

l.	HVDC Systems
 HVDC It → ±600 kV bipoles, each > Transmit power generated at 50 Hz from the Paraguay cide of the Itainu 	HVDC Systems aipu, Brasil (ABB) with a rated power of 3150 MW.
side of the Itaipu Dam to São Paulo (aprox. 800 km). → When completed in 1985, it became the world's largest HVDC system.	3 - O Stage 1 O A Stage 1 O O O O O O O O O O O O O O O O O O
Page 24 COBEP 2013, Gramado	o, Brazil tecnalia) 💮 🐺 UNSW

Series	s-Conr	ected Se	emicondu	ctors	
Typical IGBT rat	ings	e Maximum Rating	$s T_c = 2$	5 °C, unless otherwi	se specified
*	Symbol	Conditions		Values	Units
in the	IGBT	T = 25 °C	1	1700	L v
A A 47 3	V _{CES}	$T_j = 25 °C$	T = 25 °C	830	
	l'c	1 100 0	$T_{c} = 80 ^{\circ}C$	590	Â
a sub	I _{CRM}	I _{CRM} =2xI _{Cnom}	C.	1200	A
	V _{GES}			± 20	V
SEMITRANS [®] 4	t _{psc}	V _{CC} = 1200 V; V _{GE} ≤ V _{CES} < 1700 V	20 V; T _j = 125 °C	10	μs
	Inverse	Diode			
Trench IGBT Modules	١ _F	T _j = 150 °C	T _c = 25 °C	630	A
			T _c = 80 °C	440	A
SKM 800CA176D	FRM	I _{FRM} =2xI _{Fnom}		1200	A
SILL SUGATION	FSM	t _p = 10 ms; sin.	T _j = 150 °C	3600	A
	Module			500	A
		1	ŀ		

	II. Voltage-Source	Converter (VSC)				
VSC HVDC Systems - Advantages						
□ Can disto	 Can operate when the grid voltages are reduced or distorted. 					
□ No n netw	No need for generators, which makes it suitable for weak networks and long distances.					
Low filter	Low order harmonics are greatly reduced and harmonic filters can be smaller.					
□ No r reac	No reactive power compensation is required. Real and reactive power independently controlled.					
 Faster response owing to the increased switching frequency of the PWM. 						
 Reversing of power is achieved by changing the direction of the DC current (while keeping the voltage polarity). 						
Page 40	COBEP 2013, Gramado, Brazil	tecnalia				

IV. Modular Multilevel Converters (MMCs)					
SM Capacitor Voltage Balancing					
 The voltage balancing algorithm uses measurements from the SM capacitor voltages and arm currents to select the next SM that will be connected or bypassed. If the arm current is in the discharging direction: and the PWM method requires the addition of one SM in the arm, the SM with the highest voltage that is not connected to the arm will be selected and added to the arm. and the PWM method requires the removal of one SM in the arm, the SM with the lowest voltage that is connected to the arm will be selected and removed from the arm. 					
Page 82 COBEP 2013, Gramado, Brazil tecnalia) 🌐 🛃 UNSW					

