearance and interpretation of a spectrum.

13.4 The fine structure
We need to know how to interpret the features of an NMR spectrum so that we can 
translate the data into the three-dimensional structure of a biological molecule.

Th e splitting of the groups of resonances into individual lines in Fig. 13.5 is called 
the fi ne structure of the spectrum. It arises because each magnetic nucleus con-
tributes to the local fi eld experienced by the other nuclei and modifi es their 
resonance frequencies. Th e strength of the interaction is expressed in terms of 
the spin–spin coupling constant, J, and reported in hertz (Hz). Spin coupling 
constants are an intrinsic property of the molecule and independent of the 
strength of the applied fi eld.

(a) The appearance of fine structure

Consider fi rst a molecule that contains two spin-1
2 nuclei A and X. Suppose 

the spin of X is a, then A will resonate at a certain frequency as a result of the 

Fig. 13.7 Th e shielding and 
deshielding eff ects of the ring 
current induced in the benzene 
ring by the applied fi eld. Protons 
attached to the ring are 
deshielded, but a proton attached 
to a substituent that projects 
above the ring is shielded.

Fig. 13.6 Th e variation of chemical 
shift  with the electronegativity of 
the halogen in the haloalkanes. 
Note that although the chemical 
shift  of the immediately adjacent 
protons becomes more positive 
(the protons are deshielded) as 
the electronegativity increases, 
that of the next nearest protons 
decreases.
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combined eff ect of the external fi eld, the shielding constant, and the spin–spin 
interaction of nucleus A with nucleus X. As we show in the following Justifi cation, 
instead of a single line from A, the spectrum consists of a doublet of lines separ-
ated by a frequency J (Fig. 13.9). Th e same splitting occurs in the X resonance: 
instead of a single line it is a doublet with splitting J (the same value as for the 
splitting of A).

Fig. 13.8 An aromatic solvent (benzene 
here) can give rise to local currents that 
shield or deshield a proton in a solute 
molecule. In this relative orientation of 
the solvent and solute, the proton on the 
solute molecule is shielded.

Fig. 13.9 Th e eff ect of spin–spin coupling 
on an NMR spectrum of two spin-1

2 
nuclei with widely diff erent chemical 
shift s. Each resonance is split into two 
lines separated by J. Red circles indicate 
a spins, green circles indicate b spins.

Fig. 13.10 Th e energy levels of 
a two-proton system in the 
presence of a magnetic fi eld. 
Th e levels on the left  apply in the 
absence of spin–spin coupling. 
Th ose on the right are the result 
of allowing for spin–spin 
coupling. Th e only allowed 
transitions diff er in frequency 
by J.

Justification 13.2 The structure of an AX spectrum

First, neglect spin–spin coupling. Th e total energy of two protons in a mag-
netic fi eld B is the sum of two terms like eqn 13.11 but with B0 modifi ed to 
(1 − s)B0:

E = −gNħ(1 − sA)B0mA − gNħ(1 − sX)B0mX

Here sA and sX are the shielding constants of A and X, respectively. Th e 
four energy levels predicted by this formula are shown on the left  of Fig. 13.10. 
Th e spin–spin coupling energy is normally written

Espin–spin = hJmAmX

Th ere are four possibilities, depending on the values of the quantum numbers 
mA and mX:

 Espin–spin

aAaX + 1
4 hJ

aA bX − 1
4 hJ

bAaX − 1
4 hJ

bA bX + 1
4 hJ

Th e resulting energy levels are shown on the right in Fig. 13.10.
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Now consider the transitions. When an A nucleus changes its spin from a to b, 
the X nucleus remains in its same spin state, which may be either a or b. 
Th e two transitions are shown in the illustration, and we see that they diff er in 
frequency by J. Alternatively, the X nucleus can undergo a transition from a 
to b; now the A nucleus remains in its same spin state, which may be either 
a or b, and we again get two transitions that diff er in frequency by J.

Fig. 13.11 Th e origin of the 1:2:1 
triplet in the A resonance of an 
AX2 species. Th e two X nuclei 
may have the 22 = 4 spin 
arrangements: (↑↑), (↑↓), 
(↓↑), and (↓↓). Th e middle two 
arrangements are responsible for 
the coincident resonances of A.

Fig. 13.12 Th e origin of the 1:3:3:1 
quartet in the A resonance of 
an AX3 species, where A and X 
are spin-1

2 nuclei with widely 
diff erent chemical shift s. Th ere 
are 23 = 8 arrangements of the 
spins of the three X nuclei and 
their eff ects on the A nucleus give 
rise to four groups of resonances.

If there is another X nucleus in the molecule with the same chemical shift  as 
the fi rst X (corresponding to an AX2 species), the resonance of A is split into a 
doublet by one X, and each line of the doublet is split again by the same amount 
(Fig. 13.11) by the second X. Th is splitting results in three lines in the intensity 
ratio 1:2:1 (because the central frequency can be obtained in two ways). As in 
the AX case discussed above, the X resonance of the AX2 species is split into a 
doublet by A.

Th ree equivalent X nuclei (an AX3 species) split the resonance of A into four 
lines of intensity ratio 1:3:3:1 (Fig. 13.12). Th e X resonance remains a doublet as 
a result of the splitting caused by A. In general, N equivalent spin-1

2 nuclei split 
the resonance of a nearby spin or group of equivalent spins into N + 1 lines 
with an intensity distribution given by Pascal’s triangle (1). Subsequent rows 
of this triangle are formed by adding together the two adjacent numbers in the 
line above.

Self-test 13.4 What fi ne structure can be expected for the C–H protons in 
alanine?

Answer: A 1:3:3:1 quartet for the –CH group and a doublet for the –CH3 group

Self-test 13.3 Complete the next line of the triangle, the pattern arising from 
fi ve equivalent protons.

Answer: 1:5:10:10:5:1

Th e spin–spin coupling constant of two nuclei joined by N bonds is normally 
denoted NJ, with subscripts for the types of nuclei involved. Th us, 1JCH is the 

Example 13.1 Accounting for the fine structure in a spectrum

Account for the fi ne structure in the 1H-NMR spectrum of the C–H protons of 
ethanol.

Strategy Refer to Pascal’s triangle to determine the eff ect of a group of N 
equivalent protons on a proton, or (equivalently) a group of protons, of 
interest.

Solution Th e three protons of the CH3 group split the single resonance of the 
CH2 protons into a 1:3:3:1 quartet with a splitting J. Likewise, the two protons 
of the CH2 group split the single resonance of the CH3 protons into a 1:2:1 
triplet. Each of these lines is split into a doublet to a small extent by the OH 
proton.
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coupling constant for a proton joined directly to a 13C atom, and 2JCH is the 
coupling constant when the same two nuclei are separated by two bonds (as in 
13C–C–H). A typical value of 1JCH is between 102 and 103 Hz; the value of 2JCH is 
about 10 times less, between about 10 and 102 Hz. Both 3J and 4J give detectable 
eff ects in a spectrum, but couplings over larger numbers of bonds can generally 
be ignored.

A brief illustration

Figure 13.13 shows the 1H-NMR spectrum of diethyl ether, (CH3CH2)2O. Th e 
resonance at d = 3.4 corresponds to CH2 in an ether; that at d = 1.2 corresponds 
to CH3 in CH3CH2. As we saw in Example 13.1, the fi ne structure of the CH2 
group (a 1:3:3:1 quartet) is characteristic of splitting caused by CH3; the 
fi ne structure of the CH3 resonance is characteristic of splitting caused by CH2. 
Th e spin–spin coupling constant is J = −60 Hz (the same for each group). 
If the spectrum had been recorded with a spectrometer operating at fi ve times 
the magnetic fi eld strength, the groups of lines would have been observed to 
be fi ve times farther apart in frequency (but the same d values). No change in 
spin–spin splitting would be observed.

Th e magnitude of 3JHH depends on the dihedral angle, f, between the two C–H 
bonds (2). Th e variation is expressed quite well by the Karplus equation:

3JHH = A + B cos f + C cos 2f Karplus equation  (13.20)

Typical values of A, B, and C are +7 Hz, −1 Hz, and +5 Hz, respectively, for an 
HCCH fragment. Figure 13.14 shows the angular variation the equation predicts. 
It follows that the measurement of 3JHH in a series of related compounds can be 
used to determine their conformations.

A brief illustration

Many three-dimensional structures of biological macromolecules are deter-
mined by NMR spectroscopy. As a fi rst illustration of the power of NMR in 
structural biology consider how an analysis of H–N–C–H couplings in poly-
peptides can help to reveal their conformation. For 3JHH coupling in such a 
group, A = +5.1 Hz, B = −1.4 Hz, and C = +3.2 Hz. For an a helix, f is close to 
120°, which would give 3JHH ≈ 4 Hz. For a b sheet, f is close to 180°, which 
would give 3JHH ≈ 10 Hz. Consequently, small coupling constants indicate an a 
helix, whereas large couplings indicate a b sheet.

Th e coupling constant 1JCH also depends on the hybridization of the C atom:

 sp sp2 sp3

1JCH/Hz: 250 160 125

(b) The origin of fine structure

Spin–spin coupling in molecules in solution can be explained in terms of the 
polarization mechanism, in which the interaction is transmitted through the bonds. 

Fig. 13.13 Th e NMR spectrum of 
diethyl ether considered in the 
brief illustration.

Fig. 13.14 Th e variation of 3JHH 
with angle, according to the 
Karplus equation. Th e orange line 
is for H–C–C–H and the green 
line is for H–N–C–H.
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Th e simplest case to consider is that of 1JXY where X and Y are spin-1
2 nuclei 

joined by an electron-pair bond (Fig. 13.15). Th e coupling mechanism depends 
on the fact that in some atoms it is favorable for the nucleus and a nearby electron 
spin to be parallel (both a or both b), but in others it is favorable for them to be 
antiparallel (one a and the other b). Th e electron–nucleus coupling is magnetic in 
origin and may be either a dipolar interaction (Section 11.6) between the mag-
netic moments of the electron and nuclear spins or a Fermi contact interaction, 
an interaction that depends on the very close approach of an electron to the 
nucleus and hence can occur only if the electron occupies an s orbital. We shall 
suppose that it is energetically favorable for an electron spin and a nuclear spin to 
be antiparallel (as is the case for a proton and an electron in a hydrogen atom), 
either aebN or beaN, where we are using the labels e and N to distinguish the elec-
tron and nucleus spins.

If the X nucleus is aX, a b electron of the bonding pair will tend to be found 
nearby (because that is energetically favorable for it). Th e second electron in the 
bond, which must have a spin if the other is b, will be found mainly at the far end 
of the bond (because electrons tend to stay apart to reduce their mutual repul-
sion). Because it is energetically favorable for the spin of Y to be antiparallel to 
an electron spin, a Y nucleus with b spin has a lower energy than a Y nucleus with 
a spin:

low energy: aXbe . . . aebY high energy: aXbe . . . aeaY

Th e opposite is true when X is b, for now the a spin of Y has the lower energy:

low energy: bXae . . . beaY high energy: bXae . . . bebY

In other words, antiparallel arrangements of nuclear spins (aXbY and bXaY) lie 
lower in energy than parallel arrangements (aXaY and bXbY) as a result of their 
magnetic coupling with the bond electrons. Th at is, 1JHH is positive, for then 
hJmXmY is negative when mX and mY have opposite signs.

To account for the value of 2JXY, as in H–C–H, we need a mechanism that 
can transmit the spin alignments through the central C atom (which may be 12C, 
with no nuclear spin of its own). In this case (Fig. 13.16), an X nucleus with a 
spin polarizes the electrons in its bond, and the a electron is likely to be found 
closer to the C nucleus. Th e more favorable arrangement of two electrons on the 
same atom is with their spins parallel (Hund’s rule, Section 9.11), so the more 
favorable arrangement is for the a electron of the neighboring bond to be close 
to the C nucleus. Consequently, the b electron of that bond is more likely to be 
found close to the Y nucleus and therefore that nucleus will have a lower energy 
if it is a:

low energy: aXbe . . . ae[C]aY . . . beaY high energy: aXbe . . . ae[C]ae . . . bebY

low energy: bXae . . . be[C]be . . . aebY high energy: bXae . . . be[C]be . . . aeaY

Hence, according to this mechanism, the lower energy of Y will be obtained if 
its spin is parallel (aXaY and bXbY) to that of X. Th at is, 2JHH is negative, for then 
hJmXmY is negative when mX and mY have the same sign.

Th e coupling of nuclear spin to electron spin by the Fermi contact interaction 
is most important for proton spins, but it is not necessarily the most important 
mechanism for other nuclei. Th ese nuclei may also interact by a dipolar mechan-
ism with the electron magnetic moments and with their orbital motion, and there 
is no simple way of specifying whether J will be positive or negative.

Fig. 13.15 Th e polarization 
mechanism for spin–spin 
coupling (1JHH). Th e two 
arrangements have slightly 
diff erent energies. In this case, 
J is positive, corresponding to a 
lower energy when the nuclear 
spins are antiparallel. 

Fig. 13.16 Th e polarization 
mechanism for 2JHH spin–spin 
coupling. Th e spin information 
is transmitted from one bond 
to the next by a version of the 
mechanism that accounts for 
the lower energy of electrons 
with parallel spins in diff erent 
atomic orbitals (Hund’s rule of 
maximum multiplicity). In this 
case, J < 0, corresponding to a 
lower energy when the nuclear 
spins are parallel.
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13.5 Conformational conversion and chemical exchange
We need to understand how to analyze spectra to determine rates of dynamical 
events of biological importance, such as conformational changes and proton 
exchange between molecules.

Th e appearance of an NMR spectrum is changed if magnetic nuclei can jump 
rapidly between diff erent environments. Consider a molecule, such as N,N-
dimethylformamide, that can jump between conformations; in its case, the methyl 
shift s depend on whether they are cis or trans to the carbonyl group (Fig. 13.17). 
When the jumping rate is low, the spectrum shows two sets of lines, one each 
from molecules in each conformation. When the interconversion is fast, the spec-
trum shows a single line at the mean of the two chemical shift s. At intermediate 
inversion rates, the line is very broad. Th is maximum broadening occurs when 
the lifetime, t (tau), of a conformation gives rise to a linewidth that is comparable 
to the diff erence of resonance frequencies, dn, and both broadened lines blend 
together into a very broad line. Coalescence of the two lines occurs when

t = 2
1/2

pdn
 Condition for coalescence 

of two NMR lines
 (13.21)

Example 13.2 Interpreting line broadening

Th e NO group in N,N-dimethylnitrosamine, (CH3)2N–NO, rotates about 
the N–N bond and, as a result, the magnetic environments of the two CH3 
groups are interchanged. Th e two CH3 resonances are separated by 390 Hz in 
a 600 MHz spectrometer. At what rate of interconversion will the resonance 
collapse to a single line?

Strategy Use eqn 13.21 for the average lifetimes of the conformations. Th e rate 
of interconversion is the inverse of their lifetime.

Solution With dn = 390 Hz,

t = 21/2

p × (390 s−1)
 = 1.2 ms

It follows that the signal will collapse to a single line when the interconversion 
rate exceeds about 830 s−1.

Self-test 13.5 What would you deduce from the observation of a single line 
from the same molecule in a 300 MHz spectrometer?

Answer: Conformation lifetime less than 2.3 ms

Fig. 13.17 When a molecule 
changes from one conformation 
to another, the positions of its 
protons are interchanged and 
jump between magnetically 
distinct environments.

A similar explanation accounts for the loss of fi ne structure in solvents able to 
exchange protons with the sample. For example, amino and hydroxyl protons are 
able to exchange with water protons. When this chemical exchange occurs, a 
molecule ROH, such as serine or tyrosine, with an a-spin proton (we write this 
ROHa) rapidly converts to ROHb and then perhaps to ROHa again because the 
protons provided by the solvent molecules in successive exchanges have random 
spin orientations. Th erefore, instead of seeing a spectrum composed of contri-
butions from both ROHa and ROHb molecules (that is, a spectrum showing a 
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doublet structure due to the OH proton), we see a spectrum that shows no split-
ting caused by coupling of the OH proton (as in Fig. 13.5). Th e eff ect is observed 
when the lifetime of a molecule due to this chemical exchange is so short that 
the lifetime broadening is greater than the doublet splitting. Because this splitting 
is oft en very small (a few hertz), a proton must remain attached to the same 
molecule for longer than about 0.1 s for the splitting to be observable. In water, 
the exchange rate is much faster than that, so alcohols show no splitting from the 
OH protons. In dry dimethylsulfoxide (DMSO), the exchange rate may be slow 
enough for the splitting to be detected.

Pulse techniques in NMR

Modern methods of detecting the energy separation between nuclear spin states 
are more sophisticated than simply looking for the frequency at which resonance 
occurs. One of the best analogies that has been suggested to illustrate the diff er-
ence between the old and new ways of observing an NMR spectrum is that of 
detecting the spectrum of vibrations of a bell. If we hit a bell with a hammer, we 
obtain a clang composed of all the frequencies that the bell can produce. Th e 
equivalent in NMR is to monitor the radiation nuclear spins emit as they return to 
equilibrium aft er the appropriate stimulation. Th e resulting Fourier-transform 
NMR (FT-NMR) gives greatly increased sensitivity, so opening up the entire 
periodic table to the technique.

13.6 Time- and frequency-domain signals
Multiple-pulse FT-NMR gives biochemists unparalleled control over the information 
content and display of spectra, and to take full advantage of the technique, we need 
to understand how radiofrequency pulses work to excite a spin system and how the 
signal is monitored and interpreted.

It is sometimes useful to compare the quantum mechanical and classical pictures 
of magnetic nuclei pictured as tiny bar magnets. A bar magnet in an externally 
applied magnetic fi eld undergoes the motion called precession as it twists around 
the direction of the fi eld (Fig. 13.18). Th e rate of precession is proportional to the 
strength of the applied fi eld and is in fact equal to (gN/2p)B0, which in this context 
is called the Larmor precession frequency, nL.

Th e quantum mechanical description in Section 13.1 indicates that a spin-1
2 

nucleus is like a bar magnet with two possible orientations with respect to the 
direction of the fi eld, one with low energy (the a state) and the other with high 
energy (the b state). We can merge the classical and quantum mechanical pictures by 
visualizing an a or b spin as precessing around its cone of possible orientations at 
the Larmor frequency (Fig. 13.19): the stronger the fi eld, the more rapid is the rate 
of precession. If we were to imagine stepping onto a platform, a so-called rotating 
frame, that rotates around the direction of the applied fi eld at the Larmor fre-
quency, then all the spins would appear to be stationary on their respective cones.

Now suppose that somehow we have arranged all the spins in a sample to have 
exactly the same angle around the fi eld direction at an instant. We saw in Section 
13.1 that there are more a spins than b spins. Th e imbalance means that there is a 
net nuclear magnetic moment, the magnetization, M, that we represent by a vec-
tor pointing in the same direction as the vector representing the applied fi eld and 
with a length proportional to the population diff erence (Fig. 13.20).

Fig. 13.19 Th e interactions 
between the a and b states of a 
proton and an external magnetic 
fi eld may be visualized as the 
precession of the vectors 
representing the angular 
momentum.

Fig. 13.18 A bar magnet in a 
magnetic fi eld undergoes the 
motion called precession. A 
nuclear spin (and an electron 
spin) has an associated magnetic 
moment and behaves in the same 
way. Th e frequency of precession 
is called the Larmor precession 
frequency and is proportional 
to the applied fi eld and the 
magnitude of the magnetic 
moment.
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We now consider the eff ect of a radiofrequency fi eld circularly polarized in the 
plane perpendicular to the direction of the applied fi eld in the sense that the mag-
netic component of the electromagnetic fi eld (the only component we need to 
consider) is rotating around the direction of the applied fi eld B0. Th e strength of 
the rotating magnetic fi eld is B1. Suppose we choose the frequency of this fi eld 
to be equal to the Larmor frequency of the spins, nL = (gN/2p)B0. It follows from 
eqn 13.12 that this choice is equivalent to selecting the resonance condition in the 
conventional experiment. Th e nuclei now experience a steady B1 fi eld because 
the rotating magnetic fi eld is in step with the precessing spins (Fig. 13.21). Just 
as the spins precess about the strong static fi eld B0 at a frequency gNB0/2p, so in 
the rotating frame they precess about the direction of B1 at a frequency gNB1/2p. 
If the B1 fi eld is applied in a pulse of duration p/2gNB1, the magnetization tips 
through 90° in the rotating frame and we say that we have applied a 90° pulse (or 
a ‘p/2 pulse’). Th e duration of the pulse depends on the strength of the B1 fi eld 
but is typically of the order of microseconds. Now imagine stepping out of the 
rotating frame. To a stationary external observer (the role played by a radiofre-
quency coil, Fig. 13.22), the magnetization vector is now rotating at the Larmor 
frequency in the plane perpendicular to the direction of the applied magnetic 
fi eld. Th e rotating magnetization induces in the coil a signal that oscillates at the 
Larmor frequency.

As time passes, the individual spins move out of step (partly because they are 
precessing at slightly diff erent rates, as we explain later), so the magnetization 
vector shrinks exponentially with a time constant T2 and induces an ever weaker 
signal in the detector coil. Th e form of the signal that we can expect is therefore 
the oscillating–decaying free-induction decay (FID) shown in Fig. 13.23.

Fig. 13.20 Th e magnetization of a sample 
of protons is the resultant of all their 
magnetic moments. In the presence of 
a fi eld, the spins precess around their 
cones (that is, there is an energy 
diff erence between the a and b states) 
and there are slightly more a spins than 
b spins. As a result, there is a net 
magnetization M along the z-axis.

Fig. 13.23 A simple free-induction 
decay of a sample of spins with a 
single resonance frequency.

Fig. 13.21 (a) In a resonance experiment, 
a circularly polarized radiofrequency 
magnetic fi eld B1 is applied in the 
xy-plane (the magnetization vector lies 
along the z-axis). (b) If we step into a 
frame rotating at the Larmor frequency, 
the radiofrequency fi eld appears to be 
stationary if its frequency is the same as 
the Larmor frequency. When the two 
frequencies coincide, the magnetization 
vector of the sample begins to rotate 
around the direction of the B1 fi eld.

Fig. 13.22 (a) If the radiofrequency 
fi eld is applied for a certain time, 
the magnetization vector is 
rotated into the xy-plane. (b) To 
an external stationary observer 
(the coil), the magnetization 
vector is rotating at the Larmor 
frequency and can induce a signal 
in the coil.
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Now consider a two-spin system. We can think of the magnetization vector of 
an AX spin system with J = 0 as consisting of two parts, one formed by the A spins 
and the other by the X spins. When the 90° pulse is applied, both magnetization 
vectors are tipped into the perpendicular plane. However, because the A and X 
nuclei precess at diff erent frequencies, they induce two signals in the detector 
coils, and the overall FID curve may resemble that in Fig. 13.24a. Th e composite 
FID curve is the analog of the struck bell emitting a rich tone composed of all the 
frequencies at which it can vibrate.

Th e problem we must address is how to recover the resonance frequencies 
present in a free-induction decay. We know that the FID curve is a sum of oscillat-
ing functions, so the problem is to analyze it into its component frequencies by 
carrying out a Fourier transformation. When the signal in Fig. 13.24a is trans-
formed in this way, we get the frequency-domain spectrum shown in Fig. 13.24b. 
One line represents the Larmor frequency of the A nuclei and the other that of 
the X nuclei.

13.7 Spin relaxation
Because careful analysis of the decay process reveals details of molecular structure 
and of interactions between molecules, we need to understand how a spin system 
returns to equilibrium after the application of a radiofrequency pulse.

As resonant absorption continues, the population of the upper state rises to 
match that of the lower state. From eqn 13.13, we can expect the intensity of 
the absorption signal to decrease with time as the populations of the spin states 
equalize. Th is decrease due to the progressive equalization of populations is 
called saturation.

Th e fact that saturation is oft en not observed must mean that there are non-
radiative processes by which b nuclear spins can become a spins again and hence 
help to maintain the population diff erence between the two sites. Th e nonradi-
ative return to an equilibrium distribution of populations in a system (eqn 13.9) is 
an aspect of the process called relaxation. If we were to imagine forming a system 
of spins in which all the nuclei were in their b state, then the system returns expo-
nentially to the equilibrium distribution (a small excess of a spins over b spins) 
with a time constant called the spin–lattice relaxation time, T1 (Fig. 13.25).

However, there is another, more subtle aspect of relaxation. Let us go back to 
the classical picture of magnetic nuclei with the spins in the artifi cial arrangement 
shown in Fig. 13.20, all lying at the same azimuthal angle on their respective 
cones. If each spin has a slightly diff erent Larmor frequency (because they experi-
ence slightly diff erent local magnetic fi elds), then they will gradually fan out, and 
at thermal equilibrium all the bar magnets will lie at random angles around the 
direction of the applied fi eld. Th e time constant for the exponential return of the 
system into this random arrangement is called the spin–spin relaxation time, T2 
(Fig. 13.26). For spins to be truly at thermal equilibrium, therefore, not only is the 
ratio of populations of the spin states given by eqn 13.9, but the spin orientations 
must be random around the fi eld direction.

What causes each type of relaxation? In each case the spins are responding to 
local magnetic fi elds that act to twist them into diff erent orientations. However, 
there is a crucial diff erence between the two processes.

Th e best kind of local magnetic fi eld for inducing a transition from b to a (as in 
spin–lattice relaxation) is one that fl uctuates at a frequency close to the resonance 
frequency. Such a fi eld can arise from the tumbling motion of the molecule in 

Fig. 13.24 (a) A free-induction 
decay signal of a sample of an AX 
species and (b) its analysis into its 
frequency components.

Fig. 13.25 Th e spin–lattice 
relaxation time is the time 
constant for the exponential 
return of the population of the 
spin states to their equilibrium 
(Boltzmann) distribution.
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the fl uid sample. If the tumbling motion of the molecule is slow compared to the 
resonance frequency, it will give rise to a fl uctuating magnetic fi eld that oscillates 
too slowly to induce transitions, so T1 will be long. If the molecule tumbles much 
faster than the resonance frequency, then it will give rise to a fl uctuating magnetic 
fi eld that oscillates too rapidly to induce transitions, so T1 will again be long. Only 
if the molecule tumbles at about the resonance frequency will the fl uctuat-
ing magnetic fi eld be able to induce transitions eff ectively, and only then will T1 
be short. Th e rate of molecular tumbling increases with temperature and with 
reducing viscosity of the solvent, so we can expect a dependence like that shown 
in Fig. 13.27.

Th e best kind of local magnetic fi eld for causing spin–spin relaxation is one 
that does not change very rapidly. Th en each molecule in the sample lingers in 
its particular local magnetic environment for a long time, and the orientations 
of the spins have time to become randomized around the applied fi eld direction. 
If the molecules move rapidly from one magnetic environment to another, the 
eff ects of diff erent magnetic fi elds average out and the randomization does not 
take place as quickly. In other words, slow molecular motion corresponds to short 
T2 and fast motion corresponds to long T2 (as shown in Fig. 13.27). Detailed 
calculation shows that when the motion is fast, the two relaxation times are equal, 
as has been drawn in the illustration.

Spin relaxation studies—using advanced techniques that utilize complicated 
sequences of pulses of radiofrequency energy to drive spins into special orienta-
tions and then monitoring their return to equilibrium—have two main applica-
tions. First, they reveal information about the mobility of molecules or parts of 
molecules. For example, by studying spin relaxation times of protons in the 
hydrocarbon chains of lipid bilayers, it is possible to build up a detailed picture of 
the motion of these chains and hence come to an understanding of the dynamics 
of cell membranes. Second, relaxation times depend on the separation of the 
nucleus from the source of the magnetic fi eld that is causing its relaxation: 
that source may be another magnetic nucleus in the same molecule. By studying 
the relaxation times, we can determine the internuclear distances within the 
molecule and use them to build up a model of its shape.

Fig. 13.27 Th e variation of the two 
relaxation times with the rate 
at which the molecules move 
(either by tumbling or migrating 
through the solution). Th e 
horizontal axis can be interpreted 
as representing temperature 
or viscosity. Note that the two 
relaxation times coincide when 
the motion is rapid.

Fig. 13.26 Th e spin–spin relaxation 
time is the time constant for the 
exponential return of the spins to 
a random distribution around the 
direction of the magnetic fi eld. 
No change in populations of the 
two spin states is involved in this 
type of relaxation, so no energy is 
transferred from the spins to the 
surroundings.

In the laboratory 13.1 Magnetic resonance imaging

One of the most striking applications of nuclear magnetic resonance is in 
physiology and medicine, where special radiofrequency pulse sequences are 
used to identify the distribution of protons in an organism. To understand 
this technique, we need to see how NMR techniques are modifi ed to allow the 
study of three-dimensional objects, such as a human body. Magnetic reson-
ance imaging (MRI) is a portrayal of the distribution of protons in a three-
dimensional object. Th e technique relies on the application of specifi c pulse 
sequences to an object in a spatially varying magnetic fi eld. If an object 
containing hydrogen nuclei (a tube of water or a human body) is placed in 
an NMR spectrometer and exposed to a homogeneous magnetic fi eld (a fi eld 
that has the same value throughout the sample), then a single resonance signal 
will be detected. Now consider a fl ask of water in a magnetic fi eld that varies 
linearly in the z-direction according to B0 + Gzz, where Gz is the fi eld gradient 
along the z-direction (Fig. 13.28). Th en the water protons will be resonant at 
the frequencies
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 n(z) = gN

2p
 (B0 + Gzz)

Similar equations may be written for gradients along the x- and y-directions. 
Exposure of the sample to radiation of frequency n(z) results in a signal with 
an intensity that is proportional to the number of protons at the position z. 
Th is procedure is an example of slice selection, the use of radiofrequency radi-
ation that excites nuclei in a specifi c region, or slice, of the sample. It follows 
that the intensity of the NMR signal will be a projection of the number of pro-
tons on a line parallel to the fi eld gradient. Th e image of a three-dimensional 
object such as a fl ask of water can be obtained if the slice selection technique 
is applied at diff erent orientations (Fig. 13.28). In projection reconstruction, 
the projections can be analyzed on a computer to reconstruct the three-
dimensional distribution of protons in the object.

A common problem with these techniques is image contrast, which must be 
optimized in order to show spatial variations in water content in the sample. 
One strategy for solving this problem takes advantage of the fact that the 
relaxation times of water protons are shorter for water in biological tissues 
than for the pure liquid. Furthermore, relaxation times from water protons are 
also diff erent in healthy and diseased tissues. A T1-weighted image is obtained 
by obtaining data before spin–lattice relaxation can return the spins in the 
sample to equilibrium. Under these conditions, diff erences in signal intensi-
ties are directly related to diff erences in T1. A T2-weighted image is obtained 
by collecting data aft er the system has relaxed extensively but not completely. 
In this way, signal intensities are strongly dependent on variations in T2. 
However, allowing so much of the decay to occur leads to weak signals even for 
those protons with long spin–spin relaxation times. Another strategy involves 
the use of contrast agents, which are paramagnetic compounds that shorten 
the relaxation times of nearby protons. Th e technique is particularly useful for 
enhancing image contrast and for diagnosing disease if the contrast agent is 
distributed diff erently in healthy and diseased tissues.

Th e MRI technique is used widely to detect physiological abnormalities and 
to observe metabolic processes. With functional MRI (fMRI), blood fl ow in 
diff erent regions of the brain can be studied and related to the mental activities 
of the subject. Th e technique is based on diff erences in the magnetic properties 
of deoxygenated and oxygenated hemoglobin. In Example 10.3 we saw that 
when the Fe(II) atom of hemoglobin is oxygenated and its coordination num-
ber changes from 5 to 6, it is converted from a high-spin d6 (d2

xyd1
yzd1

zxd1
x2−y2d1

z2) 
confi guration, in which the maximum number of electrons have parallel spins, 
to a low-spin d6 (d2

xyd2
yzd2

zx) confi guration. Th e more paramagnetic deoxygen-
ated hemoglobin aff ects the proton resonances of tissue diff erently from the 
oxygenated protein. Because there is enhanced blood fl ow in active regions of 
the brain compared to inactive regions, changes in the intensities of proton 
resonances due to changes in levels of oxygenated hemoglobin can be related 
to brain activity.

A special advantage of MRI is that it can image soft  tissues (Fig. 13.29), whereas 
X-rays are largely used for imaging hard, bony structures and abnormally 
dense regions, such as tumors. In fact, the invisibility of hard structures in 
MRI is an advantage as it allows the imaging of structures encased by bone, 
such as the brain and the spinal cord. X-rays are known to be dangerous 

Fig. 13.28 In a magnetic fi eld that 
varies linearly over a sample, all 
the protons within a given slice 
(that is, at a given fi eld value) 
come into resonance and give 
a signal of the corresponding 
intensity. Th e resulting intensity 
pattern is a map of the number 
of protons in all the slices and 
portrays the shape of the sample. 
Changing the orientation of the 
fi eld shows the shape along the 
corresponding direction, and 
computer manipulation can be 
used to build up the three-
dimensional shape of the sample.

Fig. 13.29 Th e great advantage of 
MRI is that it can display soft  
tissue, such as in this cross-
section through a patient’s head 
(http://www.sv.vt.edu/mri/
mri.html).



 13.9 THE NUCLEAR OVERHAUSER EFFECT   533

on account of the ionization they cause; the high magnetic fi elds used in MRI 
may also be dangerous, but apart from anecdotes about the extraction of loose 
fi llings from teeth, there is no convincing evidence of their harmfulness and 
the technique is considered safe.

13.8 Proton decoupling
Because biological macromolecules contain a large number of proton spins, we need 
to see how special pulse sequences can simplify the appearance of a carbon-13 
spectrum and reveal such important information as the three-dimensional 
arrangement of the carbon backbones of proteins, nucleic acids, and lipids.

Carbon-13 is a dilute-spin species in the sense that it is unlikely that more than 
one 13C nucleus will be found in any given small molecule (provided the sample 
has not been enriched with that isotope; the natural abundance of 13C is only 
1.1 per cent). Even in large molecules, although more than one 13C nucleus may 
be present, it is unlikely that they will be close enough to give an observable 
splitting. Hence, it is not normally necessary to take into account 13C–13C spin–
spin coupling within a molecule.

Protons are abundant-spin species in the sense that a molecule is likely to con-
tain many of them. If we were observing a 13C-NMR spectrum, we would obtain a 
very complex spectrum on account of the coupling of the one 13C nucleus with 
many of the protons that are present. To avoid this diffi  culty, 13C-NMR spectra 
are normally observed using the technique of proton decoupling. Th us, if the 
CH3 protons of ethanol are irradiated with a second, strong, resonant radiofre-
quency pulse, they undergo rapid spin reorientations and the 13C nucleus senses 
an average orientation. As a result, its resonance is a single line and not a 1:3:3:1 
quartet. Proton decoupling has the additional advantage of enhancing sensitivity 
because the intensity is concentrated into a single transition frequency instead 
of being spread over several transition frequencies. If care is taken to ensure that 
the other parameters on which the strength of the signal depends are kept con-
stant, the intensities of proton-decoupled spectra are proportional to the number 
of 13C nuclei present.

13.9 The nuclear Overhauser effect
The technique described here is of considerable usefulness for the determination of 
the conformations of proteins and other biological macromolecules in their natural 
aqueous environments.

Consider a very simple AX system in which the two spins interact by a magnetic 
dipole–dipole interaction. We expect two lines in the spectrum, one from A and 
the other from X. However, when we irradiate the system with radiofrequency 
radiation at the resonance frequency of X using such a high intensity that we 
saturate the transition (that is, we equalize the populations of the X levels), we 
fi nd that the A resonance is modifi ed. It may be enhanced, diminished, or even 
converted into an emission rather than an absorption. Th at modifi cation of one 
resonance by saturation of another is called the nuclear Overhauser eff ect (NOE).

To understand the eff ect, we need to think about the populations of the four 
levels of an AX system (Fig. 13.30). At thermal equilibrium, the population of the 
aAaX level is the greatest, and that of the bAbX level is the least; the other two levels 

Fig. 13.30 Th e energy levels of an 
AX system and an indication 
of their relative populations. 
Th e squares denote notional 
populations. Th e transitions 
of A and X are marked.
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have the same energy and an intermediate population. Th e thermal equilibrium 
absorption intensities refl ect these populations, as the illustration shows. Now 
consider the combined eff ect of saturating the X transition and spin relaxation. 
When we saturate the X transition, the populations of the X levels are equalized, 
but at this stage there is no change in the populations of the A levels. If that were 
all that happened, all we would see would be the loss of the X resonance and no 
eff ect on the A resonance.

Now consider the eff ect of spin relaxation. Relaxation can occur in a variety of 
ways if there is a dipolar interaction between the A and X spins. One possibility is 
for the magnetic fi eld acting between the two spins to cause them both to fl op 
from a to b, so the aAaX and bAbX states regain their thermal equilibrium popula-
tions. However, the populations of the aAbX and bAaX levels remain unchanged at 
the values characteristic of saturation. As we see from Fig. 13.31, the population 
diff erence between the states joined by transitions of A is now greater than at 
equilibrium, so the resonance absorption is enhanced. Another possibility is for 
the dipolar interaction between the two spins to cause a to fl ip to b and b to fl op 
to a. Th is transition equilibrates the populations of aAbX and bAaX but leaves 
the aAaX and bAbX populations unchanged (Fig. 13.32). Now we see from the illus-
tration that the population diff erences in the states involved in the A transitions 
are decreased, so the resonance absorption is diminished.

Which eff ect wins? Does NOE enhance the A absorption or does it diminish it? 
As in the discussion of relaxation times in Section 13.7, the effi  ciency of the 

Fig. 13.31 (a) When the X 
transition is saturated, the 
populations of its two states are 
equalized and the population 
excess and defi cit become as 
shown (using the same symbols 
as in Fig. 13.30). (b) Dipole–
dipole relaxation relaxes the 
populations of the highest and 
lowest states, and they regain 
their original populations. 
(c) Th e A transitions refl ect 
the diff erence in populations 
resulting from the preceding 
changes and are enhanced 
compared with those shown in 
Fig. 13.30.

Fig. 13.32 (a) When the X transition is saturated, just as in Fig. 13.31 the populations of its two states are equalized and the 
population excess and defi cit become as shown. (b) Dipole–dipole relaxation relaxes the populations of the two intermediate 
states, and they regain their original populations. (c) Th e A transitions refl ect the diff erence in populations resulting from the 
preceding changes and are diminished compared with those shown in Fig. 13.30.
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intensity-enhancing bAbX ↔ aAaX relaxation is high if the dipole fi eld is modu-
lated at the transition frequency, which in this case is close to 2w; likewise, the 
effi  ciency of the intensity-diminishing aAbX ↔ bAaX relaxation is high if the dipole 
fi eld is stationary (as there is no frequency diff erence between the initial and fi nal 
states). A large molecule rotates so slowly that there is very little motion at 2w, so 
we expect intensity decrease (Fig. 13.33). A small molecule rotating rapidly can 
be expected to have substantial motion at 2w and a consequent enhancement of 
the signal. In practice, the enhancement lies somewhere between the two extremes 
and is reported in terms of the parameter h (eta), where

 h = I − I0

I0
 NOE enhancement 

parameter
 (13.22)

Here I0 is the normal intensity and I is the NOE intensity of a particular transition; 
theoretically, h lies between −1 (diminution) and + 1

2 (enhancement).
Th e value of h depends strongly on the separation of the two spins involved in 

the NOE, for the strength of the dipolar interaction between two spins separated 
by a distance r is proportional to 1/r3 and its eff ect depends on the square of that 
strength, and therefore on 1/r6. Th is sharp dependence on separation is used to 
build up a picture of the conformation of a protein by using NOE to identify 
which nuclei can be regarded as neighbors (Fig. 13.34). Th e enormous import-
ance of this procedure is that we can determine the conformation of polypeptides 
in an aqueous environment and do not need to try to make the single crystals that 
are essential for an X-ray diff raction investigation.

Fig. 13.33 Th e relaxation rates of 
the two types of relaxation (as 
indicated by the small diagrams) 
as a function of the tumbling rate 
of the molecule.

Fig. 13.34 If an NOE experiment 
shows that the protons within 
each of the two circles are 
coupled by a dipolar interaction, 
we can be confi dent that those 
protons are close together and 
therefore infer the conformation 
of the polypeptide chain.

In the laboratory 13.2 Two-dimensional NMR

An NMR spectrum contains a great deal of information and, if many protons 
are present, is very complex. Th e complexity would be reduced if we could use 
two axes to display the data, with resonances belonging to diff erent groups 
lying at diff erent locations on the second axis. Th is separation is essentially 
what is achieved in two-dimensional NMR.

Much modern NMR work makes use of correlation spectroscopy (COSY) in 
which a clever choice of pulses and Fourier transformation techniques makes 
it possible to determine all spin–spin couplings in a molecule. A typical out-
come for an AX system is shown in Fig. 13.35. Th e diagram shows contours of 
equal signal intensity on a plot of intensity against the frequency coordinates 
n1 and n2. Th e diagonal peaks are signals centered on (dA,dA) and (dX,dX), and 
lie along the diagonal where n1 = n2. Th at is, the spectrum along the diagonal is 
equivalent to the one-dimensional spectrum obtained with the conventional 
NMR technique. Th e cross peaks (or off -diagonal peaks) are signals centered 
on (dA,dX) and (dX,dA), and owe their existence to the coupling between the 
A and X nuclei.

Although information from two-dimensional NMR spectroscopy is trivial 
in an AX system, it can be of enormous help in the interpretation of more 
complex spectra, leading to a map of the couplings between spins and to the 
determination of the bonding network in complex molecules. Indeed, the 
spectrum of a biological macromolecule that would be impossible to interpret 
in one-dimensional NMR can oft en be interpreted reasonably rapidly by two-
dimensional NMR. In Case study 13.1 we illustrate the procedure by assigning 
the resonances in the COSY spectrum of an amino acid.
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We have seen that the nuclear Overhauser eff ect can provide information 
about internuclear distances through analysis of enhancement patterns in the 
NMR spectrum before and aft er saturation of selected resonances. In nuclear 
Overhauser eff ect spectroscopy (NOESY) a map of all possible NOE inter-
actions is obtained by again using a proper choice of radiofrequency pulses 
and Fourier transformation techniques. Like a COSY spectrum, a NOESY 
spectrum consists of a series of diagonal peaks that correspond to the one-
dimensional NMR spectrum of the sample. Th e off -diagonal peaks indicate 
which nuclei are close enough to each other to give rise to a nuclear Overhauser 
eff ect. NOESY data reveal internuclear distances up to about 0.5 nm.

Figure 13.36 shows an example of a two-dimensional proton NOESY spectrum 
of a protein. Although working in more than one dimension provides more 
information, even for a relatively small protein the number of off -diagonal 
peaks is very large. To simplify the spectrum further it is now common to use 
genetic engineering protocols to express proteins under conditions where 
specifi c amino acids are enriched in 13C or 15N, which have I = 1

2 and can be 
investigated by NMR spectroscopy. As a result of this isotope labeling 
technique, spectral features—such as off -diagonal peaks in the 15N NOESY 
spectrum of the labeled protein—become more prominent and easier to 
interpret. Th e technique can also be used to simplify COSY spectra.

Case study 13.1 The COSY spectrum of isoleucine

Figure 13.37 is a portion of the COSY spectrum of the amino acid isoleucine 
(3), showing the resonances associated with the protons bound to the carbon 
atoms. We begin the assignment process by considering which protons should 

Fig. 13.35 A representation of the 
two-dimensional NMR spectrum 
obtained by application of the 
COSY pulse sequence to an AX 
spin system.

Fig. 13.36 Proton NOESY spectrum of the SH3 domain of the Fyn protein. Adapted from 
P.J. Hore, Nuclear magnetic resonance, Oxford Chemistry Primers 32, Oxford University 
Press, Oxford (1995). 
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be interacting by spin–spin coupling. From the known molecular structure, 
we conclude 

• the Ca–H proton is coupled only to the Cb–H proton
• the Cb–H protons are coupled to the Ca–H, Cc–H, and Cd–H protons
• the inequivalent Cd–H protons are coupled to the Cb–H and Ce–H protons.

We now note that:

• the resonance with d = 3.6 shares a cross-peak with only one other resonance 
at d = 1.9, which in turn shares cross-peaks with resonances at d = 1.4, 1.2, 
and 0.9; this identifi cation is consistent with the resonances at d = 3.6 and 
1.9 corresponding to the Ca–H and Cb–H protons, respectively

• the proton with resonance at d = 0.8 is not coupled to the Cb–H protons, 
so we assign the resonance at d = 0.8 to the Ce–H protons

• the resonances at d = 1.4 and 1.2 do not share cross-peaks with the resonance 
at d = 0.9

• in the light of the expected couplings, we assign the resonance at d = 0.9 to 
the Cc–H protons and the resonances at d = 1.4 and 1.2 to the inequivalent 
Cd–H protons

 

Fig. 13.37 Proton COSY spectrum 
of isoleucine. (Case study 13.1 
and this spectrum were adapted 
from K.E. van Holde, W.C. 
Johnson, and P.S. Ho, Principles 
of physical biochemistry, p. 508, 
Prentice Hall, Upper Saddle River 
(1998).)

Fig. 13.38 Th e layout of a 
continuous-wave EPR 
spectrometer. A typical magnetic 
fi eld is 0.3 T, which requires 
microwaves of frequency 9 GHz 
(wavelength 3 cm) for resonance.

The information in EPR spectra

Th e magnetic moment of an electron is much bigger than that of any nucleus, so 
even quite modest fi elds can require high frequencies to induce EPR transitions. 
Much work is done using fi elds of about 0.3 T, when resonance occurs at about 
9 GHz, corresponding to microwave radiation with a wavelength of 3 cm. Electron 
paramagnetic resonance is much more limited than NMR because it is applicable 
only to species with unpaired electrons, which include radicals (perhaps resulting 
from electron transfer reactions or prepared by radiation damage) and d-metal 
complexes, including such biologically active species as hemoglobin. But the lim-
itations of EPR can also represent a great advantage of the technique over other 
spectroscopic methods, for with EPR it is possible to focus attention on a single 
species, such as a tyrosine radical, in a large biopolymer, such as cytochrome c 
oxidase. By contrast, it is very diffi  cult (and sometimes impossible) to identify 
features due to a single amino acid or co-factor in the NMR or IR spectrum of a 
large biological macromolecule.

Both Fourier-transform (FT) and continuous-wave (CW) EPR spectrometers 
are available. Th e FT-EPR instrument is like an FT-NMR spectrometer except 
that pulses of microwaves are used to excite electron spins in the sample. Th e 
layout of the more common CW-EPR spectrometer is shown in Fig. 13.38. It con-
sists of a microwave source (a klystron or a Gunn oscillator), a cavity in which 
the sample is inserted in a glass or quartz container, a microwave detector, and 
an electromagnet with a fi eld that can be varied in the region of 0.3 T. Th e EPR 
spectrum is obtained by monitoring the microwave absorption as the fi eld is 
changed, and a typical spectrum (of the benzene radical anion, C6H6 ) is shown 
in Fig. 13.39. Th e peculiar appearance of the spectrum, which is in fact the fi rst 
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derivative of the absorption, arises from the detection technique, which is sensi-
tive to the slope of the absorption curve (Fig. 13.40).

13.10 The g-value
To begin to interpret the EPR spectra of organic radicals that can form during 
biological processes we need to compare the spectrum of the sample with that 
of a free electron.

Equation 13.10 gives the resonance frequency for a transition between the ms = − 1
2 

and ms = + 1
2 levels of a ‘free’ electron in terms of the g-value ge ≈ 2.0023. Th e mag-

netic moment of an unpaired electron in a radical also interacts with an external 
fi eld, but the g-value is diff erent from that of a free electron on account of local 
magnetic fi elds induced in the molecular framework of the radical. Consequently, 
the resonance condition is normally written as

hn = gmBB0 Resonance condition 
in EPR spectroscopy

 (13.23)

where g is the g-value of the radical. Many organic radicals have g-values close to 
2.0027; inorganic radicals have g-values typically in the range 1.9–2.1; paramag-
netic d-metal complexes have g-values in a wider range (for example, 0 to 6).

Th e deviation of g from ge = 2.0023 depends on the ability of the applied fi eld to 
induce local electron currents in the radical, and therefore its value gives some 
information about electronic structure. In that sense, the g-value plays a similar 
role in EPR as the shielding constant plays in NMR. Because g-values diff er very 
little from ge in many radicals (for example, 2.003 for H, 1.999 for NO2, 2.01 for 
ClO2), their main use in biochemical applications is to aid the identifi cation of 
the species present in a sample.

Fig. 13.39 Th e EPR spectrum of 
the benzene radical anion, C6H−

6, 
in fl uid solution. Th e quantity a 
is the hyperfi ne splitting of the 
spectrum; the center of the 
spectrum is determined by the 
g-value of the radical.

Fig. 13.40 When phase-sensitive 
detection is used, the signal is the 
fi rst derivative of the absorption 
intensity. Note that the peak of 
the absorption corresponds to 
the point where the derivative 
passes through zero.

A brief illustration

Recent EPR studies have shown that the amino acid tyrosine participates in a 
number of biological electron transfer reactions, including the oxidation of 
water to O2 in plant photosystem II, the reduction of O2 to water in cytochrome 
c oxidase, and the reduction of ribonucleotides to deoxyribonucleotides 
catalyzed by the enzyme ribonucleotide reductase. During the course of these 
electron transfer reactions, a tyrosine radical forms (4). Th e center of the EPR 
spectrum of the tyrosine radical in cytochrome c oxidase of the bacterium P. 
denitrifi cans occurs at 344.50 mT in a spectrometer operating at 9.6699 GHz 
(radiation belonging to the X band of the microwave region). Its g-value is 
therefore

g = hn
mBB0

 = (6.626 08 × 10−34 J s) × (9.6699 × 109 s−1)
(9.2740 × 10−24 J T−1) × (0.344 50 T)

 = 2.0055

Self-test 13.6 At what magnetic fi eld would the tyrosine radical come into 
resonance in a spectrometer operating at 34.000 GHz (radiation belonging to 
the Q band of the microwave region)?

Answer: 1.2113 T
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13.11 Hyperfine structure
The second step in the interpretation of the EPR spectra of organic radicals is to take 
into account the effect that magnetic nuclei have on the energy levels of unpaired 
electrons.

Th e most important features of EPR spectra are their hyperfi ne structure, the 
splitting of individual resonance lines into components. In general in spectro-
scopy, the term ‘hyperfi ne structure’ means the structure of a spectrum that can 
be traced to interactions of the electrons with nuclei other than as a result of the 
latter’s point electric charge. Th e source of the hyperfi ne structure in EPR is the 
magnetic interaction between the electron spin and the magnetic dipole moments 
of the nuclei present in the radical.

Consider the eff ect on the EPR spectrum of a single H nucleus located some-
where in a radical. Th e proton spin is a source of magnetic fi eld, and depending 
on the orientation of the nuclear spin, the fi eld it generates adds to or subtracts 
from the applied fi eld. Th e total local fi eld is therefore

B loc = B + amI  mI = ± 1
2 

The role of the 
hyperfine coupling 
constant

 (13.24)

where a is the hyperfi ne coupling constant. Half the radicals in a sample have 
mI = + 12, so half resonate when the applied fi eld satisfi es the condition

hn = gmB(B + 12a) or B = hn
gmB

 − 12a  
Resonance condition 
in the presence of 
hyperfine structure

 (13.25a)

Th e other half (which have mI = − 12) resonate when

 hn = gmB(B − 12a) or B = hn
gmB

 + 12a 
Resonance condition 
in the presence of 
hyperfine structure

 (13.25b)

Th erefore, instead of a single line, the spectrum shows two lines of half the 
original intensity separated by a and centered on the fi eld determined by g 
(Fig. 13.41).

If the radical contains a 14N atom (I = 1), its EPR spectrum consists of three 
lines of equal intensity because the 14N nucleus has three possible spin orienta-
tions and each spin orientation is possessed by one third of all the radicals in 
the sample. In general, a spin-I nucleus splits the spectrum into 2I + 1 hyperfi ne 
lines of equal intensity.

When there are several magnetic nuclei present in the radical, each one con-
tributes to the hyperfi ne structure. In the case of equivalent protons (for example, 
the two CH2 protons in the radical CH3CH2·) some of the hyperfi ne lines are coin-
cident. It is not hard to show that if the radical contains N equivalent protons, 
then there are N = 1 hyperfi ne lines with an intensity distribution given by Pascal’s 
triangle (1). Th e spectrum of the benzene radical anion in Fig. 13.39, which 
has seven lines with intensity ratio 1:6:15:20:15:6:1, is consistent with a radical 
containing six equivalent protons. More generally, if the radical contains N equi-
valent nuclei with spin quantum number I, then there are 2NI + 1 hyperfi ne lines 
with an intensity distribution given by a modifi ed version of Pascal’s triangle. 
For instance, the hyperfi ne interaction with two equivalent 14N (I = 1) nuclei gives 
rise to fi ve lines with intensities in the ratio 1:2:3:2:1.

Fig. 13.41 Th e hyperfi ne 
interaction between an electron 
and a spin-1

2 nucleus results in 
four energy levels in place of the 
original two. As a result, the 
spectrum consists of two lines 
(of equal intensity) instead of 
one. Th e intensity distribution 
can be summarized by a simple 
stick diagram. Th e diagonal lines 
show the energies of the states as 
the applied fi eld is increased, and 
resonance occurs when the 
separation of states matches the 
fi xed energy of the microwave 
photon.
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Th e hyperfi ne structure of an EPR spectrum is a kind of fi ngerprint that helps 
to identify the radicals present in a sample. Th e interaction between the unpaired 
electron and the hydrogen nucleus responsible for hyperfi ne structure is either a 
dipolar interaction or the Fermi contact interaction described in Section 13.4. 
In the case of the contact interaction, the magnitude of the splitting depends on 
the distribution of the unpaired electron near the magnetic nuclei present, so the 
spectrum can be used to map the molecular orbital occupied by the unpaired 
electron. For example, because the hyperfi ne splitting in C6H6

− is 0.375 mT and 
one proton is close to a C atom with one sixth the unpaired electron density 
(because the electron is spread uniformly around the ring), the hyperfi ne splitting 
caused by a proton in the electron spin entirely confi ned to a single adjacent C 
atom should be 6 × 0.375 mT = 2.25 mT. If in another aromatic radical we fi nd a 
hyperfi ne splitting constant a, then the spin density, r (rho), the probability that 
an unpaired electron is on the atom, can be calculated from the McConnell 
equation:

a = Qr  McConnell equation  (13.26)

with Q = 2.25 mT. In this equation, r is the spin density on a C atom and a is the 
hyperfi ne splitting observed for the H atom to which it is attached.

Fig. 13.43 Th e analysis of the 
hyperfi ne structure of radicals 
containing three equivalent 14N 
nuclei.

Fig. 13.42 Th e analysis of the 
hyperfi ne structure of radicals 
containing one 14N nucleus (I = 1) 
and two equivalent protons with 
the hyperfi ne splitting shown.

Example 13.3 Predicting the hyperfine structure of an EPR spectrum

We shall see (In the laboratory 13.3) that radicals containing the 14N nucleus 
can be used to investigate biological macromolecules and aggregates. A radical 
has one 14N nucleus (I = 1) with hyperfi ne constant 1.61 mT and two equiva-
lent protons (I = 1

2) with hyperfi ne constant 0.35 mT. Predict the form of the 
EPR spectrum.

Strategy We consider the hyperfi ne structure that arises from each type of 
nucleus or group of equivalent nuclei in succession. So, split a line with one 
nucleus, then split each of those lines by a second nucleus (or group of nuclei), 
and so on. It is best to start with the nucleus with the largest hyperfi ne splitting; 
however, any choice could be made, and the order in which nuclei are con-
sidered does not aff ect the conclusion.

Solution Th e 14N nucleus gives three hyperfi ne lines of equal intensity separ-
ated by 1.61 mT. Each line is split into doublets of spacing 0.35 mT by the 
fi rst proton, and each line of these doublets is split into doublets with the 
same 0.35 mT splitting (Fig. 13.42). Th e central lines of each split doublet coin-
cide, so the proton splitting gives 1:2:1 triplets of internal splitting 0.35 mT. 
Th erefore, the spectrum consists of three equivalent 1:2:1 triplets.

Self-test 13.7 Predict the form of the EPR spectrum of a radical containing 
three equivalent 14N nuclei and no other magnetic nuclei.

Answer: Fig. 13.43

In the laboratory 13.3 Spin probes

Th e appearance of the EPR spectrum of a radical changes as its motion is re-
stricted, and we need to see how to take advantage of this eff ect in biochemical 
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investigations. Figure 13.44 shows the variation of the line shape of the EPR 
spectrum of the di-tert-butyl nitroxide radical (5) with temperature. At 292 K 
the spectrum consists of three sharp peaks arising from hyperfi ne coupling 
to the neighboring 14N nucleus. However, the spectral lines broaden when 
the temperature is lowered to 77 K. At high temperatures, the radical tumbles 
freely and the motion becomes restricted as the temperature decreases. It 
follows that we can use the line shape of the EPR spectrum as a probe of 
the mobility of the radical.

A spin probe (or spin label) is a radical with an EPR spectrum that reports on 
the dynamical properties of the biopolymer. Th e ideal spin probe is one with 
an EPR spectrum that broadens signifi cantly as its motion is restricted to a 
relatively small extent. Nitroxide spin probes have been used to show that 
the hydrophobic interiors of biological membranes, once thought to be rigid, 
are in fact very fl uid and individual lipid molecules move laterally through 
the sheet-like structure of the membrane. Th e EPR spectrum also can reveal 
whether a nitroxide spin probe is free in solution, positioned as a guest within 
a macromolecular host, or intercalated within micelles (Section 11.16). For 
example, hyperfi ne coupling constants to the 14N nucleus can change if the 
N–O group is exposed to the solvent or buried in the assembly.

Just as chemical exchange can broaden proton NMR spectra (Section 13.5), 
electron exchange between two radicals can broaden EPR spectra, therefore 
the distance between two spin probe molecules may be measured from the line 
widths of their EPR spectra. Th e eff ect can be used in a number of biochemical 
studies. For example, the kinetics of association of two polypeptides labeled 
with the synthetic amino acid 2,2,6,6,-tetramethylpiperidine-1-oxyl-4-amino-
4-carboxylic acid (6) can be studied by measuring the line width of the EPR 
spectrum of the label as a function of time. Alternatively, the thermodynamics 
of association may be studied by examining the temperature dependence of 
the EPR line width.

Fig. 13.44 EPR spectra of the 
di-tert-butyl nitroxide radical at 
292 K and 77 K. (Based on 
information from J.R. Bolton.)

Checklist of key concepts

 1. Resonance is the condition of strong eff ective 
coupling when the frequencies of two oscillators 
are identical.

 2. Nuclear magnetic resonance (NMR) is the 
observation of the frequency at which magnetic 
nuclei in molecules come into resonance with an 
electromagnetic fi eld when the molecule is exposed 
to a strong magnetic fi eld; NMR is a radiofrequency 
technique.

 3. Electron paramagnetic resonance (EPR) is the 
observation of the frequency at which an electron 
spin comes into resonance with an electromagnetic 

fi eld when the molecule is exposed to a strong 
magnetic fi eld; EPR is a microwave technique.

 4. Th e intensity of an NMR or EPR transition 
increases with the diff erence in population of 
a and b states and the strength of the applied 
magnetic fi eld.

 5. Th e chemical shift  of a nucleus is the diff erence 
between its resonance frequency and that of a 
reference standard.

 6. Th e observed shielding constant is the sum of a local 
contribution, a neighboring group contribution, 
and a solvent contribution.
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 7. Th e fi ne structure of an NMR spectrum is the splitting 
of the groups of resonances into individual lines; the 
strength of the interaction is expressed in terms of the 
spin–spin coupling constant, J.

 8. N equivalent spin- 1
2 nuclei split the resonance of a 

nearby spin or group of equivalent spins into N + 1 
lines with an intensity distribution given by Pascal’s 
triangle.

 9. Spin–spin coupling in molecules in solution can be 
explained in terms of the polarization mechanism, in 
which the interaction is transmitted through the bonds.

 10. Th e Fermi contact interaction is a magnetic 
interaction that depends on the very close approach of 
an electron to the nucleus and can occur only if the 
electron occupies an s orbital.

 11. Coalescence of the two lines occurs in conformational 
interchange or chemical exchange when the lifetime 
of the states is related to their resonance frequency 
diff erence.

 12. In Fourier-transform NMR, the spectrum is obtained 
by mathematical analysis of the free-induction decay 
of magnetization, the response of nuclear spins in a 
sample to the application of one or more pulses of 
radiofrequency radiation.

 13. Relaxation is the nonradiative return to an equilibrium 
distribution of populations in a system with random 
relative spin orientations; the system returns 
exponentially to the equilibrium distribution with 
a time constant called the spin–lattice relaxation 
time, T1.

 14. Th e spin–spin relaxation time, T2, is the time constant 
for the exponential return of the system into random 
relative orientations.

 15. Magnetic resonance imaging (MRI) is a portrayal of 
the concentrations of protons in an object. Th e 

technique relies on the application of specifi c pulse 
sequences to an object in an inhomogeneous magnetic 
fi eld (a fi eld with values that vary inside the sample).

 16. With functional MRI, blood fl ow in diff erent regions 
of the brain can be studied and related to the mental 
activities of the subject. Th e technique is based 
on diff erences in the magnetic properties of 
deoxygenated and oxygenated hemoglobin and 
their eff ects on proton resonances.

 17. In proton decoupling of 13C-NMR spectra, protons are 
made to undergo rapid spin reorientations and the 
13C nucleus senses an average orientation. As a result, 
its resonance is a single line and not a group of lines.

 18. Th e nuclear Overhauser eff ect (NOE) is the 
modifi cation of one resonance by the saturation 
of another.

 19. In two-dimensional NMR, spectra are displayed in 
two axes, with resonances belonging to diff erent 
groups lying at diff erent locations on the second axis.

 20. In correlation spectroscopy (COSY) all spin–spin 
couplings in a molecule are determined.

 21. In nuclear Overhauser eff ect spectroscopy (NOESY) 
internuclear distances up to about 0.5 nm are 
determined.

 22. Th e hyperfi ne structure of an EPR spectrum is 
its splitting of individual resonance lines into 
components by the magnetic interaction of the 
electron and nuclei with spin.

 23. If a radical contains N equivalent nuclei with spin 
quantum number I, then there are 2NI + 1 hyperfi ne 
lines with an intensity distribution given by a 
modifi ed version of Pascal’s triangle.

 24. A spin probe is a radical with an EPR spectrum 
that reports on the dynamical properties of the 
biopolymer.

Checklist of key equations

Property Equation Comment

Energy in a magnetic fi eld Ems
 = gemBB0ms

EmI
 = −gImNB0mI

Free electron 
Nucleus

Resonance condition hn = gemBB0
hn = gNħB0

Free electron 
Nucleus

d Scale for chemical shift s d = {(n − no)/no} × 106 Defi nition
Karplus equation 3JHH = A + B cos f + C cos 2f

Condition for coalescence of two NMR lines t = 21/2/pdn

Nuclear Overhauser enhancement parameter h = (I − I0)/I0 Defi nition
EPR resonance condition hn = gmBB0

McConnell equation a = Qr
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Discussion questions

13.1 To what extent are all spectroscopic techniques resonance 
techniques, and why are magnetic resonance techniques best 
so-called?

13.2 Discuss the origins of the local, neighboring group, and 
solvent contributions to the shielding constant.

13.3 Describe the signifi cance of the chemical shift  in relation to the 
terms ‘high-fi eld’ and ‘low-fi eld’.

13.4 Discuss how the Fermi contact interaction and the polarization 
mechanism contribute to spin–spin couplings in NMR.

13.5 Suggest a reason why the relaxation times of 13C nuclei are 
typically much longer than those of 1H nuclei.

13.6 Suggest a reason why the spin–lattice relaxation time of benzene 
(a small molecule) in a mobile, deuterated hydrocarbon solvent 
increases whereas that of an oligopeptide (a large molecule) decreases.

13.7 Discuss the origin of the nuclear Overhauser eff ect and how it 
can be used to measure distances between protons in a biopolymer.

13.8 Discuss the origins of diagonal and cross-peaks in the COSY 
spectrum of an AX system.

13.9 Explain how the EPR spectrum of an organic radical can be used 
to pinpoint the molecular orbital occupied by the unpaired electron.

13.10 Suggest how spin probes could be used to estimate the depth 
of a crevice in a biopolymer, such as the active site of an enzyme.

Exercises

13.11 Calculate the energy separation between the spin states of 
an electron in a magnetic fi eld of 0.300 T.

13.12 Th e nucleus 32S has a spin of 3
2 and a nuclear g-factor of 0.4289. 

Calculate the energies of the nuclear spin states in a magnetic fi eld 
of 7.500 T.

13.13 Equations 13.5–13.7 defi ne the magnetogyric ratio and the 
g-factor of a nucleus. Given that g is a dimensionless number, what are 
the units of gN expressed in (a) tesla and hertz, and (b) SI base units?

13.14 Th e magnetogyric ratio of 31P is 1.0840 × 108 T−1 s−1. What is 
the g-factor of the nucleus?

13.15 Calculate the value of (Nb − Na)/N for electrons in a fi eld of 
(a) 0.30 T and (b) 1.1 T.

13.16 Calculate the resonance frequency and the corresponding 
wavelength for an electron in a magnetic fi eld of 0.330 T, the magnetic 
fi eld commonly used in EPR.

13.17 Calculate the value of (Na − Nb)/N for (a) protons and 
(b) carbon-13 nuclei in a fi eld of 10 T.

13.18 Th e fi rst generally available NMR spectrometers operated 
at a frequency of 60 MHz; today it is not uncommon to use a 
spectrometer that operates at 800 MHz. What are the relative 
population diff erences (dN/N) of 13C spin states in these two 
spectrometers at 25°C?

13.19 Th e magnetogyric ratio of 19F is 2.5177 × 108 T−1 s−1. Calculate 
the frequency of the nuclear transition in a fi eld of 8.200 T.

13.20 Calculate the resonance frequency of an 14N nucleus (I = 1, 
g = 0.4036) in a 15.00 T magnetic fi eld.

13.21 Calculate the magnetic fi eld needed to satisfy the resonance 
condition for unshielded protons in a 500.0 MHz radiofrequency 
fi eld.

13.22 What is the shift  of the resonance from TMS of a group of 
protons with d = 6.33 in a polypeptide in a spectrometer operating 
at 420 MHz?

13.23 What are the relative values of the chemical shift s observed for 
nuclei in the spectrometers mentioned in Exercise 13.18 in terms of 
(a) d values and (b) frequencies?

13.24 To determine the structures of biopolymers by NMR 
spectroscopy, biochemists use spectrometers that operate at the 
highest available frequencies. Use your results from Exercises 13.18 
and 13.23 to justify this choice.

13.25 Th e chemical shift  of the CH3 protons in acetaldehyde (ethanal) 
is d = 2.20 and that of the CHO proton is 9.80. What is the diff erence 
in local magnetic fi eld between the two regions of the molecule when 
the applied fi eld is (a) 1.5 T and (b) 6.0 T?

13.26 Using the information in Fig. 13.4, state the splitting (in hertz, 
Hz) between the methyl and aldehydic proton resonances in a 
spectrometer operating at (a) 300 MHz and (b) 500 MHz.

13.27 What would be the nuclear magnetic resonance spectrum for a 
proton resonance line that was split by interaction with seven identical 
protons?

13.28 What would be the nuclear magnetic resonance spectrum for a 
proton resonance line that was split by interaction with (a) two and (b) 
three equivalent nitrogen nuclei (the spin of a nitrogen nucleus is 1)?

13.29 Repeat Justifi cation 13.2 for an AX2 spin-1
2 system and deduce 

the pattern of lines expected in the spectrum.

13.30 Sketch the appearance of the 1H-NMR spectrum of 
acetaldehyde (ethanal) using J = 2.90 Hz and the data in Fig. 13.4 
in a spectrometer operating at (a) 300 MHz and (b) 500 MHz.

13.31 Sketch the form of an A3M2X4 spectrum, where A, M, and X are 
protons with distinctly diff erent chemical shift s and JAM > JAX < JMX.

13.32 Formulate the version of Pascal’s triangle that you would 
expect in an NMR spectrum for a collection of N spin-1 nuclei, 
with N up to 5.

13.33 Show that the coupling constant as expressed by the Karplus 
equation passes through a minimum when cos f = B/4C. Hint: 
Evaluate the fi rst derivative with respect to f and set the result equal 
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to 0. To confi rm that the extremum is a minimum, go on to evaluate 
the second derivative and show that it is positive.

13.34 A proton jumps between two sites with d = 2.7 and d = 4.8. 
At what rate of interconversion will the two signals collapse to 
a single line in a spectrometer operating at 500 MHz?

13.35 NMR spectroscopy may be used to determine the equilibrium 
constant for dissociation of a complex between a small molecule, 
such as an enzyme inhibitor I, and a protein, such as an enzyme E:

EI 7 E + I  KI = [E][I]/[EI]

In the limit of slow chemical exchange, the NMR spectrum of a proton 
in I would consist of two resonances: one at nI for free I and another at 
nEI for bound I. When chemical exchange is fast, the NMR spectrum 
of the same proton in I consists of a single peak with a resonance 
frequency n given by

n = fInI + fEInEI

where fI = [I]/([I] + [EI]) and fEI = [EI]/([I] + [EI]) are, respectively, 
the fractions of free I and bound I. For the purposes of analyzing the 
data, it is also useful to defi ne the frequency diff erences dn = n − nI 
and Dn = nEI − nI. Show that when the initial concentration of I, [I]0, 
is much greater than the initial concentration of E, [E]0, a plot of [I]0 
versus 1/dn is a straight line with slope [E]0Dn and y-intercept −KI.

13.36 Th e duration of a 90° pulse depends on the strength of the B1 
fi eld. If a 90° pulse requires 10 ms, what is the strength of the B1 fi eld?

13.37 Interpret the following features of the NMR spectra of hen 
lysozyme: (a) saturation of a proton resonance assigned to the side 
chain of methionine-105 changes the intensities of proton resonances 
assigned to the side chains of tryptophan-28 and tyrosine-23; 
(b) saturation of proton resonances assigned to tryptophan-28 
did not aff ect the spectrum of tyrosine-23.

13.38 You are designing an MRI spectrometer. What fi eld gradient 
(in microtesla per meter, mT m−1) is required to produce a separation 
of 100 Hz between two protons separated by the long diameter of a 
human kidney (taken as 8 cm) given that they are in environments 
with d = 3.4? Th e radiofrequency fi eld of the spectrometer is at 
400 MHz and the applied fi eld is 9.4 T.

13.39 Suppose that a uniform disk-shaped organ is in a linear fi eld 
gradient and that the MRI signal is proportional to the number of 
protons in a slice of width dx at each horizontal distance x from the 
center of the disk. Sketch the shape of the absorption intensity for the 
MRI image of the disk before any computer manipulation has been 
carried out.

13.40 Figure 13.45 shows the proton COSY spectrum of 
1-nitropropane. Account for the appearance of off -diagonal 
peaks in the spectrum.

13.41 Th e proton chemical shift s for the NH, CaH, and CbH groups 
of alanine are 8.25, 4.35, and 1.39, respectively. Sketch the COSY 
spectrum of alanine between d = 1.00 and 8.50.

13.42 Th e center of the EPR spectrum of atomic hydrogen lies at 
329.12 mT in a spectrometer operating at 9.2231 GHz. What is the 
g-value of the electron in the atom?

13.43 A radical containing two equivalent protons shows a three-line 
spectrum with an intensity distribution 1:2:1. Th e lines occur at 
330.2 mT, 332.5 mT, and 334.8 mT. What is the hyperfi ne coupling 
constant for each proton? What is the g-value of the radical given 
that the spectrometer is operating at 9.319 GHz?

13.44 Predict the intensity distribution in the hyperfi ne lines of the 
EPR spectra of (a) ·CH3 and (b) ·CD3.

13.45 Th e benzene radical anion has g = 2.0025. At what fi eld should 
you search for resonance in a spectrometer operating at (a) 9.302 GHz 
and (b) 33.67 GHz?

13.46 Th e EPR spectrum of a radical with two equivalent nuclei of 
a particular kind is split into fi ve lines of intensity ratio 1:2:3:2:1. 
What is the spin of the nuclei?

13.47 Formulate the version of Pascal’s triangle that you would 
expect to represent the hyperfi ne structure in an EPR spectrum for 
a collection of N spin-3

2 nuclei, with N up to 5.

13.48 (a) Sketch the EPR spectra of the di-tert-butyl nitroxide radical 
(5) at 292 K in the limits of very low concentration (at which electron 
exchange is negligible), moderate concentration (at which electron 
exchange eff ects begin to be observed), and high concentration (at 
which electron exchange eff ects predominate). (b) Discuss how the 
observation of electron exchange between nitroxide spin probes 
can inform the study of lateral mobility of lipids in a biological 
membrane.

Fig. 13.45 Proton COSY spectrum of 1-nitropropane. 
Th e circles show enhanced views of the spectral features. 
(Spectrum provided by Prof. G. Morris.)
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Projects

13.49 Consult library and reliable internet resources, such as those 
listed on the website for this text, and write a brief report (similar in 
length and depth of coverage to one of the many Case studies in this 
text) summarizing the use of NMR or EPR spectroscopy in the study 
of protein denaturation. Your report should include (a) a description 
of experimental methods, (b) a discussion of the information that 
can be obtained from the measurements, (c) an example from the 
chemical or biological literature of the use of the technique in protein 
stability work, and (d) a brief discussion of the advantages and 
disadvantages of the technique of your choice over diff erential 
scanning calorimetry (In the laboratory 1.1) and the techniques 
you described in Exercise 12.45b.

13.50 Th e following pulse sequence is used in the inversion recovery 
technique: a 180° pulse is followed by a time interval t, then a 90° 
pulse, acquisition of a FID curve, and Fourier transformation. 
A 180° pulse is achieved by applying a B1 fi eld for twice as long as for 
a 90° pulse, so the magnetization vector precesses through 180° and 
points in the −z-direction.

(a) If a 180° pulse requires 12.5 ms, what is the strength of the B1 fi eld?

(b) Draw a series of diagrams showing the eff ect of the pulse 
sequence described in part (a) on a sample of equivalent nuclei. Th e 
fi rst diagram can be drawn with ease because we already know that 
the 180° pulse tips the magnetization vector toward the −z-direction. 
Th e second diagram should show the eff ect of spin–lattice relaxation 
on the magnitude of the magnetization vector aft er a time interval 
0 < t < T1 has elapsed. Th e third diagram should show the eff ect of 
the 90° pulse on the magnetization vector.

(c) Why is an FID signal generated aft er application of the 90° pulse?

(d) How does the intensity of the spectrum (obtained by Fourier 
transformation of the FID curve) vary with the time interval τ, with 
0 < t < T1?

(e) Use your results from parts (a)–(d) to show that the inversion 
recovery technique can be used to measure spin–lattice relaxation 
times.

Th e following project requires the use of molecular modeling soft ware. 
Th e website for this text contains links to freeware and to other sites 
where you may perform molecular orbital calculations directly from 
your web browser.

13.51 Th e molecular electronic structure methods described in 
Chapter 10 may be used to predict the spin density distribution in a 
radical. Recent EPR studies have shown that the amino acid tyrosine 
participates in a number of biological electron transfer reactions, 
including the processes of water oxidation to O2 in plant photosystem 
II and of O2 reduction to water in cytochrome c oxidase. During the 
course of these electron transfer reactions a tyrosine radical forms, 
with spin density delocalized over the side chain of the amino acid.

(a) Th e phenoxy radical shown in (7) is a suitable model of the 
tyrosine radical. Using molecular modeling soft ware and the 
computational method of your instructor’s choice, calculate 
the spin densities at the O atom and at all of the C atoms in (7).

(b) Predict the form of the EPR spectrum of (7).



In this section are displayed structures of biologically signifi cant molecules that 
occur throughout the text. Th ey are arranged as follows:

Section A Amino acids
Section B Bases
Section C Carboxylic acids
Section E Polyenes
Section L Lipids
Section M Miscellaneous
Section N Nucleotides
Section P Proteins
Section R Porphyrin-based ring complexes
Section S Saccharides
Section T Nucleic acids

For proteins, we give the appropriate Protein Data Bank reference.

Resource section 1: 
Atlas of structures
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A Amino acids
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B Bases

C Carboxylic acids
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E Polyenes
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L Lipids



 RESOURCE SECTION 1: ATLAS OF STRUCTURES   551

M Miscellaneous
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N Nucleotides
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N Nucleotides continued
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P Proteins
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P Proteins continued
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R Porphyrin-based ring complexes
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S Saccharides

T Nucleic acids



Resource section 2: Units

Table 1 Th e SI base units

Physical quantity Symbol for quantity Base unit

Length l meter, m
Mass m kilogram, kg
Time t second, s
Electric current I ampere, A
Th ermodynamic temperature T kelvin, K
Amount of substance n mole, mol
Luminous intensity Iv candela, cd

Table 2 A selection of derived units

Physical quantity Derived unit* Name of derived unit

Force 1 kg m s−2 newton, N
Pressure 1 kg m−1 s−2 pascal, Pa

1 N m−2

Energy 1 kg m2 s−2 joule, J
1 N m
1 Pa m3

Power 1 kg m2 s−3 watt, W

1 J s−1

*Equivalent defi nitions in terms of derived units are given following the defi nition in terms of base units.

Table 3 Common SI prefi xes

Prefi x z a f p n μ m c d k M G T

Name zepto atto femto pico nano micro milli centi deci kilo mega giga tera
Factor 10−21 10−18 10−15 10−12 10−9 10−6 10−3 10−2 10−1 103 106 109 1012
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Table 4 Some common units

Physical quantity Name of unit Symbol for unit Value*

Time minute min 60 s
hour h 3600 s

Length ångström Å 10−10 m
Volume liter L, l 1 dm3

Mass tonne t 103 kg
Pressure bar bar 105 Pa

atmosphere atm 101.325 kPa
Energy electronvolt eV 1.602 176 × 10−19 J

96.485 31 kJ mol−1

*All values in the fi nal column are exact, except for the defi nition of  1 eV.



Resource section 3: Data

Table 1 Th ermodynamic data for organic compounds (all values relate to 298.15 K)

M/g mol−1 DfH9/
kJ mol−1

DfG9/
kJ mol−1

Sm
9/

J K−1 mol−1
C 9

p,m/
J K−1 mol−1

DcH9/
kJ mol−1

C(s) (graphite) 12.011 0 0 5.740 8.527 −393.51
C(s) (diamond) 12.011 +1.895 +2.900 +2.377 6.113 −395.40
CO2(g) 44.010 −393.51 −394.36 213.74 37.11

Hydrocarbons
CH4(g), methane 16.04 −74.81 −50.72 186.26 35.31 −890
CH3(g), methyl 15.04 +145.69 +147.92 194.2 38.70
C2H2(g), ethyne 26.04 +226.73 +209.20 200.94 43.93 −1300
C2H4(g), ethene 28.05 +52.26 +68.15 219.56 43.56 −1411
C2H6(g), ethane 30.07 −84.68 −32.82 229.60 52.63 −1560
C3H6(g), propene 42.08 +20.42 +62.78 267.05 63.89 −2058
C3H6(g), cyclopropane 42.08 −103.85 −23.49 269.91 73.5 −2220
C4H8(g), 1-butene 56.11 −0.13 +71.39 305.71 85.65 −2717
C4H8(g), cis-2-butene 56.11 −6.99 +65.95 300.94 78.91 −2710
C4H8(g), trans-2-butene 56.11 −11.17 +63.06 296.59 87.82 −2707
C4H10(g), butane 58.13 −126.15 −17.03 310.23 97.45 −2878
C5H12(g), pentane 72.15 −146.44 −8.20 348.40 120.2 −3537
C5H12(l) 72.15 −173.1
C6H6(l), benzene 78.12 +49.0 +124.3 173.3 136.1 −3268
C6H6(g) 78.12 +82.93 +129.72 269.31 81.67 −3320
C6H12(l), cyclohexane 84.16 −156 26.8 156.5 −3902
C6H14(l), hexane 86.18 −198.7 204.3 −4163
C6H5CH3(g), methylbenzene (toluene) 92.14 +50.0 +122.0 320.7 103.6 −3953
C7H16(l), heptane 100.21 −224.4 +1.0 328.6 224.3
C8H18(l), octane 114.23 −249.9 +6.4 361.1 −5471
C8H18(l), iso-octane 114.23 −255.1 −5461
C10H8(s), naphthalene 128.18 +78.53 −5157

Alcohols and phenols
CH3OH(l), methanol 32.04 −238.86 −166.27 126.8 81.6 −726
CH3OH(g) 32.04 −200.66 −166.27 239.81 43.89 −764
C2H5OH(l), ethanol 46.07 −277.69 −174.78 160.7 111.46 −1368
C2H5OH(g) 46.07 −235.10 −168.49 282.70 65.44 −1409
C6H5OH(s), phenol 94.12 −165.0 −50.9 146.0 −3054
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Carboxylic acids, hydroxy acids, and esters
HCOOH(l), formic 46.03 −424.72 −361.35 128.95 99.04 −255
CH3COOH(l), ethanoic 60.05 −484.3 −389.9 159.8 124.3 −875
CH3COOH(aq) 60.05 −485.76 −396.46 178.7
CH3CO2 (aq) 59.05 −486.01 −369.31 86.6 −6.3
CH3(CO)COOH(l), pyruvic 88.06 −950
CH3(CH2)2COOH(l), butanoic 88.10 −533.8
CH3COOC2H5(l), ethyl acetate 88.10 −479.0 −332.7 259.4 170.1 −2231
(COOH)2(s), oxalic 90.04 −827.2 117 −254
CH3CH(OH)COOH(s), lactic 90.08 −694.0 −522.9 −1344
HOOCCH2CH2COOH(s), succinic 118.09 −940.5 −747.4 153.1 167.3
C6H5COOH(s), benzoic 122.13 −385.1 −245.3 167.6 146.8 −3227
CH3(CH2)8COOH(s), decanoic 172.27 −713.7
C6H8O6(s), ascorbic 176.12 −1164.6
HOOCCH2C(OH)(COOH) CH2COOH(s), citric 192.12 −1543.8 −1236.4 −1985
CH3(CH2)10COOH(s), dodecanoic 200.32 −774.6 404.3
CH3(CH2)14COOH(s), hexadecanoic 256.41 −891.5
C18H36O2(s), stearic 284.48 −947.7 501.5

Alkanals and alkanones
HCHO(g), methanal 30.03 −108.57 −102.53 218.77 35.40 −571
CH3CHO(l), ethanal 44.05 −192.30 −128.12 160.2 −1166
CH3CHO(g) 44.05 −166.19 −128.86 250.3 57.3 −1192
CH3COCH3(l), propanone 58.08 −248.1 −155.4 200.4 124.7 −1790

Sugars
C5H10O5(s), d-ribose 150.1 −1051.1
C5H10O5(s), d-xylose 150.1 −1057.8
C6H12O6(s), a-d-glucose 180.16 −1273.3 −917.2 212.1 −2808
C6H12O6(s), b-d-glucose 180.16 −1268
C6H12O6(s), b-d-fructose 180.16 −1265.6 −2810
C6H12O6(s), a-d-galactose 180.16 −1286.3 −918.8 205.4
C12H22O11(s), sucrose 342.30 −2226.1 −1543 360.2 −5645
C12H22O11(s), lactose 342.30 −2236.7 −1567 386.2

Amino acids1

l-Glycine
 solid 75.07 −528.5 −373.4 103.5 99.2 −969
 aqueous solution 75.07 −469.8 −315.0 111.0
l-Alanine 89.09 −604.0 −369.9 129.2 122.2 −1618
l-Serine 105.09 −732.7 −508.8 149.2 135.6 −1455
l-Proline 115.13 −515.2 164.0 151.2
l-Valine 117.15 −617.9 −359.0 178.9 168.8 −2922
l-Th reonine 119.12 −807.2 −550.2 152.7 147.3 −2053
l-Cysteine 121.16 −534.1 −340.1 169.9 162.3 −1651

M/g mol−1 DfH9/
kJ mol−1

DfG9/
kJ mol−1

Sm
9/

J K−1 mol−1
C 9

p,m/
J K−1 mol−1

DcH9/
kJ mol−1
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l-Leucine 131.17 −637.4 −347.7 211.8 200.1 −3582
l-Isoleucine 131.17 −637.8 −347.3 208.0 188.3 −3581
l-Asparagine 132.12 −789.4 −530.1 174.5 160.2 −530
l-Aspartic acid 133.10 −973.3 −730.1 170.1 155.2 −1601
l-Glutamine 146.15 −826.4 −532.6 195.0 184.2 −2570
l-Glutamic acid 147.13 −1009.7 −731.4 188.2 175.0 −2244
l-Methionine 149.21 −577.5 −505.8 231.5 290.0 −2782
l-Histidine 155.16 −466.7
l-Phenylalanine 165.19 −466.9 −211.7 213.6 203.0 −4647
l-Tyrosine 181.19 −685.1 −385.8 214.0 216.4 −4442
l-Tryptophan 204.23 −415.3 −119.2 251.0 238.1 −5628
l-Cystine 240.32 −1032.7 −685.8 280.6 261.9 −3032

Peptides
NH2CH2CONHCH2COOH(s), glycylglycine 132.12 747.7 487.9 180.3 164.0 1972
NH2CH(CH3)CONHCH2COOH, alanylglycine 146.15 489.9 213.4 182.4  2619

Other nitrogen compounds
CH3NH2(g), methylamine 31.06 −22.97 +32.16 243.41 53.1 −1085
(NH2)2CO(s), urea 60.06 −333.1 −197.33 104.60 93.14 −632
C6H5NH2(l), aniline 93.13 +31.1 −3393
C4H5N3O(s), cytosine 111.10 −221.3 132.6
C4H4N2O2(s), uracil 112.09 −429.4
C5H6N2O2(s), thymine 126.11 −462.8 150.8
C5H5N5(s), adenine 135.14 +96.9 +299.6 151.1 147.0
C5H5N5O(s), guanine 151.13 −183.9 +47.4 160.3

1See the Atlas of structures, Section A, for the molecular structures of the amino acids. Unless otherwise noted, data relate to the substance in 
the solid state.

Table 2 Th ermodynamic data (all values relate to 298.15 K)*

M/(g mol−1) DfH9/(kJ mol−1) DfG9/(kJ mol−1) Sm
9 /(J K−1 mol−1) C 9

p,m/(J K−1 mol−1)

Aluminum
Al(s) 26.98 0 0 28.33 24.35
Al(l) 26.98 +10.56 +7.20 39.55 24.21
Al(g) 26.98 +326.4 +285.7 164.54 21.38

Al3+(g) 26.98 +5483.17
Al3+(aq) 26.98 −531 −485 −321.7
Al2O3(s, ) 101.96 −1675.7 −1582.3 50.92 79.04
AlCl3(s) 133.24 −704.2 −628.8 110.67 91.84

Argon
Ar(g) 39.95 0 0 154.84 20.786

M/g mol−1 DfH9/
kJ mol−1

DfG9/
kJ mol−1

Sm
9/

J K−1 mol−1
C 9

p,m/
J K−1 mol−1

DcH9/
kJ mol−1
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Antimony
Sb(s) 121.75 0 0 45.69 25.23
SbH3(g) 153.24 +145.11 +147.75 232.78 41.05

Arsenic
As(s,a) 74.92 0 0 35.1 24.64
As(g) 74.92 +302.5 +261.0 174.21 20.79
As4(g) 299.69 +143.9 +92.4 314
AsH3(g) 77.95 +66.44 +68.93 222.78 38.07

Barium
Ba(s) 137.34 0 0 62.8 28.07
Ba(g) 137.34 +180 +146 170.24 20.79

Ba2+(aq) 137.34 −537.64 −560.77 +9.6
BaO(s) 153.34 −553.5 −525.1 70.43 47.78
BaCl2(s) 208.25 −858.6 −810.4 123.68 75.14

Beryllium
Be(s) 9.01 0 0 9.50 16.44
Be(g) 9.01 +324.3 +286.6 136.27 20.79

Bismuth
Bi(s) 208.98 0 0 56.74 25.52
Bi(g) 208.98 +207.1 +168.2 187.00 20.79

Bromine
Br2(l) 159.82 0 0 152.23 75.689
Br2(g) 159.82 +30.907 +3.110 245.46 36.02
Br(g) 79.91 +111.88 +82.396 175.02 20.786

Br−(g) 79.91 −219.07
Br−(aq) 79.91 −121.55 −103.96 +82.4 −141.8
HBr(g) 90.92 −36.40 −53.45 198.70 29.142

Cadmium
Cd(s,γ) 112.40 0 0 51.76 25.98
Cd(g) 112.40 +112.01 +77.41 167.75 20.79

Cd2+(aq) 112.40 −75.90 −77.612 −73.2
CdO(s) 128.40 −258.2 −228.4 54.8 43.43
CdCO3(s) 172.41 −750.6 −669.4 92.5

Caesium: see cesium 

Calcium
Ca(s) 40.08 0 0 41.42 25.31
Ca(g) 40.08 +178.2 +144.3 154.88 20.786

Ca2+(aq) 40.08 −542.83 −553.58 −53.1
CaO(s) 56.08 −635.09 −604.03 39.75 42.80
CaCO3(s) (calcite) 100.09 −1206.9 −1128.8 92.9 81.88

M/(g mol−1) DfH9/(kJ mol−1) DfG9/(kJ mol−1) Sm
9 /(J K−1 mol−1) C 9

p,m/(J K−1 mol−1)
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CaCO3(s) (aragonite) 100.09 −1207.1 −1127.8 88.7 81.25
CaF2(s) 78.08 1219.6 −1167.3 68.87 67.03
CaCl2(s) 110.99 −795.8 −748.1 104.6 72.59
CaBr2(s) 199.90 −682.8 −663.6 130

Carbon ( for ‘organic’ compounds, see Table 1)
C(s) (graphite) 12.011 0 0 5.740 8.527
C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.133
C(g) 12.011 +716.68 +671.26 158.10 20.838
C2(g) 24.022 +831.90 +775.89 199.42 43.21
CO(g) 28.011 −110.53 −137.17 197.67 29.14
CO2(g) 44.010 −393.51 −394.36 213.74 37.11
CO2(aq) 44.010 −413.80 −385.98 117.6
H2CO3(aq) 62.03 −699.65 −623.08 187.4

HCO3
−(aq) 61.02 −691.99 −586.77 +91.2

CO3
2−(aq) 60.01 −677.14 −527.81 −56.9

CCl4(l) 153.82 −135.44 −65.21 216.40 131.75
CS2(l) 76.14 +89.70 +65.27 151.34 75.7
HCN(g) 27.03 +135.1 +124.7 201.78 35.86
HCN(l) 27.03 +108.87 +124.97 112.84 70.63

CN−(aq) 26.02 +150.6 +172.4 +94.1

Cesium
Cs(s) 132.91 0 0 85.23 32.17
Cs(g) 132.91 +76.06 +49.12 175.60 20.79

Cs+(aq) 132.91 −258.28 −292.02 +133.05 −10.5

Chlorine
Cl2(g) 70.91 0 0 223.07 33.91
Cl(g) 35.45 +121.68 +105.68 165.20 21.840

Cl−(g) 35.45 −233.13
Cl−(aq) 35.45 −167.16 −131.23 +56.5 −136.4
HCl(g) 36.46 −92.31 −95.30 186.91 29.12
HCl(aq) 36.46 −167.16 −131.23 56.5 −136.4

Chromium
Cr(s) 52.00 0 0 23.77 23.35
Cr(g) 52.00 +396.6 +351.8 174.50 20.79

CrO4
2−(aq) 115.99 −881.15 −727.75 +50.21

Cr2O7
2−(aq) 215.99 −1490.3 −1301.1 +261.9

Copper
Cu(s) 63.54 0 0 33.150 24.44
Cu(g) 63.54 +338.32 +298.58 166.38 20.79

Cu+(aq) 63.54 +71.67 +49.98 +40.6
Cu2+(aq) 63.54 +64.77 +65.49 −99.6
Cu2O(s) 143.08 −168.6 −146.0 93.14 63.64

M/(g mol−1) DfH9/(kJ mol−1) DfG9/(kJ mol−1) Sm
9 /(J K−1 mol−1) C 9

p,m/(J K−1 mol−1)
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CuO(s) 79.54 −157.3 −129.7 42.63 42.30
CuSO4(s) 159.60 −771.36 −661.8 109 100.0
CuSO4·H2O(s) 177.62 −1085.8 −918.11 146.0 134
CuSO4·5H2O(s) 249.68 −2279.7 −1879.7 300.4 280

Deuterium
D2(g) 4.028 0 0 144.96 29.20
HD(g) 3.022 +0.318 −1.464 143.80 29.196
D2O(g) 20.028 −249.20 −234.54 198.34 34.27
D2O(l) 20.028 −294.60 −243.44 75.94 84.35
HDO(g) 19.022 −245.30 −233.11 199.51 33.81
HDO(l) 19.022 −289.89 −241.86 79.29

Fluorine
F2(g) 38.00 0 0 202.78 31.30
F(g) 19.00 +78.99 +61.91 158.75 22.74

F−(aq) 19.00 −332.63 −278.79 −13.8 −106.7
HF(g) 20.01 −271.1 −273.2 173.78 29.13

Gold
Au(s) 196.97 0 0 47.40 25.42
Au(g) 196.97 +366.1 +326.3 180.50 20.79

Helium
He(g) 4.003 0 0 126.15 20.786

Hydrogen (see also deuterium)
H2(g) 2.016 0 0 130.684 28.824
H(g) 1.008 +217.97 +203.25 114.71 20.784

H+(aq) 1.008 0 0 0 0
H2O(l) 18.015 −285.83 −237.13 69.91 75.291
H2O(g) 18.015 −241.82 −228.57 188.83 33.58
H2O2(l) 34.015 −187.78 −120.35 109.6 89.1

Iodine
I2(s) 253.81 0 0 116.135 54.44
I2(g) 253.81 +62.44 +19.33 260.69 36.90
I(g) 126.90 +106.84 +70.25 180.79 20.786

I−(aq) 126.90 −55.19 −51.57 +111.3 −142.3
HI(g) 127.91 +26.48 +1.70 206.59 29.158

Iron
Fe(s) 55.85 0 0 27.28 25.10
Fe(g) 55.85 +416.3 +370.7 180.49 25.68

Fe2+(aq) 55.85 −89.1 −78.90 −137.7
Fe3+(aq) 55.85 −48.5 −4.7 −315.9
Fe3O4(s) (magnetite) 231.54 −1184.4 −1015.4 146.4 143.43
Fe2O3(s) (hematite) 159.69 −824.2 −742.2 87.40 103.85

M/(g mol−1) DfH9/(kJ mol−1) DfG9/(kJ mol−1) Sm
9 /(J K−1 mol−1) C 9

p,m/(J K−1 mol−1)
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FeS(s,a) 87.91 −100.0 −100.4 60.29 50.54
FeS2(s) 119.98 −178.2 −166.9 52.93 62.17

Krypton
Kr(g) 83.80 0 0 164.08 20.786

Lead
Pb(s) 207.19 0 0 64.81 26.44
Pb(g) 207.19 +195.0 +161.9 175.37 20.79

Pb2+(aq) 207.19 −1.7 −24.43 +10.5
PbO(s, yellow) 223.19 −217.32 −187.89 68.70 45.77
PbO(s, red) 223.19 −218.99 −188.93 66.5 45.81
PbO2(s) 239.19 −277.4 −217.33 68.6 64.64

Lithium
Li(s) 6.94 0 0 29.12 24.77
Li(g) 6.94 +159.37 +126.66 138.77 20.79

Li+(aq) 6.94 −278.49 −293.31 +13.4 +68.6

Magnesium
Mg(s) 24.31 0 0 32.68 24.89
Mg(g) 24.31 +147.70 +113.10 148.65 20.786

Mg2+(aq) 24.31 −466.85 −454.8 −138.1
MgO(s) 40.31 −601.70 −569.43 26.94 37.15
MgCO3(s) 84.32 −1095.8 −1012.1 65.7 75.52
MgCl2(s) 95.22 −641.32 −591.79 89.62 71.38
MgBr2(s) 184.13 −524.3 −503.8 117.2

Mercury
Hg(l) 200.59 0 0 76.02 27.983
Hg(g) 200.59 +61.32 +31.82 174.96 20.786

Hg2+(aq) 200.59 +171.1 +164.40 −32.2
Hg2

2+(aq) 401.18 +172.4 +153.52 +84.5
HgO(s) 216.59 −90.83 −58.54 70.29 44.06
Hg2Cl2(s) 472.09 −265.22 −210.75 192.5 102
HgCl2(s) 271.50 −224.3 −178.6 146.0
HgS(s, black) 232.65 −53.6 −47.7 88.3

Neon
Ne(g) 20.18 0 0 146.33 20.786

Nitrogen
N2(g) 28.013 0 0 191.61 29.125
N(g) 14.007 +472.70 +455.56 153.30 20.786
NO(g) 30.01 +90.25 +86.55 210.76 29.844
N2O(g) 44.01 +82.05 +104.20 219.85 38.45
NO2(g) 46.01 +33.18 +51.31 240.06 37.20
N2O4(g) 92.01 +9.16 +97.89 304.29 77.28

M/(g mol−1) DfH9/(kJ mol−1) DfG9/(kJ mol−1) Sm
9 /(J K−1 mol−1) C 9

p,m/(J K−1 mol−1)
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N2O5(s) 108.01 −43.1 +113.9 178.2 143.1
N2O5(g) 108.01 +11.3 +115.1 355.7 84.5
HNO3(l) 63.01 −174.10 −80.71 155.60 109.87
HNO3(aq) 63.01 −207.36 −111.25 146.4 −86.6
NO3

−(aq) 62.01 −205.0 −108.74 +146.4 −86.6
NH3(g) 17.03 −46.11 −16.45 192.45 35.06
NH3(aq) 17.03 −80.29 −26.50 113.3

NH4
+(aq) 18.04 −132.51 −79.31 +113.4 +79.9

NH2OH(s) 33.03 −114.2
HN3(l) 43.03 +264.0 +327.3 140.6
NH3(g) 43.03 +294.1 +328.1 238.97 43.68
N2H4(l) 32.05 +50.63 +149.43 121.21 98.87
NH4NO3(s) 80.04 −365.56 −183.87 151.08 139.3
NH4Cl(s) 53.49 −314.43 −202.87 94.6 84.1

Oxygen
O2(g) 31.999 0 0 205.138 29.355
O(g) 15.999 +249.17 +231.73 161.06 21.912
O3(g) 47.998 +142.7 +163.2 238.93 39.20

OH−(aq) 17.007 −229.99 −157.24 −10.75 −148.5

Phosphorus
P(s, wh) 30.97 0 0 41.09 23.840
P(g) 30.97 +314.64 +278.25 163.19 20.786
P2(g) 61.95 +144.3 +103.7 218.13 32.05
P4(g) 123.90 +58.91 +24.44 279.98 67.15
PH3(g) 34.00 +5.4 +13.4 210.23 37.11
PCl3(g) 137.33 −287.0 −267.8 311.78 71.84
PCl3(l) 137.33 −319.7 −272.3 217.1
PCl5(g) 208.24 −374.9 −305.0 364.6 112.8
PCl5(s) 208.24 −443.5
H3PO3(s) 82.00 −964.4
H3PO3(aq) 82.00 −964.8
H3PO4(s) 94.97 −1279.0 −1119.1 110.50 106.06
H3PO4(l) 94.97 −1266.9
H3PO4(aq) 94.97 −1277.4 −1018.7 −222
PO4

3−(aq) 94.97 −1277.4 −1018.7 −222
P4O10(s) 283.89 −2984.0 −2697.0 228.86 211.71
P4O6(s) 219.89 −1640.1

Potassium
K(s) 39.10 0 0 64.18 29.58
K(g) 39.10 +89.24 +60.59 160.336 20.786

K+(g) 39.10 +514.26
K+(aq) 39.10 −252.38 −283.27 +102.5 +21.8

M/(g mol−1) DfH9/(kJ mol−1) DfG9/(kJ mol−1) Sm
9 /(J K−1 mol−1) C 9

p,m/(J K−1 mol−1)
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KOH(s) 56.11 −424.76 −379.08 78.9 64.9
KF(s) 58.10 −576.27 −537.75 66.57 49.04
KCl(s) 74.56 −436.75 −409.14 82.59 51.30
KBr(s) 119.01 −393.80 −380.66 95.90 52.30
Kl(s) 166.01 −327.90 −324.89 106.32 52.93

Silicon
Si(s) 28.09 0 0 18.83 20.00
Si(g) 28.09 +455.6 +411.3 167.97 22.25

SiO2(s,a) 60.09 −910.93 −856.64 41.84 44.43

Silver
Ag(s) 107.87 0 0 42.55 25.351
Ag(g) 107.87 +284.55 +245.65 173.00 20.79

Ag+(aq) 107.87 +105.58 +77.11 +72.68 +21.8
AgBr(s) 187.78 −100.37 −96.90 107.1 52.38
AgCl(s) 143.32 −127.07 −109.79 96.2 50.79
Ag2O(s) 231.74 −31.05 −11.20 121.3 65.86
AgNO3(s) 169.88 −124.39 −33.41 140.92 93.05

Sodium
Na(s) 22.99 0 0 51.21 28.24
Na(g) 22.99 +107.32 +76.76 153.71 20.79

Na+(aq) 22.99 −240.12 −261.91 +59.0 +46.4
NaOH(s) 40.00 −425.61 −379.49 64.46 59.54
NaCl(s) 58.44 −411.15 −384.14 72.13 50.50
NaBr(s) 102.90 −361.06 −348.98 86.82 51.38
NaI(s) 149.89 −287.78 −286.06 98.53 52.09

Sulfur
S(s,a) (rhombic) 32.06 0 0 31.80 22.64

S(s,b) (monoclinic) 32.06 +0.33 +0.1 32.6 23.6
S(g) 32.06 +278.81 +238.25 167.82 23.673
S2(g) 64.13 +128.37 +79.30 228.18 32.47

S2−(aq) 32.06 +33.1 +85.8 −14.6
SO2(g) 64.06 −296.83 −300.19 248.22 39.87
SO3(g) 80.06 −395.72 −371.06 256.76 50.67
H2SO4(l) 98.08 −813.99 −690.00 156.90 138.9
H2SO4(aq) 98.08 −909.27 −744.53 20.1 −293
SO4

2−(aq) 96.06 −909.27 −744.53 +20.1 −293
HSO4

−(aq) 97.07 −887.34 −755.91 +131.8 −84
H2S(g) 34.08 −20.63 −33.56 205.79 34.23
H2S(aq) 34.08 −39.7 −27.83 121

HS−(aq) 33.072 −17.6 +12.08 +62.08
SF6(g) 146.05 −1209 −1105.3 291.82 97.28

M/(g mol−1) DfH9/(kJ mol−1) DfG9/(kJ mol−1) Sm
9 /(J K−1 mol−1) C 9

p,m/(J K−1 mol−1)
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Tin
Sn(s,b) 118.69 0 0 51.55 26.99
Sn(g) 118.69 +302.1 +267.3 168.49 20.26

Sn2+(aq) 118.69 −8.8 −27.2 −17
SnO(s) 134.69 −285.8 −256.8 56.5 44.31
SnO2(s) 150.69 −580.7 +519.6 52.3 52.59

Xenon
Xe(g) 131.30 0 0 169.68 20.786

Zinc
Zn(s) 65.37 0 0 41.63 25.40
Zn(g) 65.37 +130.73 +95.14 160.98 20.79

Zn2+(aq) 65.37 −153.89 −147.06 −112.1  +46
ZnO(s) 81.37 −348.28 −318.30 43.64   40.25

*Entropies and heat capacities of ions are relative to H+(aq) and are given with a sign.

M/(g mol−1) DfH9/(kJ mol−1) DfG9/(kJ mol−1) Sm
9 /(J K−1 mol−1) C 9

p,m/(J K−1 mol−1)

Table 3a Standard potentials at 298.15 K in electrochemical order

Reduction half-reaction E9/V Reduction half-reaction E9/V

Strongly oxidizing Cu2+ + e− → Cu+ +0.16
H4XeO6 + 2 H+ + 2 e− → XeO3 + 3 H2O +3.0 Sn4+ + 2 e− → Sn2+ +0.15
F2 + 2 e− → 2 F− +2.87 AgBr + e− → Ag + Br− +0.07
O3 + 2 H+ + 2 e− → O2 + H2O +2.07 Ti4+ + e− → Ti3+  0.00

S2O8
2− + 2 e− → 2 SO4

2− +2.05 2 H+ + 2 e− → H 0, by defi nition

Ag2+ + e− → Ag+ +1.98 Fe3+ + 3 e− → Fe −0.04
Co3+ + e− → Co2+ +1.81 O2 + H2O + 2 e− → HO2

− + OH− −0.08
HO2 + 2 H+ + 2 e− → 2 H2O +1.78 Pb2+ + 2 e− → Pb −0.13
Au+ + e− → Au +1.69 In+ + e− → In −0.14
Pb4+ + 2 e− → Pb2+ +1.67 Sn2+ + 2 e− → Sn −0.14
2 HClO + 2 H+ + 2 e− → Cl2 + 2 H2O +1.63 Agl + e− → Ag + I −0.15
Ce4+ + e− → Ce3+ +1.61 Ni2+ + 2 e− → Ni −0.23
2 HBrO + 2 H+ + 2 e− → Br2 + 2 H +1.60 Co2+ + 2 e− → Co −0.28
MnO4

− + 8 H+ + 5 e− → Mn2+ + 4 H2O +1.51 In3+ + 3 e− → In −0.34
Mn3+ + e− → Mn2+ +1.51 Tl+ + e− → Tl −0.34
Au3+ + 3 e− → Au +1.40 PbSO4 + 2 e− → Pb + SO4

2− −0.36
Cl2 + 2 e− → 2 Cl− +1.36 Ti3+ + e− → Ti2+ −0.37
Cr2O7

2− + 14 H+ + 6 e− → 2 Cr3+ + 7 H2O +1.33 Cd2+ + 2 e− → Cd −0.40
O3 + H2O + 2 e− → O2 + 2 OH− +1.24 In2+ + e− → In+ −0.40
O2 + 4 H+ + 4 e− → 2 H2O +1.23 Cr3+ + e− → Cr2+ −0.41
ClO4

− + 2 H+ + 2 e− → ClO3
− + H2O +1.23 Fe2+ + 2 e− → Fe −0.44

MnO2 + 4 H+ + 2 e− → Mn2+ + 2 H2O +1.23 In3+ + 2 e− → In+ −0.44
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Br2 + 2 e− → 2 Br− +1.09 S + 2 e− → S2− −0.48
Pu4+ + e− → Pu3+ +0.97 In3+ + e − → In2+ −0.49
NO3

− + 4 H+ + 3 e− → NO + 2 H2O +0.96 U4+ + e− → U3+ −0.61
2 Hg2+ + 2 e− → Hg2

2+ +0.92 Cr3+ + 3 e− → Cr −0.74
ClO− + H2O + 2 e− → Cl− + 2 OH− +0.89 Zn2+ + 2 e− → Zn −0.76
Hg2+ + 2 e− → Hg +0.86 Cd(OH)2 + 2 e− → Cd + 2 OH− −0.81
NO3

− + 2 H+ + e− → NO2 + H2O +0.80 2 H2O + 2 e− → H2 + 2 OH− −0.83
Ag+ + e− → Ag +0.80 Cr2+ + 2 e− → Cr −0.91
Hg2

2+ + 2 e− → 2 Hg +0.79 Mn2+ + 2 e− → Mn −1.18
Fe3+ + e− → Fe2+ +0.77 V2+ + 2 e− → V −1.19
BrO− + H2O + 2 e− → Br− + 2 OH− +0.76 Ti2+ + 2 e− → Ti −1.63
Hg2SO4 + 2 e− → 2 Hg + SO4

2− +0.62 Al3+ + 3 e− → Al −1.66
MnO4

2− + 2 H2O + 2 e− → MnO2 + 4 OH− +0.60 U3+ + 3 e− → U −1.79
MnO4

− + e− → MnO4
2− +0.56 Mg2+ + 2 e− → Mg −2.36

I2 + 2 e− → 2 I− +0.54 Ce3+ + 3 e− → Ce −2.48
Cu+ + e− → Cu +0.52 La3+ + 3 e− → La −2.52
I3

− + 2 e− → 3 I− +0.53 Na+ + e− → Na −2.71
NiOOH + H2O + e− → Ni(OH)2OH− +0.49 Ca2+ + 2 e− → Ca −2.87
IAg2CrO4 + 2 e− → 2 Ag + CrO4

2− +0.45 Sr2+ + 2 e− → Sr −2.89
O2 + 2 H2O + 4 e− → 4 OH− +0.40 Ba2+ + 2 e− → Ba −2.91
ClO4

− + H2O + 2 e− → ClO3
− + 2 OH− +0.36 Ra2+ + 2 e− → Ra −2.92

[Fe(CN)6]3− + e− → [Fe(CN)6]4− +0.36 Cs+ + e− → Cs −2.92
Cu2+ + 2 e− → Cu +0.34 Rb+ + e− → Rb −2.93
Hg2Cl2 + 2 e− → 2 Hg + 2 Cl− +0.27 K+ + e− → K −2.93
AgCl + e− → Ag + Cl− +0.22 Li+ + e− → Li −3.05
Bi3+ + 3 e− → Bi +0.20 Strongly reducing

Reduction half-reaction E9/V Reduction half-reaction E9/V

Table 3b Standard potentials at 298.15 K in alphabetical order

Reduction half-reaction E9/V Reduction half-reaction E9/V

Ag+ + e− → Ag +0.80 I2 + 2 e− → 2 I− +0.54
Ag2+ + e− → Ag+ +1.98 I3

− + 2 e− → 3 I− +0.53
AgBr + e− → Ag + Br− +0.0713 In+ + e− → In −0.14
AgCl + e− → Ag + Cl− +0.22 In2+ + e− → In+ −0.40
Ag2CrO4 + 2 e− → 2 Ag + CrO4

2− +0.45 In3+ + 2 e− → In+ −0.44
AgF + e− → Ag + F− +0.78 In3+ + 3 e− → In −0.34
Agl + e− → Ag + I− −0.15 In3+ + e− → In2+ −0.49
Al3+ + 3 e− → Al −1.66 K+ + e− → K −2.93
Au+ + e− → Au +1.69 La3+ + 3 e− → La −2.52
Au3+ + 3 e− → Au +1.40 Li+ + e− → Li −3.05
Ba2+ + 2 e− → Ba −2.91 Mg2+ + 2 e− → Mg −2.36
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Be2+ + 2 e− → Be −1.85 Mn2+ + 2 e− → Mn −1.18
Bi3+ + 3 e− → Bi +0.20 Mn3+ + e− → Mn2+ +1.51
Br2 + 2 e− → 2 Br− +1.09 MnO2 + 4 H+ + 2 e− → Mn2++ 2 H2O +1.23
BrO− + H2O + 2 e− → Br− + 2 OH− +0.76 MnO4

− + 8 H+ + 5 e− → Mn2+ + 4 H2O +1.51
Ca2+ + 2 e− → Ca −2.87 MnO4

− + e− → MnO4
2− +0.56

Cd(OH)2 + 2 e− → Cd + 2 OH− −0.81 MnO4
2− + 2 H2O + 2 e− → MnO2 + 4 OH− +0.60

Cd2+ + 2 e− → Cd −0.40 Na+ + e− → Na −2.71
Ce3+ + 3 e− → Ce −2.48 Ni2+ + 2 e− → Ni −0.23
Ce4+ + e− → Ce3+ +1.61 NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49
Cl2 + 2 e− → 2 Cl− +1.36 NO3

− + 2 H+ + e− → NO2 + H2O +0.80
ClO− + H2O + 2 e− → Cl− + 2 OH− +0.89 NO3

− + 3 H+ + 3 e− → NO + 2 H2O +0.96
ClO4

− + 2 H+ + 2 e− → ClO3
− + H2O +1.23 NO3

− + H2O + 2 e− → NO2
− + 2 OH− +0.10

ClO4
− + H2O + 2 e− → ClO3

− + 2 OH− +0.36 O2 + 2 H2O + 4 e− → 4 OH− +0.40
Co2+ + 2 e− → Co −0.28 O2 + 4 H+ + 4 e− → 2 H2O +1.23
Co3+ + e− → Co2+ +1.81 O2 + e− → O2

− −0.56
Cr2+ + 2 e− → Cr −0.91 O2 + H2O + 2 e− → HO2

− + OH− −0.08
Cr2O7

2− + 14 H+ + 6 e− → 2 Cr3+ + 7 H2O +1.33 O3 + 2 H+ + 2 e− → O2 + H2O +2.07
Cr3+ + 3 e− → Cr −0.74 O3 + H2O + 2 e− → O2 + 2 OH− +1.24
Cr3+ + e− → Cr2+ −0.41 Pb2+ + 2 e− → Pb −0.13
Cs+ + e− → Cs −2.92 Pb4+ + 2 e− → Pb2+ +1.67
Cu+ + e− → Cu +0.52 PbSO4 + 2 e− → Pb + SO4

2− −0.36
Cu2+ + 2 e− → Cu +0.34 Pt2+ + 2 e− → Pt +1.20
Cu2+ + e− → Cu+ +0.16 Pu4+ + e− → Pu3+ +0.97
F2 + 2 e− → 2 F− +2.87 Ra2+ + 2 e− → Ra −2.92
Fe2+ + 2 e− → Fe −0.44 Rb+ + e− → Rb −2.93
Fe3+ + 3 e− → Fe −0.04 S + 2 e− → S2− −0.48
Fe3+ + e− → Fe2+ +0.77 S2O8

2− + 2 e− → SO4
2− +2.05

[Fe(CN)6]3− + e− → [Fe(CN)6]4− +0.36 Sn2+ + 2 e− → Sn −0.14
2 H+ + 2 e− → H2 0, by defi nition Sn4+ + 2 e− → Sn2+ +0.15
2 H2O + 2 e− → H2 + 2 OH− −0.83 Sr2+ + 2 e− → Sr −2.89
2 HBrO + 2 H+ + 2 e− → Br2 + 2 H2O +1.60 Ti2+ + 2 e− → Ti −1.63
2 HClO + 2 H+ + 2 e− → Cl2 + 2 H2O +1.63 Ti3+ + e− → Ti2+ −0.37
H2O2 + 2 H+ + 2 e− → 2 H2O +1.78 Ti4+ + e− → Ti3+  0.00

H4XeO6 + 2 H+ + 2 e− → XeO3 + 3 H2O +3.0 Tl+ + e− → Tl −0.34
Hg2

2+ + 2 e− → 2 Hg +0.79 U3+ + 3 e− → U −1.79
Hg2Cl2 + 2 e− → 2 Hg + 2 Cl− +0.27 U4+ + e− → U3+ −0.61
Hg2+ + 2 e− → Hg +0.86 V2+ + 2 e− → V −1.19
2 Hg2+ + 2 e− → Hg2

2+ +0.92 V3+ + e− → V2+ −0.26
Hg2SO4 + 2 e− → 2 Hg + SO4

2− +0.62 Zn2+ + 2 e− → Zn −0.76

Reduction half-reaction E9/V Reduction half-reaction E9/V
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Table 3c Biological standard potentials at 298.15 K in electrochemical order

Reduction half-reaction E9/V

O2 + 4 H+ + 4 e− → 2 H2O +0.81
NO3

− + 2 H+ + 2 e− → NO2
− + H2O +0.42

Fe3+(cyt f ) + e− → Fe2+ (cyt f ) +0.36
Cu2+(plastocyanin) + e− → Cu+(plastocyanin) +0.35
Cu2+(azurin) + e− → Cu+(azurin) +0.30
O2 + 2 H + + 2 e− → H2O2 +0.30
Fe3+(cyt c551) + e− → Fe2+ (cyt c551) +0.29
Fe3+(cyt c) + → Fe2+ (cyt c) +0.25
Fe3+(cyt b) + e− → Fe2+ (cyt b) +0.08
Dehydroascorbic acid + 2 H+ + 2 e− → ascorbic acid +0.08
Coenzyme Q + 2 H+ + 2 e− → coenzyme QH2 +0.04
Fumarate2− + 2 H+ + 2 e− → succinate2− +0.03
Vitamin K1(ox) + 2 H+ + 2 e− → vitamin K1(red) −0.05
Oxaloacetate2− + 2 H+ + 2 e− → malate2− −0.17
Pyruvate− + 2 H+ + 2 e− → lactate− −0.18
Ethanal + 2 H+ + 2 e− → ethanol −0.20
Ribofl avin(ox) + 2 H+ + 2 e− → ribofl avin (red) −0.21
FAD + 2 H+ + 2 e− → FADH2 −0.22
Glutathione (ox) + 2 H+ + 2 e− → glutathione (red) −0.23
Lipoic acid (ox) + 2 H+ + 2 e− → lipoic acid (red) −0.29
NAD+ + H+ + 2 e− → NADH −0.32
Cystine + 2 H+ + 2 e− → 2 cysteine −0.34
Acetyl − CoA + 2 H+ + 2 e− → ethanal + CoA −0.41
2H2O + 2 e− → H2 + 2 OH− −0.42
Ferredoxin (ox) + e− → ferredoxin (red) −0.43
O2 + e− → O2

− −0.4



Answers to odd-numbered 
exercises

Fundamentals
F.13 −459.67°F
F.15 2.52 mmol
F.17 4.18 bar
F.19 388 K
F.21 0.50 m3

F.23 26 J
F.25 2.3 kJ
F.27 31.2 V
F.29 3.26 m
F.31 0.37
F.33 (a) 638 m s−1, 1.26 km s−1, 2.30 km s−1

 (b) 319 m s−1, 627 m s−1, 1.15 km s−1

Chapter 1
E1.11 39 J
E1.13 −1.0 × 102 J
E1.15 9.20– × 102 kJ, 6.1 × 102 s
E1.17 −13.0 J
E1.19 (b) 37.1 J K−1 mol−1, 28.8 J K−1 mol−1

E1.21 b + 2cT

E1.23 (a) DHm(T) = aT + bT2

2
 − c

T
 − 16.1 kJ mol−1

E1.25 (a) +1.9 kJ mol−1

(b) +30.6 kJ mol−1

E1.27 +301 kJ
E1.29 40.6– kJ mol−1, 37.5– kJ mol−1

E1.31 −2346– kJ mol−1, −1051– kJ mol−1

E1.33 15.2 kJ g−1, 34.0 kJ g−1

E1.35 (a) −24.7– kJ
(b) 7.9 m
(c) +39.0– kJ

 (d) 12.4– m
E1.37 (a)  −1560 kJ mol−1

 (b) slightly less effi  cient 
E1.39 (a) −23.47 kJ mol−1

 (b) −93.9 kJ mol−1

 (c) −2810.44 kJ mol−1

 (d) +306.94 kJ mol−1

E1.41 (a) (i) +552– kJ mol−1 (ii) −2.9 kJ mol−1

 (b) 263.5– K
E1.43 279 J K−1 mol−1, −2805 kJ mol−1, less exothermic
E1.45 DrU3 (298 K) + DrCV

3 × (T − 298 K)

Chapter 2
E2.9 5.03 kJ K−1

E2.11 122 J K−1, 130 J K−1, 606 J K−1, 858 J K−1

E2.13 4.0 × 10−4 J K−1 mol−1

E2.15 5.11 J K−1

E2.17 0.95 J K−1 mol−1

E2.19 (b) +34 kJ K−1 mol−1

E2.23 537 J K−1 mol−1

E2.25 −198.72 J K−1, −32.99 kJ
E2.27 0.41 g
E2.29 8.1 × 1023 molecules of ATP

Chapter 3
E3.9 (a) +2.03 kJ mol−1

(b) +1.50 J mol−1

E3.11 (a) +1.7 kJ mol−1

(b) −20 kJ mol−1

E3.13 (a) 2.4 kg
(b) 32 kg
(c) 2.5 g

 (d) 135.6 bar
E3.15 (b) 0.758 Pa
E3.21 (b) −20.5 kJ mol−1, −126 kJ mol−1, −372 J K−1 mol−1

 (c) 348 K
E3.23 (a) 1.32 dm3

 (b) 61.2 kPa
E3.25 2.41 × 10−3

E3.27 (a) −1.31 kJ mol−1, spontaneous
 (b) +4.38 J K−1 mol−1

E3.29 2.30 kPa
E3.31 (a) 0.056 mg N2, 0.014 mg N2

 (b) 0.17 mg N2

E3.33 (a) 1.36 mmol dm−3

 (b) 33.9 mmol dm−3



574   ANSWERS TO ODD-NUMBERED EXERCISES

E3.35 −0.27°C
E3.37 −0.09°C
E3.39 4.9 × 103 mol dm−3

Chapter 4
E4.9 (a) 2.9 × 10−5

 (b) 1.2 × 109

 (c) 1.8 × 102

E4.11 −294 kJ mol−1

E4.13 3.5 × 103, 2.3 × 102, 36
E4.15 6.8 kJ mol−1

E4.17 −25.1 kJ mol−1

E4.19 (a) 0
 (b) −61 kJ mol−1

 (c) +18 kJ mol−1

E4.21 (a) 41%
 (b) 75%
P4.23 (a) KMb = 2.33 torr = 0.311 kPa,  KHb = 34.7 torr = 4.62 kPa
E4.25 (a) −5798 kJ mol−1

 (b) (i) −16.5 MJ
 (ii) −16.9 MJ

E4.27 (a) −13 kJ mol−1

 (b) more exergonic 
E4.29 −15.0 kJ mol−1, −38.9 J K−1 mol−1

E4.33 (b) 14.870
 (c) 3.67 × 10−8 mol dm−3, 3.67 × 10−8 mol dm−3

 (d) 7.45
 (e) 14.870
E4.35 (a) 9.60 × 10−3 mol dm−3, 2.02
 (b) 0.025 mol dm−3, 12.40
 (c) 1.26
E4.37 (a) 9.1
 (b) 4.83
 (c) none of the Br− is protonated
E4.39 (a) 2.0, 12.0, 0.083

(b) 3.9, 10.1, 0.87
 (c) 5.0, 9.0, 6.1 × 10−5

 (d) 5.0, 9.0, 6.1 × 10−5

 (e) 2.6, 11.4, 0.024
E4.41 (a) 6.5
 (b) 2.1
 (c) 1.5
E4.43 (a)  6.9 × 10−2 mol dm−3, 1.4 × 10−13 mol dm−3, 

8.1 × 10−2 mol dm−3, 6.5 × 10−5 mol dm−3, 0.069 mol dm−3 
 (b) 1.65 × 10−3 mol dm−3, 2.78
E4.45 (a) pI = pH = 12(pKa1 + pKa2)
 (b) pI = pH = 12(pKa1 + pKa2)
 (c) pI = pH = 12(pKa2 + pKa3)

E4.49 (a) Kd

1 + Kd
 

 (b) K = exp{−(DdH3 − TDdS3)/RT}
 (c) 317 K
 (d) 9 kJ mol−1

E4.51 (a) (i) 0.142 (ii) 0.858
 (b) (i) 0.142 (ii) 0.858 (iii) 0.716 (iv) 0.68

Chapter 5
For notational simplicity, we have used both the molality concentration 
expression aJ = gJbJ/b3, where b3 = 1 mol kg −1 [5.1a], and aJ = gJbJ [5.1b] 
where bJ is the unitless magnitude of molality. Th e convention of 
eqn 5.1b is most oft en used in calculations of ionic strength, while the 
convention of eqn 5.1a appears in Nernst equation computations.
E5.9 0.90
E5.11 g± = (g+g2

−)1/3

E5.13 B = 2.01
E5.15 hydrolysis of 1 mol of ATP does supply suffi  cient Gibbs 

energy to transport 3 mol of sodium cation and 2 mol of 
potassium cation 

E5.17 Yes 
E5.21 n = 2
E5.23 n = 4, +0.56 V, −216– kJ mol−1, 7.3 × 1037

E5.25 41 mV
E5.29 (a) n = 2
 (b) n = 1
 (c) n = 2
E5.31 (a) +0.94 V
 (b) Ecell/V = 1.51 − 0.094656 × pH
E5.33 (a) decreases
 (b) increases
 (c) decreases
E5.35 (a) −440 kJ mol−1

 (b) +29.7 kJ mol−1

 (c) −313 kJ mol−1

E5.37 +1.15 V
 (a) −444 kJ mol−1, −505 kJ mol−1

 (b) −442 kJ mol−1, −442 kJ mol−1

E5.39 +1.15 V, +0.08 V, +0.82 V, −0.33 V
E5.41 reduced lipoic acid
E5.43 (a) +0.34 V
 (b) −0.09 V
E5.47 −131.25 kJ mol−1, −167.10 kJ mol−1, + 56.7 J K−1 mol−1

E5.49 1 mol
E5.51 (a) −27 kJ mol−1

 (b) eight

Chapter 6
E6.7 1.6 per cent
E6.9 (a) 1.5 mol dm−3 s−1, 0.73 mol dm−3 s−1, 1.5 mol dm−3 s−1

 (b) mol−2 dm6 s−1

E6.13 0.92 g dm−3 h−1

E6.17 3.19 × 10−6 Pa−1 s−1

E6.19 3.67 × 10−3 min−1 
E6.21 (a) fi rst
 (b) 30.27 dm3 mol−1 s−1

E6.23
1

[A]2
 = 1

[A]2
0
 + 2krt

E6.25 (a) krt = 2x(A0 − x)
A0

2(A0 − 2x)2
 

 (b) A
C

2x
A0

2(A0 − 2x)
D
F  + AC

1
 A0

2

D
F  ln AC

A0 − 2x
A0 − x

D
F  
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E6.27 3067 a
E6.29 1.44 × 10−9t1/2, 1.64 min
E6.31 (a) 0.043 mol dm−3, 0.138 mol dm−3

 (b) 0.0001 mol dm−3, 0.0951 mol dm−3

E6.33
2n−1 − 1

(4
3)n−1 − 1

 

E6.35 85.6 kJ mol−1, 3.65 × 1011 mol dm−3 s−1

E6.37 Ea = 52 kJ mol−1

E6.39 30.1 kJ mol−1

E6.41 47.8 kJ mol−1

Chapter 7

E7.11 [A] = k′([A]0 + [B]0) + {kr[A]0 − k′[B]0}e−(kr+k′)t

kr + k′
, 

[B] = (kr [A]0 − k′[B]0)(1 + e−(k+k′)t)
kr + k′

  

E7.13 t−1 = 4kr[A]eq + kr′ 
E7.15 1.7– × 107 s−1, 2.8 × 109 mol−1 dm3 s−1, 1.6– × 102

E7.17 1.6– × 102

E7.19 fi rst-order in H2O2 and in Br−, second-order overall
E7.21 (ii) Both the pre-equilibrium approximation and the 

steady-state approximation predict that the reaction is 
fi rst-order in A, fi rst-order in B, and second-order overall

E7.23 [A−] = ka[HA][B]
ka′[BH+] + kb[HA]

, kakb[HA]2[B]
ka′[BH+] + kb[HA]

 

E7.25 N = N0e(b−d)×(t−1750 y), the Malthus model does seem to describe 
the data as an exponential growth, kr = b − d = 0.0095 y−1

E7.27 (a) (i) 0.18 (ii) 0.30
 (b) (i) 3.9 × 10−18 (ii) 6.0 × 10−6

E7.29 1.5 × 1015

E7.31 −3 kJ mol−1

E7.33 126– kJ mol−1

E7.35 −33.8 J K−1 mol−1, +27.6 kJ mol−1, 37.7 kJ mol−1

E7.37 (b) +61.4 kJ mol−1

E7.39 1.08 dm6 mol−2 min−1

Chapter 8

E8.9 rate of formation of P = kb[ES] = kb[E]0[S]
 1

 
[S] +

 K

, ka′ >> kb

E8.13 [S] = KM.
E8.15 2.31 mmol dm−3 s−1, 1.11 mmol dm−3, 1.16– × 102 s−1, 

1.0 × 102 mmol−1 dm3 s−1

E8.17 (a) [S]
 v

 = [S]
 vmax

 + KM
 vmax

 

 (c) 279 pmol dm−3 s−1, 86.4 mmol dm−3

E8.19 (b) 3.0, 0.91 fmol dm−3

E8.21 Sequential mechanism, 5.10 mol s−1 (kg protein)−1, 
0.259 mmol dm−3, 0.0189 mol dm−3, 0.0173 mol dm−3

E8.23 Phenylbutyrate ion is a competitive inhibitor of 
carboxypeptidase. Benzoate ion is an uncompetitive 
inhibitor of carboxypeptidase.

E8.27 t = x2/2D or x = (2Dt)1/2

 (a) 27 h
 (b) 2.7 × 103 h
 (c) 3.0 × 103 a
E8.29 r2 = 6Dt or t = r2/6D, 1.7 × 10−2 s
E8.31 0.234
E8.33 1 × 106 steps
E8.35 62.3 mm s−1

E8.37 (a) 1.33 × 10−9 m2 s−1, 184 pm
 (b) 1
E8.39 (a) 16.5– nm−1

Chapter 9
E9.11 (a) 6.6 × 10−19 J, 4.0 × 102 kJ mol−1

 (b) 3.3 × 10−20 J, 20 kJ mol−1

 (c) 1.3 × 10−33 J, 7.8 × 10−13 kJ mol−1

E9.13 (a) 6.6 × 10−31 m
 (b) 6.6 × 10−39 m
 (c) 99.7 pm
 (d) 3.5 × 10−36 m
E9.15 (a) 5.35 pm
 (b) 2.2 × 10−24 m s−1

E9.17 0.90 nm
E9.19 (a) 1.7—7 × 10−4

 (b) 5.9—2 × 10−5

E9.21 (a) 0.196
 (b) 0.609
 (c) 0.196
E9.23 (a) 3.30 × 10−19 J
 (b) 4.95 × 10−14 s−1

E9.25 (a) 1.1– × 1010 s−1

 (b) 0.24, 4
E9.27 (a) 5.275 × 10−34 J s, 7.89 × 10−19 J
 (b) 5.2 × 1014 Hz
E9.31 (a) 6.89 × 1013 s−1

 (b) 4.35 mm
E9.33 (a) 6.432 × 1013 s−1

 (b) 2146 cm−1

 (c) 2099 cm−1, 612C18O = 2094 cm−1, 613C18O = 2046 cm−1

E9.35 16 orbitals
E9.37 1

2

E9.39 (a) 1.9 a0 and 7.1 a0

 (b) 1.87 a0, 6.61 a0, and 15.5 a0

E9.41 (a) ang. mom. = 0
 (b) ang. mom. = 0
 (c) ang. mom. = 6 ħ
 (d) ang. mom. = 2 ħ
 (e) ang. mom. = 2 ħ
E9.43 (b) Mg, Ti

Chapter 10
E10.19 N(0.644A − 0.245B) 
E10.25 C2 and CN are stabilized by anion formation. NO, O2, and F2 

are stabilized by cation formation
E10.27 (a) g, u, g
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E10.29  N2

E10.35 2a + 2b, 4a + 4.48b, lower
E10.37 (b) 1.518b, 8.913 eV
E10.39 (b) 5, 1
E10.41 square planar arrangement

Chapter 11
E11.15 3.40 × 103 kg mol−1

E11.17 31 kg mol−1

E11.19 (a) plot of nbp against t2 is linear 
 (b) 167 ms
E11.25 66.1 pm
E11.27 (a) 47.9– kJ mol−1

 (b) 24 kJ mol−1

 (c) 0.60 kJ mol−1

E11.29 (a) 1.45 D
 (b) mortho/mmeta = 3
E11.31 2mO–H cos(f/2) 
 (a) 2.13 D
 (b) 2 arccos(mH–O–O–H/3.02 D) 
E11.35 196 pm
E11.37 −4.2 × 10−3 J mol−1

P11.39 R = 21/6 s
E11.45 24 nm
E11.47 1.3 × 104

E11.49 serum albumin and bushy stunt virus resemble solid spheres, 
but DNA does not

E11.51 −0.042 J K−1 mol−1

E11.53 (a) b = 
A
C

0.957
0.362
3.59

D
F  

b0

b1

b2

 

 (b) W = 1.362

Chapter 12
E12.9 (a) 0.307 m−1

 (b) 3.26 m
E12.11 (a) 1.01 × 104 dm3 mol−1 cm−1

 (b) 0.951%

E12.13 [B] = A2 − rAA1

(De2)L
, [A] = rBA1 − A2

(De2)L
E12.15 99.5 mmol dm−3, 96.3 mmol dm−3

E12.17 (a) 6.37, 2.12
 (b) 1.74 × 106 dm3 mol−1 cm−2

E12.21 (a) d6 = 53 cm−1.
 (b)  d6 = 0.27 cm−1.
E12.23 (a) 967.0, 515.6, 411.8, 314.2
 (b) 3002.2, 2143.7, 1885.8, 1640.2
E12.25 (a) 3
 (b) 4

 (c) 48
 (d) 54
E12.27 (a) 7 
 (b) structure 5 is inconsistent with these absorptions.
E12.31 (a) 6.54– ns
 (b) 0.11 ns−1

E12.33 0.4 ns
E12.35 3.3 × 1018

E12.37
1

Iphos
 = 1

Iabs
 + kQ[Q]

kphosIabs
, 5.2 × 106 dm3 mol−1 s−1

E12.39 3.5 nm
E12.41 3 × 103

E12.47 (a) Req

Rmax
 = a0K

a0K + 1
 

 (b) Rmax = 1/slope and K = slope/intercept
 (c) R(t) = Req(1 − e−kobst), where kobs = kona0 + koff 

 (d) R(t) = Rmax e−kobst, where kobs = koff 

E12.49 (b) All modes

Chapter 13
E13.11 5.57 × 10−24 J
E13.13 (a) T−1Hz
 (b) A s kg−1

E13.15 (a) 6.72 × 10−4

 (b) 2.47 × 10−3

E13.17 (a) 3.4 × 10−5

 (b) 8.6 × 10−6

E13.19 328.5 MHz
E13.21 11.74 T
E13.23 (a) independent 
 (b) 13
E13.25 (a) 9.5 mT
 (b) 46 mT
E13.27 1:7:21:35:35:21:7:1
E13.33 cos f = B/4C

E13.35 [I]0 = [E]0Dn
dv

 − KI

E13.43 B3 − B2 = (334.8 − 332.5)mT = 2.3 mT
 B2 − B1 = (332.5 − 330.2)mT = 2.3 mT

#
$a = 2.3 mT

 g = hn
mBB0

 [13.23] = (7.14478 × 10−11 T Hz−1) × 9.319 × 109 Hz
332.5 × 10−3 T

 

  = 2.0025–

E13.45 (a) 331.9 mT
 (b) 1.201 T
E13.51 (b) seven lines separated by 12  × (0.675 mT), 1:2:3:4:3:2:1
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3D QSAR, 454
90º pulse, 528

A
A and B forms (DNA), 447
Ab initio method, 398
Aberration, 501
Absolute zero, 7, 27
Absorbance, 466
Absorption spectroscopy, 463
Abundant-spin species, 532
Acceleration, 10
Acceleration of free fall, 12
Acetic acid, 2
Acetylene, VB description, 370
Acid, 156
Acid buff er, 171
Acidity constant, 158
 electrochemical measurement, 199
Acidosis, 173
Actinoid, 351
Action potential, 188, 189
Activated complex, 238, 261
Activated complex theory, 261
Activation barrier, 259
Activation energy, 236
 interpretation, 260
Activation Gibbs energy, 262
Activation-controlled limit, 257
Active site, 273
Active transport, 187, 285
Activity, 118
 summary, 119, 137
Activity coeffi  cient, 119
 electrolyte solution, 182 
 mean, 183
Adiabatic, 25
Adiabatic bomb calorimeter, 42
Adiabatic fl ame calorimeter, 44
ADP, 208
 hydrolysis, 140
AEDANS (1.5-I-AEDANS), 501
Aerobic metabolism, 153
AFM, 329, 436
AIDS, 437
Airy radius, 484
Alkalosis, 173
Allosteric eff ect, 145, 398
Allosteric enzyme, 306

Allowed transition, 470
Alpha electron, 347
Alpha helix, 442
Alveoli, 118
Alzheimer’s disease, 386
AM1, 399
Amide I and II bands, 482
Amide III region, 489
Amino acid solution
 speciation, 169
Amount of substance, 5
Ampere, 42
Amphipathic, 86, 449
Amphiprotic anion
 pH calculation, 176
Amphiprotic species, 169
Amphoteric anion, 169
Amphoteric substance, 169
Amplitude, 12
Amyloid plaque, 446
Amylotrophic lateral sclerosis, 386
Anabolism, 28
Anaerobic metabolism, 153
Ångström, 558
Angular momentum, 331
 quantization, 333, 335
Angular wavefunction, 342
Anharmonic vibration, 477
Anion, 1
Anion confi guration, 351
Anode, 192
Antibonding orbital, 375, 385
Antifreeze, 124
Antioxidant, 214, 384
Antiparallel beta sheet, 445
Anti-Stokes radiation, 464
Antisymmetric stretch, 479
Approximation
 Born–Oppenheimer, 364
 Hückel, 388
 orbital, 346
 steady-state, 252
Aquatic life, 116
Arctic fi sh, 124
Arrhenius equation, 236
Arrhenius parameters, 236
 interpretation, 237
Arrhenius, S., 235
Artist’s color wheel, 485
Ascorbic acid, 384

Atmosphere, 6, 558
 ionic, 184
 reactions in, 494
 temperature profi le, 494
Atmospheric pressure, 6
Atomic force microscopy, 329, 436
Atomic number, 1
Atomic orbital, 340
Atomic radius, 352
Atomic structure, 1
ATP, 28, 208
 biosynthesis, 152
Aufb au principle, 349
Austin Method 1, 399
Autocatalysis, 308
Autoionization, 157
Autoionization constant, 159
Autoprotolysis
 contribution to pH, 175
Autoprotolysis constant, 159
Autoprotolysis equilibrium, 157
Average rate, 221
Average speed, 16
Avogadro’s constant, 6
AX spectrum, 522
AX2 spectrum, 523
AX3 spectrum, 523
Azimuthal quantum number, 340

B
Bar, 6, 558
Base, 156
Base buff er, 171
Base pair, 107
Base stacking, 447
Basicity constant, 158
Beam combiner, 465
Beer’s law, 220, 466
Beer–Lambert law, 466
Bending mode, 479
Bends (diving), 133
Benzene
 elpot surface, 401
 isodensity surface, 400
 MO description, 390
 VB description, 372
Benzene radical anion, 537
Beta barrel, 445
Beta electron, 347
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Beta sheet, 442
Beta-blocker, 234
Bilayer, 3, 450
Bimolecular reaction, 248
Binary mixture, 130
Biochemical cascade, 503
Bioenergetics, 23
Biological membrane
 phase transition, 108
Biological standard 

potential, 198, 199
Biological standard state, 139
Biopolymer
 crystallization, 421
 melting temperature, 107, 180
Biosensor analysis, 473
Biradical, 383
Blood, buff er action, 173
Bohr eff ect, 174
Bohr frequency 

condition, 314, 464
Bohr magneton, 514
Bohr radius, 342
Bohr, N., 342
Boiling, 103
Boiling point, elevation of, 123
Boiling temperature, 103
Boiling-point constant, 123
Boltzmann distribution, 13, 15, 27
 chemical equilibrium, 144
 spectroscopic intensity, 471
 spin states, 514
Boltzmann formula, 80
Boltzmann’s constant, 15
Bomb calorimeter, 42
Bond, 1
 covalent, 364
 ionic, 364
Bond enthalpy, 50
Bond length, 365
Bond order, 382
Bonding orbital, 374, 385
Born interpretation, 320
Born, M., 320
Born–Oppenheimer 

approximation, 364
Boson, 359
Boundary condition, 230, 319
Boundary surface, 342
Bovine serum albumin, 293, 411
Bragg, W. and L., 415
Bragg’s law, 419
Bravais lattice, 416
Breathing, 117
Bremsstrahlung, 415
Brønsted–Lowry theory, 156
BSA, 293, 411
Buff er action, 171
 blood, 173
Buff er solution, 170
Building-up principle, 349
Bulk matter, 4
Buoyancy correction, 408
Butadiene, 391

C
Cage eff ect, 256
Calorimeter, 42
Calorimeter constant, 42
Calorimetry, 42
Camping gas, 67
Candela, 557
Capillary electrophoresis, 293
Carbohydrate, food, 56
Carbon
 hybridization, 369
 role in biochemistry, 391
Carbon dioxide
 normal modes, 480
 polarity, 427
 vibration, 476
Carbonic acid, 165
Carbonic anhydrase, 83, 356
Carotene, 401
 electronic structure, 327
Cartesian coordinates, 376
Catabolism, 28
Catalase, 383
Catalyst
 eff ect on activation energy, 238
 eff ect on equilibrium, 150
Catalytic antibody, 284
Catalytic constant, 279
Catalytic effi  ciency, 279, 280
Catalytic triad, 284
Cathode, 192
Cation, 1
Cation confi guration, 351
CBG, 455
CCD, 466
ccDNA, 447
Cell death, 484
Cell notation, 194
Cell potential, 196
 equilibrium constant, 203
 thermodynamic function 

determination, 202
 variation with pH, 199
 variation with temperature, 206
Celsius scale, 7
Cesium atoms STM, 330
Cetyl trimethylammonium bromide, 449
Chain rule, 37
Channel former, 188
Charge balance, 175
Charge-coupled device, 466
Charge–dipole interaction, 429
Charge–transfer transition, 487
Chemical equilibrium
 approach to, 245
 eff ect of temperature, 150
 Gibbs energy, 135
 molecular interpretation, 144, 151
 thermodynamic criterion, 137
Chemical exchange, 526
Chemical potential
 activity, 118
 gas, 112
 introduced, 111

 ion in solution, 183
 reacting species, 137
 solute, 116
 solution, 125
 solvent, 114
 uniformity of, 111
 variation with pressure, 112
Chemical quench fl ow method, 221
Chemical reactivity, 402
Chemical shift , 519
Chemisosmotic theory, 209
Chiral, 488
Chlorophyll, 210, 485, 486, 503
 spectrum, 314
Chloroplast, 209, 503
Chromatic aberration, 501
Chromophore, 487
Chymotrypsin, 276, 284
Circular dichroism, 488
Circular polarization, 488
Citric acid cycle, 155
Clamp, 294
Clapeyron equation, 101
Classical mechanics, 10
Classical physics, 313
Classical thermodynamics, 23
Clausius–Clapeyron equation, 102, 132
Climate change, 476
Closed shell, 347
Closed system, 24
CMC, 449
CNDO, 399
Coeffi  cient
 activity, 119, 182
 diff usion, 286, 287
 Einstein, 470
 frictional, 408
 Hill, 177
 integrated absorption, 468
 interaction, 306
 mean activity, 183
 molar absorption, 220, 466
 partition, 289
 transmission, 262
 viscosity, 288
Cold denaturation, 246
Cold pack, 25
Collagen, 445
Colligative property, 123
 thermodynamic origin, 124
Collision, 267
Collision frequency, 259
Collision theory, 259
Collisional deactivation, 472, 499
Color wheel, 485
Combustion, 53
Common logarithm, 182
Competitive inhibition, 281
Complementary color, 485
Complete neglect of diff erential 

overlap, 399
Complete shell, 347
Composition at equilibrium, 143
Computational chemistry, 61
Computational technique, 398
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Concentration
 determination of, 220, 468
 measure of, 130
Concentration gradient, 409
Condensation, 48
Confi guration
 atom, 347
 ion, 351
 macromolecule, 438
 system, 26 
 weight of, 80
Confocal Raman microscopy, 511
Conformation, 438
Conformational conversion, 526
Conformational energy, 442
Conformational entropy, 441
Conjugate acid, 157
Conjugate base, 157
Conjugated molecule, 327
Conjugation, 327
Connectivity, 2
Consecutive reaction, 249
Conservation of energy, 12, 24
Constant
 acidity, 158, 199
 autoionization, 159
 autoprotolysis, 159
 Avogadro’s, 6
 basicity, 158
 boiling point, 123
 Boltzmann’s, 15
 calorimeter, 42
 catalytic, 279
 cryoscopic, 123
 diff usion, 286, 408
 dissociation (acid and base), 158
 ebullioscopic, 123
 equilibrium, 140
 Faraday’s, 186
 force, 474
 freezing point, 123
 gas, 8
 gravitational, 19
 Henry’s law, 115
 hydrophobic, 87
 hyperfi ne coupling, 538
 ionization (acid and base), 158
 Michaelis, 274
 normalization, 324
 Planck’s, 13, 314
 rate, 223
 sedimentation, 408
 spin–spin coupling, 521
Constant-current mode, 329
Constant-force mode, 329
Constant-z mode, 329
Contact interaction, 525
Contact mode, 329
Continuous wave spectrometer, 520
Contour length, 441
Contrast agent, 531
Convection, 286
Conventional temperature, 46
Cooperative binding, 145, 398
Cooperative process, 107

Corey, R., 442
Corey–Pauling rules, 442
Cornea, 501
Correlation spectroscopy, 534
Corticosteroid-binding globulin, 455
Cosmic rays, 13
COSY, 534
Coulomb, 11, 42
Coulomb integral, 388
Coulomb potential, 18
Coulomb potential energy, 11, 338, 425
Counter ion, 184
Coupled reactions, 151
Covalent bond, 1, 364
Creatine phosphate, 153
Critical micelle concentration, 449
Critical point, 104
Critical pressure, 104
Critical temperature, 104
Crixivan, 438
Cross peaks, 534
Cryoscopic constant, 123
Crystal fi eld theory, 392
Crystal plane, 416
Crystal system, 415
Crystal-fi eld splitting, 393
Crystallization, 110
Crystallization, 421
CTAB, 449
Cubic system, 416
Curvature, 287
CW spectrometer, 520
CW-EPR, 536
Cyclic boundary conditions, 332
Cytochrome, 208
Cytosol, 153

D
d Block, 351
d Electron, 341
d Orbital, 345
d Subshell, 341
Dalton, 410
Dalton’s law, 10
Daniell cell, 193
Dansyl chloride, 509
Davisson, C., 315
Davisson–Germer experiment, 315
d–d Transition, 487
De Broglie relation, 316
De Broglie, L., 316
Deactivation, 496, 499
Debye, 426
Debye T3-law, 80
Debye, P., 184, 422
Debye–Hückel limiting law, 185
Debye–Hückel theory, 184
Debye–Scherrer technique, 422
Decay, 490, 528
Defi nite integral, 97
Degeneracy, 331
Delocalization energy, 391
Delocalized orbital, 391
Delta orbital, 378

Delta scale, 519
Denaturation, 45
Density functional theory, 399
Deoxygenated heme, 394
Deoxyribose, 3
Depression of freezing point, 123
Deprotonation, 158
Derivative, 37
Deshielded, 519
Detector, 465
Determinant, 389
Deuteration, eff ect of, 363
DFT, 399
Diagonal peaks, 534
Dialysis, 126, 134, 422
Diamagnetic species, 383
Diathermic, 25
Dielectric constant, 425
Diethyl ether, NMR spectrum, 524
Diff erential equation, 230, 244
Diff erential overlap, 399
Diff erential scanning calorimeter, 44
Diff erentiation, 37
Diff raction, 315, 415
Diff raction grating, 465
Diff raction pattern, 415
Diff ractometer, 422
Diff usion, 285, 304
 across membranes, 288
Diff usion coeffi  cient, 286, 408
 variation with temperature, 287
Diff usion equation, 286, 305
Diff usion-controlled limit, 257
Dihelium, 380
Dihydroxypropanone phosphate, 154
Dilute-spin species, 532
Dipole, 426
Dipole moment
 calculation, 428
 formaldehyde, 429
 induced, 431
 magnitude, 428
 peptide group, 428
 transition, 469
Dipole–dipole interaction, 430
Dipole–induced-dipole interaction, 432
Disease, 386
Dismutation, 205
Dispersal in disorder, 71
Dispersion interaction, 432
Disproportionation, 205
Dissociation, 490
Dissociation constant, 158
Dissociation limit, 490
Dissolving, thermodynamics of, 121
Distribution, end-to-end, 440
Disulfi de link, 445
d-Metal complex, 392
DNA
 A, B, and Z forms, 447
 closed-circular, 447
 freely jointed chain, 68
 melting temperature, 107
 stability, 133
 STM image, 330
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 structure from X-rays, 423
 supercoiled, 447
 UV damage, 504
 X-ray pattern, 415
Dobson unit, 508
Donnan equilibrium, 119
Double bond, VB description, 370
Drift  speed, 290
Drift  velocity, 290
DSC, 44
DU, 508
Duality, 315, 316
Dynamic equilibrium, 100
Dynamic light scattering, 414

E
Eadie–Hofstee plot, 306
Ebullioscopic constant, 123
Eff ect
 allosteric, 145, 398
 Bohr, 174
 cage, 256
 kinetic isotope, 363
 kinetic salt, 264
 nuclear Overhauser, 532
 photoelectric, 315
 relativistic, 360
Eff ective concentration, 118
Eff ective mass, 362, 474
Eff ective nuclear charge, 348
Eff ective rate constant, 226
Eff ector, 306
Eff ector molecule, 188
Effi  ciency, 500
eg Orbital, 393
EHT, 399
Einstein coeffi  cient
 spontaneous emission, 471
 stimulated absorption, 470
 stimulated emission, 471
Einstein relation, 307
Einstein, A., 315
Electric charge, interaction of, 11
Electric dipole, 426
Electric dipole moment, 426
Electric heating, 42
Electric permittivity, 425
Electrical work, 195
Electrochemical cell, 189
Electrochemical properties, 401
Electrochemical series, 207
Electrode, 192
Electrode compartment, 192
Electrode concentration cell, 193
Electrolyte concentration cell, 193
Electrolyte solution, 110
 activity coeffi  cient, 182
Electrolytic cell, 192
Electromagnetic radiation, 12
Electromagnetic spectrum, 12
Electromotive force, see cell 

potential, 196
Electron affi  nity, 355
Electron cryomicroscopy, 318

Electron diff raction, 315
Electron microscopy, 317
Electron pair formation, MO theory, 379
Electron paramagnetic resonance, 513, 536
Electron spin resonance, see Electron 

paramagnetic resonance, 513
Electron transfer, 296, 499
Electron transfer reaction, 208
Electronegativity, 384
 dipole moment, 426
Electron-gain enthalpy, 355
Electronvolt, 558
Electrophoresis, 291
Electrospray ionization, 410
Electrostatic potential surface, 400
Elementary reaction, 247
Elevation of boiling point, 123
Elpot surface, 400
EMF, see cell potential, 196
Emission spectroscopy, 463
Enantiomer, 488
Encounter pair, 256
Endergonic, 149
Endergonic reaction, 93
Endocytosis, 450
Endothermic, 25
Endothermic compound, 61
Endothermic process, 40
End-to-end separation, 440
Energy
 conservation of, 12
 fl ow in organisms, 28
 thermal, 15
 zero-point, 326
Energy levels
 FEMO theory, 405
 harmonic oscillator, 336, 474
 hydrogenic atom, 338
 particle in a 2D box, 330
 particle in a box, 325
 particle on a ring, 331
 particle on a sphere, 334
Energy transfer, 500
Engrailed homeodomain protein, 255
enhancement factor, 534
En-HD, 255
Enthalpy, 39
 activation, 263
 dissolving, 122 
 electron-gain, 355
 heat transfer at constant pressure, 40
 internal energy change relation, 53
 state function, 39
 temperature dependence, 41
Enthalpy change
 composite process, 49
 reverse process, 49
Enthalpy density, 54
Enthalpy of reaction, combination, 57
Entropy
Entropy, 71 
 activation, 263
 and life, 85
 at T = 0, 78
 Boltzmann formula, 80

 close to T = 0, 80 
 conformational, 441
 determination of, 74, 78
 dissolving, 122
 fusion, 75
 molecular interpretation, 80
 phase transition, 75
 random coil, 441 
 residual, 82
 state function, 73 
 Th ird Law, 78
 units, 73
 vaporization, 76
Entropy change
 defi nition, 72
 heating, 73
 surroundings, 77
 total, 84
Enzyme inhibition, 280
Enzyme kinetics, 273
Epifl uorescence microscope, 493
EPR, 513, 536
EPR spectrometer, 536
Equation
 Arrhenius, 236
 Clapeyron, 101
 Clausius–Clapeyron, 102, 132
 diff erential, 230, 244
 diff usion, 286, 305
 Einstein, 307
 Eyring, 262
 Goldman, 188
 Henderson–Hasselbalch, 171
 Karplus, 524
 Kohn–Sham, 399
 McConnell, 539
 Michaelis–Menten, 274
 Nernst, 197
 quadratic, 162
 Scatchard, 134
 Schrödinger, 319, 358
 secular, 388
 simultaneous, 389
 Stern–Volmer, 497
 Stokes–Einstein, 409
 Stokes–Einstein relation, 288
 thermochemical, 47
 van ‘t Hoff  (equilibrium), 150
 van ‘t Hoff  (osmosis), 125
Equation of state, 8
Equilibrium
 dynamic, 100
 mechanical, 6
 thermal, 6 
 see also chemical equilibrium
Equilibrium bond length, 365
Equilibrium composition, 143
Equilibrium constant 
 cell potential, 203
 defi ned, 140
 relation to rate constants, 243
 signifi cance, 142
 standard Gibbs energy, 141
Equipartition theorem, 68
Equivalence of heat and work, 34
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ESR, see EPR, 513
Essential symmetry, 416
Ethanol, NMR spectrum, 520
Ethene, 2
 MO description, 387
 VB description, 370
Ethylene, see ethene, 370
Ethyne, VB description, 370
Evaporation, 47
Exciton coupling, 487
Exclusion rule, 481
Exergonic, 149
Exergonic reaction, 93
Exothermic, 25
Exothermic compound, 61
Exothermic process, 40
Expansion work, 30
Exponential decay, 229
Exponential function, 14, 182
Extended Debye–Hückel law, 186
Extended Hückel theory, 399
Extensive property, 7
Eyring equation, 262

F
f Block, 351
f Subshell, 341
Facilitated transport, 289
Fractional composition, lysine, 165
Factorial, 124
FAD, 155, 208
Fahrenheit scale, 18
Far infrared, 13, 465
Faraday’s constant, 186
Far-fi eld confocal microscopy, 493
Fat, 55
FDP, 154
FEMO theory, 405
Femtosecond observations, 264
Fermi contact interaction, 525
Fermion, 359
Ferredoxin, 210
Fick’s fi rst law, 286
Fick’s law, 304
FID, 528
Fine structure
 NMR, 521
 origin, 524
Fingerprint region, 481
First ionization energy, 353
First law
 Fick’s, 286, 304
 thermodynamics, 38
First-order rate law
 half-life, 230
 integrated, 229
Flash photolysis, 221
Flow method, 220
Fluid mosaic model, 450
Fluorescence, 490
 quantum yield, 496
Fluorescence lifetime, 496
Fluorescence microscopy, 492
Fluorescence quenching, 497

Fluorescence resonance energy 
transfer, 500, 501

Flux, 286, 304
fMRI, 531
Food,  thermochemical properties, 55
Forbidden transition, 470
Force between molecules, 436
Force constant, 474
Formaldehyde, dipole moment, 429
Förster effi  ciency, 500
Förster mechanism, 504
Förster theory, 500
Förster, T., 500
Four-circle diff ractometer, 423
Four-helix bundle, 446
Fourier synthesis, 420
Fourier transform spectroscopy, 465
Fourier-transform NMR, 527
Fraction deprotonated, 163
Fractional composition
 amino acid, 169
 histidine, 168
Fractional saturation, 144
Framework model, 255
Franck–Condon principle, 486
Free energy, see Gibbs energy, 84
Free expansion, 31
Free-induction decay, 528
Freely jointed chain, 68, 440
Freeze quench method, 221
Freezing, 48
Freezing point, depression of, 123
Freezing temperature, 104
Freezing-point constant, 123
Frequency, 12, 464
FRET, 501
Frictional coeffi  cient, 408
Fructose-6-phosphate, 136
FT-EPR, 536
FT-NMR, 527
Fuel cell, 192
Fuel, thermochemical properties, 52
Functional, 399
Functional MRI, 531
Fusion
 entropy of, 75
 standard enthalpy, 48
Fusion, 48

G
g,u Symmetry, 375
Galvanic cell, 192
Gamma-ray region, 13
Gas, 4, 438
Gas constant, 8
Gas electrode, 194
Gas exchange in lung, 118
Gas solubility, 117
Gaussian function, 14
Gaussian-type orbital, 400
Gel electrophoresis, 291
Gerade symmetry, 375
Germer, L., 315
GFP, 493

Gibbs energy
 activation, 262, 299
 cell potential, 196
 chemical equilibrium, 135
 chemiosmotic theory, 209
 defi ned, 84
 dissolving, 121
 electrical work, 195
 ion transport, 186
 partial molar, 110
 perfect gas, 97
 phase transition, 94
 variation with pressure, 95
 variation with temperature, 98
 work, 88
Glancing angle, 419
Glass electrode, 202
Global minimum, 451
Globar, 465
Glucopyranose, 3
Glucose, 3
 alpha and beta, 448
Glucose oxidation, 153, 208
Glucose-6-phosphate, 136, 154
Glutamate ion, 63
Glutamine, 63
Glutathione peroxidise, 384
Glyceraldehyde-3-phosphate, 154
Glycine, 61
Glycogen, 449
Glycol, 124
Glycolysis, 153, 252
Glycoside chain, 448
Glycosidic bond, 448
GMP, 503
Goldman equation, 188
Gramicidin A, 188
Graph, drawing without units, 128
Grating, 465
Gravitational constant, 19
Gravitational potential energy, 12
Green fl uorescent protein, 493
Greenhouse gas, 476
Gross energy content, 43
Gross selection rule, 470
Grotthus mechanism, 291
GTO, 400
GTP synthesis, 155
Gunn oscillator, 536
g-Value, 514, 537
Gyromagnetic ratio, see magnetogyric ratio

H
Half-life, 230
Half-reaction, 190
    reaction quotient, 191
Halley’s comet, 106
Hamburger, 56
Hamiltonian, 319
Hanes plot, 306
Harmonic oscillator, 335, 474
Heat, 25
 measurement of, 32
 molecular interpretation, 26
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Heat capacity, 33
 constant pressure, 33, 41
 constant volume, 33, 36
 molecular interpretation, 34
 perfect gas diff erence, 41
 variation with temperature, 66
Heating, 25
Heisenberg, W., 321
Helix, characteristic diff raction 

pattern, 424
Helix–coil transition, 254
Hematoporphyrin, 506
Heme, 394
Heme group, 145, 446
Hemoglobin, 145, 394, 446
 oxygen binding, 136, 144, 397
Hen white lysozyme, 67
Henderson–Hasselbalch equation, 171
Henry, W., 115
Henry’s law, 115
Henry’s law constant, 115
Hess’s law, 57
Heteronuclear diatomic 

molecules, 385
Hexagonal system, 416
High energy phosphate bond, 152
Highest occupied molecular 

orbital, 386
High-fi eld end, 520
High-spin complex, 393
Hill coeffi  cient, 177
HIV-AIDS, 437
Homeostasis, 57, 173
HOMO, 386, 401
Homogeneous mixture, 110
HOMO–LUMO energy gap, 401
Homonuclear diatomic molecule, 375
Homonuclear diatomic molecules, 

bonding, 381
Hooke’s law, 68, 335
Host–guest complex, 437
Hückel approximation, 388
Hückel, E., 184
Hull, A., 422
Hund’s rule, 350
Hybrid orbital, 369
Hybridization, 368
 carbon atom, 369
 variation with angle, 371
Hydrodynamic radius, 290
Hydrogen atom, 337
Hydrogen bond, 1, 433
Hydrogen electrode, 194
Hydrogen molecule, MO 

description, 379
Hydrogen molecule-ion, 373
Hydrogenic atom, 337
Hydrolysis reaction, 153
Hydrolytic enzyme action, 284
Hydronium ion, 156
Hydrophobic interaction, 86
Hydrophobicity constant, 87
Hyperbaric oxygen chamber, 118
Hyperfi ne coupling constant, 538
Hyperfi ne structure, 538

I
Ice
 phases, 106
 residual entropy, 82
 structure, 106, 440
ICP, 489
Ideal gas, see perfect gas
Ideal solution, 113
Ideal–dilute solution, 115
Immunoglobulin, 489
Incident circularly polarized technique, 489
Indefi nite integral, 97
INDO, 399
Indole, 361
Induced dipole moment, 431
Induced fi t model, 273
Induction period, 252
Infectious disease, 308
Infrared active, 476
Infrared spectroscopy, 476
Infrared transition, 480
Inhibition, 280
Initial condition, 230
Initial rate technique, 226
Instant cold pack, 25
Instantaneous rate, 222
Integral, 97
Integral protein, 450
Integrated absorption (NMR), 520
Integrated absorption coeffi  cient, 468
Integrated rate law, 228
Integration, 97
 partial fractions, 233
Intensity, NMR and EPR transitions, 515
Intensive property, 7
Interaction coeffi  cient, 306
Interference, 316, 377
Interferometer, 465
Intermediate, 249
Intermediate neglect of diff erential overlap, 399
Intermolecular interaction, 435
Internal energy, 35
 constant volume heat transfer, 36
 perfect gas, 35
 state function, 37
Internationial System of Units, 5
Intersystem crossing, 492
Inversion symmetry, 375
Ion channel, 188, 295
Ion pump, 188, 295
Ion transfer, 186
Ion transport, 181
Ionic atmosphere, 184
Ionic bond, 1, 364
Ionic mobility, 290
Ionic radius, 353
Ionic strength, 185
Ionization constant, acid and base, 158
Ionization energy, 339, 353
Ion-selective electrode, 202
Isobaric calorimeter, 44
Isochore, 150
Isodensity surface, 400
Isoelectronic, 353

Isolated system, 24
Isolation method, 225
Isoleucine, COSY, 535
Isomorphous replacement, 421
Iso-octane, 55
Isosbestic point, 469
Isosbestic wavelength, 469
Isothermal expansion, 35
Isotonic solution, 126
Isotope, 1
Isotope labeling, NOESY, 535
Isotope substitution, 475
Isotopolog, 475

J
Jablonski diagram, 490
Joule, 11, 557
Joule, J., 11

K
K shell, 341
Karplus equation, 524
Kekulé structure, 372
Kelvin, 7
Kelvin scale, 7, 105
Kinetic control, 258
Kinetic energy, 11
Kinetic isotope eff ect, 363
Kinetic model of gases, 16
Kinetic molecular theory, 267
Kinetic salt eff ect, 264
Kirchhoff ’s law, 62
Klystron, 536
KMT, 16, 267
Kohn–Sham equation, 399
Krafft   temperature, 449

L
L shell, 341
Lactate ion, 155
Lanthanide contraction, 353
Large calorie, 43
Larmor precession frequency, 527
Laser, 471
Latent heat, 49
Laue method, 422
Law
 Beer–Lambert, 466
 Beer’s, 220, 466
 Bragg’s, 419
 conservation of energy, 12, 24
 Dalton’s, 10
 Debye T3, 80
 Debye–Hückel limiting, 185
 extended Debye–Hückel, 186
 Fick’s, 286, 304
 First, of thermodynamics, 38
 Henry’s, 115
 Hess’s, 57
 Hooke’s, 68, 335
 Kirchhoff ’s, 62
 limiting, 8
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 Raoult’s, 113
 rate, 223
 Second, of thermodynamics, 71
 Stokes’s, 290
 Th ird, of thermodynamics, 78
LCAO, 373
LCAO-MO description, 374
Le Chatelier’s principle, 150
Lead compound, 453
Leafl et of bilayer, 3
Lennard-Jones (12.6) potential, 436
Lewis structure
 acetic acid, 2
 ethene, 2
 retinal, 2
 water, 2
Life, and Second Law, 85
Lifetime, 472
Lifetime broadening, 472
Ligand fi eld theory, 392, 394
Ligand-gated channel, 188
Light, polarized, 488
Light scattering, 412, 464
Light-harvesting complex, 503
Limiting law, 8, 185
Linear combination of atomic orbitals, 373
Lineweaver–Burk plot, 275
Linewidth, 472
Lipid, 3
Lipid bilayer, 3
 melting, 108
Lipid raft  model, 450
Liposome, 449
Liquid, 4
Liquid crystal, 108
Liquid junction, 192
Liquid junction potential, 193
Liter, 558
Local contribution, 520
Local magnetic fi eld, 518
Local minimum, 451
Lock-and-key model, 273
Logarithm, 182
London formula, 433
London interaction, 432
Lone pair, 2
Long period, 351
Long-range order, 439
Lou Gehrig’s disease, 386
Lowest unoccupied molecular orbital, 386
Low-fi eld end, 520
Low-spin complex, 393
Lumifl avin, 443
Luminous intensity, 557
LUMO, 386, 401
Lung, 118
Lysozyme, 67
 spectrum, 483

M
M shell, 341
Macular pigment, 502
Magnetic quantum number, 335, 340
Magnetic resonance, 513

Magnetic resonance imaging, 513, 530
Magnetization, 527
Magnetogyric ratio, 514
MALDI, 410
MALDI–TOF mass spectrometry, 410
Many-electron atom, 337, 346
Marcus cross-relation, 301
Marcus theory, 298, 499
Mass, 5
Mass number, 1
Mass spectrometry, 410
Mass-to-charge ratio, 411
Material balance, 175
Matrix-assisted laser desorption/ionization, 410
Matter wave, 316
Maximum velocity, 274
Maximum work, 31
Maxwell distribution of speeds, 16, 260, 267
Maxwell–Boltzmann distribution, 16
McConnell equation, 539
MCT detector, 466
Mean activity coeffi  cient, 183
Mean bond enthalpy, 51
Mean free path, 268
Mean speed, 16
Mechanical equilibrium, 6
Mechanism of reaction, 224
Melting, 48
 thermodynamic basis, 99
Melting temperature, 104
 biopolymer, 45, 107, 180
 polypeptide, 132
Membrane potential, 187
Mesopause, 494
Mesosphere, 494
Metabolic acidosis, 173
Metabolic alkalosis, 173
Metabolism, 27
Metarhodopsin II, 503
Methanal, see formaldehyde
Methylcyclohexane, 61
Micelle, 449
Michaelis constant, 274
Michaelis–Menten equation, 274
Michaelis–Menten mechanism, 274
Michelson interferometer, 465
Microscopy
 atomic force, 329, 436
 confocal Raman, 511
 electron, 317
 far-fi eld confocal, 493
 fl uorescence, 492
 near-fi eld scanning optical, 493
 Raman, 484
 scanning electron, 318
 scanning tunneling, 329
 scanning-probe, 329
 vibrational, 483
Microstate, 80
Microwave region, 13
Miller indices, 417
MINDO, 399
Mitchell, P., 209
Mitochondrion, 209
Mixed inhibition, 281

Mixture, 110
MNDO, 399
MO theory, 364, 373
Mobility, 290
Model
 fl uid mosaic, 450
 framework, 255
 induced-fi t, 273
 KMT, 16
 lipid raft , 450
 lock-and-key, 273
 nucleation–condensation, 255
 SIR, 308
 VSEPR, 364
Modifi ed neglect of diff erential overlap, 399
Molality, 131
Molar absorption coeffi  cient, 220, 466
Molar concentration, 131
Molar enthalpy, 39
Molar heat capacity, 33
Molar internal energy, 35
Molar mass
 determination, 292
 macromolecule, 408
 osmometry, 128
Molar volume, 9
Molarity, 131
Mole, 5
Mole fraction, 130
Molecular collision, 267
Molecular descriptor, 454
Molecular dynamics, 451
Molecular interpretation
 chemical equilibrium, 144, 151
 entropy, 80
 heat, 26
 heat capacity, 34
 temperature, 26
 work, 26
Molecular mechanics, 451
Molecular motor, 296
Molecular orbital, 373
Molecular orbital theory, 364, 373
Molecular potential energy curve, 365
Molecular recognition, 437
Molecularity, 248
Molten globule phase, 109
Moment of inertia, 332
Momentum, 316
 angular, 331
 linear, 316
Monochromator, 465
Monoclinic system, 416
Monte Carlo method, 453
Mouse cell, 484
MRI, 513, 530
Mulliken, R., 384
Multiple sclerosis, 386
Myglobin, oxygen binding, 144, 397

N
N shell, 341
NADH, 28, 208
NADP, 210, 504
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NADPH, 28
Native phase, 109
Natural linewidth, 472
Natural logarithm, 182
Near infrared region, 13
Near-fi eld scanning optical microscopy, 493
Neighboring group contribution, 520
Nernst equation, 197
Nernst fi lament, 465
Newton, 11, 557
Newton, I., 10, 313
Nicotinamide adenine dinucleotide, 28
Nitric oxide, 386
Nitrogen, biochemical reactivity, 382
Nitrogen monoxide, see nitric oxide, 386
Nitrogen narcosis, 133
Nitroxide radical, 540
NMR, 513
 2D, 534
NMR spectrometer, 518
Nodal plane, 344
Node, radial, 343
NOE, 532
NOE enhancement factor, 534
NOESY, 535
Non-competitive inhibition, 281
Noncontact mode, 329
Nondegenerate, 333
Nonelectrolyte solution, 110
Non-expansion work, 88
Nonpolar molecule, 426
Normal boiling point, 103, 104
Normal freezing point, 104, 105
Normal melting point, 105
Normal mode, 479
 tetrahedral molecule, 481
Normalization constant, 324
NSOM, 493
n-to-π* Transition, 487
Nuclear charge, 348
Nuclear g-factor, 514
Nuclear magnetic resonance, 513
Nuclear magnetogyric ratio, 514
Nuclear magneton, 514
Nuclear Overhauser eff ect, 532
Nuclear Overhauser eff ect 

spectroscopy, 535
Nuclear spin quantum number, 513
Nucleation center, 99
Nucleation–condensation model, 255
Nucleic acid, 446
Nucleon number, 1
Number
 components, 129
 degrees of freedom, 129
 vibrational modes, 478
Nutritional calorie, 43

O
Ocean freezing, 124
Ocular fl uid, 501
Off -diagonal peaks, 534
Open system, 24
Operator, 319

Opsin, 502
Optical activity, 488
Orbital
 antibonding, 375, 385
 atomic, 340
 bonding, 374, 385
 delocalized, 391
 Gaussian type, 400
 hybrid, 369
 molecular, 373
Orbital angular momentum quantum number, 

335, 340
Orbital approximation, 346
Orbital overlap, 376
Order
 diff erential equation, 230
 elementary reaction, 248
 reaction, 224
Orthorhombic system, 416
Oscillator, 335
Osmometry, 127
Osmosis, 125
 cell structure, 126
Osmotic pressure, 125
Overall order, 224
Overall quantum yield, 495
Overhauser eff ect, 532
Overlap, 376
Overlap integral, 376
Overtone, 477
Oxidation number, 190
Oxidative phosphorylation, 209
Oxoanion hole, 284
Oxygen, biochemical reactivity, 382
Oxygen attachment, 394
Oxygen binding, 144
 hemoglobin, 397
Oxygen reduction, 191
Ozone, 504
 polarity, 427

P
p Electron, 341
p Orbital, 341, 345
p Subshell, 341
PAGE, 292
Paired spins, 347
Parabolic potential energy, 335
Parallel beta sheet, 445
Paramagnetic species, 383
Partial charge, 385
 polypeptide, 425
Partial derivative, 37, 287
Partial fraction, 233
Partial molar Gibbs energy, 110
Partial molar property, 110
Partial pressure, 10, 130
Partial vapor pressure, 112
Particle in a box, 324
Particle on a ring, 331
Particle on a sphere, 334
Partition coeffi  cient, 289
Pascal, 6, 557
Pascal’s triangle, 523

Passive transport, 187, 285
Patch clamp technique, 294
Patch electrode, 294
Pauli exclusion principle, 347, 359
Pauli principle, 359, 366
Pauling, L., 384, 442
PDT, 505
Penetration, 348
Peptide group
 dipole moment, 428
 VB description, 371
Peptide link, 2, 442, 482
Peptide link cleavage, 284
Perfect gas
 equation of state, 8
 Gibbs energy, 97
 heat capacity diff erence, 41
 internal energy, 35
 molar enthalpy, 39
Period, 351
Periodicity, 350
Peripheral protein, 450
Permittivity, 11, 425
Peroxynitrite ion, 386
Perpetual motion machine, 38
Persistence length, 68
pH
 amphoteric anion, 169
 autoprotolysis contribution, 175
 calculation, 161
 defi nition, 157
Pharmacokinetics, 234
Phase, 46
Phase boundary, 99
Phase diagram, 99
 protein, 109
Phase problem, 420
Phase rule, 129
Phase transition, 47, 94
 entropy of, 75
 membrane, 108
Phenoxy radical, 544
Phenylalanine, electronic structure, 334
Pheophytin, 504
Phosphate bond, 152
Phosphate-ester bond, 2
Phosphodiester bond, 2
Phospholipid, 3, 450
Phosphonate transition state, 284
Phosphorescence, 490, 491
Photobiology, 494
Photobleaching, 510
Photocatalyst, 505
Photodimerization, 504
Photodiode, 465
Photodynamic therapy, 505
Photoelectric eff ect, 315
Photon, 13, 315
Photon scattering, 464
Photophosphorylation, 210
Photosensitization, 505
Photosynthesis, 209, 503
 general scheme, 211
Photosystem I and II, 210, 504
Photovoltaic device, 466
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Physical state, 5
Physiological buff er, 171
Pi  (π) bond, 367, 376
 in complexes, 396
Pi (π) orbital, 376
Pi/2 (π/2) pulse, 528
Pi (π)-donor ligand, 405
Ping-pong reaction, 278
pi-to-pi*(π-to-π*) Transition, 487
Planar bilayer, 450
Planck, M., 314
Planck’s constant, 314
Plane polarized, 488
Planes, separation of, 417
Plasma, 473
Plasmids, STM image, 330
Plasmon, 473
Plasmon resonance, 473
Plastocyanin, 210
Plastoquinone, 210
Pleated sheet, 442
Plot
 Eadie–Hofstee, 306
 Haines, 306
 Lineweaver–Burk, 275
 Ramachandran, 444
 Stern–Volmer, 497
Polar bond, 384
polar molecule, 426
Polarizability, 431, 478
Polarizability volume, 432
Polarizable molecule, 431
Polarization mechanism, 524
Polarized light, 488
Polyacrylamide gel electrophoresis, 292
Polyatomic molecule, 367
 MO description, 387
Polychromator, 465
Polyelectrolyte, 119
Polyene, spectroscopic transitions, 402
Polymorph, 106
Polynucleotide, 2
Polypeptide, 2, 443
 melting temperature, 132
Polyprotic acid, 165
Polysaccharide, 2, 448
Population, 26
 states and intensity, 471
Porphine ring, 361
Potential, 19
 standard cell, 197
Potential energy, 11
 parabolic, 335
Powder diff ractometer, 422
Power, 44
Power series, 124
Prebiotic reaction, 242
Precession, 527
Pre-equilibrium, 253
Pre-exponential factor, 236
 interpretation, 260
Pressure, 6
 KMT, 267
Primary kinetic isotope eff ect, 363
Primary quantum yield, 495

Primary structure, 3
Principal quantum number, 338, 340
Principle
 Aufb au, 349
 building-up, 349
 Franck–Condon, 486
 Le Chatelier’s, 150
 Pauli, 359, 366
 Pauli exclusion, 347, 359
 uncertainty, 321
Probabilistic interpretation, 320
Probability density, 320
Probe pulse, 264
Product rule, 37
Profl avin, 249
Projective reconstruction, 531
Promotion, 368
Protease, 437
Protein
 food, 56 
 phase diagram, 109
 vibrational spectroscopy, 482
Protein biosynthesis, 152
Protein crystallization, 110
Protein folding, 254, 445
Protein structure, 442
Protein unfolding, 107, 254
Proton decoupling, 532
Proton magnetic resonance, 518
Proton mobility, 291
Proton pump, 295
Proton transfer, 156
Protonation, 158
Pseudo-fi rst order reaction, 226
Pseudo-second order reaction, 226
Pulse techniques, 527
Pulse-fi eld electrophoresis, 292
Pyridine, elpot surface, 401
Pyridone, 270
Pyruvate ion, 153

Q
QSAR, 454
Quadratic contribution to energy, 68
Quadratic equation, 162
Quantitative structure–activity 

relationship, 454
Quantization
 angular momentum, 333
 energy, 315
Quantum number
 azimuthal, 340
 introduced, 325
 magnetic, 335, 340
 nuclear spin, 513
 orbital angular momentum, 335, 340
 particle ina box, 325
 principal, 338, 340
 spin, 347
 spin magnetic, 347
 vibrational, 336
Quantum theory, experimental foundation, 314
Quantum yield, 495
 fl uorescence, 496

Quaternary structure, 4
Quenching, 497
Quenching method, 221
Quotient rule, 37

R
Radial distribution function, 342
 liquid, 439
Radial node, 343
Radial wavefunction, 341
Radiative decay, 490
Radical, 50
Radio region, 13
Radius of gyration, 441
Ramachandran plot, 444
Raman imaging, 484
Raman microscopy, 484, 511
Raman optical activity, 489
Raman spectrometer, 466
Raman spectroscopy, 464
Raman transitions, 481
Random coil, 440
Random walk, 285
Raoult, F., 112
Raoult’s law, 113
Rate constant, 223
 electron transfer, 297 
 relation to equilibrium constant, 243
 variation with temperature, 237
 viscosity dependence, 257
Rate law
 determination, 225
 integrated, 228
 introduced, 223
Rate-determining step, 251
Rayleigh radiation, 464
Rayleigh ratio, 412
Rayleigh scattering, 412
Reaction center (photosynthesis), 503
Reaction coordinate, 261
Reaction dynamics, 259
Reaction enthalpy, variation with 

temperature, 62
Reaction Gibbs energy, 136
Reaction mechanism, 224
Reaction order, 224
Reaction profi le, 259
Reaction quotient, 138
 half-reaction, 191
Reaction rate, 221
 variation with temperature, 235
Reactions that ‘go’, 136
Reactive oxygen series, 384
Real gas, 8
Real solution, 114
Real-time analysis, 220
Recognition, molecular, 437
Redox couple, 190
Redox electrode, 194
Redox reaction, 181, 189
Reduced mass, 338, 474
Reference state, 59
Refl ection (X-ray), 419
Refractive index, 473
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Relation between
 pH and pOH, 159
 pKa and pKb, 159
Relativistic eff ect, 360
Relaxation (NMR), 529
Relaxation technique, 221, 245
Relaxation time, 246, 529
Relaxed state, 397
Reorganization energy, 299
Residual entropy, 82
Residue, 2
Resolution, 317
Resonance, 372, 513
Resonance condition, 515
Resonance energy transfer, 499
Resonance hybrid, 372
Resonance integral, 388
Resonance Raman spectroscopy, 482
Respiratory acidosis, 173
Respiratory alkalosis, 173
Respiratory chain, 208
Resting potential, 188
Retina, 502
Retinal, 2, 248, 404, 501
Reverse micelle, 449
Reversible process, 32
Rhodopsin, 502
Rhombohedral system, 416
Ribofl avin equilibrium, 204
Ribonuclease, melting, 108
Ribonucleic acid, 273
Ribosome, 273
Ribozyme, 273
Ring current, 521
RNA, 273, 447
ROA, 489
Root mean square deviation, 322
Root mean square separation, 440
Root-mean-square speed, 267
ROS, 384
Rotating frame, 527
Rotation, 331
Rule
 chain, 37
 Corey–Pauling, 442
 exclusion, 481
 Hund’s, 350
 phase, 129
 product, 37
 quotient, 37
 selection, 470
 vibrational selection, 477

S
s Electron, 341
s Orbital, 341
s Subshell, 341
Salt bridge, 192
Salt solution, pH, 164
SAR, 92
SATP, 9, 10
Saturation, 529
Scanning electron microscopy, 318
Scanning probe microscopy, 329

Scanning tunneling microscopy, 329
Scatchard equation, 134
Scattering, 464
SCF, 398
Schrödinger equation, 319
 justifi cation, 358
Schrödinger, E., 319
SCUBA diving, 133
SDS, 449
SDS-PAGE, 292
Second ionization energy, 353
Second law
 Fick’s, 286, 304
 thermodynamics, 71
Secondary kinetic isotope eff ect, 363
Secondary structure, 3, 442
Second-order rate law
 half-life, 232
 integrated, 231
Secular determinant, 389
Secular equation, 388
Sedimentation, 407
Sedimentation constant, 408
Sedimentation equilibrium, 409
Selection rule, 470
Selectivity fi lter, 295
Self-assembly, 407
Self-consistent fi eld procedure, 398
SEM, 318
Semi-empirical method, 398
Semipermeable membrane, 125
Separation of variables, 330, 359
Sequential reactions, 277
SHE, 198
Shell, 341, 347
Shielded, 519
Shielded nuclear charge, 348
Shielding, 348
Shielding constant (NMR), 518
Short-range order, 439
SI base units, 557
SI prefi xes, 557
SI units, 5
Sigma (σ) bond, 367, 379
Sigma (σ) electron, 374
Sigma (σ) orbital, 374
Sigma (σ)-donor ligand, 405
Sign convention, work and heat, 29
Simultaneous equations, 389
Single molecule spectroscopy, 493
Singlet state, 491
SIR model, 308
Slice selection, 531
Sneeze analogy, 72, 74
SOD, 205
Sodium dodecyl sulfate, 449
Solid, 4
Solute, 110
Solute activity, 118
Solvent, 110
Solvent activity, 118
Solvent contribution, 521
Solvent-accessible surface, 400
Speciation, 168
Specifi c enthalpy, 54

Specifi c heat capacity, 33
Specifi c selection rule, 470
Spectrometer, 465
Spectroscopy, 463
 correlation, 534
 infrared, 476
 nuclear Overhauser eff ect, 535
 resonance Raman, 482
 single-molecule, 493
 time-resolved, 263, 499
 vibrational Raman, 478
Spectrum, 314
 electromagnetic, 12
Spherical coordinates, 376
Spherically symmetrical, 342
Spin, 347
Spin correlation, 350
Spin density, 539
Spin label, 540
Spin magnetic quantum number, 347
Spin pairing, 366
 MO theory, 379
Spin probe, 540
spin quantum number, 347
Spin–lattice relaxation time, 529
Spin–orbit coupling, 492
Spin–spin coupling constant, 521
Spin–spin relaxation time, 529
SPM, 329
spn Hybrid orbital, 369
Spontaneous change, 69
Spontaneous chemical reaction, 83, 135
Spontaneous emission, 471
Spontaneous process, 85
Spontaneous reaction, criterion, 142
Stability condition, 94
Stable compound, 149
Standard cell potential, 197
 from standard potentials, 203
Standard chemical potential, 112
Standard conditions, 10
Standard enthalpy
 combustion, 53
 formation, 59
 fusion, 48
 sublimation, 49
 vaporization, 47
Standard Gibbs energy of formation, 147
Standard hydrogen electrode, 198
Standard molar concentration, 117
Standard molar entropy, 78
Standard oxidation potential, 198
Standard potential, 198
 from two others, 205
Standard reaction enthalpy, 58
 from cell potential, 206
Standard reaction entropy, 82
 from cell potential, 206
Standard reaction Gibbs energy, 137, 146
 variation with composition, 138
Standard reduction potential, 198
 Standard state, 9, 10, 46 
 biological, 139
 summary, 119
State of matter, 4
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State function, 37
Steady-state approximation, 252
Steric factor, 261
Stern–Volmer equation, 497
Stern–Volmer plot, 497
Stimulated absorption, 470
Stimulated emission, 470
STM, 329
Stokes radiation, 464
Stokes’s law, 290
Stokes–Einstein relation, 288, 409
Stopped-fl ow technique, 220
STP, 10
Stratopause, 494
Stratosphere, 494, 504
Strong acid, 158
Strong base, 159
Structure factor
 light scattering, 412
 X-ray, 420
Structure-activity relation, 92
Structure-based design, 453
Sublimation, 49
Sublimation vapor pressure, 101
Subshell, 341
Substrate, 273
Sucrose, acid hydrolysis, 236
Sulfuric acid, 158, 165
Supercoiled DNA, 447
Supercritical fl uid, 104
Superheated liquid, 99
Superoxide dismutase, 205, 383
Superposition, 321
Surface plasmon resonance, 473
Surfactant, 449
Surfactant parameter, 449
Surroundings, 24
Svedberg, 408
Symmetric stretch, 479
System, 24
Système International, 5

T
T1-weighted image, 531
t2g  Orbital, 393
T2-weighted image, 531
Tapping mode, 329
Taylor series, 124
TEM, 317
Temperature, 6
 conventional, 46
 molecular interpretation, 26
Temperature dependence
 enthalpy, 41
 reaction enthalpy, 62
Temperature jump, 246
Tense state, 397
Tertiary structure, 4
Tetragonal system, 416
Tetrahedral hybridization, 370
Th eorem, equipartition, 68
Th eory
 activated complex, 261
 Brønsted–Lowry, 156

 chemiosmotic, 209
 collision, 259
 crystal fi eld, 392
 Debye–Hückel, 184
 extended Hückel, 399
 FEMO, 405
 Förster, 500
 kinetic molecular, 267
 ligand fi eld, 392, 394
 Marcus, 298, 499
 molecular orbital, 364, 373
 transition state, 261
 valence, 364
 valence-bond, 364
 valence-shell electron repulsion, 2
Th ermal analysis, 101
Th ermal denaturation, 45
Th ermal energy, 14
Th ermal equilibrium, 6
Th ermal motion, 14
Th ermochemical equation, 47
Th ermodynamic control, 258
Th ermodynamic stability, 149
Th ermodynamic temperature, 6
Th ermodynamics, 21
Th ermogram, 44
Th ermosphere, 494
Th ird Law of thermodynamics, 78
Th ird-Law entropy, 78
TIBO, 459
Time constant, 231
Time-of-fl ight spectrometer, 411
Time-resolved spectroscopy, 263, 499
Tonne, 558
Torr, 6
Total energy, 12
Total entropy change, 84
Trajectory, 313
Transducin, 503
Transfer potential, 153
Transfer RNA, 448
Transition, 470
 electronic, 487
Transition dipole moment, 469
Transition metal, 351
Transition state, 238, 261
Transition state theory, 261
Transition temperature, 99
Translation, 324
Transmission coeffi  cient, 262
Transmission electron microscopy, 317
Transmission probability, 328
Transmittance, 466
Transport across membranes, 285
Trigonal planar hybridization, 370
Triple point, 104, 105
Triplet state, 491
Tristearin, 56
tRNA, 448
Tropopause, 494
Troposphere, 494
Tungsten–iodine lamp, 465
Tunneling, 328
Turning point, 486
Turnover frequency, 279

Two-dimensional electrophoresis, 293
Two-dimensional NMR, 534
Tyrosine radical, 537

U
Ubiquitin, 45
Ultra centrifuge, 408
Ultracentrifugation, 408
Ultraviolet damage, 504
Uncertainty broadening, see lifetime 

broadening, 472
Uncertainty principle, 321
Uncompetitive inhibition, 281
Ungerade symmetry, 375
Unilamellar vesicle, 450
Unimolecular reaction, 248
Unique reaction rate, 222
Unit cell, 415
Unstable compound, 149
UVA and UVB, 504

V
Vacuum permittivity, 11
Vacuum ultraviolet region, 13
Valence bond theory, 364
 summary of terms, 372
Valence electron, 348
Valence theory, 364
Valence-shell electron pair repulsion model, 364
Valence-shell electron repulsion theory, 2
van ‘t Hoff  equation
 chemical equilibrium, 150
 osmotic pressure, 125
van ‘t Hoff  isochore, 150
van der Waals interaction, 2, 425
Vapor deposition, 49
Vapor diff usion, 422
Vapor pressure, 100
Vaporization
 entropy of, 76
 standard enthalpy, 47
 thermodynamic basis, 99
Variation with temperature
 cell potential, 206
 chemical equilibrium, 150
 diff usion coeffi  cient, 287
 Gibbs energy, 98
 heat capacity, 66
 rate constant, 237
 reaction rate, 235
 viscosity, 288
VB theory, 364
Vector, 332
 addition and subtraction, 427
Vertical transition, 486
Vesicle, 450
VESPR, 2
Vibration, 335
Vibrational frequency, 336
 diatomic molecule, 362
Vibrational microscopy, 483
Vibrational modes, number of, 478
Vibrational quantum number, 336
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Vibrational Raman spectroscopy, 478
Vibrational selection rule, 477
Vibrational spectra, 474
Vibrational structure, 486
Vibrational transition, 476
Viscosity, variation with temperature, 288
Viscous drag, 290
Visible region, 12, 13
Vision, 501
Voltage-gated channel, 188
Voltaic cell, 192
Volume, 5
Volume element, 376
VSEPR model, 364

W
Water, 2
 MO description, 387
 phase diagram, 105, 106
 polarity, 427
 radial distribution function, 439
 VB description, 369
 viscosity, 288

Watt, 44, 557
Wave, 12
Wavefunction
 angular, 342
 harmonic oscillator, 336
 introduced, 318
 particle in a 2D box, 330
 particle in a box, 324 
 radial, 341
 VB, 365
Wavelength, 12, 464
Wavenumber, 464
Wave–particle duality, 315, 316
Weak acid, 158
 pH calculation, 161
Weak base, 159
 calculation of pH, 163
Weight of confi guration, 80
White light, 485
Wide-fi eld epifl uorescence method, 493
 Work, 10, 23 
 expansion, 30
 Gibbs energy, 88
 maximum, 31

 molecular interpretation, 26 
 non-expansion, 88
 raising a weight, 29
Work function, 315
Wrinkle, Nature’s abhorrence of, 287

X
Xanthophyll, 502
X-ray crystallography, 414
X-ray diff raction, 414
X-ray diff ractometer, 422
X-ray generation, 415
X-ray region, 13

Z
Z form (DNA), 447
Zero-current cell potential, 196
Zero-point energy, 326
Zeroth-order rate law, 228
Zeroth-order reaction, 226
Zinc, biological role, 356
Zwitterionic form, 169
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