HVDC Development Topics

- Core HVDC Technologies
 - Conventional HVDC
 - VSC Based HVDC
- ± 800 kV HVDC
- Cost Comparison of AC & DC Transmission Alternatives
- HVDC Light
 - ± 320 kV, 1100 MW
 - Offshore
 - Multi-terminal & Overhead
- Project Examples

Core HVDC Technologies

HVDC Classic

- Current source converters
- Line-commutated thyristor valves
- Requires 50% reactive compensation (35% HF)
- Converter transformers
- Minimum short circuit capacity
 > 2x converter rating
- HVDC Light
 - Voltage source converters
 - Self-commutated IGBT valves
 - Requires no reactive power compensation (15% HF)
 - Standard transformers
 - No minimum short circuit capacity, black start

HVDC Converter Arrangements

HVDC Classic

- Thyristor valves
- Thyristor modules
- Thyristors
- Line commutated

HVDC Light

- IGBT valves
- IGBT valve stacks
- StakPaks
- Submodules
- Self commutated

HVDC Classic Control

Control of VSC Based HVDC Transmission

HVDC Light Plant Layout, ±150 kV, 175- 555 MW

Cost Comparison of Transmission Alternatives

	500 kV AC	± 500 kV	± 600 kV	± 800 kV	500 kV AC	765 kV AC
Alternative	Two Single					
	Circuits	HVDC Bipole	HVDC Bipole	HVDC Bipole	Double Circuit	Single Circuit
Capital Cost						
Line voltage (kV)	525	500	600	800	525	765
Rated Power (MW)	3000	3000	3000	3000	3000	3000
No. of ac line segments	6				6	3
No. of series capacitors per line segment	2				2	0
Total No. Series Capacitors	12				12	0
Total No. AC or DC Substations	4	2	2	2	4	4
No. Shunt Reactors per ac line segment	2				2	4
Total No. Shunt Reactors	12				12	12
Total No. Transformers	2				2	4
No. of SVC's	3	2	2	2	3	3
No. Shunt Capacitors	0				0	0
HVDC stations & AC substations incl reactive comp	\$366,000,000	\$560,000,000	\$600,000,000	\$625,000,000	\$366,000,000	\$404,000,000
Transmission Line (cost/mile)	\$1,700,000	\$1,400,000	\$1,456,000	\$1,582,000	\$2,720,000	\$3,600,000
Transmission Line R/W (cost/mile)	\$500,000	\$300,000	\$400,000	\$500,000	\$500,000	\$900,000
Total line distance in miles	1,500	750	750	750	750	750
Transmission Line Cost	\$3,300,000,000	\$1,275,000,000	\$1,392,000,000	\$1,561,500,000	\$2,415,000,000	\$3,375,000,000
Total Transmission Cost + 10% contingency	\$4,032,600,000	\$2,018,500,000	\$2,191,200,000	\$2,405,150,000	\$3,059,100,000	\$4,156,900,000
Annual Devenant 20 years @ rate of		¢014 400 000	¢000 440 040		¢224 E07 020	¢440.000.007
Annual Payment, 50 years (@rate of 10;	⁰ φ427,773,177 φ142 E0	φ2 14, 120,903 ¢71 07	ΦZ32,440,049 ΦZ7 49	Φ200, 100,004 Φ95 05	Φ100 17	\$440,900,027 \$146.00
Cost per KVV-11	\$ 142.09	ወ/ 1.3/ ይህ ይጋ	⊅//.40 ¢12.61	φοο.υο \$14.04	φ100.17 \$100.00	ው 140.95 የጋር 91
Cost per Mivin @ Otilization Factor of	√o \$∠0.04	\$12.03	\$13.01	\$14.94	\$19.00	\$Z0.81
No of conductors/pole/phase	2	3	3	3	2	2
Conductor (ohms/mile) ac or dc @ temp of: 5	0 0.0420	0.0364	0.0364	0.0364	0.0420	0.0420
Line/Pole Current (Amps)	1755	3000	2500	1875	1755	1204
Conductor current density (A/mm^2)	0.610	0.695	0.579	0.435	0.610	0.419
Losses @ full load	291	209	159	109	291	137
Losses at full load in %	9.69%	6.96%	5.29%	3.63%	9.69%	4.56%
Cost of losses @ UF & \$/kW of: 65% \$1,50	0 \$283,503,864	\$203,705,153	\$154,868,162	\$106,308,654	\$283,503,864	\$133,522,581

Cost of transmitting 12000 MW 2000 km

Comparison of overall line design

Itaipu 600 kV HVDC Line Performance

			Bipole 1						Bipole 2			
		P1 -			P2 +			P3 -			P4 +	
	Trans	Red.V	Perm	Trans	Red.V	Perm	Trans	Red.V	Perm	Trans	Red.V	Perm
1993	0	1	0	8	1	2	2	0	3	2	0	0
1994	3	0	3	3	0	1	1	2	3	3	0	1
1995	4	0	0	3	0	1	0	0	0	3	1	0
1996	3	0	0	5	0	0	0	0	0	5	0	0
1997	5	2	5	0	0	1	0	0	1*	2	0	1*
1998	2	1	0	4	2	2	0	0	1*	1	0	1*
1999	2	0	0	3	0	0	2	0	1	2	0	1
2000	5	0	1	7	0	1	2	0	0	3	0	0
8 year	24	4	9	33	3	8	7	2	7	21	1	2
Ave.	3	0,5	1,13	4,13	0,38	1	0,88	0,25	0,88	2,63	0,13	0,25

Trans = 0,659 pole faults / 100km / year RedV = 0,078 pole faults / 100km / year Perm = 0,202 pole faults / 100km / year *Line Tower Failures total two events

Isokeraunic Level 90 (Foz) to 50 (SP)

- Trans = Successful restart at full voltage
- RedV = Successful restart at reduced voltage (450 kV)
- Perm = Permanent, excluding tower failures

Itaipu 765 kV AC Line Performance

			765 k	Vac Tra					
		Line 1			Line 2			Line 3	
	Trans	Perm	Length	Trans	Perm	Length	Trans	Perm	Length
1995	0	4	891	1	11	891	-	-	0
1996	1	13	891	0	7	891	-	-	0
1997	0	6	891	2	13	891	-	-	0
1998	0	10	891	2	16	891	-	-	0
1999	1	27	891	1	10	891	-	-	0
2000	3	15	891	3	14	891	2	9	602
2001	2	4	891	4	8	891	2	5	915
2002	4	12	891	1	7	891	4	16	915
8 year	11	91	7128	14	86	7128	8	30	2432

Trans = 0,198 faults / 100km / year Perm = 1,240 faults / 100km / year

Trans = Successful reclose, one attempt Perm = Permanent, excluding tower failures

Isokeraunic Level 90 (Foz) to 50 (SP)

Tower Failures due to wind:

- 1994 3 both circuits*
- 1997 2 both circuits*
- 1998 2 both circuits*

*total of 3 events

Three Gorges China 3000 MW

The thyristor valve hall

±800 kV, 3600 MW Converter Station

800 kV HVDC- one pole

Exposed to 800 kV dc

Long term test circuit for 800 kV HVDC

Testing for valve hall clearances

Valve Hall 800 KV HVDC

HVDC Light rating increase to 1100 MW

- Elements common to existing systems
 - IGBT chip
 - IGBT submodule
 - IGBT StakPak
 - IGBT module or stack
 - Control system
 - Cooling system
 - DC capacitor
- Increased dc current six submodules per StakPak rather than four
- Increased dc voltage (150 kV to 320 kV)
 - Valve stacks comprised of IGBT modules with 26 positions arranged horizontally
 - Modules connected in series at site to reach rated voltage elimination of valve enclosures used for the lower voltages
 - DC voltage still lower than that commonly used for conventional HVDC
- Higher ac voltage on ac filter bus 400 kV
- Development parallels that for conventional HVDC thyristor valves
- Cable and cable accessories type tested to 320 kV, accelerated life tests to be completed this year

HVDC Converter Development

Power Ranges HVDC-Classic and HVDC-Light

Tapping OVHD HVDC with Large VSC Converters

- Reverse power by polarity reversal
- Electronic clearing of dc line faults
- Fast isolation of faulty converters
- Reactive power constraints
- Momentary interruption due to CF at tap
- Limitations on tap rating, location and recovery rate due to stability

HVDC Light Tap

- Polarity reversal if main link is bidirectional
- Cannot extinguish dc line fault current contribution without special provision, e.g., diode coupling for inverter
- No interruption to main power transfer due to CF at tap
- Less limitations on tap rating and location
- Cascade VSC connection for lower tap rating
- No reactive power constraints
- Improved voltage stability

Offshore Applications of HVDC Light

Offshore Wind Farms

- Long cable transmission to shore
- Voltage regulation
- Wind generator excitation power
- Black start

Oil and Gas Production

- Long cable transmission from shore
- Feed platform load
- Variable speed compressor drives
- Voltage regulation
- Reduced weight and volume
- Reduced emissions
- Greater efficiency
- Troll no outages since 2005!

Valhall, BP

Nyckeldata

- Valhall är BP:s största plattform I Nordsjön
- Under byggnad
- HVDC Light-systemen ska sköta all kraftmatning till plattformen
- Ger betydande miljöfördelar och minskar behovet av personal på plattformen
- 1 x 78 MW, 290 km sjökabel
- Troll: I drift sedan 2005, inga fel!

Estlink – HVDC Light between Estonia & Finland

Client:	Nordic Energy Link, Estonia
Contract signed:	April 2005
In service:	November 2006
Project duration:	19 months
Capacity:	350 MW, 365 MW low ambient
AC voltage:	330 kV at Harku
	400 kV at Espoo
DC voltage:	±150 kV
DC cable length:	2 x 105 km (31 km land)
Converters:	2 level, OPWM
Special features:	Black start Estonia, no diesel
Rationale:	Electricity trade
	Asynchronous Tie
	Long cable crossing
	Dynamic voltage support
	Black start

Estlink – full power after 19 months

Last updated: 29 Nov 2006 15:18

Temperatures in Finland: Helsinki +6°C, Jyväskylä +7°C, Oulu +6°C, Rovaniemi +4°C

NorNed Cable HVDC Project

The longest underwater high-voltagecable in the world.Clients: Statnett and TenneTTransmission capacity:700 MWDC Voltage:± 450 kVLength of DC cable:2*580 kmWater depths:Up to 410 mProject start:January 2005Completion time:Approx. three years

Flat Mass-Impregnated submarine cable Copper profile wires, 790 mm²

Mass Impregnated submarine cables Copper profile wires, 700 mm²

NorNed Cable HVDC Project Symetric monopole

- Rating 600 MW ± 450 kV
- Low losses 3.7 %
- Continuous 700 MW
- Cable length 580 km
- No sea electrode

NorNed Cable HVDC Project

Converter valves ± 450 kV, 700 MW

120 thyristors per single valve

Totally 2880 thyristors

NorNed kabel HVDC Project

FMI Cable, 2 x 790 mm²

+/- 450 kV, 700 MW 20 mm insulation 90 kilo/meter

70 km/loading 8 joints 7-10 days/joint

24 hours/day production2 months after order

Southlink, Swedish National Grid Company

Customer need

- Improved security of the electricity supply in South and Central Sweden
- Distance 250 miles

Alternatives

- 400 kV overhead transmission line
- Turnkey 500 700 MW ±300 kV underground HVDC Light system

Customer benefits with HVDC

- Shorter project time due to easier permitting (2 3 years)
 Increased power transfer existing a.c. lines (approx 200 MW)
 - Voltage and reactive power control

Project status

Final evaluation ongoing. Decision 2007

