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 AC transmission is impractical over long distances, while 
for DC transmission distance is not a significant restriction.

 Although rectifier/inverter stations costs and losses are 
higher, from long distances HVDC transmission results in 
lower costs and losses than AC transmission.

 HVDC can interconnect asynchronous systems and 
systems with different frequencies.

 HVDC can be controlled faster so that the AC system 
stability can be improved.

I. HVDC Systems

Reasons for High-Voltage Direct Current (HVDC)

I. HVDC Systems
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HVDC Applications

 Long distance transmission from remote energy sources.

 Interconnection between power systems.

 High power underground (submarine) distribution system 
feeders.

 Reconfiguration of old AC lines to DC to increase 
capacity, e.g. a double circuit 230 kV AC line, now limited 
to 400 MW transmission capacity can be used for a DC 
line with capacity of about 1500 MW. 

I. HVDC Systems
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First HVDC Transmission Line

 1954: Between Sweden and the island of Gotland in the 
Baltic sea, 20 MW @ 100 kV using mercury arc valves 
and control equipment was based on vacuum tubes 
(ASEA).

I. HVDC Systems
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Conventional HVDC System
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Based on thyristors - Line-commutated converters (LCCs)

I. HVDC Systems
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Typical Cost of an HVDC Project

Converter 
Transformer

16%

AC filters
10%

Control
7%

Other
10%

Erection -
Commisioning

8%

Engineering
10%

Freight, 
Insurance

5%

Civil Works, 
Building

14%

Valves
20%



6

Investment Cost vs. Distance

I. HVDC Systems
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HVDC Schemes

 Depending upon the function and location of the 
converter stations, various schemes and configurations 
of HVDC systems exist as follows:

 Back-to-Back

 Monopolar

 Bipolar

 Multiterminal

I. HVDC Systems
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Back-to-Back HVDC Scheme
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Monopolar HVDC Scheme

I. HVDC Systems
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Bipolar HVDC Scheme
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Multiterminal HVDC Scheme
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Bipolar with 24-Pulse Converter HVDC
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Light triggerable thyristors (LTT) with integrated protection 
functions and blocking voltages between 5.2 kV to 8 kV

2” and 5”  LTT with Light 
Guide

Surge current capabilities up to 100 kA
for single sine half waves

I. HVDC Systems
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I. HVDC Systems
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New Zealand Inter-Island Link (ABB)

 Connection between the south and the north islands.

 Pole 2 and 3 combined can transfer up to 1200 MW.

 610 km between Canterbury (south island) and Lower 
Hutt (north island).
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New Zealand Inter-Island Link (ABB)

Valve Hall 

I. HVDC Systems
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I. HVDC Systems
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±500kV Longquan-Zhengping HVDC Project, China (ABB)

 940 kilometers
 Commercial operation in 2004
 Power rating 3000 MW
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Chandrapur Back-to-Back HVDC Link, India (Alstom)

 Two independent poles, each with a nominal power 
transmission rating of 500 MW.

 One quadrivalve is approximately 3.8 x 3.8 x 6.2 m and 
weighs 14 tonnes.

I. HVDC Systems
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HVDC Itaipu, Brasil (ABB)

 Transmit power 
generated at 50 Hz 
from the Paraguay 
side of the Itaipu
Dam to São Paulo 
(aprox. 800 km).

 When completed in 
1985, it became 
the world's largest 
HVDC system. 

 ±600 kV bipoles, each with a rated power of 3150 MW.

I. HVDC Systems

Page 24 COBEP 2013, Gramado, Brazil



13

Foz do Iguaçu converter station

HVDC Itaipu, Brasil (ABB)

I. HVDC Systems
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HVDC Transformer

I. HVDC Systems
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Discussion on Using Thyristors (LCC Technology)

I. HVDC Systems
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 LCC technology requires existing AC grids for proper 
commutation of the thyristors. Auxiliary diesel 
generators may be needed at the generation side of 
the transmission line.

 Reactive power compensation should be provided.

 The size of the thyristor valve hall and auxiliary filters, 
and the need of auxiliary generation systems make 
HVDC LCC stations bulky and difficult to install in 
offshore platforms.

 Reversing the flux of power requires changing the DC 
polarity.

Outline
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II. Voltage-Source Converter (VSC)

II. Voltage-Source Converter (VSC)
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Three-phase two-level voltage source converter (VSC)
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II. Voltage-Source Converter (VSC)
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Series-Connected Semiconductors

 Typical IGBT ratings

II. Voltage-Source Converter (VSC)
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 Operation of the converter beyond the voltage rating of 
existing semiconductor devices requires additional devices 
to be connected in series. 

Vdc

+

-

il

Three-Phase Two-Level VSC

 The voltages across the power 
devices have to be limited.

 The quality of the waveform is poor 
(only two levels).

II. Voltage-Source Converter (VSC)
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Series Connected Semiconductors
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 Challenge: Voltage distribution across the series-connected 
semiconductors. 
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Series Connected Semiconductors
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 An active overvoltage 
clamping scheme can be 
implemented to limit the 
collector–emitter voltage 
during switching transients.

 It provides protection of the 
device from overvoltage at 
the expense of device 
switching losses. 
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II. Voltage-Source Converter (VSC)
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II. Voltage-Source Converter (VSC)
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VSC-Based HVDC Transmission
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Active-Reactive (PQ) Locus Diagram of Power 
Transmission System

VSC (Transistors)LCC (Thyristors)

II. Voltage-Source Converter (VSC)

Page 39 COBEP 2013, Gramado, Brazil

VSC HVDC Systems - Advantages

 Can operate when the grid voltages are reduced or 
distorted.

 No need for generators, which makes it suitable for weak 
networks and long distances.

 Low order harmonics are greatly reduced and harmonic 
filters can be smaller.

 No reactive power compensation is required. Real and 
reactive power independently controlled.

 Faster response owing to the increased switching 
frequency of the PWM.

 Reversing of power is achieved by changing the 
direction of the DC current (while keeping the voltage 
polarity).

II. Voltage-Source Converter (VSC)
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Four-terminal PWM VSC-based HVDC system for
wind turbines/wind parks

II. Voltage-Source Converter (VSC)
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Multi-Terminal HVDC Systems

Five-Terminal VSC-HVDC System

II. Voltage-Source Converter (VSC)
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 Triple extruded polymer 
insulation system (XLPE)

 Same polarity (can be 
used in VSC-based 
HVDC systems)

DC Cable Technology

II. Voltage-Source Converter (VSC)
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Directlink - A Power Trading Machine, Australia

Technical Data
Commissioning year: 2000
Power rating: 180 MW (3 x 60)
AC Voltage: 132/110 kV
DC Voltage: ± 80 kV
DC current 342 A
Length of DC cable: 6 x 59 km

Main reasons for choosing HVDC system: 
Controlled asynchronous connection for trading. 
Easy to get permission for underground cables.

II. Voltage-Source Converter (VSC)
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Directlink

Bungalora converter station

II. Voltage-Source Converter (VSC)
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Troll A HVDC Light® link

The HVDC Light® installation between the Norwegian main 
land and the Troll A oil platform consists of two circuits, each 
feeding a 40 MW compressor motor

Technical Data
Commissioning year:2004/2005
Power rating: 2 x 42 MW
AC Voltage: 132 kV/56 kV 
DC Voltage: ± 60 kV
DC current 350 A
Length of DC cable: 4 x 70 km

Main reasons for choosing HVDC Light® system:
Environmental improvement by elimination of gas turbines on 
platform. Low weight and small space on platform. Ability to 
feed and black-start motors, without local generation.

II. Voltage-Source Converter (VSC)
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Troll A, Converters on the Platform 

• The converters are housed in a 
pre-fabricated module, shipped 
and lifted onto the platform.

II. Voltage-Source Converter (VSC)
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Outline
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I. HVDC Systems
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IV. Neutral-Point-Clamped (NPC) Converter

III. NPC Converter
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 Split DC-link with 
capacitors and clamping 
diodes to generate 
three voltage levels. 

 Voltage across the 
capacitors should equal 
half the DC-link voltage.
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 The NPC can provide three voltage levels at the outputs.

 Higher quality of the output voltages compared to the two-
level case imply:

(1) smaller reactive components needed to filter, and

(2) lower switching frequency and power losses.

 Still series connection of power devices is needed for 
HVDC applications.

The NPC Converter

III. NPC Converter
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III. NPC Converter
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Pulse-Width Modulation (PWM) Strategies
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Pulse-Width Modulation (PWM)

 The line-to-line voltages can produce up to five levels.

III. NPC Converter
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Line-to-line output voltage (vab), output currents (ia, ib and ic), 
and capacitor voltages (vC1 and vC2)
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Vd/4

Vd

Vd/4

Vd/4

Vd/4

O a

S1
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S3

S4

S1 S2 S3 S4 VaO

State 1 1 1 1 1 +Vdc/2

State 2 0 1 1 1 +Vdc/4

State 3 0 0 1 1 0

State 4 0 0 0 1 -Vdc/4

State 5 0 0 0 0 -Vdc/2

Extension of the NPC Concept

 Extension to higher number of 
levels. Multiple capacitors in the 
DC-link provide multiple “neutral 
points”. 

Five-level NPC converter

III. NPC Converter
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Vdc

a b c

Generalized n-Level NPC Converter Model

III. NPC Converter
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 Voltage balancing cannot be always achieved and 
depends on the operating point and load connected to 
the converter. 

 The clamping diodes on the different NPs support 
different reverse voltages.

 The central switches of the topology conduct current 
longer than the outer switches resulting in unbalanced 
distribution of the losses.

Issues with High Order (n>3) NPC Converters

III. NPC Converter
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 Voltage balancing might not be always achieved for large 
modulation indices and high power factors.

Example: four-level NPC converter

Capacitors Voltage Balance

III. NPC Converter
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 The NPC converter produces unequal distribution of losses 
among the semiconductors.

 A solution to overcome these problems is derived from the 
concept of active neutral-point clamping. 

 Clamping diodes on the neutral-point are replaced with active 
switches. 

 Zero voltage states and commutations can be selected 
actively and are not defined by the direction of the phase 
current. 

Active NPC (ANPC) Converter

III. NPC Converter
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S1 S2 S3 S4 S5 S6
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Three-Level ANPC Converter

 In the case of NP connection, the 
state of the switches S5 and S6 will 
define the path of the current.

III. NPC Converter
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 The commutations to or from the zero states determine 
the distribution of the switching losses. All commutations 
take place between one active switch and one diode. 

 Even if more than two devices turn on or off, only one 
active switch and one diode essentially experience 
switching losses.

Three-Level ANPC Converter

III. NPC Converter
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 Losses distribution

T1

T2

D1

D2

D3

Uneven loss distribution between the  switching devices. The 
converter needs to be overrated.

NPC Converter with Series-Connected IGBTs

III. NPC Converter

Page 63 COBEP 2013, Gramado, Brazil
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ANPC Converter with Series-Connected IGBTs

 Losses distribution

III. NPC Converter
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The ANPC introduces additional switching states that can be 
used to balance the power losses between semiconductor 
devices. Better converter use is achieved.
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 ABB adopted the ANPC converter technology for HVDC 
applications but came back to the two-level converter (less 
expensive).

 Two and three level converters can facilitate AC/DC conversion 
in HVDC applications. However:

 High switching frequency is mandatory due to the reduced 
number of levels.

 Poor efficiency.

 Direct connection of switching devices required.

 Not easy scalable to higher power/voltage levels.

Modular Multilevel Converters (MMCs)

III. NPC Converter
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Remarks
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 Cascaded connection of 
sub-modules (SMs) or cells. 

 The SMs are connected in 
series to create arms.

 A phase-leg comprises two 
arms (upper and lower).

 It is structurally scalable 
and can theoretically meet 
any voltage level 
requirements.
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Vdc
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IV. Modular Multilevel Converters (MMCs)
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IV. Modular Multilevel Converters (MMCs)

 Operation of switches within 
a SM is complementary. 

Half-bridge SM

SM States s1 s1 vx

Activated 1 0 vc

Deactivated 0 1 0

C

S1

S1Vx

Vc
-

+

Half-Bridge Sub-Modules (SMs)
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IV. Modular Multilevel Converters (MMCs)
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 Number of SMs per arm: N

 Reference voltage for the 
SM capacitors:

 Reactors L are inserted in 
the circuit to control the 
circulating currents and to 
limit the fault currents.

(c)
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a
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MMC Arms
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N
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V dc
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IV. Modular Multilevel Converters (MMCs)
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SM Configurations

Half-bridge: vx={0, vC}              Full-bridge: vx={vC, 0, -vC}

IV. Modular Multilevel Converters (MMCs)

Page 70 COBEP 2013, Gramado, Brazil



36

SM Configurations
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 Modular multilevel converters: Manufacturers’ implementation

Siemens, Alstom

IV. Modular Multilevel Converters (MMCs)

ALSTOM ABB

IV. Modular Multilevel Converters (MMCs)

Modular multilevel converters: Manufacturers 
implementations
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HVDC-VSC technology overview

IGBT1 ON Capacitor ON IGBT2 ON Capacitor OFF

DC short-circuit T1 ONSubmodule failure SW1 ON

IV. Modular Multilevel Converters (MMCs)

Switching States
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IV. Modular Multilevel Converters (MMCs)

Alstom Implementation
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 The MMC offers salient features such as:

 It is structurally scalable and can theoretically
meet any voltage level requirements.

 The capacitor voltage balancing task is relatively
simple and there is no requirement for isolated dc
sources.

 A DC-link capacitor is not required (only a small
one is connected to attenuate switching-
frequency ripples).

MMC Features
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IV. Modular Multilevel Converters (MMCs)

Operation of the MMC

 On average, the number of SMs 
activated in a phase-leg is equal to 
N. Deviations from that number 
can be due to interleaving between 
the upper and lower arm carriers or 
due to external control actions. 

 Ideally, the DC voltage is 
distributed equally across the SMs: (c)
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SM N

Vc
-

+

 The output voltage level is defined by the number of SMs  that 
are connected in the upper and lower arm of the converter.
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IV. Modular Multilevel Converters (MMCs)
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States of the MMC. Example
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Experimental Setup

 Single-phase laboratory prototype a the Australian Energy 
Research Institute (AERI), the University of New South Wales 
(UNSW), Sydney, Australia

 Number of SMs per arm: 5

SM1

SM2

SM3

SM4

SM5

Arm Inductor

Voltage Sensors

Communication 
Interface
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Output Voltage
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IV. Modular Multilevel Converters (MMCs)

SM Capacitor Voltage Balancing

 During the operation of the MMC, the arm current flows 
though the SM capacitors, which charge and discharge the 
capacitors.

 In order to ensure the proper operation of the converter, the 
SM capacitor voltages have to be regulated to the reference 
value of 

 An active voltage balancing method is essential for the 
operation of the MMC.
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SM Capacitor Voltage Balancing

 The voltage balancing algorithm uses measurements from the 
SM capacitor voltages and arm currents to select the next SM 
that will be connected or bypassed. 

 If the arm current is in the charging direction:

 and the PWM method requires the addition of one SM in 
the arm, the SM with the lowest voltage that is not 
connected to the arm will be selected and added to the 
arm. 

 and the PWM method requires the removal of one SM in 
the arm, the SM with the highest voltage that is 
connected to the arm will be selected and removed from 
the arm. 

IV. Modular Multilevel Converters (MMCs)
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SM Capacitor Voltage Balancing

 The voltage balancing algorithm uses measurements from the 
SM capacitor voltages and arm currents to select the next SM 
that will be connected or bypassed. 

 If the arm current is in the discharging direction:

 and the PWM method requires the addition of one SM in 
the arm, the SM with the highest voltage that is not 
connected to the arm will be selected and added to the 
arm.

 and the PWM method requires the removal of one SM in 
the arm, the SM with the lowest voltage that is 
connected to the arm will be selected and removed from 
the arm.
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SM Capacitor Voltage Balancing

Harm

Sorting

SM voltage 
measurements

Number of SMs required in the 
arm from modulation stage

iarm

Polarity of the arm 
current

Selection of 
SMs

Switching pulses to 
the SMs of the arm

Sorted SMs

Ascending / 
Descending

(il or iu)
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SM Capacitor voltages (Vdc= 300V, N = 5)

Experimental Results
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 From the equivalent circuit:
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Circulating Current Control

IV. Modular Multilevel Converters (MMCs)

Common and Differential Voltages

• Two distinct voltages in the phase-leg can be identified; the 
common voltage (vcomm) and the differential voltage (vdiff):

(a)

iu

il

ia
L

L

(0)

eazout

vdiff

vdiffvcomm
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 Based on the superposition theorem, two circuits can be 
distinguished: 
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IV. Modular Multilevel Converters (MMCs)

Currents of the MMC

Arm currents

Output current (ia) and circulating current (idiff)

 The circulating current contains a DC component that is 
essential to keep the phase-leg energized, i.e. maintain the 
capacitor voltages at the reference values.

 It also contains some AC components (not essential). 
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 The common and differential circuits can be analyzed 
independently. The differential voltage defines the 
differential/circulating current:

 
t

diffdiffdiff Idtv
L

i
0

0

1

 A differential voltage can be introduced to control the 
circulating current without affecting the output current.
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Control of the Circulating Current

IV. Modular Multilevel Converters (MMCs)

 If the only reference for the circulating current is the DC 
component, the arm currents are minimized and this 
reduces power losses in the MMC.

 A second order harmonic can be added to the DC 
component to reduce the capacitor voltage ripples.

Discussion on the Circulating Current Components
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DCdiff Ii  )2cos(ˆ
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IV. Modular Multilevel Converters (MMCs)

Circulating Current and Output Current

DCdiff Ii Case 1:

)2cos(ˆ
22   tIIi DCdiffCase 2:
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Capacitor Voltages

DCdiff Ii Case 1:

)2cos(ˆ
22   tIIi DCdiffCase 2:
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N
 Level-shifted phase-disposition 

PWM (PD-PWM) is normally 
applied to the MMC.

 Other modulation strategies 
such as phase-shifted PWM 
(PS-PWM) can also be applied(*) 

(*) M. Hagiwara and H. Akagi, “Control and
experiment of pulsewidth-modulated
modular multilevel converters,” IEEE
Trans. Power Electron., vol. 24, no. 7, pp.
1737-1746, Jul. 2009.

PD-PWM
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 A number N of carriers is needed for the modulation.

 The reference signal is compared with the carriers.

 The output voltage level of the phase-leg, which ranges from 
0 to N, is defined by the number of carriers that have an 
instantaneous value lower than the reference signal.

PD-PWM
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Interleaving between Upper and Lower Arms
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Interleaving between Upper and Lower Arms

Arm currents

Output current and circulating current

IV. Modular Multilevel Converters (MMCs)
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Interleaving between Upper and Lower Arms
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 When applying interleaving between the upper and 
lower arms the ripple in the arm currents increases.

 In order to reduce the current ripples the value of the 
inductors should be increased.

 The quality of the output voltage (common voltage) 
improves because of the increased number of levels 
provided by the MMC (from N+1 to 2N+1).

Effects of Interleaving
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IV. Modular Multilevel Converters (MMCs)

MMC Legs Connected in Parallel

• Each leg is integrated by 
two arms (the upper and 
lower arms)

• P legs build up a phase of 
the MMC (e.g. Phase a)

• The output currents of the 
legs have to be balanced 
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Equivalent Circuit
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Model of an MMC phase (Phase a) with P legs connected in parallel

IV. Modular Multilevel Converters (MMCs)

Control of the Currents

 Each leg has its independent circulating current control.

 The legs should share the output current evenly.

 The common voltage of each leg will be modified to 
achieve balanced output currents.
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Current Balance Among the Legs (Phase a)
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Modulation Scheme (Leg p)
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 vcommp is injected into the reference signal of each leg to 
achieve equal current sharing.
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Simulation Results
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 Single-phase MMC with two legs 
connected in parallel
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Simulation Results: Load 1
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Simulation Results: Load 2

IV. Modular Multilevel Converters (MMCs)

Discussion
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 The rated current/power of an MMC can be increased 
by connecting legs in parallel.

 The circulating current of each leg is controlled 
independently from the other legs.

 The proposed current balancing strategy is able to 
achieve equal current sharing among the legs.

 None of the current control actions applied affects the 
output voltages of the MMC.

 The proposed strategy is general and applicable to 
MMCs with any number of voltage levels and legs 
connected in parallel.
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 The MMC represents an important milestone in the 
evolution of the HVDC transmission links. 

 Research topics

 New energy transmission layouts with MVDC 
collector systems.

 Development of control algorithms for multiterminal
HVDC links.

 DC short-circuit handling.

IV. Modular Multilevel Converters (MMCs)

Future Research on HVDC Systems
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Trans Bay’s Underwater HVDC Plus (Siemens)

Courtesy of Siemens
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