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In 1992, the Institute of Medicine (IOM) published the first treatise on ‘‘emerging
infections,’’ a sobering warning of the resilience and plasticity of microbial organisms
to adapt rapidly to changing environments and evolutionary pressures and to exploit
newly created niches.1 This prescient publication anticipated numerous types of pub-
lic health threats, including diseases that were truly new (eg, sudden acute respiratory
syndrome), were newly described (eg, hantavirus cardiopulmonary syndrome), had
expanded their geographic endemicity (eg, West Nile virus), or had increased their
pathogenicity (eg, methicillin-resistant Staphylococcus aureus). Several diseases
also have ‘‘emerged’’ through facilitated transmission as a consequence of increased
numbers and density of susceptible individuals (eg, opportunistic infections of HIV
patients), permeation of geographic barriers (eg, H5:N1 avian influenza), or malicious
intentional dissemination (eg, Bacillus anthracis).

Vector-borne diseases are particularly prone to the environmental pressures that
contribute to changes in the ecology and the emergence of disease pathogens. These
diseases are defined by and are dependent on climate and habitat that are compatible
with the biologic needs of the microbiologic pathogens, their arthropod vector(s), and
their mammalian reservoir(s). Ecologic changes on the macro scale (eg, global climate
change) or micro scale (eg, suburban development) can alter established geographic
and epidemiologic domains of vector-borne diseases.

Emerging infections are not a concern that is isolated to public health. The IOM
report emphasized that ‘‘[t]he significance of zoonoses in the emergence of human
infections cannot be overstated.’’ Indeed, the complex cycles of vector-borne
zoonoses often include multiple mammalian and non-mammalian vertebrate and in-
vertebrate species. Humans and domestic canids are particularly intertwined in their
respective roles in and risks for diseases transmitted by ticks. In addition to being sus-
ceptible to tick-borne diseases, dogs may serve as reservoirs for human pathogens,
as definitive feeding hosts for vector ticks, as mechanical transporters of ticks, and
as sentinel indicators of regional disease risk. Conversely, in the absence of central-
ized reporting for most canine diseases, surveillance and other data collected for
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tick-borne diseases in humans can lend insight into risks for veterinary patients.
Surveillance, diagnosis, treatment, and prevention of tick-borne diseases in humans
and dogs can yield mutually beneficial information for public and veterinary health.

This article highlights the epidemiology of tick-borne zoonoses of concern to
humans and domestic pets in North America. Because a comprehensive review of
these diseases is not possible in this brief space, readers desiring detailed information
on clinical signs, diagnosis, and management are directed to recently published
reviews and standard texts.2–6

TICKS

Ticks are arthropods belonging to the order Arachnida. They are free living but require
a blood meal during at least one life stage. ‘‘Soft’’ ticks (family: Argasidae) attach to the
host, complete feeding within a few minutes, and promptly detach. ‘‘Hard’’ ticks
(family: Ixodidae) are protracted feeders and remain attached for up to several days
before reaching repletion. Successive blood meals on different hosts permit the
transmission of blood-borne pathogens from one host to another. Ticks species
with catholic feeding preferences can transmit microbes from evolutionarily commen-
sal reservoir species (eg, rodents) to incidental susceptible species (eg, humans). The
risk of disease transmission therefore is determined by the prevalence of infectious
ticks—a function of the number and infection prevalence of the pathogen’s reservoir
host—and by the likelihood of an encounter between an infected tick and a susceptible
host—a function of both the numbers of ticks and susceptible hosts within a fixed area
and their respective behaviors.

Approximately 400 species of ixodid ticks occur worldwide, but fewer than 100
occur in North America. Only a dozen or so North American tick species parasitize
humans or dogs with any frequency and are known to transmit micro-organisms of
medical significance. Usually only one or two species of tick can acquire, maintain,
and transmit a given pathogen. Therefore, the distribution of disease risk is re-
stricted by the necessity for sympatric coexistence of the microbial pathogen,
a competent vector tick, a reservoir host, and a susceptible host. The risk of dis-
ease parallels the geographic and seasonal distribution of ticks; therefore, veteri-
narians should educate themselves about which tick species are present within
their practice area. Veterinarians can consult entomologists at their state universi-
ties, county or state departments of public health, or local mosquito and vector
control districts for information on tick prevalence and for assistance in identifying
ticks recovered from their patients.

The regions of tick-borne disease risk are not necessarily static. The spatial and tem-
poral boundaries of risk for a given tick-borne disease may fluctuate over the short or
long term as favorable conditions expand or contract. Transient meteorologic
phenomena in endemic areas (eg, a wet, mild winter) can extend the number of months
in which ticks are active in a given year. Protracted or permanent climatologic change
can transform previously nonendemic areas to habitat favorable to ticks (eg, warmer
temperatures in higher elevations or upper latitudes). Similarly, the spatial dimension
of a risk area may change physically through human encroachment into or modification
of existing tick habitat or change practically by susceptible individuals increasing be-
haviors that facilitate contact with questing ticks. Many ‘‘emerging’’ tick-borne dis-
eases may represent micro-organism–tick–mammal disease cycles that are not truly
new but have been newly discovered and described as a consequence of direct or in-
direct changes in the risk area and, consequently, the empiric morbidity.
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LYME BORRELIOSIS

Disease caused by spirochetes of the genus Borrelia has been recognized in Europe
since the early 1900s. Disease caused by a Borrelia indigenous to North America was
first reported in 1977 among a localized cluster of patients diagnosed with juvenile
rheumatoid arthritis.7 The spirochete, Borrelia burgdorferi, described in 1982, encom-
passes four groups, of which Group 1, B. burgdorferi sensu stricto, is the principal
pathogenic strain in North America.8,9 A myriad of clinical manifestations now is
recognized, including dermatologic (characteristic erythema migrans rash), neurologic
(encephalitis, meningitis, radiculoneuropathy), cardiologic (atrioventricular conduction
deficits), and rheumatologic (mono- or oligoarticular arthritis).

B. burgdorferi is transmitted to mammalian hosts by ixodid ticks. Ixodes scapularis
is the principal vector in the northeastern and upper Midwestern United States;
I. pacificus is the vector along the Pacific Coast. Distribution of favorable tick habitat
(temperate, humid forests near large bodies of water), feeding hosts (deer), and
reservoir hosts (rodents) determine distribution of disease. In 2006, approximately
95% of the nearly 20,000 cases of Lyme borreliosis reported in the United States
were in residents of the upper midwestern (Minnesota and Wisconsin), northeastern
(New York, New Hampshire, Pennsylvania, Vermont, Rhode Island, Connecticut,
Massachusetts, and Maine), and mid-Atlantic (Maryland, New Jersey, and Delaware)
states.10 Expanding human populations and the resultant environmental alterations in
the twentieth century probably contributed to defining these areas of endemicity.
Areas that until the early 1900s were heavily wooded were converted to agrarian
land that reduced habitat for deer. As populations of deer (and their ticks) plummeted,
Ixodes muris, a one-host tick that feeds on rodents, came to dominate the acarologic
landscape. In the mid-twentieth century, agriculture succumbed to suburbanization
and reforestation, leading to a resurgence of deer and their attendant ectoparasites,
chiefly I. scapularis, in areas that overlapped with human habitation. The epidemic
of Lyme borreliosis apparent in the late twentieth century reflected this potentiation
of transmission in the peri-residential environment and also increased recognition
among health care providers and the expanded availability of often highly sensitive
but poorly specific diagnostic assays.

Dogs are susceptible to infection with B. burgdorferi, but clinical disease gener-
ally is milder, narrower in scope, and less frequent than in humans.11 Only about
5% to 10% of dogs exposed to infected ticks develop clinical borreliosis.12 Clinical
borreliosis manifests chiefly as polyarthritis approximately 2 to 6 months after
exposure and typically is self-limited. A small percentage of dogs also develop
a protein-losing glomerulopathy.13 Serologic studies have documented immuno-
logic evidence of borreliosis in cats, but clinical illness is rare.14

Aside from their shared susceptibility, dogs contribute little to the public health
concerns of Lyme borreliosis. Dogs are not an efficient reservoir for the spirochete,
nor are they an important or preferred feeding host for Ixodes ticks. It has been hy-
pothesized that dogs may introduce ticks into the peri-domestic environment from
an outdoor, distant source. Although in theory a partially fed tick may present a slightly
increased risk of disease transmission (because spirochetes already have migrated
from the midgut to the salivary glands), ticks generally do not re-feed if detached
before repletion. Because of their frequent encounters with ticks and ready serocon-
version, dogs have been proposed as sentinels for humans’ risk of Lyme borreliosis.15

Targeted research studies using domestic dogs can help sketch broad areas where
B. burgdorferi is present, but, because of the highly focal distribution of vector ticks, a
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reliable range of endemicity is delineated better by surveillance of ticks and natural
rodent hosts than by serologic or clinical evidence from incidentally infected hosts.

The diagnosis of Lyme borreliosis in both humans and dogs can be challenging.
Clinical signs often are nonspecific and variable. Culture of the spirochete requires
special media over a lengthy incubation period and often is unrewarding. Assays for
circulating antibodies remain the most common means of laboratory confirmation
despite recognized shortcomings.16 Enzyme immunoassays (EIA) and immunofluo-
rescent assays (IFA) based on the whole cell or subunits of the spirochete generally
lack specificity. The US Centers for Disease Control and Prevention recommends
a two-step procedure in which specimens yielding a positive or equivocal result on
a screening EIA or IFA are confirmed by Western immunoblotting using specific
interpretation criteria.17 Recently developed assays that use IR6, an antigen that is
highly conserved among Borrelia spp and is expressed transiently only in actively
infected mammalian hosts, may make more specific screening tests possible.18,19 A
commercial test that uses a recombinant form of the IR6 (C6) seems to be more
specific than whole-cell sonicates.20 Nevertheless, seropositivity may not indicate
active infection and should not be used as the sole criterion for diagnosis. Interpreta-
tion of laboratory results and decisions regarding treatment should be based on the
likelihood of Lyme borreliosis in the patient, including clinical, laboratory, and epide-
miologic factors (eg, region of country, outdoor activities, history of tick bite). Routine
treatment of seropositive asymptomatic dogs generally is unwarranted, because most
dogs do not develop clinical signs, illness often is self-limited, and injudicious
antimicrobial treatment may contribute to emergence of antibiotic resistance in other
flora with zoonotic potential.21,22

RICKETTSIOSES

Obligately intracellular bacteria in the order Rickettsiales cause several tick-borne
diseases of human and veterinary medical importance. The family Rickettsiaceae
contains bacteria of the genus Rickettsia, including R. rickettsii, the agent of Rocky
Mountain spotted fever (RMSF). The family Anaplasmataceae encompasses several
pathogens of humans and animals in the genera Ehrlichia and Anaplasma that formerly
were grouped under the broad term ‘‘ehrlichiosis.’’

Rocky Mountain Spotted Fever

R. rickettsii is one of more than a dozen species of Rickettsia in the spotted fever group
(SFG); these rickettsiae are closely related to typhus group Rickettsia spp (eg, R. typhi)
but are distinct from other rickettsiae. RMSF is the most frequently reported rickettsial
illness in humans in the United States; about 2300 cases were reported in 2006.10

RMSF in humans is characterized by high fever, myalgia, severe headache, and a
petechial or maculopapular rash of the extremities, including palms and soles.
Case-fatality of untreated patients is 3% to 5%. The initial clinical signs of RMSF in
dogs resemble those in humans: fever, myalgias, and petechiae/ecchymoses, chiefly
of the mucous membranes. Damage to the vascular endothelium leads to hypoalbu-
minemia and development of extremital and cerebral edema. Hypotension, shock,
and renal hypoperfusion and failure also may occur.

RMSF cases are distributed throughout much of the United States because of the
ranges of its two principal tick vectors: Dermacentor variabilis (the American dog
tick) in the southeastern and south central states, where more than 80% of cases
occur, and D. andersonii (Rocky Mountain wood tick) in the Rocky Mountains and
the Northwest. Other tick species such as Amblyomma americanum (the lone star
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tick) and Rhipicephalus sanguineus (the brown dog tick) also can occasionally transmit
R. rickettsii. Rh. sanguineus, a one-host tick whose preferred host is canids, was
implicated recently in an outbreak of RMSF among humans and domestic dogs in
Arizona,23–25 a state where RMSF is rarely reported and Dermacentor ticks are
uncommon. Investigators hypothesized that domestic dogs contributed directly to
the outbreak by transporting ticks to the peri-domestic environment, supporting large
populations of ticks in close proximity to human habitation, and possibly serving as
a reservoir for the Rickettsia. Evaluation of archived sera indicate that free-roaming ca-
nids in Arizona were exposed to R. rickettsii at least a decade before this outbreak.26

Serologic assays are the most widely available laboratory diagnostic. Because of
considerable cross-reactivity between SFG rickettsiae and the variable specificity of
commercial assays,27 documentation of a fourfold change in serum antibody titer be-
tween acute and convalescent specimens—ideally, submitted simultaneously and
tested in parallel—is recommended. To avoid delay in initiating treatment, a provisional
diagnosis may be made based on clinical compatibility, history and species of tick in-
festation, and epidemiologic indicators such as region of the country and season of
year (chiefly late spring to early autumn). A single elevated IgM titer in a clinically com-
patible patient may be sufficient for confirmation. In contrast, because canine IgG to
Rickettsia spp may persist for up to 10 months,27–29 detection of IgG alone may not be
clinically relevant.

Ehrlichioses and Anaplasmosis

Zoonotic members of the family Anaplasmataceae are pathogens of leukocytes and
usually are grouped based on their leukocytotropic propensity. Monocytotropic Ehrli-
chia spp include closely related agents of human (E. chaffeensis) and canine (E. canis)
ehrlichiosis. Members of the former granulocytotropic E. phagocytophila group—
including pathogens of humans (human granulocytic ehrlichiosis agent), ruminants
(E. phagocytophila), equids (E. equi), and other mammals—recently were reclassified
collectively as Anaplasma phagocytophilum.30 (A closely related thrombocytotropic
pathogen of dogs [A. platys] has not demonstrated zoonotic potential.)

E. canis was the first of the monocytic ehrlichioses to be identified, described in
dogs in Algeria in 1937. Canine monocytic ehrlichiosis came to the attention of West-
ern nations in the 1960s when several hundred military dogs died of the disease while
serving in Vietnam.31 Monocytic ehrlichiosis in humans was first recognized in the
United States in the 1980s and initially was attributed to E. canis.32 Subsequent inves-
tigation identified a closely related but distinct rickettsia, given the name E. chaffeen-
sis.33 Despite profound serologic cross-reactivity among patients and greater than
98% homology based on 16S rRNA, E. canis and E. chaffeensis seem to be
epidemiologically distinct. E. chaffeensis is restricted chiefly to the southeastern and
south-central United States, deer are the likely reservoir host, and A. americanum is
the principal tick vector; whereas E. canis is distributed worldwide, dogs serve as
the reservoir, and Rh. sanguineus is the vector. Although dogs may be infected
incidentally with E. chaffeensis, they seem to have limited susceptibility and no role
in its maintenance.34 Similarly, E. canis infection of humans is restricted to a few
reported cases in South America.35

Another member of the Ehrlichia group, E. ewingii, has been identified as a pathogen
of both dogs and humans. E. ewingii shares 98% genetic homology with E. canis and
E. chaffeensis36 and seems to resemble E. chaffeensis in its geographic distribution
(the southeastern and south-central United States), tick vector (A. americanum), and
seasonality (spring to autumn). E. ewingii differs from other members of this group
in that it is chiefly granulocytotropic.37 Canine granulocytic ehrlichiosis was first
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described in a dog from Arkansas in 1971,38 and E. ewingii was identified as the
etiologic agent in 1992.36 The first report of E. ewingii infections in humans was
published in 1999,37 describing four male patients from Missouri who presented
with histories of tick bites and clinical illness consistent with ehrlichiosis; three of these
patients were being treated with immunosuppressive therapy. The full contribution of
E. ewingii to human morbidity remains undetermined but seems to be low.

A. phagocytophilum is a granulocytotropic rickettsia distinct from the E. canis/chaf-
feensis group. Evidence of natural infection with A. phagocytophilum has been
identified in humans, horses, dogs, small ruminants, and some wild mammals.39–42

Rare cases of a mild and self-limited infection with A. phagocytophilum have been
reported in cats from the northeastern United States.43 Because the rodent reservoirs
(Peromyscus mice, Neotoma rats) and tick vectors (Ixodes spp) for A. phagocytophi-
lum in the United States are similar to those for Lyme borreliosis, it shares similar
geographic distribution and seasonality—that is, the northeastern and upper midwest-
ern states from spring to early summer and autumn. Ixodes ticks can be coinfected
with both organisms,44,45 and concurrent infections with A. phagocytophilum and
B. burgdorferi have been observed in humans.46,47 The clinical likelihood and signifi-
cance of coinfection with these pathogens in other species is unknown.

The distinctive leukocytotropisms of Ehrlichia spp and A. phagocytophilum offer
a means of provisionally diagnosing and differentiating infections with these
rickettsiae. During the acute phase of illness, binary fission of the rickettsiae within
the phagosome produces membrane-bound intracytoplasmic aggregates called
‘‘morulae.’’ Morulae in circulating leukocytes can be observed directly in Romanov-
sky-stained blood or buffy coat smears. Identifying the leukocytic cell line containing
morulae can narrow the list of possible rickettsial pathogens, but different rickettsia
species within a leukocytotropic group (eg, granulocytotropic E. ewingii and A. phag-
ocytophilum) cannot be discriminated further based on morulae prevalence or
morphology. Although observation of intraleukocytic morulae is highly specific when
performed by a trained microbiologist, it offers only low-to-moderate sensitivity,
depending on when the specimen was collected and the type and proportion of
leukocytes infected. Typically, both the proportion of patients in whom morulae are
observed (< 5%–10% for monocytic morulae48,49 and 25% for granulocytic morulae)50

and the proportion of leukocytes containing morulae during active infection (1%–2%
for monocytes32 and up to 80% for neutrophils)39,51 are quite low. Therefore, serology
remains the principal, but not definitive, method for diagnosis. Cross-reactivity
between ehrlichiae and A. phagocytophilum is common in both canine and human
sera.52,53 Differentiation may be confirmed by more specific assays (Western immuno-
blotting or polymerase chain reaction), when available, or may be inferred through
demonstration of a fourfold change in titer between acute and convalescent
specimens.
TULAREMIA

‘‘Tularemia’’ is a general term for the myriad of clinical manifestations that can occur
following infection with the gram-negative bacillus, Francisella tularensis. F. tularensis
is distributed widely throughout North America, because of multiple mammalian
reservoir species, the persistence of the bacteria in the environment, and several
competent arthropod vectors. Four species of ticks—D. andersonii, D. variabilis,
D. occidentalis, and A. americanum—are recognized as true biologic vectors and
reservoirs for F. tularensis at least one of which exists in almost any given region of
the United States. Other routes of transmission include handling or ingestion of tissues
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from an infected mammal (principally lagomorphs), ingestion of or inoculation with
contaminated water through a break in the skin or mucous membrane, inhalation of
contaminated dust, and mechanical transmission by other biting arthropods such
as deer flies (Crysops spp) and mosquitoes. Because of the potential for respiratory
exposure and the low inoculum (10–50 organisms) necessary to effect infection,
F. tularensis is considered a Category A potential bioterrorism agent.54

The route of infection generally determines the scope of clinical manifestations.
Humans most commonly are infected through direct contact or tick bite, leading to
an ulceropapular lesion at the site of inoculation and localized lymphadenomegaly.
The ulceroglandular form predominates in humans, but typhoidal, glandular,
oculoglandular, and pneumonic forms also occur. The spectrum of illness in domestic
animals seems to be much narrower. Dogs are exposed most frequently via tick bite
but seem to be relatively resistant to infection; transient mild fever and anorexia have
been reported.55 Infection in cats is more severe; because cats are likely to be infected
through predation and consumption of infected rodents or rabbits,56 lymphadenopa-
thy and ulcerations of the oropharynx are the most frequently observed signs.57

Infected dogs and cats may present a low risk of transmission to humans. Bites or
scratches from cats have been associated with more than 50 human cases of
tularemia.58,59 Dogs are unlikely to serve as a direct source of transmission but may
facilitate exposure by bringing infectious ticks, tissues (eg, rabbit carcasses), or water
(eg, a saturated coat from a contaminated lake) into the peri-domestic environment.
The bacterial load in suppurative lesions is low, but because only a few organisms
are necessary to cause infection, veterinary staff should use barrier protection when
handling patients suspected of having tularemia. Cultures and necropsies of suspect
patients should be performed only in Biosafety Level 3 facilities.
POSSIBLE EMERGING TICK-BORNE ZOONOSES

Several pathogens recently have been identified for which transmission by ticks or the
zoonotic potential have yet to be established. Some members of the genus Bartonella
have long been associated with transmission by biting arthropods; for example,
B. quintana, the agent of trench fever in humans, is transmitted by the human body
louse. B. henselae is a widespread commensal bacterium among healthy domestic
cats but causes bacillary angiomatosis (‘‘cat scratch disease’’) in humans who are
bitten or scratched. Fleas harbor the organism, and contamination of skin breaks
with flea excrement, rather than the feline scratch per se, seems to be required for
infection. B. henselae also has been identified in attached and questing ticks,60–62

but their competence as vectors has yet to be verified.63 Infection with B. vinsonii
has been associated with valvular endocarditis in some dogs and humans.64–66 Serum
antibodies to B. vinsonii have been detected in numerous surveys of both healthy and
diseased wild and domestic canids.67–71 Often these canids had concomitant heavy
tick infestations and seroreactivity to other tick-borne pathogens (eg, E. canis), but
at present there is no direct evidence that ticks are a competent vector of B. vinsonii.

A skin rash resembling the erythema migrans lesion of Lyme borreliosis has been
described in residents of southern and central parts of the United States where Ixodes
ticks and B. burgdorferi are rare.72,73 The disease Southern tick-associated rash
illness (STARI) is associated with bites from the lone star tick, Amblyomma ameri-
canum,74 and has been linked provisionally to infection with Borrelia lonestari.75

Human patients who have STARI show no serologic cross-reactivity on whole-cell
and C6 ELISAs for B. burgdorferi.76,77 Experimentally inoculated beagles developed
detectable antibodies, but B. lonestari could not be re-isolated from blood.78
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White-tailed deer are the only other vertebrate in which natural infection with B. lone-
stari has been identified.79

Three species of Babesia (B. canis, B. gibsoni, and B. conradae), an intraerythrocytic
protozoan, have been described from North American dogs.80,81 Although B. gibsoni
is transmitted principally by ticks, contact transmission also has been strongly
suggested, particularly among fighting breeds.82,83 Despite a close phylogenetic
relationship between B. conradae and B. duncani, a human piroplasm,84 neither
B. conradae nor other canine Babesia spp seem to be zoonotic.
PREVENTION

The simple and often singular mechanism by which tick-borne diseases are transmit-
ted (viz, by tick bite) permits a multitude of avenues for prevention. No one technique is
invariably effective, however, so an integrated program of several preventive compo-
nents is desirable to maximize protection from infection.

Environmental modification through landscape management (eg, removal of leaf
litter) or reduction in feeding hosts (eg, culling deer) can reduce tick populations but
generally is impractical over the expansive area needed to be effective. Area applica-
tion of acaricides can substantially reduce tick abundance around residential property
but requires frequent re-application and may pose health risks for incidentally
exposed nontarget animals. In contrast, topical acaricides directed at tick feeding
hosts (eg, deer feeding stations, rodent bait boxes) reduce the concentration of chem-
ical needed, but still require frequent visits to the stations by a large proportion of the
targeted mammal population.

Susceptible individuals can alter their behavior and activities to limit the opportunity
for contact with ticks. Simply stated, bites from ticks can be prevented by avoiding
areas where ticks are present. If traffic in tick habitats is desirable or otherwise
unavoidable, owners and pets should limit contact with uncultivated grasses, bushes,
and shrubs that may harbor questing ticks. Dogs should be kept on leash and
maintained in the middle of roads, paths, or other routes devoid of vegetation.

Ticks can be further dissociated from potential hosts through the use of physical or
chemical barriers. Long pants and long-sleeved shirts can delay or confound the tick’s
attachment to the skin. Chemical repellents applied to clothing (eg, permethrin) or skin
(eg, N,N-diethyl-meta-toluamide [DEET]) of humans can further deter questing ticks.
The use of DEET on animals is not recommended and should be avoided. Control
of ticks on dogs is facilitated by the availability of collars impregnated with permethrin
or amitraz and topical solutions containing fipronil, imidacloprid, permethrin, or sela-
mectin.85–87 Amitraz-impregnated collars seem to be more effective in interrupting
the tick life cycle and to be longer acting than topical applications of fipronil.88 Amitraz
and permethrin products are contraindicated for cats. Selamectin is effective in con-
trol of Rh. sanguineus and D. variabilis on dogs and is safe to use on cats.89,90

Dogs residing in areas highly endemic for Lyme borreliosis and subject to heavy tick
infestation may benefit from immunization against B. burgdorferi. Reduced incidence
of serum antibodies to B. burgdorferi and clinical borreliosis (ie, lameness) were
observed among dogs vaccinated with a whole-cell bacterin.91,92 Newer recombinant
subunit vaccines based on the Osp A antigen of B. burgdorferi may interrupt transmis-
sion by complement-mediated lysis of the spirochete in the tick’s gut soon after it
begins its blood meal.93 Vaccination against B. burgdorferi does not obviate the
need for other measures to prevent tick bites, because the vaccine confers no
cross-protection against other tick-borne pathogens.
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Individuals should examine themselves, family members, and pets thoroughly after
visiting tick-infested areas. Because Ixodes ticks do not transmit B. burgdorferi
spirochetes efficiently until 24 to 48 hours after attachment, transmission of spiro-
chetes pathogens can be prevented or interrupted by prompt recognition and removal
of attached ticks.94 A single dose of doxycycline administered within 72 hours of a rec-
ognized tick bite reduced infections with B. burgdorferi in humans,95 but the efficacy
and necessity of this prophylactic regimen for dogs and for other tick-borne patho-
gens has not been evaluated.

SUMMARY

Pets and their owners share susceptibility to several tick-borne diseases depending
on their geographic location, season, and activities. When presented with a pet with
possible tick-borne illness, veterinarians should take the opportunity to discuss the
zoonotic disease risks with the owner. A comprehensive tick control program protects
both pets and their owners by interrupting feeding opportunities for the tick and break-
ing the maintenance cycle of the pathogen. The veterinarian should consider the
regional distribution of tick-borne diseases when formulating prevention strategies,
diagnostic differentials, and therapeutic decisions. Because the complex cycles of
microbial pathogens, vector ticks, environment, and mammalian hosts evolve
continually and can lead to the emergence of tick-borne diseases in previously
nonendemic areas, veterinarians should consult their local or state departments of
public health for the most current information on which tick-borne diseases are of
concern in their community.
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