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QDMC is an improved version of Shell's Dynamic Matrix Control (DMC) multivariable algorithm 
which provides a direct and efficient method for handling process constraints. The algorithm utilizes a 
quadratic program to compute moves on process manipulated variables which keep controlled 
variables close to their targets while preventing violations of process constraints. Several on-line 
applications have demonstrated its excellent constraint handling properties, transparent tuning and 
robustness, while requiring minimal on-line computational load. 
KEYWORDS Constraints Dynamic Matrix Control (DMC) Model-Predictive Control 

Multivariable Control Quadratic Programming (QP) 

INTRODUCTION 

Most process control applications consist of not only keeping controlled variables 
at their setpoints but also keeping the process from violating operating con- 
straints. For more than a decade we at Shell have been implementing a 
multivariable computer control algorithm called Dynamic Matrix Control (DMC) 
with great success. The method calculates moves on manipulated variables which 
minimize future projections of controlled variable errors and constraint violations 
in the least-squares sense (Cutler and Ramaker, 1979, Prett and Gillette, 1979, 
Cutler, 1983). 

Throughout the years, however, we have been increasingly encountering 
applications which demand tight constraint control. In addition, there has been an 
increasing need for improved on-line tuning capabilities for DMC. 

An extended method for the solution of the DMC problem is introduced here. 
The method denoted as QDMC (QuadraticIDynamic Matrix Control) consists of 
the on-line solution of a quadratic program (QP) which minimizes the sum of 
squared deviations of controlled variable projections from their setpoints subject 
to maintaining projections of constrained variables within bounds (Morshedi, et 
al. 1982). In contrast with DMC where constraints are enforced via least squares, 
the use of a QP provides rigorous handling of constraint violations by formulating 
them as linear inequalities, therefore allowing tighter constraint control. 

The discussion that follows is divided into three parts. For completeness, an 
overview of DMC is presented first. Then the fundamentals of QDMC are 
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74 C.E. GARCIA AND A.M. MORSHEDI 

introduced, concluding with a discussion of its implementation on a pyrolysis 
furnace temperature control problem. 

DMC: AN OVERVIEW 

DMC is a model predictive controller which exhibits excellent properties due to 
its particular structure. The technique was developed in Shell as part of its 
process computer control activities and has been analyzed in the control literature 
(Garcia and Morari, 1982). The method is rigorously derived for linear systems 
(as is any other conventional controller) and therefore, any analysis on DMC and 
its features must be done in a linear theory framework. 

Linear Input-Output Model 

Without loss of generality, let us consider a linear dynamic system with one 
output 0 and an input 1. In computer applications only the behavior of the 
system at the sampling intervals is of interest. Therefore, a discrete repre- 
sentation of the dynamics is used here. One such representation is given by; 

where k denotes discrete time; O0 is the output initial condition; Al(k) is a 
change in input (or manipulated variable) at different time intervals k ;  O(k) is the 
value of the controlled variable at time k ;  d(k) accounts for un-modelled factors 
that affect O(k); a, are the unit step response coeficients of the system; and M is 
the number of time intervals required for the system to reach steady-state. 
Therefore, ai = a, for i 2 M. 

Note that the term d(k + 1) has been added to the input-output description to 
take into account unmodelled effects on the measured output, which consist of 
unmeasured disturbances and/or modelling errors. Inclusion of this factor is 
crucial to the derivation of DMC as we now show. 

Controller Design 

The objective of any controller is to find the moves of the manipulated variables, 
Al(k), which would make the output O(k) best match a target value 0, in the 
face of disturbances. Assuming the present time interval to be &, in DMC a 
projection of the output O(k) over P future time intervals (k  + 1 to & + P) is 
matched to the setpoint 0, by prescribing a sequence of future moves. 

Derivation of the DMC equations From (1) the projected output for any future 
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QUADRATIC DYNAMIC MATRIX CONTROL 

time f + I, 1 > 0 is: 

0 ( f  + I) = 2 a, Al(f + 1 - i) (effect of future moves) 
i = l  

M 

+ O,, + 2 a, Al(f + 1 - i) (effect of past moves) 
i = l + l  

+ d(f  + I) (predicted disturbance) 

For simplicity let us define 

to be the contribution to O(f  + I )  due to past input moves up to the present time 
k. This term can always be computed from the past history of moves. 

Using this definition, one can write (2) for times f + 1 up to k + P to produce a 
set of P equations for the output projections as follows: 

where 

is called the "dynamic matrix" of the system. Note that in the DMC formulation 
only N moves are computed, i.e. 

Al(k) = 0 for k > f + N 

Setting these moves to zero imparts important stability properties to the resulting 
controller. In particular, as a result of our experience, selecting P = N + M 
generally yields a stable controller. This is discussed below in the section on 
tuning parameter selection. 

Estimation of unmodelled effects d(k) in DMC The set of equations (4) requires 
a prediction of the unmodelled effects d(k). Since future values of the 
"disturbance" d(k)  are not available, the best one can do is to use an estimate. 
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76 C.E. GARCIA AND A.M. MORSHEDI 

From Eq. ( 1 )  for k = k - 1, and Eq. ( 3 )  for 1 = 0, we obtain 

o(/;) = O*(L) + d(k )  ( 5 )  

Therefore, d ( / ; )  can be estimated using the current feedback measurement o,(R) 
of 0 together with past input moves information. In the absence of any additional 
knowledge of d ( k )  over future intervals (as is true in most cases), the predicted 
disturbance is assumed to be equal to the present, "measured" d( / ; ) ;  

Solution of the DMC equations Given this set of equations the DMC control 
problem is defined as finding the N future input moves A I ( f )  . . . AI(f  + N - 1) 
so that the sum of squared deviations between the projections O(k + I )  and the 
target 0, are minimized. This is equivalent to the least-squares (LS) solution of 
the DMC equations: 

where e(k + 1 )  is a P-dimensional vector of projected deviations from the target 
and 

is the vector of future moves. Such least-squares solution is given by 

In DMC only the move computed for the current interval of time k is 
implemented. The computation is repeated at every sampling time k when a new 
feedback measurement is obtained and used to update e(k + 1). Failure to 
compute a move at each sampling time could impair the disturbance handling 
features of the algorithm. 

Formulation for multivariable systems It should be pointed out that the DMC 
equations for a multivariable system can be derived similarily as for the 
single-input single-output (SISO) case. For an r-output, s-input system, a linear 
dynamic representation is given by 

where O ( k )  is an r-dimensioned vector of outputs, gi is an r x s matrix of unit 
step response coefficients for the ith time interval, AI(k) is the s-dimensioned 
vector of moves for all manipulated variables at a given time interval, 0, is the 
initial condition vector, and d(k )  is a vector of un-modelled factors. For r = s = 1 
this equation reduces to model ( 1 ) .  
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QUADRATIC DYNAMIC MATRIX CONTROL 77 

We can define a multivariable system dynamic matrix 4 composed of blocks of 
dimension P x N of step response coefficient matrices as in (4) relating the ith 
output to the j I h  input as follows: 

where elements from matrices g, have been regrouped accordingly. That is, 
matrix di, contains all the ij coefficients in matrices g,, 1 = 1 to M arranged as in 
(4). 

The corresponding vector of moves is 

x( f )  = [ ~ , ( f ) ~ x , ( f ) ~  . . . ~ , ( k ) ~ ] ~  

and the output projection vector becomes: 

Therefore Eq. (7) is equally valid for multivariable systems. 

Tuning Parameters in DMC 

Number of moves (N) us. horizon (P)  It should be clear from the DMC 
formulation that as the number of manipulated variable moves (N) increases, 
DMC has more freedom in matching the output projections to the setpoint. That 
is, DMC produces tighter control although at the expense of larger moves or, as 
is well known, for processes with non-minimum phase characteristics the resulting 
controller could even be unstable (Garcia and Morari, 1982). From our 
experience, stability (in the case of a perfect model) is ensured in DMC by 
selecting P such that the steady-state effect of the most future move shows in the 
projections (see Eq. (4)); that is, P = N + M. Therefore, DMC is capable of 
handling non-minimum phase dynamic characteristics such as inverse response 
and dead-time. For a more detailed discussion on this subject, the reader is 
referred to Morshedi er al. (1982) and Cutler (1983). Also, a rigorous proof of 
stability for DMC when P >> N is given by Garcia and Morari (1982). 

Moue suppression (A) In DMC it is usually necessary to restrict or  suppress the 
amplitude of the input moves. Thus, DMC equations are generally formulated as 

where (for multi-variable systems); 

4 = diag(AIA, . . . A,A,A,. . . A,.  . . AJ, . . . A,) 

I+N+I 

D
ow

nl
oa

de
d 

by
 [

U
SP

 U
ni

ve
rs

ity
 o

f 
Sa

o 
Pa

ul
o]

 a
t 1

3:
45

 0
3 

A
pr

il 
20

13
 



78 C.E. GARCIA AND A.M. MORSHEDI 

and l i > O  is the i'h input move suppression coefficient. As in any other control 
formulation, an increase in input penalties is equivalent to reducing the controller 
gain and therefore, improves the stability properties of DMC, particularly in the 
face of model inaccuracies (Morari, 1983). 

Selective weighting of controlled variables (y) It is possible in DMC to give 
tighter control to particular controlled variable(s) by increasing the relative 
weight of the corresponding least-squares residual. This is achieved by pre- 
multiplying the DMC equations with the matrix of weights yi > 0; 

Including this weighting matrix, the solution of the DMC equations becomes, 

x ( i )  = (4'FTr4 + A74)-',Tr7re(i + 1) (9) 

DMC also provides the user with additional tools for control such as 
feed-forward compensation of measurable disturbances, steady-state control of 
manipulated variables in case s > r, and minimization of constraint violations in 
the least squares sense. The new QDMC method introduced in the following 
improves the constraint handling capabilities of DMC thus making the algorithm 
a very powerful tool for solving complex multivariable constrained control 
problems. 

QDMC: Q P  Solution of the DMC Equations 

In on-line applications, the moves computed in (9) may not be implementable 
due to process operating limit violations. Three types of process constraints are 
usually encountered: 

Manipulated variable constraints: i.e., valve saturation. 
Controlled variable constraints: overshoots in the controlled variables past 

allowable limits must be avoided. 
Associated variables: key process variables which are not directly controlled but 

that must be kept within bounds. 

The controller must be able to predict future violations and prescribe moves that 
would keep these variables within bounds. 

Constraints on projections of these variables can be expressed mathematically 
as a system of linear inequalities: 

The matrix C contains dynamic information on the constraints and the vector 
c ( i  + 1) contains the projected deviations of the constrained variables from their 
limits. Also, in practice, limits on individual moves are usually needed: 

One can express the least-squares solution of the DMC equations as the 
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QUADRATIC DYNAMIC MATRIX CONTROL 79 

following quadratic minimization problem: 

m!n s = ;[Ax(R) - e(R + I ) ] ~ F ~ F [ A X ( ~ )  - e(L + I)] + : ~ ( k ) ~ ~ ~ & ( f )  (12) 
~ ( k )  

yielding (9) as a solution. Subjecting this problem to the linear inequality 
constraints (10) and ( l l ) ,  the following quadratic program (QP) results: 

mQ F = :X(R)~HX(L) - g(f + ~ ) ~ x ( f )  
x ( k )  

s.t. Cx(L) 2 c(L + 1) 
- 

Xmin 5 x(k) 5 xmax 
where: 

H = A T r T m  - - - -  + ATA - -  (the QP Hessian matrix) 
and, 

g(f + 1) = dTcTre( f  + 1) (the QP gradient vector) 

Solution of (13) by a QP algorithm at each sampling interval f produces an 
optimal set of moves x(L) which satisfies the constraints. Any commercially 
available QP algorithm could be used for solving (13). Since in QDMC H is likely 
to be fixed at all sampling intervals, a parametric QP algorithm is recommended 
to reduce on-line computation time (Bazaraa and Shetty, 1979, Fletcher, 1980). 

QDMC Constraint Equations 

The excellent performance of DMC hinges on its particular formulation as 
described above. Since constraint handling is nothing other than shifting the 
control priorities to constrained variables, it is crucial that the dynamic matrix 
formulation and structure are preserved in formulating the constraint equations. 
In the following we show how the inequalities in Eq. (10) are formulated for each 
of the constrained variables. 

Manipulated variables The vector x(f)  contains not only the present moves to 
be implemented but also predictions of the future moves. This gives an indication 
of where the manipulated variables will lie in the future. 

One can bound the predicted level of the i th input as follows: 

where n = 1, . . . , N, that is, the total number of moves; l i ( f)  is the present value 
of the i th manipulated variable; and limi,, l;,,, are the lower and upper limits 
respectively. In matrix form, these constraints are expressed as: 
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80 C.E. GARCIA AND A.M. MORSHEDI 

where 1 = (1 1 . . . l )T and 1, is an N X N lower triangular matrix: 

While only one equation (14) (for n = 1) suffices to prevent violations, constrain- 
ing all the affected manipulated variable projections as in (15) provides improved 
performance. 

Controlled uariables Utilizing the concepts described above, the QP can be 
made to prescribe moves so that projections of the controlled variable responses 
lie within bounds. For example, for a single output system, with respective 
maximum and minimum limits O,,,, Om;,, the constraint equations are formu- 
lated as: 

Note that the error projection vector defined in Eq. (6) is employed here. 
Extension to the multiple-output case is straightforward. 

Associated variables As with controlled variables it is possible to have the QP 
keep projections of associated variables within limits. However, a new projection 
vector must be created. Analogous to (16) above, constraints on the projections 
of a single associated variable 'a' are expressed as: 

where: 

a * (R + 1) + [a, (R) - a * ( R ) ]  
e , ( i +  1 ) =  

a *(f + P) + [a, (R) - a *(R)] I 
is the associated variable projection vector; B is the dynamic matrix for the 
associated variable; a*(k + 1) is the effect of past inputs on the projection of a ;  
a,(k) is the measured feedback and amin,  a,,, the constraint limits. Extension of 
(17) to handle multiple associated variables is straightforward. 

Tuning of QDMC 

All tuning parameters given for DMC still apply for the constrained case. 
However, in QDMC control quality is additionally influenced by the selection of 
the projection interval to be constrained. In practice, only a subset of all P 
projections are constrained in Eqs. (16) and (17), starting with the 1 l h  projection, 
where 1 > 1. This subset of projections form a "constraint window" of future 
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QUADRATIC DYNAMIC MATRIX CONTROL 81 

intervals of time over which QDMC will prevent constraint violations from 
occurring. 

In the presence of non-minimum phase behavior of controlled and associated 
variables much improvement in performance is achieved by moving the "con- 
straint window" further down in the horizon. The reason is that any projected 
violation inside the "constraint window" is handled rigorously by the QP, not 
unlike a tightly tuned controller. Therefore, if the QP is asked to correct for 
violations in the earlier projections, severe input moves might be required in the 
face of non-minimum phase characteristics. 

Another solution to this problem consists in having QDMC solve the controlled 
and associated variable constraint equations in the least-squares sense. This is 
done by appending the constraint equations to the DMC equations (4) in case 
that a violation is predicted to occur. Then this augmented system of equations is 
solved as in (9). Both alternatives are available to the QDMC user. 

IMPLEMENTATION 

An implementation of the QDMC algorithm on a pyrolysis furnace is described. 
A diagram of the process is given in Figure 1. The temperature of the process gas 
stream through zones A, B and C of the furnace firebox is controlled by 
manipulating the fuel gas pressures to the burners. Cascaded controllers 
manipulate the fuel gas flows to meet the pressure targets. Feed rate and dilution 
steam rate are measurable disturbances which are fed forward to the control 
algorithm. 

Unit step responses of temperatures in the three zones with respect to fuel 
pressures are given in Figures 2 through 4. The time unit is in 0.5 min which 
means that the process settles in 15 minutes. Additional step response models are 
needed in QDMC to model the effect of measurable disturbances. 

, 
,' -__--- 

Dllullon 
steam 

FIGURE 1 Pyrolysis furnace: fuel gas pressures PA, P,, PC are manipulated to control temperatures 
in zones A, El and C. 

I I 
Fuel 

p~ P~ P~ 

Gas 
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2.31 .. 

2.06 - 

1.80 - 

0 10 20 30 
0.5 min Sampling Inwrvalr 

FIGURE 2 Response of zone A outlet temperature to unit step changes in zone fuel gas pressure 
setpoints ( l a c  = 1.8'F). 

Problem Setup and Tuning 

Besides imposing high and low limits on fuel gas pressures, bounds are also 
included for the temperatures. The constraint limits in deviation variables are 
given in Table I .  No  associated variables are considered. 

Three moves in each manipulated variable are computed and checked for 

1.41 

I l l  - 

113 - 

0.99 - 

0 10 20 
0.5 min Sarn~ling Intervals 

FIGURE 3 Response of zone B outlet temperature to unit step changes in zone fuel gas pressure 
setpoints. 
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0.5 min Ssmaling lntewals 

FIGURE 4 Response of zone C outlet temperature to unit step changes in zone fuel gas pressure 
setpoints. 

violations. This yields a move vector of dimension 9. Choosing a horizon of 30, 
then matrix A is of dimension 90 x 9. 

A total of-10 projections in each controlled variable are checked for high and 
low limit violations, starting to check from the 5th, 3rd, and 3rd projection of 
temperatures A ,  B and C, respectively. Output weighting parameters are selected 
as y, = 1 and move suppression parameters A; as 15, 25 and 30 respectively for the 
three zones. It must be realized that the particular selection of A, is a function of 
the operator's allowed manipulated variable jaggedness and the actual model 
mismatch so that for large model errors, A; is increased. Therefore, A, must be 
tuned on-line during the operation as is done with any other control algorithm. 

On-Line Responses 

In order to test the input constraint handling capabilities of QDMC, simultaneous 
step changes in setpoints of TB and Tc of magnitudes of +3"F and -3°F were 

TABLE l 

Constraint limits for the pyrolysis furnace problem in deviation variable units 

Initial 
High limit Low limit condition 
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C.E. GARCIA AND A.M. MORSHEDI 

FIGURE 5a Temperature responses to setpoint changes in T,, T,; zone B fuel gas pressure setpoint 
is high limit constrained. 

FIGURE 5b Fuel gas pressure setpoints corresponding to responses in Figure Sa (1 psi = 6.893 kPa). 

implemented (Figure 5a). Note that QDMC maintains the zone B pressure at its 
bound until the limit is raised (Figure 5b). Only then were all the temperatures 
able to go to their respective setpoints. It is important to note that any other 
integral-action controller would have experienced reset wind-up under such input 
constraint conditions. Stability in the presence of constraints is a very important 
property of QDMC. 

In another test, the setpoint in T, was increased by 3°F. As shown in Figure 6 
QDMC kept the temperatures from overshooting the bounds. Due to the severity 
of unmeasurable disturbances, temperatures were often driven out of bounds. 
The algorithm provided a smooth return to the operating region. 
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QUADRATIC DYNAMIC MATRIX CONTROL 

FIGURE 6 Temperature responses to setpoint change in T,. 

CONCLUSION 

QDMC is a robust algorithm for the control of multivariable processing systems 
in the presence of constraints. Due to its predictive nature, it can handle systems 
with difficult dynamic characteristics to control, i.e., dead-time and inverse 
response processes. In addition, it contains very transparent tuning parameters of 
physical meaning to the user. In particular, certain parameter selections allow for 
stabilization of the controller in the presence of model mismatch. 

Numerous applications of this algorithm within Shell have demonstrated its 
versatility in handling many types of process control problems encountered in the 
chemical process industries. It has been used to control batch as well as 
continuous systems, and processes with as many as 12 manipulated and controlled 
variables. 

Above all, QDMC has proven itself particularly profitable in an on-line 
optimization environment. Due to constantly changing market conditions and 
feedstock quality the optimal operating point of a process lies invariably at an 
intersection of constraints. QDMC provides smooth, violation-free transfer of the 
operation from one set of constraints to another as dictated by an optimizer. In 
addition, its robustness characteristics guarantee reliability of the controller over 
the whole operating region. 

NOMENCLATURE 

ai unit step-response coefficient 

4 4 )  system associated variable at time k 

4 dynamic matrix of controlled variable step response coefficients 

s dynamic matrix of associated variable step response coefficients 
c(& + 1) vector of projected deviations of constrained variables from their 

bounds 
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C.E. GARCIA AND A.M. MORSHEDI 

LHS matrix of QP linear inequalities 

QDMC un-modelled effects term 

controlled variable projected setpoint error vector 

associated variable projected response vector 

i th controlled variable projected setpoint error vector 

QP gradient vector 

QP Hessian matrix 

system manipulated variable at time f  
move of manipulated variable at time f  
discrete time 

present time 

number of discrete time intervals required for steady-state 

number of QDMC input moves 
system controlled variable at time i 
controlled variable dynamic model initial condition 

controlled variable setpoint 

QDMC projection horizon 
number of manipulated variables 
number of controlled variables 

vector of present and future moves ~ l ( f )  
ith manipulated variable vector of moves 

matrix of controlled variable weights y ,  

matrix of move suppression factors A, 

Superscripts: 
* projection based on moves up to present time k 

Subscripts: 

m feedback measurement 
max maximum bound 

min minimum bound 
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