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Introduction to Optimization in 
Spreadsheets 

 

1.1 Introduction 
This document illustrates the use of optimization in spreadsheets for solving a variety of problems in 
business, industry, and government.  We assume the reader is familiar with the basics of using the 
What’sBest! optimizer as described in the What’sBest! users manual. 

Some of the material used herein is based on the text, Optimization Modeling with LINGO.  That text is 
concerned with the use of a general purpose modeling language for formulating and solving optimization 
problems. 
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Portfolio Optimization  
 

2.1 Introduction 
Financial portfolio models are concerned with investments where there are typically two criteria: expected 
return and risk. The investor wants the former to be high and the latter to be low. There are a variety of 
measures of risk. The most popular measure of risk has been variance in return. Even though there are some 
problems with it, we will first look at it very closely. 

2.2 The Markowitz Mean/Variance Portfolio Model 
The portfolio model introduced by Markowitz (1959) (see also Roy (1952)), assumes an investor has two 
considerations when constructing an investment portfolio: expected return and variance in return 
(i.e., risk). Variance measures the variability in realized return around the expected return, giving equal 
weight to realizations below the expected and above the expected return. The Markowitz model might be 
mildly criticized in this regard because the typical investor is probably concerned only with variability 
below the expected return, so-called downside risk.  

The Markowitz model requires two major kinds of information: (1) the estimated expected return for each 
candidate investment and (2) the covariance matrix of returns. The covariance matrix characterizes not only 
the individual variability of the return on each investment, but also how each investment’s return tends to 
move with other investments. We assume the reader is somewhat familiar with the concepts of variance 
and covariance as described in most intermediate statistics texts.  

2.2.1 Example 
We will use some publicly available data from Markowitz (1959).  The following table shows the increase 
in price, including dividends, for three stocks over a twelve-year period: 

 Growth in 

Year S&P500 ATT GMC USX 
43 1.259 1.300 1.225 1.149 

44 1.198 1.103 1.290 1.260 

45 1.364 1.216 1.216 1.419 

46 0.919 0.954 0.728 0.922 

47 1.057 0.929 1.144 1.169 

48 1.055 1.056 1.107 0.965 

49 1.188 1.038 1.321 1.133 

50 1.317 1.089 1.305 1.732 

51 1.240 1.090 1.195 1.021 

52 1.184 1.083 1.390 1.131 

53 0.990 1.035 0.928 1.006 

54 1.526 1.176 1.715 1.908 

For reference later, we have also included the change each year in the Standard and Poor’s/S&P 500 stock 
index. To illustrate, in the first year, ATT appreciated in value by 30%. In the second year, GMC 
appreciated in value by 29%.  
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Computing Covariances, Variances and Standard Deviations in Excel 

Excel has the function COVAR() for computing covariances, VAR() for computing variances, STDEV() for 
computing standard deviations, and CORREL() for computing correlations.  For reasons of numerical 
accuracy, we suggest that VAR() and STDEV() not be used. Below we discuss the usage of these functions.  
Given n observations on two random variables {Xi} and {Yi}, the population means are defined as the 
expectations: 

µX =E[Xi],   and  µY = E[Yi]. 

The sample means are defined as the averages: 

xbar =∑i Xi /n,   and  ybar =∑i Yi /n. 

The population covariance between X and Y is defined as the expectation: 

σ 2XY = E[(Xi -µX)(Yi - µY)]. 

With some effort it can be shown that this is algebraically equivalent to:  

σ 2XY = E[Xi Yi ] - µX µY. 

When X and Y are the same random variable, σ2
XX  is called the population variance. 

The population standard deviation of X is defined as the square root of σ 2XX, i.e.:  

σX  =  (σ 
2
XX)

0.5. 

 The population correlation between X and Y is defined as  

ρXY = (σ 
2
XY)/( σXσY). 

The sample covariance between X and Y is defined as the average: 

s
2
XY = ∑i [(Xi - xbar)(Yi - ybar)]/n.           (1) 

With some effort it can be shown that this is algebraically equivalent to:  

s
2
XY = ∑i [Xi Yi]/n – xbar* ybar.  (2) 

If in fact X and Y are the same random variable, s2XX  is called the sample variance.  

The sample standard deviation of X is defined as the square root of s2XX,  i.e.:  

sX  = (s
2
XX)

0.5. 

 The sample correlation between X and Y is defined as  

rXY  = (s 
2
XY)/( sX sY). 

Given weights wX and wY, and the definition that Z = wX X + wY Y, it can be shown that the variance of Z is: 

σ 2ZZ =  wX
2 σ 2XX + wX wY σ 

2
XY + wY wX σ 

2
YX + wY

2 σ 2YY    
  =  wX

2 σ 2XX + 2wX wYσ 
2
XY  + wY

2 σ 2YY. 

Although formulae (1) and (2) are algebraically equivalent, they are not numerically equivalent on a 
computer because of round-off error.  Formula (1) is more accurate.  In Excel, the functions VAR() and 
STDEV()  are based on formula (2),  whereas COVAR() and CORREL() are based on (1).  In Excel, you 
can expect COVAR() and CORREL() to be accurate to at least six decimal places,  whereas VAR() and 
STDEV() may have essentially no accuracy if xbar is large relative to sX.  To illustrate, suppose n = 2 with 
{X1, X2} = {123456789, 123456787}.  If you use VAR()to compute the sample variance, or STDEV() to 
compute the sample standard deviation, they will both give an answer of 0.0,  whereas it is easy to see that 
the sample variance should be [(1)2+(-1)2]/2 = 1. 
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One should also be interested in whether s2XY  is a good estimator of the unknown parameter σ 2XY.  With a 

bit more algebra it can be shown that the expected value, E(s2XY) = σ
 2
XY (n-1)/n. That is, s

2
XY underestimates 

σ 2XY, especially when n is small. Thus, one typically applies a n/(n-1) adjustment factor to s2XY.  VAR() and 
STDEV() include the adjustment factor, but COVAR() does not.  Because CORREL() is ratio of two 
estimators, the adjustment does not matter. 

So, based on the twelve years of data, we use the COVAR() function in Excel to calculate the sample 
covariances for three stocks: ATT, GMC, and USX.  Multiplying the results by 12/11 gives the following 
covariance matrix. 

 ATT GMC USX 

ATT 0.01080754 0.01240721 0.01307513 

GMC 0.01240721 0.05839170 0.05542639 

USX 0.01307513 0.05542639 0.09422681 

From the same data, we estimate the expected return per year, including dividends, for ATT, GMC, and 
USX as 0.0890833, 0.213667, and 0.234583, respectively. 

The correlation matrix makes it more obvious how two random variables move together. The correlation 
between two random variables equals the covariance between the two variables, divided by the product of 
the standard deviations of the two random variables. For our three investments, the sample correlation 
matrix is: 

 ATT GMC USX 

ATT 1.0   

GMC 0.493895589 1.0  

USX 0.409727718 0.747229121 1.0 

The correlation can be between −1 and +1 with +1 being a high correlation between the two. Notice GMC 
and USX are highly correlated. ATT tends to move with GMC and USX, but not nearly so much as GMC 
moves with USX. 

Let the symbols ATT, GMC, and USX represent the fraction of the portfolio devoted to each of the three 
stocks. Suppose, we desire a 15% yearly return.  For the objective, we want to minimize the variance in the 
portfolio value after one year.  In algebraic notation, what we want to do is: 

Minimize  

   0.01080754*ATT*ATT + 0.01240721*ATT*GMC + 0.01307513*ATT*USX + 

0.01240721*GMC*ATT + 0.05839170*GMC*GMC + 0.05542639*GMC*USX + 

0.01307513*USX*ATT + 0.05542639*USX*GMC + 0.09422681*USX*USX; 

Use exactly 100% of the starting budget: 

ATT + GMC + USX = 1; 

Required wealth at end of period: 

1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX ≥ 1.15; 
Note the two constraints are effectively in the same units. The first constraint is effectively a “beginning 
inventory” constraint, while the second constraint is an “ending inventory” constraint. Alternatively, we 
could have stated the expected return constraint just as easily as: 

.0890833 * ATT + .213667 * GMC + .234583 * USX ≥ .15 

Although perfectly correct, this latter style does not measure end-of-period state in quite the same way as 
start-of-period state. Fans of consistency may prefer the former style. 
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In preparation for writing the model in a spreadsheet, note that we can also write the objective as:  

   ATT*(.01080754 * ATT +.01240721 * GMC +.01307513 * USX) 

 + GMC*(.01240721 * ATT +.05839170 * GMC +.05542639 * USX) 

 + USX*(.01307513 * ATT +.05542639 * GMC +.09422681 * USX); 

 

 

In the spreadsheet, portfolio_basic, we calculate the expressions in parentheses in column B using the 
SUMPRODUCT() function, e.g., B8=SUMPRODUCT(E$5:G$5,E8:G8) in.  We calculate the variance 
with cell B7=WBINNERPRODUCT(B8:B11,E5:G5). The WBINNERPRODUCT() function is similar to 
SUMPRODUCT(), except that it allows you to multiply a row vector by column vector. 
WBINNERPRODUCT expects one range to be a row range and the other a column range.  

The “ABC’s of Optimization” for this spreadsheet are: 

 A) Adjustable Cells or Decision Variables, specifying how much to invest in each asset appear in  
             row 5,  cells E5:G5; 

 B) The Best or objective cell, the portfolio variance to be minimized is cell B7.  The most complicated 
computation for this model is the computation of the variance of the portfolio.  If  xi is the amount invested 

in asset i, and σ 2ij  is the covariance  between one unit of i and one unit of j, then the portfolio variance = 
ΣiΣj xi *xj *σ 

2
ij. This can be rewritten: 

  variance = Σi xi Σj xj *σ 
2
ij.   

In the spreadsheet,  Column B computes the inner summation, Σj xj *σ 
2
ij.  For example, cell B8 contains the 

formula =SUMPRODUCT(E8:G8,E$5:G$5). The “$5” holds row 5 constant when the formula is copied 

down to cells B9:B10.  The final summation,  Σi xi Σj: xj *σ 
2
ij,  is done in cell B7.  
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 C) Constraints:   There are two constraints in this model.  Cell C5, which contains =WB(B5,”=”,D5), 
says the amount invested(computed in B5) must equal the target amount to invest given as input in D5. Cell 
C6, which contains =WB(B6,”>=”,D6), says the expected return(computed in B6) must be greater than or 
equal to the target return specified in D6. 

The solution recommends about 53% of the portfolio be put in ATT, about 36% in GMC and just over 11% 
in USX. The expected return is 15%, with a variance of 0.02241381 or, equivalently, a standard deviation 
of about 0.1497123. 

Using a Correlation Matrix 
We based the previous model simply on straightforward statistical data based on yearly returns. In practice, 
it may be more typical to use monthly rather than yearly data as a basis for calculating covariances. Also, 
rather than use historical data for estimating the expected return of an asset, a decision maker might base 
the expected return estimate on more current, proprietary information about expected future performance of 
the asset. One may also wish to use considerable care in estimating the covariances and the expected returns. 
For example, one could use quite recent data to estimate the standard deviations. A larger set of data extending 
further back in time might be used to estimate the correlation matrix. Then, using the relationship between the 
correlation matrix and the covariance matrix, one could derive a covariance matrix. The version 
portfolio_correl, illustrates two alternative approaches to this problem:  a) using the correlation matrix instead 
of the covariance matrix to describe how investments tend to move together,  and b) and stating the desired 
return as a growth factor, 1.15,  rather than a fraction return,  0.15. 

 

 

The most significant difference between this formulation and the previous one is in the computation of the 
portfolio variance.  Here we exploit the fact that the variance can be written in terms of the correlations and 
the standard deviations as: 

      variance = ΣiΣj xi *xj *σi*σj*ρij. = Σi xi *σi Σj xj *σj*ρij. 
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In row 8 we compute the term, xj *σj , e.g., with formulae such as: E8=E5*E7.  In column B we compute 

the inner sum, Σj xj *σj*ρij,  with formulae such as B10=SUMPRODUCT(E10:G10,E$8:G$8).  The outer 
summation is computed in cell B9 with the formula: B9=WBINNERPRODUCT(B10:B13,E8:H18).  
Observe that the same solution is obtained.   

2.3 Dualing Objectives: Efficient Frontier and Parametric Analysis  
There is no obvious way for an investor to determine the “correct” tradeoff between risk and return. Thus, 
one is frequently interested in looking at the tradeoff between the two. If an investor wants a higher 
expected return, she generally has to “pay for it” with higher risk. In finance terminology, we would like to 
trace out the efficient frontier of return and risk. If we solve for the minimum variance portfolio over a 
range of values for the expected return, ranging from 0.0890833 to 0.234583, we get the following plot or 
tradeoff curve for our little three-asset example: 

Figure 2.1 Efficient Frontier 

0.1     0.14    0.18    0 .22    0.26     0.3
 0.12    0.16     0.2     0.24    0.28    0.32

1.25
1.24
1.23
1.22
1.21
1.2
1.19
1.18
1.17
1.16
1.15
1.14
1.13
1.12
1.11
1.1
1.09

1.08

 

Notice the “knee” in the curve as the required expected return increases past 1.21894. This is the point 
where ATT drops out of the portfolio. 
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2.3.1 Portfolios with a Risk-Free Asset 
When one of the investments available is risk free, then the optimal portfolio composition has a particularly 
simple form. Suppose the opportunity to invest money risk free (e.g., in government treasury bills) at 5% 
per year has just become available. Working with our previous example, we now have a fourth investment 
instrument that has zero variance and zero covariance. There is no limit on how much can be invested at 
5%. We ask the question: How does the portfolio composition change as the desired rate of return changes 
from 15% to 5%? 

 

Notice that more than 34% of the portfolio was invested in the risk-free investment, the T-bill, even though 
its return rate, 5%, is less than the target of 15%. Further, the variance has dropped to about 0.0208 from 
about 0.0224. 

What happens as we decrease the target return towards 5%? Clearly, at 5%, we would put zero in ATT, 
GMC, and USX. A simple form of solution would be to keep the same proportions in ATT, GMC, and USX, 
but just change the allocation between the risk-free asset and the risky ones. Let us check an intermediate 
point. When we decrease the required return to 10%, we get the following solution:  

 



14 Chapter 2 

  

 

 
This solution supports our conjecture:  

As we change our required return, the relative proportions devoted to risky 

investments do not change. Only the allocation between the risk-free asset and 

the risky asset change.  

From the above solution, we observe that, except for round-off error, the amount invested in ATT, GMC, 
and USX is allocated in the same way for both solutions. Thus, two investors with different risk preferences 
would nevertheless both carry the same mix of risky stocks in their portfolio. Their portfolios would differ 
only in the proportion devoted to the risk-free asset. Our observation from the above example in fact holds 
in general. Thus, the decision of how to allocate funds among stocks, given the amount to be invested, can 
be separated from the questions of risk preference. Tobin received the Nobel Prize in 1981, largely for 
noticing the above feature, the so-called Separation Theorem. So, if you noticed it, you must be Nobel Prize 
caliber.  

2.3.2 The Sharpe Ratio 
For some portfolio p, of risky assets, excluding the risk-free asset, let: 

Rp = its expected return, 
sp = its standard deviation in return, and 
r0 = the return of the risk-free asset. 

A plausible single measure (as opposed to the two measures, risk and return) of attractiveness of portfolio p 
is the Sharpe ratio: 

(Rp - r0) /sp . 
In words, it measures how much additional return we achieved for the additional risk we took on, relative 
to putting all our money in the risk-free asset. 
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It happens the portfolio that maximizes this ratio has a certain well-defined appeal. Suppose: 

  t = our desired target return, 
wp = fraction of our wealth we place in portfolio p  

(the rest placed in the risk-free asset). 
To meet our return target, we must have: 

( 1 - wp ) * r0 + wp * Rp = t. 
The standard deviation of our total investment is: 

wp * sp. 
Solving for wp in the return constraint, we get: 

wp = ( t – r0) /( Rp – r0). 
Thus, the standard deviation of the portfolio is: 

wp * sp = [( t – r0) /( Rp – r0)] * sp. 
Minimizing the portfolio standard deviation means: 

Min [( t – r0) /( Rp – r0)] * sp 
   or 
Min [( t – r0) * sp /( Rp – r0)]. 

This is equivalent to: 

Max ( Rp – r0) /sp. 
So, regardless of our risk/return preference, the money we invest in risky assets should be invested in the 
risky portfolio that maximizes the Sharpe ratio. 

Algebraically, if the risk free rate is 5%, then what we would like to do is: 

! Maximize the Sharpe ratio; 

 MAX =  

(1.089083*ATT + 1.213667*GMC + 1.234583*USX - 1.05)/ 

 ((.01080754*ATT*ATT + .01240721*ATT*GMC + .01307513*ATT*USX 

 + .01240721*GMC*ATT + .05839170*GMC*GMC + .05542639*GMC*USX 

 + .01307513*USX*ATT + .05542639*USX*GMC + .09422681*USX*USX)^.5); 

 

! Use exactly 100% of the starting budget; 

  ATT + GMC + USX = 1; 

 

The spreadsheet portfolio_sharpe illustrates.  The crucial differences from the previous models are: a) 
There is no target return constraint,  and b) the Sharpe ratio is computed with: B5=(B9-B3)/(B10^0.5). 
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Notice the relative proportions of ATT, GMC, and USX are the same as in the previous model where we 
explicitly included a risk free asset with a return of 5%. E.g., except for round-off error: 

0.131865963/0.6504669543 = 0.086873118/0.42852693. 

 
The formulae in the spreadsheet Portfolio_Sharpe are essentially the same as in the previous except for the 
objective function in cell B5.  It is B5=(B9-B3)/(B10^0.5),  that is,  

(expected_return – risk_free_rate)/(square_root_of_portfolio_variance). 

2.4 Important Variations of the Portfolio Model 
There are several issues that may concern you when you think about applying the Markowitz model in its 
simple form: 

 a) As we increase the number of assets to consider, the size of the covariance matrix becomes 
overwhelming. For example, 1000 assets implies 1,000,000 covariance terms, or at least 500,000 if 
symmetry is exploited. 

 b) If the model were applied every time new data become available (e.g., weekly), we would 
“rebalance” the portfolio frequently, making small, possibly unimportant adjustments in the portfolio. 

 c) There are no upper bounds on how much can be held of each asset. In practice, there might be 
legal or regulatory reasons for restricting the amount of any one asset to no more than, say, 5% of the total 
portfolio. Some portfolio managers may set the upper limit on a stock to one day’s trading volume for the 
stock. The reasoning being, if the manager wants to “unload” the stock quickly, the market price would be 
affected significantly by selling so much. 

Two approaches for simplifying the covariance structure have been proposed: the scenario approach and 
the factor approach. For the issue of portfolio “nervousness”, the incorporation of transaction costs is 
useful. 
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2.4.1 Portfolios with Transaction Costs 
The models above do not tell us much about how frequently to adjust our portfolio as new information 
becomes available, e.g., new estimates of expected return and new estimates of variance. If we applied the 
above models every time new information became available, we would be constantly adjusting our 
portfolio. This might make our broker happy because of all the commission fees, but that should be a 
secondary objective at best. The important observation is that there are costs associated with buying and 
selling. There are the obvious commission costs, and the not so obvious bid-ask spread. The bid-ask spread 
is effectively a transaction cost for buying and selling. 

The method we will describe assumes transaction costs are paid at the beginning of the period. It is a 
straightforward exercise to modify the model to handle the case of transaction costs paid at the end of the 
period. The major modifications to the basic portfolio model are: 

 a) We must introduce two additional variables for each asset, an “amount bought” variable  
                  and an “amount sold” variable. 

 b) The budget constraint must be modified to include money spent on commissions. 

 c) An additional constraint must be included for each asset to enforce the requirement:  
amount invested in asset i = (initial holding of i) +  

    (amount bought of i) − (amount sold of i). 

2.4.2 Example 
Suppose we have to pay a 1% transaction fee on the amount bought or sold of any stock and our current 
portfolio is 50% ATT, 35% GMC, and 15% USX. This is pretty close to the optimal mix. Should we incur 
the cost of adjusting? The following is the relevant model: 

 

 MIN = .01080754 * ATT * ATT +.01240721 * ATT * GMC +.01307513 * ATT * 

USX +.01240721 * GMC * ATT +.05839170 * GMC * GMC +.05542639 * GMC * 

USX +.01307513 * USX * ATT +.05542639 * USX * GMC +.09422681 * USX * 

USX; 

 ATT + GMC + USX + .01 * ( BA + BG + BU + SA + SG + SU) = 1; 

 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX >= 1.15; 

 ATT = .50 + BA - SA; 

 GMC = .35 + BG - SG; 

 USX = .15 + BU – SU; 

 

The first constraint says the total uses of funds must equal 1. Another way of interpreting this constraint is 
to subtract each of the next three constraints from it. We then get: 

.01 * (BA + BG + BU + SA + SG + SU) + BA + BG + BU=SA + SG + SU; 

It says any purchases plus transaction fees must be funded by selling. The spreadsheet model is: 
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The solution recommends buying a little bit more ATT, neither buy nor sell any GMC, and sell a little USX. 

The ABC’s of this spreadsheet are: 

 A) The Adjustable cells are the Buy variables in row 5, and the Sell variables in row 6. 

 B) The “Best” or objective cell is cell B10=WBINNERPRODUCT(B11:B13,E8:G8),  

              i.e., the variance in the end of period portfolio value. 

 C) There are two constraints:   

C8 contains =WB(B8,”=”,D9), and C9 contains =WB(B8,”>=”,D9). 

The crucial formulae are: 

Row 8 computes the amount held of each asset after transactions, e.g., 

E8=E4+E5-E6. 

Column B computes the first half of the variance calculation, e.g., 

B11=SUMPRODUCT(E11:G11,E$8:G$8). 

Cell B10 completes the variance calculation with  

B10=WBINNERPRODUCT(B11:B13,E8:G8), 

Cell B5 computes total transaction expenses from both buying and selling: 

B5=B4*SUM(E5:G6); 

Cell B8 computes the total uses of funds, i.e., transactions expense + amount in assets after transactions: 

B8=B5+SUM(E8:G8); 
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Cell B9 computes the expected portfolio value at the end of the period: 

B9=SUMPRODUCT(E9:G9,E$8:G$8); 

2.4.3 Portfolios with Taxes 
Taxes are an unpleasant complication of investment analysis that should be considered. The effect of taxes 
on a portfolio is illustrated by the following results during one year for two similar “growth-and-income” 
portfolios from the Vanguard company. Portfolio S was managed without (Sans) regard to taxes. Portfolio 
T was managed with after-tax performance in mind: 

 Distributions Initial 

Portfolio Income Gain-from-sales Share-price Return 

S $0.41 $2.31 $19.85 33.65% 
T $0.28 $0.00 $13.44 34.68% 

The tax managed portfolio, probably just by chance, in fact had a higher before tax return. It looks even 
more attractive after taxes. If the tax rate for both dividend income and capital gains is 30%, then the tax 

paid at year end per dollar invested in portfolio S is .3 × (.41 + 2.31) /19.85 = 4.1 cents; whereas, the tax per 

dollar invested in portfolio S is .3 × .28/13.44 = 0.6 of a cent. 

Below is a generalization of the Markowitz model to take into account taxes. As input, it requires in 
particular:  

a) number of shares held of each kind of asset,  

b) price per share paid for each asset held, and  

c) estimated dividends per share for each kind of asset. 

The results from this model will differ from a model that does not consider taxes in that this model, when 
considering equally attractive assets, will tend to:  

 i. purchase the asset that does not pay dividends, so as to avoid the immediate tax on dividends,  

 ii. sell the asset that pays dividends, and  

 iii. sell the asset whose purchase cost was higher, so as to avoid more tax on capital gains.  

This is all given that two assets are otherwise identical (presuming rates of return are computed including 
dividends). For completeness, this model also includes transaction costs. 
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Notice that the solution recommends selling 2.08548 shares of USX at $26/share.  Because these shares 
were bought at 21,  this generates a capital gain of 10.4274.  This gain, however, is exactly cancelled out by 
selling 10.4274 shares of GMC at $88/share.  These shares were bought at $87, so this generates a capital 
loss of 10.4274, so the portfolio does not have to pay any capital gains tax.  

There are no constraints in the model to prevent both selling and buying a given stock or instrument.  In 
fact, in some instances the model may recommend doing this so as to recognize or claim a capital loss.  
This is called a “wash sale” and U.S. tax rules  prevent you from claiming the capital loss.  The general rule 
is that if you sell a security and also buy the same security within the 30 days before, the same day,  or the 
30 days after the sale, then you cannot claim a capital loss from the sale.  To the extent that wash sales are 
recommended by the model, it does not accurately model U.S. tax rules.   

The ABC’s of this spreadsheet are: 

 A) The Adjustable cells are the Buy variables E11:H11, and the Sell variables in row E12:H12. 

 B) The “Best” or objective cell is B20=WBINNERPRODUCT(B21:B24,E$13:H$13),  

  i.e., the variance in the end of period portfolio value. 

 C) The constraints are:  

C16=WB(B16,”>=”,D16) 
C19=WB(B19,”>=”,D19),  

       Cannot sell short, i.e., hold negative quantities of an asset,  cells E16:H16. 

E16=WB(12,”>=”,0), 

 The crucial formulae are: 

A10=A4*MAX(0,SUM(E14:H14), 
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A12=A6*SUMPRODUCT(E12:H14) 
B16=SUMPRODUCT(E11:H11,E6:H6), 

          B19 computes the expected portfolio value at the end of the period: 

B19=SUMPRODUCT(E8:H8,E13:H13),  

          Column B computes the first half of the variance calculation, e.g., 

B21=SUMPRODUCT(E21:H21,E$13:H$13),  

         Cell B20 completes the variance calculation with  

B20=WBINNERPRODUCT(B21:B24,E13:G13), 
D16=SUMPRODUCT(E10:H10,E5:H5)+A1, 
D19=A8*SUMPRODUCT(E6:H6,E9:H9) 

          Row 12 computes the amount held of each asset after transactions, e.g., 

E12=E9+E10-E11, 
E13=E12*E6, 
E14=(E6-E4)*E11,  

2.4.4 Factors Model for Simplifying the Covariance Structure 
Sharpe (1963) introduced a substantial simplification to the modeling of the random behavior of stock 
market prices. He proposed that there is a “market factor” that has a significant effect on the movement of a 
stock. The market factor might be the Dow-Jones Industrial average, the S&P 500 average, or the Nikkei 
index. If we define: 

M  =  the market factor, 
m0  =  E(M), 
s0

2  =  var(M), 
ei   =  random movement specific to stock i, 
si
2  =  var(ei). 

Sharpe’s approximation assumes (where E( ) denotes expected value): 

E(ei) = 0 

E(ei ej) = 0      for i ≠ j, 
E(ei M) = 0. 

Then, according to the Sharpe single factor model, the return of one dollar invested in stock or asset i is: 

ui + bi M + ei. 
The parameters ui and bi are obtained by regression (e.g., least squares, of the return of asset i on the market 
factor). The parameter bi is known as the “beta” of the asset. Let: 

Xi = amount invested in asset i and  
define the variance in return of the portfolio as: 

var[∑ Xi(ui + bi M + ei)] 

 = var(∑ Xi bi M) + var(∑ Xi ei) 

 = (∑ Xi bi)
2 so

2 + ∑ Xi
2
si
2. 

Thus, our problem can be written: 

Minimize    Z 2 so
2 + ∑ Xi

2 
si
2 

subject to 

Z − ∑ Xi bi = 0 

∑ Xi = 1 

∑ Xi ( ui + bi mo) ≥ r. 

So, at the expense of adding one constraint and one variable, we have reduced a dense covariance matrix to 
a diagonal covariance matrix. 
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In practice, perhaps a half dozen factors might be used to represent the “systematic risk”. That is, the return 
of an asset is assumed to be correlated with a number of indices or factors. Typical factors might be a 
market index such as the S&P 500, interest rates, inflation, defense spending, energy prices, gross national 
product, correlation with the business cycle, various industry indices, etc. For example, bond prices are 
very affected by interest rate movements. 

2.4.5 Example of the Factor Model 
The Factor Model represents the variance in return of an asset as the sum of the variances due to the asset’s 
movement with one or more factors, plus a factor-independent variance.  

To illustrate the factor model, we used multiple regression to regress the returns of ATT, GMC, and USX on 
the S&P 500 index for the same period.  The stocks were regressed on the factor, SP500, based on the 
formula:  Return(i) = Alpha(i) + Beta(i) * SP500 + error(i).  The results were: 

   ASSET =    ATT        GMC      USX; 

   ALPHA = .563976   -.263502  -.580959; 

   BETA  = .4407264  1.23980   1.52384; 

   SIGMA = .075817    .125070   .173930; 

 

 

Notice the portfolio makeup is slightly different. However, the estimated variance of the portfolio is very 
close to our original portfolio. 
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The important formulae are: 

      B4=SUMPRODUCT(G5:I5,G6:I6)+F5*F7, 
      B5=SUM(G5:I5), 
      C4=WB(B4,”>=”,D4), 
      C5=(B5,”=”,D5), 
      F5=SUMPRODUCT(G5:I5,G7:I7), 
      F10=(F8*F5)^2, 
      B10=SUM(F10:I10). 

2.4.6 Scenario Model for Representing Uncertainty 
The scenario approach to modeling uncertainty assumes the possible future situations can be represented by 
a small number of “scenarios”. The smallest number used is typically three (e.g., “optimistic,” “most 
likely,” and “pessimistic”). Some of the original ideas underlying the scenario approach come from the 
approach known as stochastic programming; see Madansky (1962), for example. For a discussion of the 
scenario approach for large portfolios, see Markowitz and Perold (1981) and Perold (1984). For a thorough 
discussion of the general approach of stochastic programming, see Infanger (1992). Eppen, Martin, and 
Schrage (1988) use the scenario approach for capacity planning in the automobile industry. 

Let: 
 Ps  = Probability scenario s occurs, 
 uis  = return of asset i if the scenario is s, 
 Xi  = investment in asset i, 
 Ys  = deviation of actual return from the mean if the scenario is s; 

      = ∑i Xi( uis − ∑q Pq uiq ). 

Our problem in algebraic form is: 

 Minimize ∑s Ps Ys
2 

 subject to 

  Ys − ∑i Xi(ui s − ∑q Pq uiq) = 0 (deviation from mean of each scenario, s) 

  ∑i Xi = 1 (budget constraint) 

  ∑i Xi ∑s Ps uis ≥ r (desired return). 

If asset i has an inherent variability vi
2, the objective generalizes to: 

Min ∑i Xi
2 
vi
2 + ∑s PsYs

2
 

The key feature is that, even though this formulation has a few more constraints, the covariance matrix is 
diagonal and, thus, very sparse. 

You will generally also want to put upper limits on what fraction of the portfolio is invested in each asset. 
Otherwise, if there are no upper bounds or inherent variabilities specified, the optimization will tend to 
invest in only as many assets as there are scenarios. 
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2.4.7 Example: Scenario Model for Representing Uncertainty 
We will use the original data from Markowitz once again. We simply treat each of the 12 years as being a 
separate scenario, independent of the other 11 years. 

 

The solution should be familiar. The alert reader may have noticed the solution suggests the same portfolio 
(except for round-off error) as our original model based on the covariance matrix (based on the same 12 
years of data as in the above scenario model). This, in fact, is a general result. In other words, if the 
covariance matrix and expected returns are calculated directly from the original data by the traditional 
statistical formulae, then the covariance model and the scenario model, based on the same data, will 
recommend exactly the same portfolio. 

The careful reader will have noticed the objective function from the scenario model (0.02056) is slightly 

less than that of the covariance model (.02241). The exceptionally perceptive reader may have noticed 12 × 
0.02054597/11 is, except for round-off error, equal to 0.002241. The difference in objective value is a 

result simply of the fact that standard statistics packages tend to divide by N − 1 rather than N when 
computing variances and covariances, where N is the number of observations. Thus, a slightly more general 

statement is, if the covariance matrix is computed using a divisor of N rather than N − 1, then the 
covariance model and the scenario model will give the same solution, including objective value. 

The crucial formulae are: 

B4=D22, 
B5=SUM(E5:G5), 
B6=(SUMPRODUCT(B9:B20,B9:B20)+SUMPRODUCT(C9:C20,C9:C20))/B3, 
B9=C9-D9+$D$22, 
D9=SUMPRODUCT(E9:G9,E$5:G$5), 
D22=AVERAGE(D9:D20). 
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2.5 Measures of Risk other than Variance 
The most common measure of risk is variance (or its square root, the standard deviation). This is a 
reasonable measure of risk for assets that have a symmetric distribution and are traded in a so-called 
“efficient” market. If these two features do not hold, however, variance has some drawbacks. Consider the 
four possible growth distributions in Figure 2.2. 

Investments A, B, and C are equivalent according to the variance measure because each has an expected 
growth of 1.10 (an expected return of 10%) and a variance of 0.04 (standard deviation around the mean of 
0.20). Risk-averse investors would, however, probably not be indifferent among the three. Under 
distribution (A), you would never lose any of your original investment, and there is a 0.2 probability of the 
investment growing by a factor of 1.5 (i.e., a 50% return). Distribution (C), on the other hand, has a 0.2 
probability of an investment decreasing to 0.7 of its original value (i.e., a negative 30% return). Risk-averse 
investors would tend to prefer (A) most and to prefer (C) least. This illustrates variance need not be a good 
measure of risk if the distribution of returns is not symmetric: 

Figure 2.2 Possible Growth Factor Distributions 
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Investment (D) is an inefficient investment. It is dominated by (A). Suppose the only investments available 
are (A) and (D) and our goal is to have an expected return of at least 5% (i.e., a growth factor of 1.05) and 
the lowest possible variance. The solution is to put 50% of our investment in each of (A) and (D). The 
resulting variance is 0.01 (standard deviation = 0.1). If we invested 100% in (A), the standard deviation 
would be 0.20. Nevertheless, we would prefer to invest 100% in (A). It is true the return is more random. 
However, our profits are always at least as high under every outcome. (If the randomness in profits is an 
issue, we can always give profits to a worthy educational institution when our profits are high to reduce the 
variance.) Thus, the variance objective may cause us to choose inefficient investments. 

In active and efficient markets such as major stock markets, you will tend not to find investments such as 
(D) because investors will realize (A) dominates (D). Thus, the market price of (D) will drop until its return 
approaches competing investments. In investment decisions regarding new physical facilities, however, 
there are no strong market forces making all investment candidates “efficient”, so the variance risk measure 
may be less appropriate in such situations. 

2.5.1 Utility Functions 
A variety of utility functions have been proposed for measuring expected risk.  If w is our wealth at the end 
of the period then the utility function U(w) measures the utility of that wealth.  Sensible utility functions 
have two features: a) they are increasing in w, or at least non-decreasing(more wealth cannot hurt),  and b) 
they are concave(each additional $ of wealth is no more valuable than the previous one, maybe less).  Some 
commonly proposed utility functions are: 

     1) Downside risk: U(w) = w – max(w-t, 0), where t is the threshold,  
     2) Log: U(w) = Log(w), sometimes called the Kelly criterion, 
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     3) Quadratic: U(w) = a*w - b*w2,  
     4) Exponential: U(w)= -exp(-a*w), 
     5) Power: U(w) = w(1-r)/(1-r), 

     6) Hyperbolic: U(w) = [(1-γ)/γ]*[a*w/(1-γ )+b)] γ.   
          The Hyperbolic includes the quadratic, exponential, and power utilities as special cases. 

In the next section we set what kind of anomalous situations can arise if we do not use a “sensible” utility 
function in the above sense. 

2.5.2 Maximizing the Minimum Return 
A very conservative investor might react to risk by maximizing the minimum return over scenarios. There 
are some curious implications from this. Suppose the only investments available are A and C above and the 
two scenarios are: 

Scenario Probability Payoff from A Payoff from C 

1 0.8 1.0 1.2 

2 0.2 1.5 0.7 
If we wish to maximize the minimum possible wealth, the probability of a scenario does not matter, as long 
as the probability is positive. Thus, the following LP is appropriate: 

  MAX = WMIN; 

!  Initial budget constraint; 

               A +       C = 1; 

!  Wealth under scenario 1; 

        WMIN   <=       A + 1.2 * C > 0; 

!  Wealth under scenario 2; 

        WMIN  <= 1.5 * A + 0.7 * C > 0; 

It is not difficult to deduce that the solution is: 

Variable           Value   

    WMIN        1.100000   

       A       0.5000000   

       C       0.5000000   

Given that both investments have an expected return of 10%, it is not surprising the expected growth factor 
is 1.10. That is, a return of 10%. The possibly surprising thing is there is no risk. Regardless of which 
scenario occurs, the $1 initial investment will grow to $1.10 if 50 cents is placed in each of A and C. 

Now, suppose an extremely reliable friend provides us with the interesting news that, “if scenario 1 occurs, 
then investment C will payoff 1.3 rather than 1.2”. This is certainly good news. The expected return for C 
has just gone up, and its downside risk has certainly not gotten worse. How should we react to it? We make 
the obvious modification in our model: 

  MAX = WMIN; 

!  Initial budget constraint; 

                       A       + C = 1; 

!  Wealth under scenario 1; 

        WMIN  <=       A + 1.3 * C ; 

!  Wealth under scenario 2; 

        WMIN  <= 1.5 * A + 0.7 * C ; 

 

and re-solve it to find: 

Variable           Value    

    WMIN        1.136364    

       A       0.5454545    

       C       0.4545455    
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This is a bit curious. We have decreased our investment in C. This is as if our friend had continued on: “I 
have this very favorable news regarding stock C. Let’s sell it before the market has a chance to react”. Why 
the anomaly? The problem is we are basing our measure of goodness on a single point among the possible 
payoffs. In this case, it is the worst possible. For a further discussion of these issues, see Clyman (1995). 

2.5.2 Value at Risk 
In 1994, J.P. Morgan popularized the "Value at Risk" (VaR) concept with the introduction of their 
RiskMetrics™ system. To use VaR, you must specify two numbers: 1) an interval of time (e.g., one day) 
over which you are concerned about losing money, and 2) a probability threshold (e.g., 5%) beyond which 
you care about harmful outcomes. VaR is then defined as that amount of loss in one day that has at most a 
5% probability of being exceeded. A comprehensive survey of VaR is Jorion (2001). 

Example 
Suppose that one day from now we think that our portfolio will have appreciated in value by $12,000. The 
actual value, however, has a Normal distribution with a standard deviation of $10,000. From a Normal 
table, we can determine that a left tail probability of 5% corresponds to an outcome that is 1.644853 
standard deviations below the mean. Now: 

12000 -1.644853 * 10000 = -4448.50. 

So, we would say that the value at risk is $4448.50. 



28 Chapter 2 

  

2.5.3 Example of VaR 
Let us apply the VAR approach to our standard example, the ATT/GMC/USC model. Suppose that our 
time interval of interest is one year and our risk tolerance is 5% and we want to minimize the value at risk 
of our portfolio. This is equivalent to maximizing that threshold, so the probability our wealth is below this 
threshold is at most .05. 

Analysis: 
A left tail probability of 5% corresponds to the probability threshold. We want to consider the point that is 
1.64485 standard deviations below the mean. Minimizing the value at risk corresponds to choosing the 
mean and standard deviation of the portfolio, so the ( mean – 1.64485 * (standard deviation)) is maximized. 
The following model will do this: 

 

Note that, if we invested solely in ATT, the portfolio variance would be .01080754. So, the standard 
deviation would be .103959, and the VAR would be 1 - (1.089083 - 1.644853 * .103959) = .0818. 

The portfolio is efficient because it is maximizing a weighted combination of the expected return and (a 
negatively weighted) standard deviation. Thus, if there is a portfolio that has both higher expected return 
and lower standard deviation, then the above solution would not maximize the objective function above. 

Note, if you use: PROB = .1988, you get essentially the original portfolio considered for the 
ATT/GMC/USX problem. 

The crucial formulae are: 

 B3==NORMSINV(B2), 
 B5=SUM(E5:G5), 
 B7=B6+B3*B8^0.5, 
 B9=SUMPRODUCT(E9:G9,E$5:G$5) 
 C5=WB(B5,"=",D5). 
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2.6 Scenario Model and Minimizing Downside Risk 
Minimizing the variance in return is appropriate if either:  

 1) the actual return is Normal-distributed or  

 2) the portfolio owner has a quadratic utility function.  

In practice, it is difficult to show either condition holds. Thus, it may be of interest to use a more intuitive 
measure of risk. One such measure is the downside risk, which intuitively is the expected amount by which 
the return is less than a specified target return. The approach can be described if we define: 

T = user specified target threshold. When risk is disregarded, this is typically less than the maximum 
expected return and greater than the return under the worst scenario. 

 Ys = amount by which the return under scenario s falls short of target. 

        = max{0, T − ∑ Xi uis} 

The model in algebraic form is then: 

 Min ∑ Ps Ys                             ! Minimize expected downside risk 
 subject to 
  (compute deviation below target of each scenario, s): 

  Ys − T + ∑ Xi  uis ≥ 0 

  ∑ Xi = 1                            !  (budget constraint) 

  ∑ Xi ∑ Ps  uis ≥ r               !  (desired return). 
 
Notice this is just a linear program. 
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2.6.1 Semi-variance and Downside Risk 
The most common alternative suggested to variance as a measure of risk is some form of downside risk. 
One such measure is semi-variance. It is essentially variance, except only deviations below the mean are 
counted as risk. The scenario model is well suited to such measures. The previous scenario model needs 
only a slight modification to convert it to a semi-variance model.  

 

 

Notice the objective value is less than half that of the variance model. We would expect it to be at most 
half, because it considers only the down (not the up) deviations. The most noticeable change in the 
portfolio is substantial funds have been moved to USX from GMC. This is not surprising if you look at the 
original data. In the years in which ATT performs poorly, USX tends to perform better than GMC. 

The formulae and constraints are essentially as with the model Portfolio_scene, except for the objective 
cell. 

The crucial formulae are: 

 B4=D22, 
 B5=SUM(E5:G5), 
 B6=SUMPRODUCT(B9:B20,B9:B20)/B3, 
 B9=C9-D9+$D$22, 
 D9=SUMPRODUCT(E9:G9,E$5:G$5), 
 D22=AVERAGE(D9:D20). 
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2.6.2 Downside Risk and MAD 
If the threshold for determining downside risk is the mean return, then minimizing the downside risk is 
equivalent to minimizing the mean absolute deviation (MAD) about the mean. This follows easily because 
the sum of deviations (not absolute) about the mean must be zero. Thus, the sum of deviations above the 
mean equals the sum of deviations below the mean. Therefore, the sum of absolute deviations is always 
twice the sum of the deviations below the mean. Thus, minimizing the downside risk below the mean gives 
exactly the same recommendation as minimizing the sum of absolute deviations below the mean. Konno 
and Yamazaki (1991) use the MAD measure to construct portfolios from stocks on the Tokyo stock 
exchange.  

2.6.3 Scenarios Based Directly Upon a Covariance Matrix 
If only a covariance matrix is available, rather than original data, then, not surprisingly, it is nevertheless 
possible to construct scenarios that match the covariance matrix. The following example uses just four 
scenarios to represent the possible returns from the three assets: ATT, GMC, and USX. These scenarios 
have been constructed, using the methods of section 2.8.2, so they mimic behavior consistent with the 
original covariance matrix: 

 
 

Notice the objective function value and the allocation of funds over ATT, GMC, and USX are essentially 
identical to our original portfolio example. 

The crucial formulae are: 

B4=D14 
C4=WB(B4,">=",D4) 
B5=SUM(E5:G5) 
C5=WB(B5,"=",D5) 
B6=(SUMPRODUCT(B9:B12,B9:B12)+SUMPRODUCT(C9:C12,C9:C12))/B3 
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B9=C9-D9+$D$14 
D9=SUMPRODUCT(E9:G9,E$5:G$5) 
D14=AVERAGE(D9:D12) 

2.7 Hedging, Matching and Program Trading 

2.7.1 Portfolio Hedging 
Given a “benchmark” portfolio B, we say we hedge B if we construct another portfolio C such that, taken 
together, B and C have essentially the same return as B, but lower risk than B. Typically, our portfolio B 
contains certain components that cannot be removed. Thus, we want to buy some components negatively 
correlated with the existing ones. Examples are:  

a) An airline knows it will have to purchase a lot of fuel in the next three months. It would like to be 
insulated from unexpected fuel price increases.  

b) A farmer is confident his fields will yield $200,000 worth of corn in the next two months. He is 
happy with the current price for corn. Thus, would like to “lock in” the current price. 

2.7.2 Portfolio Matching, Tracking, and Program Trading 
Given a benchmark portfolio B, we say we construct a matching or tracking portfolio if we construct a new 
portfolio C that has stochastic behavior very similar to B, but excludes certain instruments in B. Example 
situations are:  

a) A portfolio manager does not wish to look bad relative to some well-known index of performance 
such as the S&P 500, but for various reasons cannot purchase certain instruments in the index.  

b) An arbitrageur with the ability to make fast, low-cost trades wants to exploit market inefficiencies 
(i.e., instruments mispriced by the market). If he can construct a portfolio that perfectly matches 
the future behavior of the well-defined portfolio, but costs less today, then he has an arbitrage 
profit opportunity (if he can act before this “mispricing” disappears).  

c) A retired person is concerned mainly about inflation risk. In this case, a portfolio that tracks 
inflation is desired.  

As an example of (a), a certain so-called “green” mutual fund will not include in its portfolio companies 
that derive more than 2% of their gross revenues from the sale of military weapons, own directly or operate 
nuclear power plants, or participate in business related to the nuclear fuel cycle. 

The following table, for example, compares the performance of six Vanguard portfolios with the indices the 
portfolios were designed to track; see Vanguard (1995): 

Total Return Six Months Ended June 30, 1995 

Vanguard Portfolio Comparative Index 
Portfolio Name Growth Growth Index Name 

500 Portfolio +20.1% +20.2% S&P500 

Growth Portfolio +21.1 +21.2 S&P500/BARRA 
Growth 

Value Portfolio +19.1 +19.2 S&P500/BARRA 
Value 

Extended Market Portfolio +17.1% +16.8% Wilshire 4500 Index 

SmallCap Portfolio +14.5 +14.4 Russell 2000 Index  

Total Stock Market Portfolio +19.2% +19.2% Wilshire 5000 Index  

Notice, even though there is substantial difference in the performance of the portfolios, each matches its 
benchmark index quite well. 
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2.8 Methods for Constructing Benchmark Portfolios 
A variety of approaches has been used for constructing hedging and matching portfolios. For matching 
portfolios, an intuitive approach has been to generalize the Markowitz model, so the objective is to 
minimize the variance in the difference in return between the target portfolio and the tracking portfolio.  

A useful way to think about hedging or matching of a benchmark is to think of it as our being forced to 
include the benchmark or its negative in our portfolio. Suppose the benchmark is a simple index such as the 
S&P500. If our measure of risk is variance, then proceed as follows: 

1. Include the benchmark in the covariance matrix just like any other instrument, except do not 
include it in the budget constraint. We presume we have a budget of $1 to invest in the 
controllable, non-benchmark portion of our portfolio. 

2. To get a “matching” portfolio (e.g., one that mimics the S&P 500), set the value of the 

benchmark factor to −1. The essential effect is the off diagonal covariance terms are negated 
in the row/column of the benchmark factor. Effectively, we have shorted the factor. If we can 
get the total variance to zero, we have perfectly matched the randomness of the benchmark. 

3. To get a “hedging” portfolio (e.g., one as negatively correlated with the S&P 500 as possible), 
set the value of the benchmark factor to +1. Thus, we will compose the rest of the portfolio to 
counteract the effect of the factor we are stuck with having in the portfolio. 

One might even want to drop the budget constraint. The solution will then tell you how much to invest in 
the controllable portfolio to get the best possible hedge or match per $ of the benchmark.   

The following model illustrates the extension of the Markowitz approach to the hedging case where we 
want to “cancel out” some benchmark. In the case of GMC, it could be that our decision maker works for 
GMC and thus has his fortunes unavoidably tied to those of GMC. He might wish to find a portfolio 
negatively correlated with GMC: 
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Thus, our investor puts more of the portfolio in ATT than in USX (whose fortunes are more closely tied to 
those of GMC). 

     The crucial formulae are: 

B5=SUM(E5:G5), 
C5=WB(B5,"=",D5), 
B6=SUMPRODUCT(E6:G6,E5:G5), 
B7=WBINNERPRODUCT(B8:B10,E5:G5), 
B8=SUMPRODUCT(E9:G9,E$5:G$5) 

The following model illustrates the extension of the Markowitz approach to the matching case where we 
want to construct a portfolio that mimics or matches a benchmark portfolio. In this case, we want to match 
the S&P500, but limit ourselves to investing in only ATT, GMC, and USX. 

 

 

The formulae in the matching model are the same as in the hedging model.  The only difference is in the 
data entered. 
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2.8.1 Scenario Approach to Benchmark Portfolios 
The scenario approach can be used for constructing hedging and matching portfolios in much the same way 
as the classical Markowitz model was used.  The following model tries to construct a hedge relative to 
GMC from ATT and USX. 

 

The crucial formulae are: 

B4=D22, 
C4=wb(B4,">=",D4), 
B5=SUM(E5:G5), 
C5=wb(B5,"=",D5), 
B6=(B22+C22)/B3, 
B9=C9-D9+$D$22, 
D9=SUMPRODUCT(E9:G9,E$5:G$5), 
B22=SUMPRODUCT(B9:B20,B9:B20), 
C22=SUMPRODUCT(C9:C20,C9:C20), 
D22=AVERAGE(D9:D20), 
E22=AVERAGE(E9:E20). 
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The following is a scenario model for constructing a portfolio matching the S&P500: 

 

Notice that we get the same portfolio as with the Markowitz model. 

The two scenario models both used variance for the measure of risk relative to the benchmark. It is easy to 
modify them, so more asymmetric risk measures, such as downside risk, could be used. 

The formulae in this model are the same as in the previous. 
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2.8.2 Efficient Benchmark Portfolios 
We say a portfolio is on the efficient frontier if there is no other portfolio that has both higher expected 
return and lower risk. 

 Let: 

  ri  = expected return on asset i, 
  t   = an arbitrary target return for the portfolio. 

A portfolio, with weight mi on asset i, is efficient if there exists some target t for which the portfolio is a 
solution to the problem: 

Minimize risk 
subject to 

 i

n

=
∑

0

mi = 1       (budget constraint) 

 
i

m

=
∑

0
ri mi ≥ t     (return target constraint). 

Portfolio managers are frequently evaluated on their performance relative to some benchmark portfolio. Let 
bi = the weight on asset i in the benchmark portfolio. If the benchmark portfolio is not on the efficient 
frontier, then an interesting question is: What are the weights of the portfolio on the efficient frontier that is 
closest to the benchmark portfolio in the sense that the risk of the efficient portfolio relative to the 
benchmark is minimized? 

There is a particularly simple answer when the measure of risk is portfolio variance, there is a risk-free 
asset, borrowing is allowed at the risk-free rate, and short sales are permitted. Let m0 = the weight on the 
risk-free asset. An elegant result, in this case, is that there is a so-called “market” portfolio with weights mi 
on asset i, such that effectively only m0 varies as the return target varies. Specifically, there are constants 

mi, for i = 1, 2, . . . , n, such that the weight on asset i is simply (1 − m0) × mi. Define: 

q = 1 − m0 = weight to put on the market portfolio, 
Ri = random return on asset i. 

Then the variance of any efficient portfolio relative to the benchmark portfolio can be written as: 

var( 
i

n

=
∑

1
Ri[q*mi − bi]) 

=       
i

n

=
∑

1

 (q*mi − bi)
2 var (Ri) + 2 

 j >
∑

i

 (q*mi − bi)(q*m j − bj) Cov(Ri,R j). 

Setting the derivative of this expression with respect to q equal to zero gives the result: 

q = 
i

n

=
∑

1

mi *bi var (Ri) + 
 j >
∑

i
 (mi*bj*mj*bi) Cov (Ri, R j) 

____________________________________________________________________________________________________________________________ 

i

n

=
∑

1

mi
2 var (Ri) + 2

  j >
∑

i

mi mj Cov (Ri, Rj) 

 

For example, if the benchmark portfolio is on the efficient frontier with weight b0 on the risk-free asset, 

then bi = (1 − b0)mi and therefore q = 1 − b0. Thus, a manager who is told to outperform the benchmark 
portfolio {b0, b1, . . ., bn} should perhaps, in fact, be compensated according to his performance relative to 
the efficient portfolio given by q above. 
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2.9  Project Portfolios 
Some organizations use a yearly budgeting process to select which projects to pursue in the coming year.  
Examples of projects might be: which crude oil fields to develop for a petroleum exploration firm,  which 
drugs to develop for a pharmaceutical firm, and which types of markets and technologies to pursue for a 
telecommunications firm.  Many of the ideas underlying the portfolio models considered thus far also apply 
to the project selection portfolio problem.  For example, an overall budget may be set at the beginning of 
the planning exercise for how much can be invested in new projects this year. The major differences 
distinguishing the project portfolio problem are:  a) the investment variables are 0/1, “go/no go” decision 
variables, b) it is much less obvious how one develops the covariance or correlation matrix describing the 
project and interproject risks,  and c) there may be logical constraints among the projects, typically of an 

“either-or” nature or an “if we do project A we must do project B” flavor. Consider the following. 

Example 
The BTT communications company has six projects it is considering for the coming year. 

Project Tech1 is a technology development project that requires an initial investment of $1.9M and has an 
expected value of $2.36M after one year.  The standard deviation in the value after one year is $.37M 

Project Tech2 is an alternative to Tech1. It requires an initial investment of $2.5M and has an expected 
value of $3.1M after one year.  The standard deviation in the value after one year is $.39M. 

Project Ads is an advertising campaign for a certain metropolitan area for a new kind of call handling 
service.  This service has already been introduced on a trial basis in some regions of the city. It requires an 
initial investment of $1.7M and has an expected value of $1.5M after one year.  The standard deviation in 
the value after one year is $.3M.  Note that its incremental return is negative, so that it does not appear 
worthwhile until we consider projects Regn1, Regn2, and Regn3.   

Project Regn1 is the project to install the new call handling capability into Region 1. It requires an initial 
investment of $1.5M and has an expected value of $1.64M after one year.  The standard deviation in the 
value after one year is $.39M.  Note, this expected return for Regn1 is based on the assumption that the 
major metropolitan advertising campaign, project Ads above, for the call handling service will be 
undertaken,  else project Regn1 will not be worthwhile. 

Project Regn2 is similar to Regn1, except it applies to region 2. Regn2 requires an initial investment of 
$2.1M and has an expected value of $2.35M after one year.  The standard deviation in the value after one 
year is $.5M.  This expected return for Regn2 is based on the assumption that the major metropolitan 
advertising campaign for the call handling service will be undertaken,  else project Regn2 will not be 
worthwhile. 

Project Regn3 is similar to Regn1, except it applies to region 3. Regn3 requires an initial investment of 
$1.9M and has an expected value of $2.42M after one year.  The standard deviation in the value after one 
year is $.4M.  This expected return for Regn3 is based on the assumption that the major metropolitan 
advertising campaign for the call handling service will be undertaken,  else project Regn3 will not be 
worthwhile. 

BTT has available a budget of $10M to invest in these projects.  Either because of the lumpiness of the 
project, or perhaps for other reasons, we may not wish to use exactly $10M.  How should we treat any left 
over funds?  If we are borrowing the money,  then we should simply apply the borrowing rate to these left 
over funds because we avoid the interest payment.  Alternatively,  we may have other standard investments 
with fairly reliable returns in which left over funds are invested.  For BTT,  this “Cost of Capital” rate is 
8%.  It is represented in the model as the investment “CofC”.  Suppose that after one year,  BTT would like 
its investment to have an expected return of 13%.  This means would like the $10M budget to grow to a 
value $11.3 after one year. 
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Which projects should be undertaken? The following spreadsheet illustrates the model and the suggested 
solution. 

 
 
The solution suggests that we should invest in projects Tech2, Ads, Regn2, and Regn3 and leave 1.8 
million in the Cost of Capital fund.  This solution has some interesting features.  For example, the rate of 
return for Tech1 is (2.36 – 1.9)/ 1.9 = .2421, whereas the return on Tech2 is (3.1 – 2.5)/2.5 = 1.24.  So 
Tech1 has a slightly higher return, and Tech1 has lower risk, .37, than Tech2, .39.  Nevertheless, Tech2 
was chosen over the alternative Tech1.  Why?  The key is that Tech2 allows us to invest more money at a 
very good rate.  If we invested in Tech1 rather than Tech2, where would we invest the 2.5 – 1.9 million 
dollars that would become available?  The obvious place would be in the CofC fund.  But there it only 
earns an incremental return of .08, vs. the .24 return it would earn in Tech2. 

The “ABC’s of Optimization” for this model are: 

    A) The adjustable cells in this model are E5:K5.  Cells E5:J5 are declared to be 0/1 or binary 
         variables,  whereas the investment of surplus funds in CofC is left as a continuous variable. 
 
    B) The “Best” or objective cell, to be minimized, is the variance computed in cell B10  
         by the formula:  =SUMPRODUCT(E9:K9,E9:K9). 
 
    C) The constraints are computed essentially by the formulae in column B,  e.g. 
            B6= SUMPRODUCT(E6:K6,$E$5:$K$5),  
            B7= SUMPRODUCT(E7:K7,$E$5:$K$5), 
            B11= SUMPRODUCT(E11:K11,$E$5:$K$5), 
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2.9.1 Implementation Issues 
The above simple model requires the estimation of three data for each project: a) initial investment, b) 
expected value after one period, and c) standard deviation in value after one period.  Typically, each project 
in an organization will have a “champion” or supporter.  This person may be the best informed person for 
estimating the above data.  The “champion” of a project, however, has an incentive to try to get his project 
funded this year and worry later about justifying the project if things do not turn out well.  Thus, the 
“champion” will tend to underestimate the initial investment required, overestimate the expected return, 
and underestimate the expected risk.  Thus, you also need an auditor, referee, or arbitrator who can examine 
the submitted data and try to keep it as unbiased as possible.   

The above model approximates the risk only by a standard deviation for each project.  It does not include 
any covariance risk among projects.  Our reasoning in this regard is that it is difficult enough to provide an 
estimate of the standard deviation of a random variable for which we have no historical data.  One way of 
trying to elicit the an estimate of the standard deviation is to assume returns are Normal distributed,  in 
which case,  the probability that a return is one standard deviation below the expected value is about one 
chance in six.  Thus, one could ask someone who is knowledgeable about a project: “How much worse the 
could the value of the project be, so that there is one chance in six of the project doing this poorly?”.  Treat 
this difference as one standard deviation. 
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2.10 Problems 
1. You are considering three stocks, IBM, GM, and Georgia-Pacific (GP), for your stock portfolio. The 

covariance matrix of the yearly percentage returns on these stocks is estimated to be: 

 IBM GM GP 

IBM 10 2.5 1 

GM 2.5 4 1.5 

GP 1 1.5 9 
 Thus, if equal amounts were invested in each, the variance would be proportional to 10 + 4 + 9 + 2 (2.5 

+ 1 + 1.5). The predicted yearly percentage returns for IBM, GM, and GP are 9, 6 and 5, respectively. 
Find a minimum variance portfolio of these three stocks for which the yearly return is at least 7, at 
most 80% of the portfolio is invested in IBM, and at least 10% is invested in GP. 

2. Modify your formulation of problem 1 to incorporate the fact that your current portfolio is 50% IBM 
and 50% GP. Further, transaction costs on a buy/sell transaction are 1% of the amount traded. 

3. The manager of an investment fund hypothesizes that three different scenarios might characterize the 

economy one year hence. These scenarios are denoted Green, Yellow and Red and subjective 
probabilities 0.7, 0.1, and 0.2 are associated with them. The manager wishes to decide how a model 
portfolio should be allocated among stocks, bonds, real estate and gold in the face of these possible 
scenarios. His estimated returns in percent per year as a function of asset and scenario are given in the 
table below: 

 Stocks Bonds Real Estate Gold 

Green 9 7 8 -2 

Yellow −1 5 10 12 

Red 10 4 -1 15 
 

 Formulate and solve the asset allocation problem of minimizing the variance in return subject to 
having an expected return of at least 6.5. 

4. Consider the ATT/GMC/USX portfolio problem discussed earlier. The desired or target rate of return 

in the solved model was 15%. 

a) Suppose we desire a 16% rate of return. Using just the solution report, what can you predict 
about the standard deviation in portfolio return of the new portfolio? 

b) We illustrated the situation where the opportunity to invest money risk-free at 5% per year 
becomes available. That is, this fourth option has zero variance and zero covariance. Now, 
suppose the risk-free rate is 4% per year rather than 5%. As before, there is no limit on how 
much can be invested at 4%. Based on only the solution report available for the original 
version of the problem (where the desired rate of return is 15% per year), discuss whether this 
new option is attractive when the desired return for the portfolio is 15%. 

c) You have $100,000 to invest. What modifications would need to be made to the original 
ATT/GMC/USX model, so the answers in the solution report would come in the appropriate 
units (e.g., no multiplying of the numbers in the solution by 100,000)? 

d) What is the estimated standard deviation in the value of your end-of-period portfolio in (c) if 
invested as the solution recommends 
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