Astronomia de Posição

Notas de Aula – Versão 01/02/2016

Gastão Bierrenbach Lima Neto Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) Universidade de São Paulo (USP)

A última versão destas notas encontra-se aqui: http://www.astro.iag.usp.br/~gastao/astroposicao.html

_____Conteúdo

1	Esfe	Esfera Celeste						
	1.1	Introdução						
	1.2	Horizo	nte e Constelações					
		1.2.1	Bandeira do Brasil					
	1.3	Movin	nento Aparente dos Astros					
		1.3.1	Estações do ano 10					
	1.4	Sistem	a de Referência					
	1.5	Sistem	a de Coordenadas					
		1.5.1	Coordenadas Horizontais					
		1.5.2	Coordenadas Equatoriais					
		1.5.3	Coordenadas Eclípticas 16					
		1.5.4	Coordenadas Galácticas					
		1.5.5	Movimento diário dos astros 18					
	1.6	Relaçã	o entre sistemas de coordenadas					
		1.6.1	Noções de trigonometria esférica					
ე	Ten	חחו	26					
-	2.1	s de Medida de Tempo 26						
	2.1	2 1 1	Introdução 26					
		2.1.1 2.1.2	Movimento e tempo 26					
		2.1.2 2.1.2	Tempo sideral 26					
		2.1.0 2.1.1	Tempo solar tempo universal e tempo civil 28					
		2.1.4 2.1.5	Translação da Terra: ano 31					
		2.1.0 2.1.6	Translação da Lua: mês					
		2.1.0 2.1.7	Tempo dinâmico 35					
		2.1.7 2.1.8	Tempo atômico 36					
		2.1.0 2.1.0	Retação da Terra					
		2.1.3 2.1.10	Tempo universal coordenado e Tempo Legal (ou Civil)					
	ეე	Calor	Tempo universai coordenado e Tempo Legai (ou Orvii)					
	4.4	221	Introdução /1					
		2.2.1 0.0.0	Base astronômica des calendários					
		2.2.2	Dase astronomica dos calendarios					

		2.2.3	Calendário Egípcio				
		2.2.4	Calendário Romano				
		2.2.5	Calendário Juliano				
		2.2.6	Calendário Gregoriano				
		2.2.7	Calendário Judaico 45				
		2.2.1	Calendário Muculmano				
		2.2.0	Calendário da Revolução Francesa				
	9 2	2.2.3 Die Iu	linno				
	2.3 9.4	Dia Juliano					
	2.4	A Relação entre tempo siderar e tempo universar					
	2.0 9.6	Dadia					
	2.0	naulag					
3	Mov	viment	o, forma e perspectiva: Variação de coordenadas 53				
	3.1	Forma	da Terra				
		3.1.1	Sistema astronômico de coordenadas geográficas 54				
		3.1.2	Sistema geodético de coordenadas geográficas				
		3.1.3	Sistema geocêntrico de coordenadas geográficas				
		3.1.4	GPS				
	3.2	Preces	são e Nutação				
		3.2.1	Física da precessão e nutação				
		3.2.2	Efeitos da precessão e nutação nas coordenadas				
	3.3	Movim	$ento do polo \dots $				
	3.4	Refrac	ão atmosférica				
		3.4.1	Aproximação de planos paralelos				
		3.4.2	Fórmula geral da refração				
	3.5	Nascer	pôr e crepúsculos				
		3.5.1	Crepúsculo				
	3.6	Movim	pento próprio de estrelas 70				
	0.0	361	Efeito do movimento próprio nas coordenadas 72				
	3.7	Belacã	o entre coordenadas geocêntricas e heliocêntricas				
	3.8	Paralava					
	0.0	381	Paralaxe anual 73				
		382	Paralaxe diária				
	3.0	Aberrs					
	0.5	301	Aberração anual 81				
		302	Abarração planetária				
		3.3.2	Aberração socular				
		3.9.5	Aberração diária				
	2 10	Dogwio	gravitacional da luz				
	0.10 9.11	Desvio	o gravitacional da luz				
	0.11	neauç	ao das coordenadas celestes: Redução ao día				
4	Ast	ronomi	a Clássica 86				
	4.1	Introd	ução				
	4.2	Grécia	clássica				
		4.2.1	Escola jônica				
		4.2.2	Escola eleática				
		4.2.3	Escola pitagórica				
		-					

	4.2.4	Sistema de Eudoxo									
	4.2.5	Sistema de Aristóteles									
4.3	Sistem	a híbrido de Heráclides									
	4.3.1	Aristarco									
	4.3.2	Eratóstenes									
4.4	Hiparc	o									
	4.4.1	Gêmino de Rodes									
4.5	4.5 Sistema de epiciclos: Ptolomeu										
4.6	Sistem	a geocêntrico de Ptolomeu									
4.7	Entre 1	Ptolomeu e Copérnico									
	4.7.1	Astronomia fora da Europa									
	4.7.2	Precursores da revolução copernicana									
4.8	Sistem	a heliocêntrico de Copérnico									
	4.8.1	Copérnico									
	4.8.2	Galileu Galilei									
	4.8.3	Brahe e Kepler									
4.9	Config	urações planetárias $\ldots \ldots 102$									
4.10	Eclipse	es									
	4.10.1	Eclipse do Sol									
	4.10.2	Eclipse da Lua									
	4.10.3	Ocorrência de eclipses 106									
4.11	Detern	ninação clássica de distâncias no Sistema Solar									
	4.11.1	Diâmetro da Terra									
	4.11.2	Distância Terra – Lua									
	4.11.3	Distância Terra – Sol 111									
	4.11.4	Distância Planetas – Sol									
4.12	Leis de	e Kepler									
	4.12.1	Primeira lei de Kepler									
	4.12.2	Segunda lei de Kepler									
	4.12.3	Terceira lei de Kepler									
4.13	Variaçõ	ões seculares dos movimentos da Terra									
Alman	aune	19⁄									
Estações do Ano											
Pase	goes uu aoem d	a Terra pelo periélio e afélio									
Data	s de Lu	196									
Data	ingo do	$P_{4scos} = 197$									
Dom	ingo de										

Capítulo 1

Esfera Celeste

1.1 Introdução

No Universo, os astros se distribuem em um espaço tridimensional. Contudo, devido à imensa distância que separa estes astros da Terra, ao observarmos o céu nós temos a impressão que todos estes astros se encontram em uma esfera. Esta esfera aparente, chamada *esfera celeste* (figura 1.1), está a princípio centrada no observador, (porém as vezes é mais conveniente admitirmos que o centro da esfera celeste esteja em algum outro ponto, no centro da Terra ou no centro do Sol). A esfera celeste não tem um raio definido, assim consideramos este raio como infinito. Como a distância entre um observador qualquer e o centro da Terra (cerca de 6400 km) é muito menor que a distância aos astros (a Lua está, em média, a 380.000 km, o Sol a 150 milhões, e as estrelas estão muito além do sistema solar) o erro que se faz é, na maioria dos casos, desprezível.

Figura 1.1: Representação da Esfera Celeste, com algumas das principais estrelas, constelações, o equador e o polo Sul Celeste e a trajetória aparente do Sol (linha tracejada).

A olho nu, podemos ver o Sol, a Lua, 5 planetas, cerca de 5000 estrelas, eventuais cometas, 4 galáxias (parte da Via Láctea, as 2 nuvens de Magalhães, que são galáxias anãs ligadas gravitacionalmente à nossa e a galáxia de Andrômeda) e os meteoróides que queimam ao entrar na atmosfera (os *meteoros*). E isto é apenas uma fração ínfima do que podemos observar com o auxílio de um telescópio.

Para que possamos comunicar nossas observações a outros observadores, é preciso haver um *sistema de referências* onde as coordenadas dos astros sejam definidas, análogo ao sistema de latitudes e longitudes que utilizamos para localizar um dado lugar no globo terrestre.

Além do sistema de referência, dado o caráter dinâmico dos objetos celestes, também é necessária a definição de *escalas de medida de tempo*. Em outras palavras não somente precisamos das coordenadas de um astro mas também do momento em que a observação foi (ou será) feita.

O objetivo da astronomia de posição ou astrometria é o estudo das posições dos astros na esfera celeste e de seus movimentos. Sem dúvida, a astronomia de posição é a mais antiga das ciências. Desde a pré-história, as sociedades têm um grande interesse pela posição e movimento dos astros. Estes movimentos, ligados aos ciclos naturais (dia e noite, estações do ano, etc.), regiam as atividades econômicas (plantação e colheita, criação de animais, etc.).

A necessidade de se localizar durante longas viagens, medir a passagem do tempo de modo cada vez mais preciso, estimulou o desenvolvimento tanto da astronomia como de outras ciências como a álgebra e a geometria. Este progresso, junto com o desenvolvimento tecnológico, se faz sentir em toda a história da astronomia de posição, dos monumentos megalíticos de Stonehenge, na Inglaterra, ao satélite espacial *Hipparcos* (dedicado à astrometria), lançado pela ESA (*European Space Agence*) em 8 de agosto de 1989 e desativado em março de 1993. Lançado em dezembro de 2013, o satélite GAIA, também da ESA, nos proporcionará um mapeamento preciso de bilhões de estrelas da Via Láctea em sua missão de 5 anos.

1.2 Horizonte e Constelações

Um dado observador na superfície terrestre pode observar apenas metade da esfera celeste num dado instante. O limite entre a parte observável e a parte invisível ao observador é chamado *horizonte* (do grego *horos*, limite). Os polos deste horizonte, isto é, os pontos exatamente acima e abaixo do observador são chamados *zênite* e *nadir*, respectivamente.

O horizonte astronômico é um círculo aparente em torno do observador. No oceano, o horizonte observado é praticamente o horizonte astronômico; em terra, devido às irregularidades do terreno (e construções) o horizonte observado se distingue do horizonte astronômico.

A distância do horizonte astronômico depende da altura do observador (veja Fig. 1.2). Rigorosamente, se a Terra fosse exatamente uma esfera, temos:

$$d_{\rm hor} = \sqrt{2Rh + h^2}$$
 e $d_c = R \arccos\left(\frac{R}{R+h}\right)$, (1.1)

onde R (o raio da Terra, ~ 6,38 × 10⁶ m) e h são dados nas mesmas unidades (metros, por exemplo). Até alguns quilômetros de altura, $h \ll R e d_c \simeq d_{\text{hor}} \simeq \sqrt{2Rh}$, e podemos

Figura 1.2: Horizonte astronômico. Para um observador a altura h, a distância do horizonte pode ser definida de duas formas: d_{hor} , a distância em linha reta, e d_c , a distância sobre a superfície da Terra (ou do astro onde está o observador). R é o raio da Terra (ou do astro).

utilizar:

$$d_{\rm hor} \approx 3,572\sqrt{h} \,\,{\rm km}, \quad (h \,\,{\rm em \,\,metros})\,.$$
 (1.2)

As fórmulas acima não levam em conta o efeito de refração atmosférica (veja Sec. 3.4). A refração faz com que, na realidade, podemos observar distâncias ligeiramente superiores (10 a 20%) do que as distâncias obtidas com as equações acima, ou seja, $d_{\rm hor} \sim 4\sqrt{h}$ km.

Quando observamos as estrelas de uma noite para outra, não notamos praticamente nenhuma mudança na posição relativa entre elas, isto é, a posição de uma estrela em relação a alguma outra. De fato, apenas com observações muito precisas e ao longo de muito tempo é que podemos determinar o *movimento próprio* de algumas estrelas. A estrela com o maior movimento próprio conhecido é a Estrela de Barnard, invisível a olho nu, com um movimento próprio de 10,"3 por ano. Todas as estrelas têm movimento próprio, mas apenas para as mais próximas é que podemos detectar este movimento (o movimento próprio será abordado em mais detalhes na seção 3.6).

Assim, desde a antiguidade, as estrelas são utilizadas como meio de *orientação*. Para facilitar a orientação, as estrelas fixas foram "ordenadas" na esfera celeste: as estrelas mais brilhantes eram organizadas de modo a representarem criaturas mitológicas, as chamadas *constelações*. Diferentes povos criavam diferentes constelações, representando objetos ou criaturas diferentes. As constelações serviam para dividir a esfera celeste em setores e tornava mais prática a identificação das estrelas.

As constelações que utilizamos hoje em dia vêm principalmente da mitologia grecoromana (Andrômeda, Áquila, as constelações do zodíaco, etc...) e da época das grandes navegações (Triângulo, Cruzeiro do Sul, Horologium, etc...). As constelações atuais foram estabelecidas pelos astrônomos do século XVII e suas fronteiras foram homologadas pela União Astronômica Internacional (UAI) em 1928 – dois anos depois Eugène Delport traça os limites das constelações; ao todo são 88 constelações.

Em uma dada constelação as estrelas são ordenadas geralmente segundo seu brilho aparente, a mais brilhante é alfa, a segunda mais brilhante é beta, depois vem gama e assim por diante. Por exemplo, alfa do Cão Maior é a estrela Sirius. Contudo, alfa de Órion é a estrela Betelgeuse mas a estrela mais brilhante desta constelação é Rigel (beta de Órion). Este sistema foi sugerido e adotado por Johann Bayer em 1603 em seu atlas celeste *Uranometria*. Depois que termina o alfabeto grego, vem o latino e depois pares de letras latinas na designação das estrelas.

Figura 1.3: Planisfério da esfera celeste mostrando as principais constelações (em itálico), estrelas e círculos de referências (serão definidos mais adiante na seção 1.5).

Entre as constelações destacam-se 12, as constelações do Zodíaco. São nestas constelações que encontramos geralmente os planetas, a Lua e o Sol. Na realidade, os diversos membros do sistema solar também transitam pela constelação de Ophiuchus (Serpentário), que não faz parte do Zodíaco tradicional. Isto porque, provavelmente, 360° é divisível por 12, mas não por 13. Possivelmente, como há aproximadamente 12 lunações em um ano, os astrônomos da Mesopotâmia optaram em dividir a trajetória aparente do Sol, o Zodíaco, em doze partes iguais dando origem às constelações que ainda hoje utilizamos.

Contudo, as constelações não servem como um sistema de coordenadas para fins práticos. Na seção 1.5 veremos como são definidos os diversos sistemas de coordenadas utilizados habitualmente na esfera celeste e na seção 1.6 veremos as relações entre estes sistemas. Convém lembrar que as estrelas em uma constelação geralmente não estão próximas entre si nem são fisicamente ligadas!

Padrões aparentes de estrelas que geralmente são facilmente reconhecíveis são chamados **asterismos**. Um asterismo pode ser parte de uma constelação ou conter estrelas de várias constelações. Um exemplo de asterismo são as Três Marias na constelação de Órion.

1.2.1 Bandeira do Brasil

Na bandeira brasileira temos uma representação aproximada da esfera celeste (Fig. 1.4) que corresponde a uma observação do céu no dia 15 de Novembro de 1889 às 8h30 no Rio de Janeiro. Contudo, a esfera celeste da bandeira está invertida, isto é, corresponde à observação por alguém *fora* da esfera celeste, da forma como olhamos um globo terrestre. Cada estrela representa um estado e o Distrito Federal.

Figura 1.4: Esquerda: Bandeira oficial do Brasil com a identificação das estrelas e estados. Direita: Representação da esfera celeste que seria observada em 15/11/1889 às 8h30 no RJ. Note que o "céu" da bandeira está invertido em relação ao céu que observamos da Terra.

1.3 Movimento Aparente dos Astros

Chamamos de *movimento aparente* qualquer deslocamento na esfera celeste que possa ser medido por um observador. É importante lembrar que estas medições de movimento nem sempre são feitas em um referencial inercial como, por exemplo, um observador em repouso sobre a Terra (uma vez que esta gira em torno dela mesma). Para a interpretação física destes movimentos (estudo da mecânica celeste, por exemplo) é necessária uma descrição dos movimentos aparentes em um referencial inercial.

Veremos a seguir os principais movimentos aparentes dos astros. Os movimentos mais lentos ou de menor amplitude serão tratados em seções posteriores.

Mesmo com uma observação casual do céu, podemos facilmente notar que todos os astros se movem de forma semelhante. Os astros se levantam no leste e se põem no oeste. Dependendo da latitude do observador, alguns astros não se levantam nem se põem, mas aparentam girar em torno de um ponto fixo na Esfera Celeste, o chamado *polo celeste* (Fig. 1.5). No hemisfério setentrional, o polo norte celeste pode ser encontrado facilmente localizando-se a estrela Polar (ou Polaris ou ainda alfa da constelação da Ursa Menor) de magnitude 2,0. No hemisfério meridional, não há nenhuma estrela brilhante próxima ao polo sul celeste; a estrela visível a olho nu mais próxima é delta Octans de magnitude 4,3 (a olho nu, em um céu limpo, podemos ver até estrelas de magnitude 5). Podemos localizar o polo sul celeste utilizando a constelação do Cruzeiro do Sul, que aponta diretamente para o polo.

Este movimento aparente da esfera celeste é devido à rotação da Terra em torno do seu eixo. Os polos celestes nada mais são do que uma projeção dos polos terrestres na esfera celeste. Este movimento é chamado *movimento diário*. A Terra leva cerca de 23h56m04s para completar uma rotação em torno de si mesma em relação às estrelas. Na seção 1.5.5 abaixo, veremos novamente os movimentos diários utilizando os elementos da esfera celeste que serão introduzidos mais adiante.

Como já foi dito, o movimento próprio das estrelas e objetos mais distantes (nebulosas, galáxias, etc...) é desprezível em relação ao movimento aparente devido à rotação da Terra. Por outro lado, para os objetos mais próximos, no sistema solar isto não é

Figura 1.5: Polo celeste sul visto de São Paulo no início de Setembro em 4 instantes diferentes: às 20, 22, 24, e 2 horas. Os círculos representam as Declinações e as retas são as Ascensões Retas (este sistema de coordenadas será definido na seção 1.5.2). O tamanho das estrelas é proporcional ao brilho aparente (escala em magnitude). Estando no Hemisfério Sul e olhando para a direção sul, veremos os astros girando em torno do Polo Sul Celeste no *sentido horário*. No Hemisfério Norte, veríamos os astros girando em torno do Polo Norte Celeste no *sentido anti-horário*.

verdade.

Desde a antiguidade os *movimentos próprios* dos planetas, Sol e Lua em relação às estrelas já haviam sido notado. Comparando a posição da Lua relativa às estrelas em duas noites consecutivas, é imediata a constatação de movimento (veja figura 1.6). De fato, em relação às estrelas a Lua se desloca com um movimento médio de 13,17 graus por dia de oeste para leste. Isto corresponde a cerca de 30' por hora, uma distância equivalente ao seu diâmetro aparente. Este movimento é devido à translação da Lua em torno da Terra, isto é, o movimento próprio da Lua (figura 1.7).

Apesar da Lua sempre mostrar a mesma face para a Terra, o mesmo não ocorre em relação ao Sol: devido à rotação da Lua em torno de seu eixo, toda a superfície da Lua é eventualmente iluminada pelo Sol. Devido a esta geometria ilustrada na figura 1.7, a Lua apresenta *fases*: Lua Cheia, quando a face visível da Lua está toda iluminada; Lua Nova quando a face visível da Lua está do lado oposto ao Sol; Quarto Crescente e Minguante, quando apenas parte da face visível é iluminada pelo Sol.

A órbita da Lua não é estática e apresenta um movimento de *precessão*. A órbita lunar é inclinada em relação à eclíptica de cerca de 5° e, portanto, corta a eclíptica em dois pontos que são chamados *nodos*. Devido a precessão da órbita lunar, os nodos

Figura 1.6: Movimento aparente da Lua em relação às estrelas fixas. Da esquerda para a direita temos uma imagem do céu nos dias 1º, 2 e 3 de setembro de 1998 às 18h (hora local). A região cinza representa o horizonte na direção leste (L). Observe também que as estrelas também apresentam um movimento; a cada dia as estrelas se levantam cerca de 4 minutos mais cedo. O movimento aparente de Urano e Netuno são completamente desprezíveis em apenas três dias.

Figura 1.7: Movimento próprio da Lua em torno da Terra. Observe que a Lua apresenta sempre a mesma face voltada para Terra. A Lua gira em torno do seu próprio eixo com o mesmo período em que gira em torno da Terra.

retrocedem cerca de 19,35 por ano (Fig. 1.8). Este movimento tem consequência na periodicidade dos eclipses (como veremos na seção 4.10).

O movimento aparente dos planetas é um pouco mais complexo. Isto se deve ao

Figura 1.8: A órbita lunar é exibida em 4 momentos (linhas cinzas) separados por aproximadamente um ano cada um. A linha vermelha representa a eclíptica e a linha azul o equador celeste. Podemos ver que o nodo da órbita retrocede, isto é, se movimenta no sentido oposto à Lua em sua órbita.

fato de que observamos uma composição de movimentos devido à translação da Terra em torno do Sol assim como do planeta observado. Na figura 1.9 vemos o movimento aparente de Marte em 2010.

Figura 1.9: Movimento aparente de Marte na esfera celeste ilustrando o movimento retrógrado. O intervalo entre duas posições ao longo da trajetória corresponde a uma semana. O tamanho aparente de Marte está representado de forma aproximada (e fora de escala). O movimento retrógrado dos planetas externos ocorre quando o planeta passa pela conjunção (Fig 4.12 na seção 4.9). Também estão indicados algumas estrelas brilhantes, constelações e as coordenadas equatoriais.

Como pode ser visto, o movimento pode ser tanto *direto* (como a Lua, isto é, de oeste a leste) como *retrógrado* (isto é, no sentido inverso). Podemos entender este comportamento estudando o movimento da Terra e dos planetas em torno do Sol. Na figura 1.10 é mostrado o exemplo de Marte.

Figura 1.10: Posições da Terra e Marte em suas órbitas em torno do Sol no mesmo período do Fig. 1.9. Entre as posições marcadas 1 e 3, o movimento aparente de Marte é direto. Entre as posições 3 e 5, o movimento é retrógrado e, em seguida volta a ser direto. Em 4, Marte está em oposição. As posições nas órbitas correspondem a intervalos de 4 semanas.

Figura 1.11: Variação anual datrajetória aparente do Sol durante 0 ano (p. ex., para um observadoremSão Paulo). No início do Inverno do hemisfério Sul, o Sol "nasce" na direção do Nordeste; no início daprimavera, na direção Leste; e no início do Verão, na direção Sudeste.

O movimento aparente do Sol em relação às estrelas é relativamente simples. O único problema é que, em geral, não podemos observar o Sol e as estrelas simultaneamente. Portanto, o movimento aparente do Sol em relação às estrelas é determinado de maneira indireta. Isto é feito notando-se que a cada dia que passa as estrelas se levantam cerca de 4 minutos mais cedo o que significa que a posição relativa aparente do Sol em relação às estrelas se altera neste mesmo ritmo (isto pode ser visto na figura 1.6). Além disto, devido à inclinação do eixo do Terra em relação ao sua trajetória em torno do Sol (*eclíptica*), o movimento aparente diário do Sol se altera durante o ano (Fig. 1.11). Isto é facilmente observado notando-se a mudança na posição onde o Sol nasce ou se põe ao longo do ano.

1.3.1Estações do ano

O eixo de rotação da Terra é inclinado em relação ao plano que contém sua órbita em torno do Sol. Disto resulta que, dependendo da época do ano, os hemisférios Norte e Sul são iluminados diferentemente e temos assim as estações do ano. A figura 1.12 mostra este fenômeno.

As do ano devido à inclinação do eixo da Terra, e nada tem a ver com a distância da Terra ao Sol. Na figura, a órbita parece achatada devido para criar um efeito de perspectiva.

Note que a distância da Terra ao Sol <u>não</u> é responsável pelas estações do ano. O principal efeito da variação da distância Terra-Sol, devido ao fato da Terra seguir uma elipse e não um círculo em torno do Sol, é que as estações do ano não têm todas exatamente a mesma duração (veja Tabela 1.1 e Fig. 4.33).

Tabela 1.1: Início e duração das estações do ano no hemisfério Sul (para o hemisfério Norte basta permutar Outono \rightarrow Primavera, Inverno \rightarrow Verão, etc.). Estes valores são válidos atualmente (mais ou menos alguns séculos) e variam com o tempo.

	Outono	Inverno	Primavera	Verão
Início aproximado	20/03	21/06	23/09	22/12
Duração média (dias)	92,76	$93,\!65$	89,84	$88,\!99$

O verão no hemisfério Sul é mais curto que o inverno (e consequentemente mais curto que o verão no hemisfério Norte) porque a Terra se encontra próxima do perigeu nesta época do ano (o perigeu ocorre por volta do dia 2 a 4 de janeiro).

Mais adiante, na seção 1.5.2, daremos a definição precisa do início de cada estação. Na seção 2.6 veremos como varia a taxa de energia recebida do Sol (a iluminação) durante o ano para diferentes latitudes.

1.4 Sistema de Referência

Para podermos descrever os processos físicos de algum fenômeno observado ou previsto por alguma teoria é necessário um *Sistema de referência*. Mais fundamental ainda, as leis da Física, como as Leis de Newton, por exemplo, são definidas a partir de um sistema de referência.

Em astronomia, os sistemas de coordenadas, que veremos mais adiante, são definidos a partir de um sistema de referência. Para isto, é necessária uma *realização* do sistema de referência. Desde a época da Grécia Clássica, há mais de 2 mil anos, esta realização se dá por um *catálogo fundamental* com as posições de objetos astronômicos. Até a década de 1980, estes objetos eram estrelas e, a partir da década seguinte, objetos extra-galácticos começaram a ser usados.

Desde 1998, o sistema de referência celeste recomendado pela UAI é o ICRS (*International Celestial Reference System*). Trata-se de um sistema ideal, com origem no centro de massa do Sistema Solar (aproximadamente heliocêntrico, muito próximo do centro do Sol), sem rotação em relação ao conjunto de objetos extra-galácticos. O ICRS é realizado pelo ICRF (*International Celestial Reference Frame*), um conjunto de 212 rádio-galáxias. O uso de rádio-galáxias é conveniente por duas razões: (I) objetos extra-galácticos, a exceção do Grupo Local de galáxias, têm movimento próprio (veja Sec. 3.6) praticamente nulo e, (II) suas posições podem ser determinadas com altíssima precisão através da técnica de interferometria.

1.5 Sistema de Coordenadas

A posição de um astro qualquer na Esfera Celeste pode ser definido sem ambiguidade através de dois ângulos em relação ao sistema de coordenadas adotado, que por sua vez é definido a partir de um ponto central. A escolha precisa de um sistema de coordenadas ligado à Esfera Celeste vai depender sobretudo da análise ou problema que se queira resolver.

Para uma esfera (qualquer uma em princípio), os sistemas de referências utilizados são definidos por um *plano principal* que divide a esfera em duas partes iguais definindose assim um grande círculo (Fig. 1.13). Definimos arbitrariamente um ponto de origem neste círculo principal, por onde passa o *meridiano principal*, outro grande círculo perpendicular ao grande círculo precedente.

Os (pequenos) círculos paralelos ao círculo principal definem as *latitudes* da esfera enquanto os grandes círculos perpendiculares ao círculo principal definem as *longitudes*. Estes ângulos são similares ao que utilizamos para localizar um ponto na superfície terrestre, a longitude e a latitude.

A escolha do ponto central do sistema de coordenadas é arbitrária e depende do problema astronômico em questão. Se o centro do sistema coincide com o centro da Terra, dizemos que o sistema de coordenadas é *geocêntrico*; se o centro for o Sol então

Figura 1.13: As coordenadas em uma esfera são definidas através de um plano fundamental que corta a esfera em duas metades, passando pelo centro (definindo um círculo principal ou equador) e um ponto arbitrário no equador. Através deste ponto traça-se um outro grande círculo, perpendicular ao "equador", definindo-se assim o meridiano principal. Planos que cortam a esfera mas não passam pelo centro definem os pequenos círculos.

temos um sistema *heliocêntrico*; se o centro do sistema de coordenadas for um ponto na superfície da Terra, este sistema será *topocêntrico*.

Figura 1.14: Coordenadas esféricas polares, $\lambda \in \delta$ de um ponto (sistema dextrogiro). r é o raio vetor e R é a sua projeção no plano x-y.

A posição de um ponto qualquer em uma esfera pode ser escrita convenientemente em forma matricial, a partir do sistema de coordenadas esféricas polares (Fig. 1.14):

$$\mathbf{I} = \begin{pmatrix} \cos(\delta) & \cos(\lambda) \\ \cos(\delta) & \sin(\lambda) \\ & \sin(\delta) \end{pmatrix}, \qquad (1.3)$$

onde δ e λ são a latitude e a longitude em um dado sistema de coordenadas e ignoramos aqui a coordenada radial, r. Esta forma, baseada no sistema de coordenadas esféricas é particularmente útil para o cálculo de transformações de coordenadas (como veremos na seção 1.6).

1.5.1 Coordenadas Horizontais

O plano principal do sistema de coordenadas horizontais é definido como sendo o plano que contém o horizonte do observador. Os dois ângulos que definem a posição de um astro qualquer são a *altura*, h, e o *azimute*, A, como mostra a figura 1.15.

O horizonte do observador deve ser definido corretamente. O horizonte visível ou aparente é sujeito às irregularidades topográficas, não definindo necessariamente desta forma um grande círculo e, consequentemente, não servindo como base para a definição de um sistema de coordenadas. Assim, definimos o *horizonte astronômico* como sendo o

Figura 1.15: Sistema de coordenadas horizontal. O astro M tem coordenadas h (altura) e A (azimute). Os "polos" deste sistema são o zênite e o nadir. O azimute é medido a partir do Sul em direção ao Oeste, ao longo do horizonte (o círculo principal neste sistema). A altura é positiva em direção ao zênite e negativa em direção ao nadir. Também são mostrados na figura os eixos cartesianos $x, y \in z$.

círculo centrado no observador, perpendicular à sua vertical (definida como paralela ao campo gravitacional), independentemente de acidentes geográficos. A intersecção desta mesma vertical com a esfera celeste, define o zênite e o nadir.

A altura de um astro é medida a partir do horizonte astronômico, sendo positivo quando o astro está acima do horizonte e negativo no caso contrário. Assim o zênite tem por definição uma altura de 90° e o nadir, -90° .

O azimute é por definição medido a partir do meridiano Sul (0°) do observador e os ângulos são contados no sentido \rightarrow Oeste $(90^{\circ}) \rightarrow$ Norte $(180^{\circ}) \rightarrow$ Leste (270°) . Por ser uma definição arbitrária, o meridiano de origem do azimute é as vezes localizado no Norte ao invés do Sul.

Em notação matricial, a posição de um astro de altura h e azimute A é (atenção com o sinal negativo da coordenada y):

$$\mathbf{I} = \begin{pmatrix} \cos(h) \, \cos(A) \\ -\cos(h) \, \sin(A) \\ \sin(h) \end{pmatrix}. \tag{1.4}$$

Devemos notar ainda que neste sistema, as coordenadas de um astro variam com o tempo devido sobretudo ao movimento diário (rotação da Terra). De fato, o azimute de um astro sempre aumenta durante o decorrer de um dia (exceto pela descontinuidade a 360°).

1.5.2 Coordenadas Equatoriais

No sistema equatorial, o plano principal é a projeção do equador terrestre na esfera celeste, chamado *equador celeste* (Fig. 1.16). A projeções dos polos terrestres na esfera

celeste definem os polos celestes Norte e Sul. A origem do sistema de coordenadas é definido pela intersecção do equador celeste com a eclíptica (a trajetória aparente do Sol na esfera celeste durante um ano). Este ponto é chamado *equinócio vernal* ou primeiro ponto de Áries (usamos o símbolo 🌮). Quando o Sol está neste ponto temos o início do outono no hemisfério Sul e da primavera no Norte. A palavra equinócio vem do latim e significa "noites iguais" – quando o Sol se encontra no equinócio a duração da noite é a mesma em toda a Terra.

Figura 1.16: Sistema de coordenadas equatorial. O astro M tem coordenadas ascensão reta (α) e declinação (δ). Atualmente, a inclinação do equador celeste em relação à eclíptica é ε que vale aproximadamente 23°26'21".

A declinação, δ , de um ponto M é a distância angular medida sobre o meridiano que passa por este ponto a partir do equador celeste. Quando medido na direção do polo norte celeste $\delta > 0$, caso contrário a declinação é negativa. A ascensão reta, α , é o ângulo entre o ponto vernal e o meridiano do astro M. A ascensão reta é medido na direção Leste. Note que a ascensão reta cresce no sentido oposto ao azimute das coordenadas horizontais e que a ascensão reta aumenta no sentido do movimento anual do Sol e do movimento direto do planetas.

Em notação matricial, a posição de um astro de declinação, δ , e ascensão reta, α é:

$$\mathbf{I} = \begin{pmatrix} \cos(\delta) \, \cos(\alpha) \\ \cos(\delta) \, \sin(\alpha) \\ \sin(\delta) \end{pmatrix}. \tag{1.5}$$

Por convenção, a ascensão reta é medida um horas, minutos e segundos como o tempo (ao invés de graus, minutos e segundos de arco). A relação é simplesmente $1^{h} = 15^{\circ}$.

A ascensão reta e a declinação de uma estrela não se alteram devido ao movimento diurno de rotação da Terra. Isto não significa que no sistema equatorial não haja uma variação das coordenadas com o tempo, mas que esta variação é muito mais lenta que no caso das coordenadas horizontais.

Estações do ano

Devido à inclinação do eixo de rotação da Terra, o Sol tem uma trajetória aparente anual – a eclíptica – inclinada em relação ao equador. Isto é a origem das *estações* do ano (veja seção. 1.3.1).

Como vimos, a passagem do Sol pelo equinócio vernal marca o início do outono no hemisfério Sul; neste momento, por definição, a ascensão reta do Sol é zero ($\alpha_{\odot} = 0^{\rm h}$). O inverno tem início quando $\alpha_{\odot} = 6^{\rm h}$ (dizemos que o Sol está no solstício de inverno), a primavera se inicia quando $\alpha_{\odot} = 12^{\rm h}$ (equinócio de primavera), e o verão quando $\alpha_{\odot} = 18^{\rm h}$ (solstício de verão). No hemisfério norte, ao invés do início do verão, temos o início do inverno quando $\alpha_{\odot} = 18^{\rm h}$ e o solstício é chamado de inverno (Fig. 1.17).

Figura 1.17: Detalhe da esfera celeste em coordenadas equatoriais mostrando a eclíptica com os meses que correspondem à posição do Sol. O início das estações para o hemisfério Sul está assinalado acima da figura

Devido à obliquidade da eclíptica, também podemos definir algumas latitudes especiais. No início do verão do hemisfério Sul, o Sol passa pelo zênite de observadores que estejam na latitude $\varphi = -\varepsilon$, onde $\varepsilon = 23^{\circ}27'$ é a inclinação do eixo terrestre. Esta latitude é chamada trópico de capricórnio, veja Fig. 1.18. Da mesma forma, no início do verão do hemisfério Norte, o Sol passa pelo zênite na latitude $\varphi = +\varepsilon$; este é o Trópico de Câncer. Se a latitude do observador estiver entre $+23^{\circ}27'$ N e $23^{\circ}27'$ S verá, pelo menos uma vez por ano, o Sol passar pelo zênite. Para observadores fora desta zona, o Sol nunca passa pelo zênite.

A partir de uma certa latitude podemos observar o Sol durante 24h (o chamado Sol da meia-noite). Para isto, a latitude deve ser superior a $90^{\circ} - \varepsilon$, ou seja $\pm 66^{\circ}33'$ (dependendo se estamos no hemisfério Norte ou Sul). Esta latitudes são os *círculos polares Ártico* e Antártico.

Coordenadas Horárias

O sistema de coordenadas horárias é muito semelhante ao sistema equatorial. O círculo principal também é a projeção do equador terrestre e as declinações são medidas da mesma forma. Contudo, a origem das coordenadas longitudinais é diferente. No sistema horário a origem é o meridiano local do observador, como no sistema horizontal. Este

ângulo é chamado ângulo horário, H (Fig. 1.19). Note que o ângulo horário é medido no sentido oposto à ascensão reta (mas no mesmo sentido que o azimute).

Enquanto que a ascensão reta não varia devido ao movimento diurno da esfera celeste, o ângulo horário varia. A relação entre estas duas coordenadas está diretamente ligada ao movimento diurno da origem do sistema de coordenadas equatoriais, o ponto vernal. A soma da ascensão reta com o ângulo horário resulta em

$$T_s = H + \alpha \,, \tag{1.6}$$

onde T_s é o tempo sideral local (o tempo sideral será discutido em detalhes na seção 2.1.3). Contudo é importante notar que T_s também pode ser interpretado como um ângulo, o ângulo horário do ponto vernal.

Em notação matricial, a posição de um astro com ângulo horário He declinação δ é dada por:

$$\mathbf{I} = \begin{pmatrix} \cos(\delta) \, \cos(H) \\ -\cos(\delta) \, \sin(H) \\ \sin(\delta) \end{pmatrix}. \tag{1.7}$$

1.5.3 Coordenadas Eclípticas

O plano principal do sistema de coordenadas eclípticas é o plano da órbita da Terra em torno do Sol. Este sistema é particularmente útil no estudo de corpos do sistema solar, uma vez que a maioria dos corpos (sobretudo os planetas) estão em órbitas praticamente coplanares.

As coordenadas neste sistema são a *longitude eclíptica*, λ , e a *latitude eclíptica*, β (Fig. 1.20). O ponto de origem é, como para as coordenadas equatoriais, o ponto vernal. A latitude β é medida a partir da eclíptica, sendo positivo em direção polo norte da eclíptica (o mais próximo do polo norte celeste) e negativo em direção ao Sul. A longitude λ , assim como a ascensão reta é medida a partir do ponto vernal, crescendo em direção ao Leste (como a ascensão reta).

Figura 1.19: Sistema de coordenadas horário. O astro M tem coordenadas ângulo horário (H) e declinação (δ) . A latitude do observador é φ . Como o polo Norte celeste está acima do horizonte, este exemplo é de um observador do hemisfério Norte.

Figura 1.20: Sistema de coordenadas eclípticas. O astro M tem coordenadas longitude eclíptica (λ) e latitude (β). A inclinação da eclíptica em relação ao equador celeste é ε que vale aproximadamente 23°26′21″.

1.5.4 Coordenadas Galácticas

Para as coordenadas galácticas, o plano principal é definido pelo plano do disco da Via Láctea (nossa galáxia é uma espiral, provavelmente barrada, com a distribuição da maioria das estrelas em um disco), o *Equador Galáctico*. A origem é dada pela direção do centro galáctico, que se encontra na constelação de Sagitário, com coordenadas $\alpha = 17^{h}45^{m},62$ e $\delta = -28^{\circ}56',17$ (J2000), veja Fig. 1.21. O "polo norte galáctico" se encontra em $\alpha = 12^{h}51^{m},44$ e $\delta = 27^{\circ}07',7$.

Figura 1.21: Sistema de coordenadas galácticas. O astro M tem coordenadas longitude galáctica (l) e latitude (b). O ponto N é a intersecção do plano galáctico com o equador celeste (o nodo), C.G. é o direção do centro da Galáxia (que fica na constelação de Sagitário) e *i* é a inclinação do plano galáctico em relação ao equador celeste.

Este sistema é utilizado principalmente em astronomia extragaláctica (como o estudo do Grupo Local de galáxias, no qual a Via Láctea e a galáxia de Andrômeda são principais membros) ou em problemas ligados à nossa galáxia como um todo (por exemplo, o movimento das estrelas do disco da Via Láctea).

Antes de 1959, a origem do sistema de coordenadas galácticas coincidia com o nodo (intersecção do plano galáctico com o equador celeste). Com a adoção do novo sistema, foram introduzidos os expoentes I e II para indicar o sistema antigo e o novo, i.e., (l^{I}, b^{I}) e (l^{II}, b^{II}) . A diferença dos dois sistemas é simplesmente $l^{I} = l^{II} - 33^{\circ}, 0$.

Coordenadas Supergalácticas

Para o estudo de fenômenos ligados à estrutura em grande escala do Universo, foi introduzido o sistema de coordenadas Supergalácticas por Gérard de Vaucouleurs no início dos anos 1950. O plano principal é definido pelo plano onde se encontram uma grande concentração de galáxias do Superaglomerado Local, com centro no aglomerado de Virgo (Cosntelação da Virgem).

A origem deste sistema de coordenadas é, aproximadamente, na direção $\alpha=2^{\rm h}49^{\rm m}$ e $\delta=+59^{\circ}32'$ (J2000).

1.5.5 Movimento diário dos astros

Como já foi dito na seção 1.3, os objetos celestes têm um movimento aparente diário, surgindo na direção leste e se pondo na direção oeste. Para um observador no hemisfério Norte, a trajetória diária de um astro é um arco que culmina na direção sul, momento da *passagem meridiana* do astro. A figura 1.22 ilustra este movimento. No hemisfério Sul, a trajetória é semelhante, mas a culminação se dá na direção norte.

Figura 1.22: Movimento diário aparente. Como a Terra gira em torno do seu eixo de Oeste para Leste, temos a impressão de que a esfera celeste gira de Leste para Oeste. Os astros descrevem uma trajetória de declinação constante; o ângulo Horário e o azimute aumentam a medida que a estrela se desloca na esfera celeste. O astro M "nasce" no ponto q e se põe no ponto p.

Podemos notar nesta figura que nem todos os astros são visíveis para um dado observador: dependendo da declinação do astro, este nunca está acima da linha do horizonte. Por outro lado, também dependendo da declinação, existem astros que sempre estão acima da linha do horizonte. Um tal astro é chamado *circumpolar*. Um astro com declinação igual a zero (isto é, no equador celeste) se levanta exatamente na direção leste e se põe no oeste.

Podemos relacionar o sistema de coordenadas equatorial e horizontal topocêntricos de um dado observador e obter as declinações que correspondem aos astros circumpolares e aqueles que não são nunca visíveis. A Fig. 1.23 ilustra esta geometria.

A latitude ϕ é negativa no hemisfério sul. O ângulo h_{PSC} é a altura do polo sul celeste. Ela é sempre positiva para um observador no hemisfério sul.

O ângulo $\delta_{\text{circ.p.}}$ é a declinação a partir da qual os astros são circumpolares (isto é, nunca estão abaixo do horizonte). Ela é negativa para um observador no hemisfério sul, positivo no Norte.

O ângulo δ_{max} é a declinação máxima observável para um observador no hemisfério Sul; neste caso ela é positiva. Para um observador no hemisfério Sul, teremos uma declinação mínima (negativa) observável.

As seguintes relações, para o hemisfério Sul, podem ser obtidas:

$$\begin{aligned} h_{\rm PSC} + (90^{\circ} - |\phi|) &= 90^{\circ} \implies h_{\rm PSC} = |\phi|; \\ |\delta_{\rm circ.p.}| + h_{\rm PSC} &= 90^{\circ} \implies \delta_{\rm circ.p.} = -(90^{\circ} - |\phi|); \\ \delta_{\rm max} + |\phi| &= 90^{\circ} \implies \delta_{\rm max} = 90^{\circ} - |\phi|. \end{aligned}$$

$$(1.8)$$

Estas relações são válidas quando a refração atmosférica é desprezível e os sistemas geocêntrico e topocêntrico são coincidentes (isto é, válido para astros com distância muito maior que o raio da Terra). Discutiremos isto no capítulo 3.

Figura 1.23: Geometria correspondente à declinação máxima de astros visíveis e de astros circumpolares para um observador no hemisfério Sul. Esquerda: Perspectiva onde o equador está na horizontal (apropriado para coordenadas equatoriais). Direita: perspectiva onde o horizonte do observador está na horizontal (apropriado para coordenadas horizontais).

1.6 Relação entre sistemas de coordenadas

Os diversos sistemas de coordenados podem ser visualizados na figura 1.24.

Como vimos, as coordenadas polares de uma esfera podem ser escritas em forma vetorial em coordenadas cartesianas. A vantagem disto está no fato de que as transformações entre dois sistemas de coordenadas quaisquer podem ser decompostos em rotações que, por sua vez, podem ser representadas por matrizes. Assim, podemos facilmente escrever e calcular uma transformação de coordenadas utilizando produtos de matrizes e vetores.

No caso de uma rotação em torno de um dos eixos cartesianos, podemos considerar uma rotação a duas dimensões (Fig. 1.25). No exemplo desta figura, a rotação se dá ao redor do eixo z.

As rotações básicas ao redor dos eixos cartesianos $x, y \in z$, cada uma de um valor angular $\alpha_x, \alpha_y \in \alpha_z$ são dadas pelas matrizes dos cossenos diretores:

$$\mathbf{R}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha_{x} & \sin \alpha_{x} \\ 0 & -\sin \alpha_{x} & \cos \alpha_{x} \end{pmatrix}$$
$$\mathbf{R}_{y} = \begin{pmatrix} \cos \alpha_{y} & 0 & -\sin \alpha_{y} \\ 0 & 1 & 0 \\ \sin \alpha_{y} & 0 & \cos \alpha_{y} \end{pmatrix}$$
$$\mathbf{R}_{z} = \begin{pmatrix} \cos \alpha_{z} & \sin \alpha_{y} & 0 \\ -\sin \alpha_{y} & \cos \alpha_{z} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(1.9)

Dado um par de coordenadas em um sistema qualquer, devemos encontrar a ou as rotações necessárias para transformá-las em um outro sistema de coordenadas. Generi-

Figura 1.24: Exemplo de quatro sistemas de coordenadas, para um observador em São Paulo no início do ano, por volta da meia-noite. A região em cinza escuro representa o horizonte geográfico local, em cinza claro a Via Láctea e as Nuvens de Magalhães.

camente, podemos escrever:

$$\mathbf{I}(\alpha, \delta) = \mathbf{R}_x \, \mathbf{R}_y \, \mathbf{R}_z \, \mathbf{I}(l, b) \,, \tag{1.10}$$

onde devemos utilizar apenas as matrizes de rotação relevantes.

Assim, para transformarmos um dado ponto em coordenadas eclípticas em coordenadas equatoriais, devemos notar que a única rotação necessária é do plano fundamental (equador celeste \rightarrow eclíptica) em torno do eixo x (veja Fig. 1.16). O ângulo desta rotação é a inclinação da eclíptica, notado ε , que vale aproximadamente 23°26'21". Em notação vetorial resulta:

$$\begin{pmatrix} \cos(\delta) & \cos(\alpha) \\ \cos(\delta) & \sin(\alpha) \\ \sin(\delta) \end{pmatrix} = \mathbf{R}_{\mathbf{x}}(-\varepsilon) \begin{pmatrix} \cos(\beta) & \cos(\lambda) \\ \cos(\beta) & \sin(\lambda) \\ \sin(\beta) \end{pmatrix}$$
(1.11)

(note o sinal negativo de ε). Por exemplo, a equação que dá a declinação em função da longitude eclíptica é:

$$\operatorname{sen} \delta = \operatorname{sen} \varepsilon \cos \beta \operatorname{sen} \lambda + \cos \varepsilon \operatorname{sen} \beta.$$
(1.12)

Figura 1.25: Rotação no plano de um ângulo θ . As coordenadas do ponto P se escrevem como:

$$\begin{cases} x = \cos(\varphi) \\ y = \operatorname{sen}(\varphi) \end{cases} e \quad \begin{cases} x' = \cos(\varphi - \theta) = \cos(\varphi)\cos(\theta) + \operatorname{sen}(\varphi)\sin(\theta) \\ y' = \operatorname{sen}(\varphi - \theta) = \operatorname{sen}(\varphi)\cos(\theta) - \cos(\varphi)\sin(\theta) \end{cases}$$

onde φ é o ângulo do raio vetor de P. Eliminando-se φ obtêm-se as relações entre os dois sistemas de coordenadas.

A transformação no sentido inverso, isto é, de coordenadas equatoriais em eclípticas é simplesmente:

$$\mathbf{I}(\lambda,\beta) = \mathbf{R}_x(\varepsilon) \,\mathbf{I}(\alpha,\delta) \,. \tag{1.13}$$

A passagem entre coordenadas equatoriais e horizontais é mais delicada. Como as coordenadas horizontais possuem um movimento diário, é mais conveniente utilizarmos as coordenadas horárias do que as coordenadas equatoriais diretamente. Observando as figuras 1.15 e 1.19, vemos que a passagem de um sistema ao outro se efetua por uma rotação em torno do eixo cartesiano y. Esta rotação é igual ao complemento da latitude do observador, $90^{\circ} - \varphi$. Obtemos assim,

$$\mathbf{I}(H,\delta) = \mathbf{R}_y(-(90^\circ - \varphi))\mathbf{I}(A,h), \qquad (1.14)$$

o que resulta no seguinte sistema de equações:

$$\begin{aligned}
\cos(H)\cos(\delta) &= \cos(A)\cos(h)\sin(\varphi) + \sin(h)\cos(\varphi) \\
\sin(H)\cos(\delta) &= \sin(A)\cos(h) \\
\sin(\delta) &= -\cos(A)\cos(h)\cos(\varphi) + \sin(h)\sin(\varphi)
\end{aligned}$$
(1.15)

A transformação inversa se faz pela rotação no sentido contrário,

$$\mathbf{I}(A,h) = \mathbf{R}_{u}(90^{\circ} - \varphi)\mathbf{I}(H,\delta), \qquad (1.16)$$

Finalmente, vamos considerar as transformações entre as coordenadas equatoriais e galácticas. Neste caso devemos notar que as suas origens respectivas não coincidem (como, por exemplo no caso equatorial e eclíptico). Observando-se a figura 1.21, podemos notar que a transformação pode ser feitas considerando-se três rotações distintas. Em primeiro lugar devemos deslocar a origem das coordenadas galácticas até a intersecção dos planos equatorial e galáctico (o nodo, notado N na Fig. 1.21). Em coordenadas galácticas, esta rotação se escreve simplesmente $l' \rightarrow l - l_{CG}$. Em segundo lugar, devemos efetuar uma rotação do nodo até a origem do sistema equatorial, o ponto vernal. Isto se faz simplesmente em coordenadas equatoriais, $\alpha \rightarrow \alpha - \alpha_N$. Finalmente, realizamos a rotação do plano galáctico em torno do eixo cartesiano x (uma vez que as duas rotações precedentes fizeram com que as origens coincidissem. Resumindo, temos $\mathbf{I}(l - l_{CG}, b) = \mathbf{R}_x(i)\mathbf{I}(\alpha - \alpha_N, \delta)$, ou:

$$\begin{pmatrix} \cos(b)\cos(l-l_{CG})\\ \cos(b)\sin(l-l_{CG})\\ \sin(b) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(i) & \sin(i)\\ 0 & -\sin(i) & \cos(i) \end{pmatrix} \begin{pmatrix} \cos(\delta)\cos(\alpha-\alpha_N)\\ \cos(\delta)\sin(\alpha-\alpha_N)\\ \sin(\delta) \end{pmatrix}$$
(1.17)

onde *i* é a inclinação do plano galáctico, $i = 62^{\circ}, 6$, $l_{CG} = 33^{\circ}$ e $\alpha_N = 18^{\rm h}49^{\rm m}, 4 = 282^{\circ}, 25$ (valores para válidos para B1950 = J1949,99979, isto é, $22^{\rm h}9^{\rm m}47^{\rm s}$ de 31/12/1949 UTC, como foi definido originalmente). Para o referencial de J2000, adota-se $i = 62^{\circ}, 872$, $\alpha_N = 18^{\rm h}51^{\rm m}, 44 = 282^{\circ}, 86$, e $l_{CG} = 32^{\circ}, 932$.

1.6.1 Noções de trigonometria esférica

As relações entre os diversos sistemas de coordenadas que vimos nas seções anteriores também podem ser deduzidas a partir da trigonometria esférica. A trigonometria esférica apresenta diferenças fundamentais em relação à trigonometria plana. Por exemplo, na trigonometria plana a soma dos ângulos internos de um triângulo é sempre 180° . Na trigonometria esférica, esta mesma soma é sempre *superior* a 180° .

Na trigonometria plana (ou Euclidiana) a distância mais curta entre dois pontos é uma reta. Generalizando para geometrias não planas, a distância mais curta entre dois pontos é uma geodésica e, em geral, não é uma reta. No caso particular da geometria esférica, as geodésicas são segmentos de grandes círculos. Um exemplo disto está na Fig. 1.26.

Figura 1.26: Distância mais curta entre dois pontos sobre uma superfície esférica (no caso, a Terra). Cada traço cheio, a geodésica, indica a distância mais curta entre São Paulo e a Ilha da Reunião, e Santiago e Cartum. Qualquer projeção plana (*planisfério*) de uma esfera irá deformá-la.

A figura 1.27 ilustra um exemplo de triângulo esférico. Da mesma forma que um triângulo plano é definido por retas, o triângulo esférico é definido por segmentos de grande círculos. Vamos supor que a esfera onde se encontra o triângulo tem raio unitário.

Figura 1.27: Triângulo esférico sobre a superfície de uma esfera. Os lados do triângulo, $a, b \in c$, são segmentos de grandes círculos.

Isto significa que os módulos dos vetores \overrightarrow{OA} , $\overrightarrow{OB} \in \overrightarrow{OC}$ são iguais a 1 e os ângulos a, b e c, quando medidos em radianos, correspondem aos comprimentos dos arcos \overrightarrow{BC} , \overrightarrow{AC} e \overrightarrow{AB} , respectivamente.

O produto escalar dos vetores $\overrightarrow{OB} \in \overrightarrow{OC}$ é igual a $\cos(a)$ assim como $\overrightarrow{OA} \cdot \overrightarrow{OB} = \cos(c)$ e $\overrightarrow{OA} \cdot \overrightarrow{OC} = \cos(b)$. Na figura 1.27 os pontos $B' \in C'$ são as projeções dos vértices $B \in C$ no eixo OA. Assim, o produto escalar $\overrightarrow{OB} \cdot \overrightarrow{OC}$ pode ser escrito como

$$\overrightarrow{OB} \cdot \overrightarrow{OC} = (\overrightarrow{OB'} + \overrightarrow{B'B}) \cdot (\overrightarrow{OC'} + \overrightarrow{C'C}).$$

Mas $\overrightarrow{OB'} \perp \overrightarrow{C'C}$ e $\overrightarrow{OC'} \perp \overrightarrow{B'B}$ (pois $\overrightarrow{OB'}$ e $\overrightarrow{OC'}$ estão sobre o eixo OA e $\overrightarrow{C'C}$ e $\overrightarrow{B'B}$ são, por definição, perpendiculares a este eixo). Obtemos desta forma,

$$\overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OB'} \cdot \overrightarrow{OC'} + \overrightarrow{B'B} \cdot \overrightarrow{C'C}.$$

Como $\overrightarrow{OB'} \parallel \overrightarrow{OC'}$, então $\overrightarrow{OB'} \cdot \overrightarrow{OC'} = \cos(b)\cos(c)$ e, por outro lado, $\overrightarrow{B'B} \cdot \overrightarrow{C'C} = \sin(b) \operatorname{sen}(c) \cos(\hat{A})$, o que resulta em:

$$\cos(a) = \cos(b)\cos(c) + \sin(b)\sin(c)\cos(\hat{A}), \qquad (1.18)$$

conhecida como *fórmula fundamental* da trigonometria esférica. Esta fórmula também é válida através da permutação circular $A \to B \to C \to A$.

O comprimento de um segmento de arco de um grande círculo é simplesmente o seu valor em radianos multiplicado pelo raio da esfera.

A Eq. (1.18) pode ser usada para determinarmos a distância mais curta, D_{12} , entre 2 pontos no globo terrestre com longitude e latitude (λ_1, φ_1) e (λ_2, φ_2) :

$$D_{12} = R \arccos\left[\operatorname{sen} \varphi_1 \operatorname{sen} \varphi_2 + \cos \varphi_1 \cos \varphi_2 \cos(\lambda_2 - \lambda_1) \right],$$

onde R é o raio da Terra. Aqui estamos supondo que a Terra seja uma esfera (veremos na Sec. 3.1 que isto não é a melhor aproximação da forma da Terra).

Figura 1.28: Comprimento de segmentos de arco. O segmento $\widehat{A'B'}$ faz parte do círculo principal (equador), o segmento \widehat{AB} , do pequeno círculo de latitude φ .

Por exemplo, a cúpula do IAG/USP na Cidade Universitária tem coordenadas $\lambda_1 = 46^{\circ}44'7''$, $\varphi_1 = -23^{\circ}33'34''$ (negativo podeque está no hemisfério Sul), e a cúpula do telescópio Gemini Norte está em $\lambda_2 = 155^{\circ}28'8''$ e $\varphi_2 = +19^{\circ}49'26''$, logo a distância entre estes dois lugares é d = 12731 km.

No caso dos pequenos círculos é diferente. Consideraremos aqui apenas os pequenos círculos paralelos ao círculo principal (isto é, as latitudes ou declinações). Neste caso temos (Fig. 1.28):

$$\widehat{AB} = \widehat{A'B'} \cos \varphi = (\lambda_A - \lambda_B) \cos \varphi,, \qquad (1.19)$$

onde φ é a latitude do segmento de arco $\widehat{AB} \in \lambda_A \in \lambda_B$ são as longitudes (ou ascensão reta) de $A \in B$.

Notemos que a distância *mais curta* entre os pontos $A \in B$ na mesma latitude φ é dada pela Eq. (1.18), isto é:

$$\widehat{AB}_{\text{mais curta}} = \arccos\left[\sin^2\varphi + \cos^2\varphi\cos(\lambda_A - \lambda_B)\right].$$

Para o caso em que a separação seja pequena, i.e. $\delta_{\lambda} \equiv (\lambda_A - \lambda_B) \ll 1$ (em radianos), temos:

$$\widehat{AB}_{\text{mais curta}} \simeq \arccos \left[\sec^2 \varphi + \cos^2 \varphi - \frac{\delta_{\lambda}^2}{2} \cos^2 \varphi \right] = \arccos \left[1 - \frac{\delta_{\lambda}^2}{2} \cos^2 \varphi \right]$$
$$\Rightarrow \quad \widehat{AB}_{\text{mais curta}} \simeq \delta_{\lambda} \cos \varphi \,.$$

Quanto mais próximo do equador ($\varphi \to 0$), melhor é esta aproximação.

Tradicionalmente, a *milha náutica* é definida como o segmento de arco que corresponde à 1' sobre a superfície da Terra. Assim, por exemplo, um arco na superfície terrestre de comprimento igual a 1 radiano (igual a 3437,75 minutos de arco) equivale a 3437,75 milhas náuticas.

Sabendo-se que a circunferência equatorial da Terra mede aproximadamente 40.075 km, podemos concluir que uma milha náutica corresponde a 1,855 km.

Capítulo 2_

Tempo

2.1 Escalas de Medida de Tempo

2.1.1 Introdução

Desde a antiguidade, as medidas de tempo foram baseadas nos movimentos aparentes dos astros. Isto se deve ao fato de que estes movimentos são extremamente regulares e, em muitos casos, facilmente observáveis. Foi somente no século 20, com o advento da física quântica, que as escalas de tempo passaram a serem baseadas em transições atômicas.

De qualquer forma, mesmo sendo o tempo padrão definido em termos da física atômica, as escalas de tempo que utilizamos ainda são baseadas nos movimentos da Terra, Sol e Lua. A rotação da Terra em torno do seu eixo, por exemplo, é praticamente uniforme e pode ser medido de maneira muito precisa observando-se o movimento aparente das estrelas.

2.1.2 Movimento e tempo

Historicamente, as medidas de tempo estão relacionadas com o movimento da Terra e dos astros. Muitas das unidades de tempo que usamos estão relacionadas a **ciclos astronômicos**. A escala básica de medida do tempo, baseada no período de rotação da Terra em torno do seu próprio eixo, é chamado *dia*. A definição precisa do dia depende do ponto de referência que se utiliza para medi-lo (como veremos mais abaixo, onde definiremos com precisão este e as demais escalas de tempo aqui apresentadas).

Temos também uma escala de tempo natural definida pelo período de rotação da Lua em torno da Terra, o *mês.* Novamente, a definição precisa de mês lunar depende de como medimos o período de translação da Lua, em relação às estrelas ou ao Sol. O mês pode ser dividido em quatro partes correspondendo as fases da Lua (lua cheia, quarto minguante, crescente e Lua nova), definindo-se aproximadamente assim a *semana* (mas note que a semana não corresponde a um ciclo astronômico).

Finalmente, temos o período correspondente à translação da Terra em torno do Sol, o *ano*. Este pode ser ainda dividido em quatro, de acordo com as estações do ano (primavera, inverno, outono e verão).

2.1.3 Tempo sideral

O dia sideral é definido como o intervalo de tempo entre duas passagens consecutivas do ponto vernal pelo meridiano do observador. Exceto por efeitos pequenos devido às flutuações na rotação da Terra, a *hora sideral local* é simplesmente o ângulo horário

estrelas

do ponto vernal (H, nas coordenadas horárias). A *hora sideral verdadeira* é o ângulo horário do equinócio verdadeiro da data, assim como a *hora sideral média* é o ângulo horário do equinócio médio da data (as definições de médio e verdadeiro neste caso estão relacionados à nutação como veremos na seção 3.2).

Figura 2.1: Diferença entre dia sideral (uma rotação completa em relação às estrelas fixas) e dia solar (rotação em relação ao Sol). Rigorosamente, o dia sideral é definido em relação ao ponto vernal, contudo, em um período de 24 horas, o movimento do ponto vernal em relação às estrelas fixas pode ser desprezado em primeira aproximação.

Devemos notar que a definição de tempo sideral é feito em termos do ponto vernal e não utilizando as estrelas como referencial (veja a figura 2.1). Assim, exceto pelo movimento do ponto vernal em relação a um referencial inercial (devido à precessão dos equinócios), o dia sideral é uma medida direta da rotação da Terra em torno do seu próprio eixo. O tempo sideral pode então ser determinado diretamente pelo movimento aparente dos astros na esfera celeste.

Para cada meridiano terrestre podemos definir uma *hora sideral local* que se relaciona com a *hora sideral de Greenwich* pela relação:

tempo sideral local = tempo sideral de Greenwich + longitude

onde a longitude é positiva se for medida à leste de Greenwich e negativa à oeste. Lembrese que a longitude deve ser convertida em unidade de tempo antes de ser somada ao tempo sideral de Greenwich (ou seja, se for dada em graus, devemos dividi-la por 15). A vantagem em se definir o tempo sideral a partir do meridiano de Greenwich é que existe uma relação empírica entre esta hora (ou simplesmente *tempo sideral*) e o tempo universal que será definido mais abaixo.

O dia sideral tem por definição 86.400 segundos de tempo sideral; em outras palavras podemos definir o *segundo de tempo sideral* como a fração 1/86.400 do dia sideral. Como veremos a seguir, a definição de segundo varia segundo o sistema de tempo utilizado. Utilizando-se o segundo definido pelo sistema internacional de unidades (SI), o dia sideral tem aproximadamente $23^{h}56^{m}4,0989$.

Se, ao invés de definirmos o dia em relação ao ponto vernal, mas em relação às estrelas fixas, teremos o *dia estelar*. A diferença entre o dia sideral e estelar é inferior a um centésimo de segundo.

2.1.4 Tempo solar, tempo universal e tempo civil

O tempo solar é baseado na rotação da Terra em relação ao Sol. Esta definição difere do tempo sideral, uma vez que a Terra tem um movimento de translação em torno do Sol ao mesmo tempo em que gira em torno de si mesma (Fig. 2.1). É este movimento combinado que define o tempo solar. Assim, o tempo solar é baseado no *dia solar* que é equivalente à noção intuitiva que nós temos do dia, relacionado ao movimento diurno aparente do Sol.

Existem duas definições distintas de tempo solar:

- tempo solar local aparente ou verdadeiro, dado pela posição aparente do centro do disco solar. Esta é uma medida de tempo muito irregular mas é a mais intuitiva; ela está diretamente relacionada ao tempo medido em um relógio de Sol. Está em desuso em astronomia desde 1965.
- tempo solar médio, definido como o ângulo horário do Sol médio +12^h (para que o dia comece à meia-noite). O Sol médio é um objeto fictício que se move ao longo do equador celeste a uma velocidade uniforme, enquanto que o Sol verdadeiro move-se ao longo da eclíptica com um ritmo não uniforme (devido principalmente à elipticidade da órbita da Terra, à inclinação da eclíptica e as perturbações devido à Lua e aos planetas, cf. Fig. 2.2).

Figura 2.2: Diferença entre o Sol verdadeiro (aparente) e o Sol médio, que é aproximadamente a projeção do Sol aparente sobre o equador celeste. Para diferentes dias do ano, o Sol verdadeiro pode tanto estar atrasado em relação ao Sol médio (p.ex. 01/03) como adiantado (p.ex. 05/05). Por volta do dia 14/04 a passagem meridiana de ambos coincidem. As horas sobre o equador celeste indicam o valor da ascensão reta aproximada naquele ponto.

Se nós marcamos a posição do Sol (verdadeiro) exatamente ao meio-dia civil (o momento da passagem meridiana do Sol médio, ou seja, o meio-dia marcado pelo relógio)

durante todo um ano, veremos que estas posições do Sol traçam uma figura de um "oito" na esfera celeste, como mostra a Fig. 2.3. Esta figura é chamada de *analema*.

Figura 2.3: Posição aparente do Sol verdadeiro, exatamente ao meio-dia civil (12h no relógio) durante todo um ano, para um observador em São Paulo. Note que no verão, o Sol está próximo do zênite.

A diferença entre o Sol verdadeiro e o Sol médio é conhecida como equação do tempo:

equação do tempo = tempo solar médio - tempo solar verdadeiro.

Esta equação do tempo pode ser interpretada como a diferença entre a ascensão reta do Sol médio e a longitude eclíptica do Sol verdadeiro $(\alpha_{\odot} - \lambda_{\odot})$.

Os dois principais termos da equação do tempo (Fig. 2.4) vêm da inclinação da eclíptica e da elipticidade da órbita da Terra. A oscilação do Sol verdadeiro em torno do Sol médio devido à obliquidade da eclíptica pode ser deduzido facilmente a partir das equações de transformação de coordenadas eclípticas para equatoriais. Tomando $\beta_{\odot} = 0$ temos:

$$\begin{cases} \cos \delta_{\odot} \cos \alpha_{\odot} = \cos \lambda_{\odot} \\ \cos \delta_{\odot} \sin \alpha_{\odot} = \sin \lambda_{\odot} \cos \varepsilon \quad \Rightarrow \cos \lambda_{\odot} \sin \alpha_{\odot} = \cos \alpha_{\odot} \sin \lambda_{\odot} \cos \varepsilon . \end{cases}$$
(2.1)

Subtraindo $\cos \alpha_{\odot} \sin \lambda_{\odot}$ de ambos os lados, a Eq. (2.1) pode ser escrita como

$$\operatorname{sen}(\alpha_{\odot} - \lambda_{\odot}) = (\cos \varepsilon - 1) \cos \alpha_{\odot} \operatorname{sen} \lambda_{\odot} = (\cos \varepsilon - 1) \operatorname{sen}(\alpha_{\odot} + \lambda_{\odot}) + (1 - \cos \varepsilon) \cos \lambda_{\odot} \operatorname{sen} \alpha_{\odot} = \frac{\cos \varepsilon - 1}{\cos \varepsilon + 1} \operatorname{sen}(\alpha_{\odot} + \lambda_{\odot}).$$
(2.2)

Como $\alpha_{\odot} \approx \lambda_{\odot}$ podemos escrever finalmente:

$$\alpha_{\odot} \approx \lambda_{\odot} - \tan^2(\varepsilon/2) \operatorname{sen}(2\lambda_{\odot}) \,. \tag{2.3}$$

A equação (2.3) nos diz que a obliquidade da eclíptica faz com que, a cada 6 meses, o Sol verdadeiro (λ_{\odot}) ultrapassa o Sol médio (α_{\odot}) para, em seguida ser ultrapassado. Em outras palavras, o Sol verdadeiro oscila em torno do Sol médio com um período de 6 meses com uma amplitude $\tan^2(\varepsilon/2) \approx 9,9$ minutos (isto é, o Sol verdadeiro pode

Figura 2.4: Equação do tempo. A curva 'elipticidade' indica a contribuição do fato da órbita terrestre não ser exatamente circular; a curva 'obliquidade da eclíptica' indica a contribuição da inclinação do equador celeste (eixo de rotação da Terra) em relação à órbita terrestre. A soma destas duas componentes mais algumas perturbações lunares e planetárias, resulta na equação do tempo, mostrada aqui em minutos, em função do dia no ano. Como a equação do tempo varia lentamente com o tempo, esta figura só é válida por alguns séculos.

adiantar ou atrasar em relação ao Sol médio até quase 10 minutos devido à obliquidade da eclíptica). Note que este efeito é puramente geométrico.

Além disto, a elipticidade da órbita terrestre também provoca uma oscilação do Sol verdadeiro em torno do Sol médio, mas com um período de um ano (este é um efeito dinâmico). Quando a Terra se encontra próxima do periélio sua velocidade é maior do que quando ela se encontra próxima do afélio. Isto se reflete na velocidade do movimento anual aparente do Sol, fazendo com que seu movimento não seja uniforme como o do Sol médio.

A soma das oscilações devido à obliquidade e à elipticidade (mais as perturbações lunares e planetárias, que são muito menores) resulta no comportamento observado da equação do tempo (Fig. 2.4).

O tempo civil, a escala de tempo que utilizamos no nosso dia-a-dia, era até os anos 70 definido pelo tempo solar médio $+12^{\rm h}$, para que o dia comece à meia-noite e não ao meio-dia. Atualmente, a definição precisa do tempo civil depende do tempo atômico (que veremos mais adiante) e não da rotação da Terra.

Chamamos de *Tempo Universal* (UT, do inglês *Universal Time*), o tempo civil de Greenwich. Historicamente, o UT era chamado GMT (do inglês, *Greenwich Mean Time* ou tempo de Greenwich médio). Apesar de ultrapassada, ainda hoje a notação GMT é utilizada em algumas áreas.

Podemos ainda corrigir o tempo universal levando em conta o movimento do polo geográfico em relação ao eixo de rotação da Terra (discutiremos este fenômeno na seção 3.3). O tempo universal assim corrigido é chamado UT1 (e o UT sem correção é as vezes chamado UT0).
A rotação da Terra é afetada também por efeitos periódicos ligados ao aquecimento diferenciado da atmosfera para cada estação do ano. Este efeito sazonal redistribui uma grande quantidade da atmosfera durante o ano o que provoca uma variação do momento de inércia total da Terra. Podemos então o tempo universal levando-se em conta esta variação sazonal da velocidade de rotação terrestre. Chamamos de UT2 o tempo universal que leva em conta esta correção (além da correção do movimento do polo).

2.1.5 Translação da Terra: ano

As escalas de tempo solar e sideral são baseadas essencialmente no movimento diurno da esfera celeste, o dia. Podemos também definir unidades de tempo baseadas na translação da Terra em torno do Sol. Esta unidade, é claro, chama-se ano. Da mesma forma que o dia, vários tipos de ano podem ser definidos de acordo com o referencial adotado.

Ano sideral

Chamamos de ano sideral o intervalo de tempo de uma volta da Terra em torno do Sol em relação às estrelas fixas, veja Fig. 2.5. Este é o período para que a Terra percorra exatamente 360° em relação a um referencial fixo (supostamente inercial). O ano sideral tem atualmente 365d 6h 9m 10s.

Figura 2.5: Ano trópico (em relação ao Sol) e sideral (em relação ao ponto vernal, \Im). A diferença se dá devido ao movimento retrógrado do ponto vernal, causado pela precessão do eixo de rotação terrestre (trataremos disto mais adiante, na seção 3.2).

Do ponto de vista do observador terrestre, o ano sideral é o tempo necessário para o Sol completar 360° sobre a eclíptica. Podemos então definir o movimento médio do Sol, n_{\odot} como:

$$n_{\odot} = 360^{\circ}/365, 256366 \,\mathrm{dia} = 0,9856091 \,\mathrm{por} \,\mathrm{dia}\,,$$
 (2.4)

lembrando que este movimento aparente anual do Sol é no sentido direto (ascensão reta ou longitude eclíptica crescente).

Nascimento heliacal Chamamos de nascimento *heliacal* quando um astro aparece logo acima do horizonte seguido imediatamente pelo Sol. Devido ao movimento anual

aparente do Sol, a cada dia os astros nascem cerca de 4 minutos mais cedo e, assim, a cada dia após o dia do nascimento heliacal, vemos o astro mais tempo antes do nascer do Sol. A Fig. 2.6 ilustra o fenômeno do nascimento heliacal.

Figura 2.6: Nascimento heliacal de Sirius para um observador em São Paulo. No painel de cima, o Sol nasce um pouco antes da estrela Sirius. Neste dia, Sirius não é observada, ofuscada pelo Sol. Alguns dias depois (painel de baixo) Sirius nasce antes do Sol e pode ser observada por alguns instantes. O dia em que Sirius é observada pela primeira vez é o dia do seu *nascimento heliacal*.

A observação do nascimento heliacal de estrelas (próximas da eclíptica) permite a determinação empírica da duração do ano sideral. Foi desta forma, inclusive utilizando a estrela Sirius, que os antigos egípcios determinaram a duração do ano há mais de 4000 anos.

Ano trópico

O ano trópico é o intervalo médio de tempo entre duas passagens consecutivas do Sol pelo ponto vernal. Quando o Sol se encontra no ponto vernal sua declinação é zero (pela própria definição do ponto vernal). No dia em que o Sol está no ponto vernal, o dia e a noite têm aproximadamente 12 horas cada, e por isto, esta data é chamada de *equinócio* (de Outono no hemisfério Sul e de Primavera no hemisfério Norte). Aproximadamente 6 meses depois, o Sol cruza novamente o equador celeste no ponto oposto ao ponto vernal e temos novamente um equinócio (de Primavera no hemisfério Sul, de Outono no Norte). Entre os equinócios de Outono e Primavera (do hemisfério Sul) a declinação do Sol atinge um máximo para, seis meses depois, atingir um mínimo. Estes extremos

são chamados de *solstício* (de Verão no hemisfério Sul quando a declinação é mínima, de Inverno no hemisfério Sul quando a declinação é máxima). Estes quatro pontos são chamados *estações* e definem (como diz o nome) o início das estações do ano. Por sua definição, o ano trópico corresponde à nossa noção intuitiva de ano, como sendo o tempo necessário para que as estações do ano se repitam.

Como o ponto vernal se move em relação às estrelas fixas (devido à precessão dos equinócios, como veremos em detalhes na seção 3.2), o ano trópico difere ligeiramente do ano sideral. O ano trópico tem atualmente uma duração de 365d 5h 48m 45s (ou 365,24219 dias), sendo um pouco mais curto que o ano sideral, já que o ponto vernal tem um movimento retrógrado. Devido às irregularidades do movimento da Terra, tanto da precessão e nutação como da translação, a duração do ano trópico varia como mostra a Fig. 2.7.

Figura 2.7: Variação da duração do ano trópico em minutos em relação vaac médio de lor 365.24219 dias. medido entre duas passagens consecutivas do Sol pelo ponto levando vernal emconta efeitos de precessão е nutação (veja Sec. 3.2).

Devido a esta variação, é mais conveniente definir o ano trópico em termos do movimento médio do Sol ao longo da eclíptica, de forma que um ano é o intervalo de tempo necessário para o Sol médio percorrer 360°. A duração deste movimento médio varia lentamente com o tempo da seguinte forma, baseada em J. Laskar, por sua ver baseado em Simon Newcomb:

ano trópico = $365, 24218967 - 6, 1536 \times 10^{-5}t - 7, 29 \times 10^{-8}t^2 + 2, 64 \times 10^{-7}t^3$ dias, (2.5) onde t é medido em *milênio juliano* de 365250 dias, veja Eq. (2.8) na seção 2.3.

Ano anomalístico

Como a órbita da Terra é uma elipse, também podemos definir um ano como o intervalo entre duas passagens da Terra pelo periélio. Este ano é chamado anomalístico e tem uma duração de 365d 6h 13m 53s, sendo um pouco mais longo que o ano sideral devido à precessão da órbita terrestre (que é no sentido direto e não retrógrado como o movimento do ponto vernal). Atualmente, a Terra passa pelo periélio por volta do dia 2 de janeiro, e pelo afélio por volta do dia 5 de julho:

O *ano anomalístico* aparece naturalmente quando resolvemos o chamado problema de Kepler (dois corpos ligados gravitacionalmente) para o sistema Sol–Terra.

Ano draconiano

A órbita da Lua também define um grande círculo na esfera celeste. Assim como a intersecção do equador celeste e da eclíptica definem um ponto preciso, a intersecção da projeção da órbita lunar na esfera celeste e a eclíptica também definem um ponto de referência. O intervalo entre duas passagens do Sol por este ponto define o *ano draconiano*, cuja duração média atual é aproximadamente 346,62 dias.

O ano draconiano está relacionado com o ciclo de recorrência das eclipses, correspondendo a 1/19 do ciclo de saros (isto será visto na seção 4.10).

2.1.6 Translação da Lua: mês

Da mesma forma que a translação da Terra define o ano, a translação da Lua em torno da Terra deu origem ao $m\hat{e}s$. Devemos notar, contudo, que o movimento da Lua é extremamente complexo e as irregularidades no seu movimento muito mais importantes do que, por exemplo, o movimento de translação terrestre.

Mês sinódico

O mês sinódico ou lunação é, por definição, o intervalo de tempo entre duas configurações idênticas e sucessivas, por exemplo duas "Luas Novas" (quando a Lua se encontra entre a Terra e o Sol) ou duas "Luas Cheias" (quando a Lua se encontra em oposição). O mês sinódico corresponde portanto ao intervalo entre duas fases iguais da Lua, veja Fig. 2.8. O mês sinódico tem atualmente uma duração média de 29,53059 dias (29 dias, $12^{h}44^{m}2^{s}$ 9).

Devido à complexidade da órbita lunar, em razão da perturbação da Terra, dos planetas e do Sol, da excentricidade e da inclinação de sua órbita, a duração real do mês sinódico pode variar de ± 7 horas em torno do valor médio. As lunações mais longas ocorrem quando a Terra está próxima do periélio e as lunações mais curtas quando a Terra está próxima do afélio.

É o mês sinódico que deu origem ao mês utilizado nos calendários (a recorrência das fases da Lua).

Figura 2.8: Mês sinódico (em relação ao Sol) e sideral (em relação às estrelas fixas). O traço espesso (azul) representa o movimento na Lua no espaço (totalmente fora de escala...).

Mês sideral

O *mês sideral* é o período de translação da Lua em relação a um referencial fixo. A duração média de um mês sideral é de 27,3217 dias. A diferença com o mês sinódico se explica pelo fato deste depender de uma composição do movimentos da Terra e da Lua (Fig. 2.8).

O mês sideral é exatamente igual (com uma precisão de 0,1 segundos) ao 'dia' lunar, isto é, o período de rotação da Lua em torno dela mesma. É por esta razão que sempre vemos a mesma face da Lua (na realidade vemos cerca de 59% da superfície lunar devido às perturbações solar e planetárias, além da inclinação relativa da órbita lunar).

Ciclo de Meton

O filósofo e astrônomo Meton de Atenas descobriu no século V A.C. que o período de 19 anos (trópicos) ocorriam 235 lunações (meses sinódicos). Em outras palavras, o período $19 \times 365, 24219 = 6939, 60$ dias é muito próximo de $235 \times 29, 5306 = 6939, 69$, isto é uma diferença da ordem de 2 horas em 19 anos. Este período de 19 anos, ou 6040 dias, é chamado de *Ciclo Metônico*.

2.1.7 Tempo dinâmico

O tempo dinâmico (TD) é a variável independente que aparece nas equações de movimento dos corpos celestes. Na física newtoniana a escala de tempo dinâmico é absoluta (invariante para qualquer observador). Contudo, segundo a teoria da relatividade, o tempo dinâmico depende do sistema de coordenadas utilizado. Assim defini-se o tempo dinâmico terrestre, TDT, referente à Terra, e o tempo dinâmico baricêntrico, TDB, referente ao baricentro do sistema solar (aproximadamente o centro do Sol). A menos que se queira uma precisão muito alta (inferior a um milissegundo) podemos admitir que TDT = TDB = TD.

Tempo das Efemérides e Tempo Terrestre

Já nos anos 1920 ficou claro que a escala de tempo baseada no dia solar sofria de muitas irregularidades devido à rotação terrestre, principalmente devido à diminuição progressiva da velocidade de rotação da Terra causado pelos efeitos de maré luni-solar. A necessidade de uma escala uniforme levou ao desenvolvimento do tempo das efemérides (ET) nos anos 1940 e sua adoção em 1952, baseada nas equações de movimento dos planetas e da Lua. Para tanto, foi introduzido um fator de conversão entre o tempo universal e o tempo das efemérides, $\Delta T = \text{ET}-\text{UT}$.

Considerando-se, na época, que o ano tropical era mais significativo que o ano sideral, foi decidido em 1956 que a unidade fundamental de tempo seria o segundo definido como a fração 1/31.556.925,9747 do ano tropical médio de 1900 (com início às 12h do dia 31 de dezembro, ou "0 de janeiro"). Para isto, foi utilizada a expressão de Newcomb que nos dá a longitude média do Sol em relação ao equinócio médio da data:

$$L = 279^{\circ}41'48''_{,0}04 + 129.602.768''_{,1}13T + 1''_{,0}089T^2$$

$$(2.6)$$

de onde o tempo em segundos para o Sol completar uma volta de 360° é:

 $\frac{360^{\circ} \times 60' \times 60''}{129.602.768''_{.}13} \times 36525 \text{dias} \times 86400 \text{s}/\text{dia} = 31.556.925, 9747 \text{s} \text{ de efemérides} \,.$

Na expressão (2.6), T é medido em séculos julianos, que será definido mais abaixo na seção 2.3.

A diferença entre o tempo universal (solar) e o tempo das efemérides, ΔT , não pode ser predita com precisão pois depende dos movimentos irregulares da Terra que só são conhecidas após as observações serem feitas, e comparando-se as posições preditas dos astros pelas teorias dinâmicas com as observações. Não podemos portanto prever o valor de ΔT para períodos superiores a alguns anos. Spencer Jones propôs a seguinte formula aproximativa:

$$\Delta T = 68, 0 + 102, 3T + 29,95T^2 + 1.821B \text{ (seg)}, \qquad (2.7)$$

onde T medido em séculos julianos e B depende das irregularidades da rotação terrestre, não pode ser previsto e podendo chegar a dezenas de segundos em módulo. Os três primeiros termos do segundo membro da expressão (2.7) representam o movimento uniformemente acelerado de freagem da rotação da Terra. Os valores medidos ou deduzidos de ΔT de 1600 a 2013 (além das previsões até 2022) são mostradas no gráfico 2.9.

Figura 2.9: $\Delta T = \text{ET}-\text{UT}$ (ou, atualmente, TT-UT, como será visto mais abaixo) em segundos. Os valores para os anos superiores a 2013 são previsões cujas incertezas são de cerca de 1 segundo para o ano 2016 e ~ 10 segundos para 2023. Fonte: *IERS Rapid Service/Prediction Center*

A partir de 1984, passamos a utilizar o tempo dinâmico (TD) ao invés do tempo das efemérides (ET). Posteriormente, a partir de 1991, o TD passou a se chamar *Tempo Terrestre* (TT), usado até hoje. A escala de Tempo Terrestre é, na prática, uma continuação da escala de tempo das efemérides, porém sua definição depende do tempo atômico.

2.1.8 Tempo atômico

A definição do sistema de tempo atômico (TAI, *Tempo Atômico Internacional*) não está relacionado à astronomia mas sim à física atômica. O tempo atômico é baseado em uma transição hiperfina do Césio-133, correspondente a uma radiação em micro-ondas de cerca de 3,26 cm ou 9,19 GHz.

O primeiro relógio atômico de Césio foi construído em 1955 e, em 1958, após extensiva comparação com medidas astronômicas, foi estabelecido que um segundo de tempo

equivale a 9.192.631.700 ciclos da frequência de transição hiperfina do nível fundamental do Césio. Em 1967, a unidade de segundo do Sistema Internacional de unidades deixa de se basear na rotação da Terra e é redefinido pela freqüência de transição heperfina do Césio.

Desde 1972, o TAI é utilizado oficialmente como escala de tempo padrão a partir do qual as outras escalas de tempo podem ser derivadas. A grande vantagem do TAI sobre o tempo dinâmico é que o TAI não depende da análise das observações dos movimentos dos astros e pode ser obtido imediatamente. Além disto, o TAI é determinado com uma precisão de 3×10^{-16} segundos, isto é, uma precisão de 1 segundo em 100.000.000 anos (um bom relógio comercial tem uma precisão de 1 segundo em alguns dias). Em um futuro próximo a precisão do TAI pode chegar a 2×10^{-18} segundos, isto é, 1 segundo em ~ 16 bilhões de anos (veja Fig. 2.10 para uma visão global da evolução da precisão da medida da passagem do tempo).

Figura 2.10:Evolução da precisão damedida tempo. A do par-Séc. tir do XIV, é mostrado de forma separada evolução dos a métodos baseados em observações astronômicas e através de relógios Fonte: terrestres D.D. McCarthy, Metrologia 48. S132 (2011); W.A. Marrison, Bell Sys. Tech.J. 27, 510 (1948)

Em 1972, quando foi introduzido, a relação entre o TAI e o tempo das efemérides, ET, foi fixado da seguinte forma: ET = TAI + 32,184 s; atualmente, utilizamos TT = TAI + 32,184 s. Desta forma, a escala "TAI + 32,184" pode ser considerada como uma extensão da escala baseada no tempo terrestre (antigo tempo das efemérides).

Finalmente é importante notar que o segundo do tempo atômico foi definido de forma a ser idêntico à fração 1/31.556.925,9747 do ano trópico de 1900. Isto é, um segundo do TAI foi fixado de forma a ser idêntico ao segundo médio medido em 1900, de acordo com a definição do segundo do Sistema Internacional feita em 1958.

Esta definição do segundo tem uma consequência importante quando comparado com o segundo baseado na rotação da Terra (em tempo universal) como veremos a seguir.

2.1.9 Rotação da Terra

Antes dos relógios atômicos, a rotação da Terra servia como base para medir a passagem do tempo. Em 1959, logo depois que o tempo atômico começou a ser utilizado (mas não ainda oficialmente), foi determinado precisamente a diferença entre o tempo medido pela rotação terrestre em relação a um referencial inercial (o dia sideral) e por transições atômicas.

A rotação precisa da Terra é complexa. Em primeiro lugar existe um efeito cumulativo que diminui a velocidade de rotação da Terra (Fig. 2.11). Este efeito é principalmente devido ao efeito de maré causado pela Lua e, em menor parte, pelo Sol. Este fenômeno é análogo a uma colisão inelástica: o efeito de maré provoca um movimento dos oceanos que, devido ao atrito com o fundo do mar, dissipa a energia cinética de rotação da Terra mas, por outro lado, o momento angular total do sistema Terra–Lua e Terra–Sol, se conservam. Assim, a diminuição da velocidade de rotação da Terra implica em um afastamento da Lua em relação à Terra, de maneira a que o momento angular total do sistema se conserve.

Figura 2.11: Variação da duração do dia (definido como 86.400 segundos SI) em milissegundos. A reta inclinada ilustra o frenagem (variação secular) de 1,5 ms/dia/século.

Por outro lado, outros fenômenos contribuem à complexidade da rotação terrestre. Por exemplo, o movimento das placas (*tectônica de placas*), terremotos e fluxos de matéria no centro da Terra. A distribuição desigual das massas de terra e mar entre os hemisférios norte e sul, provocam um aquecimento diferente da atmosfera nestes hemisférios. Esta desigualdade provoca uma variação sazonal no momento de inércia terrestre (devido à dilatação da atmosfera) que atua na rotação da Terra (2.12).

Atualmente, a frenagem (desaceleração) da rotação terrestre é estimada em cerca de 1,5 a 2 milissegundos por dia por século. Isto significa que a duração do dia 1º de janeiro de 2000 seria tipicamente cerca de 0,002 segundo mais longo que o dia 1º de janeiro de 1900 (veja Fig. 2.11). Na realidade, o fenômeno é muito mais complexo, a Terra não é um objeto exatamente sólido, e a magnitude da variação do duração do dia pode também variar de vários milissegundos em alguns anos. Mas a tendência global da frenagem é de fato dada pelo valor supracitado.

Como o segundo atômico (igual a um segundo do Sistema Internacional) é baseado na duração do dia no ano 1900, hoje, quase um século depois, o dia baseado na rotação da Terra é, em média, cerca de 0,002 segundos mais longo. Isto significa que, em relação ao TAI, o tempo universal (UTC) perde 0,002 segundos por dia e, após cerca de 500

Figura 2.12: Variações sazonais da duração do dia (definido como 86400 segundos SI) em milissegundos. A senoide no primeiro painel ilustra a variação anual (note que ela é assimétrica).

dias a diferença atinge cerca de 1 segundo. Isto $n\tilde{a}o$ significa que a duração do dia esteja aumentando de 1 segundo a cada 500 dias; isto é uma consequência da definição do segundo do SI como idêntico ao segundo medido em 1900, então baseado na rotação da Terra.

2.1.10 Tempo universal coordenado e Tempo Legal (ou Civil)

A partir do tempo atômico internacional, defini-se o *tempo universal coordenado*, UTC. UTC é simplesmente TAI mais um número inteiro de segundos de modo a que a diferença entre UTC e UT1 não seja nunca superior a um segundo.

A diferença entre UT1 e UTC (ou TAI) é simplesmente devido a frenagem da rotação da Terra e das definições de segundo no TAI e no UT. Como vimos, esta desaceleração está por volta de 2 milissegundos por dia por século atualmente. Este efeito é muito pequeno e só tem um efeito notável em intervalos de tempo geológicos. Além disto é muito provável que a frenagem era mais importante no passado que hoje.

Contudo, como vimos, atualmente o dia medido em tempo universal ganha cerca de 0,002 segundo (de TAI) por dia. Este efeito é cumulativo e a cada 400–500 dias (ou um ano e meio) aproximadamente a diferença entre UT1 e UTC chega a um segundo (Fig. 2.13). Disto vem a necessidade da introdução de um segundo a mais no ano. Este segundo é chamado segundo intercalar (em inglês, leap second). Por convenção, o segundo intercalar é sempre somado ao último segundo do mês de junho ou dezembro, quando necessário.

A diferença entre o Tempo Terrestre (ou Tempo Dinâmico, antigo Tempo das Efemérides)

Figura 2.13: Diferença entre o UT1 e UTC em função do tempo. As descontinuidades correspondem à introdução de um segundo intercalar (as flechas indicam os últimos segundos intercalares).

Figura 2.14: Diferença em segundos entre os tempos atômico e tempo universal coordenado mais recentes. O fim do último intervalo ainda não é conhecido.

Intervalo de	TAI-UTC
validade $(0^{\rm h} {\rm UT})$	(s)
01/01/1990 a 01/01/199	$1 \dots 25$
01/01/1991 a 01/07/199	$2 \dots 26$
01/07/1992 a 01/07/199	3 27
01/07/1993 a 01/07/199	$4 \dots 28$
01/07/1994 a 01/01/199	$6 \dots 29$
01/01/1996 a 01/07/199	7 30
01/07/1997 a 01/01/199	$9 \dots 31$
01/01/1999 = 01/01/200	$6 \dots 32$
01/01/2006 a 01/01/200	9 33
01/01/2009 = 01/07/201	$2 \dots 34$
01/07/2012 a 01/07/201	$5 \dots 35$
01/07/2015 a ??	36

e o UT1 é dado atualmente da seguinte forma:

1-1-1990

1-1-2000

Data

1-1-2010

$$\Delta T \equiv TT - UT1 = 32,184 + (TAI - UTC) - (UT1 - UTC),$$

1-1-2020

onde (TAI – UTC) é o número de segundos intercalar acumulado (veja Fig. 2.14) e UT1 - UTC pode ser visto na Fig. 2.13.

Tempo Legal. Atualmente o tempo civil ou tempo legal (que é utilizado no dia-a-dia) é definido a partir do UTC. Em geral o tempo civil em um dado país é simplesmente UTC mais (ou menos) um número de horas correspondente ao fuso horário local (Fig. 2.15).

Idealmente, o fuso horário deveria acrescentar 1 hora para cada 15 graus na direção leste de Greenwich e subtrair 1 hora para cada 15 graus na direção oeste. Por razões geográficas e, principalmente, políticas os fusos horários são adaptados regionalmente. No Brasil, é adotada a hora oficial de Brasília, que se encontra na longitude $47^{\circ}53' \simeq$ $47^{\circ}_{,883} \simeq 3,192 h$ a Oeste de Greenwich. Assim, arredondando, adotamos UTC-3h para o fuso horário de Brasília.

20

15

10 1-1-1970

1-1-1980

Figura 2.15: Fusos horários legais no mundo. Quando passamos ao "horário de verão", acrescentamos uma hora ao fuso horário local.

Devido a sua extensão territorial, entre 1913 e 2008, o Brasil era dividido em 4 fusos horários. A partir de abril/2008 passamos a ter 3 fusos: UTC-2h no arquipélago Fernando de Noronha e na ilha da Trindade; UTC-3h todo o litoral do Brasil, o Distrito Federal e os Estados interiores, exceto os Estados de Mato Grosso, Mato Grosso do Sul, Amazonas, Rondônia, Roraima e Acre que seguem UTC-4h. Contudo, em outubro de 2013, o Brasil voltou a ser dividido em 4 fusos horários, de UTC-2h (dos arquipélagos do Atlântico) até UTC-5h (Acre e parte do Amazonas) como ilustra a figura 2.16.

Chamamos de **Horário de Verão** quando somamos 1 h à hora oficial local entre meados da primavera e meados do verão, isto é, aproximadamente dois meses antes e dois meses depois do solstício de verão. O objetivo da introdução do horário de verão é reduzir o consumo de energia elétrica durante os meses em que as noites são curtas. Isto só ocorre em latitudes elevadas (em módulo), portanto estados do Brasil e países próximos da linha do Equador não costumam adotar o horário de verão.

2.2 Calendários

2.2.1 Introdução

Para podermos especificar quando um dado evento ocorreu ou quando ele está previsto, é necessário que tenhamos não apenas uma escala de tempo definida como também é

Figura 2.16: Fusos horários no Brasil desde outubro/2013. Nos estados próximos do Equador, não é adotado o horário de Verão. Pontualmente, alguns estados como Bahia e Tocantins, por exemplo, podem mudar sua política de adoção do horário de verão.

preciso um sistema de contagem ou medida do tempo que passa. O fenômeno periódico mais simples de se observar é sem dúvida o ciclo dia-noite. Assim, por convenção, adotouse o dia (solar) como unidade básica de medição da passagem do tempo, a *cronologia*.

Notemos que a palavra "*dia*" tem um duplo sentido: (I) pode se referir ao oposto de noite, isto é, o período dominado pela luz vinda do Sol; (II) pode se referir ao intervalo de tempo entre duas passagem do Sol pelo meridiano do observador, isto é, o período de rotação da Terra. Geralmente, distinguimos o significado de dia pelo contexto.

A solução mais simples para esta medida é escolhermos uma data arbitrária, a origem do sistema de medida e, em seguida, numerar os dias que passam. As data anteriores ao início da origem podem ser referidos como dias 'antes da origem', por exemplo, 'dia 1 Antes da Origem', 'dia 2 A.O.', 'dia 3 A.O.', etc..., e os dias depois da origem podem ser chamados de 'depois da origem', 'dia 1 Depois da Origem', 'dia 2 D.O.', 'dia 3 D.O.', etc... Tradicionalmente, não existe ano zero: o ano anterior a 1 D.O. é 1 A.O. e não 0 D.O.

Para facilitar a contagem, podemos agrupar os dias em outras unidades maiores como semanas, meses, anos, etc. Assim como o dia, algumas destas unidades também têm origem astronômica.

È este sistema de contagem de dias, em geral a partir de uma origem arbitrária, que chamamos *calendário*. Os calendários que foram inventados ao longo da história humana suprem uma necessidade de praticamente todas as sociedades de prover um meio de 'controlar' a passagem do tempo. De uma certa forma, este controle do tempo dado pelos calendários servem como ligação entre a humanidade e os ciclos celestes; provavelmente por esta razão os calendários tiveram em várias sociedades um caráter místico-religioso, assim como tem um papel de identificação sócio-cultural (semelhante a um idioma). Desde a antiguidade, os calendários proporcionam a base para podermos planejar as mais diversas atividades individuais e sociais.

A história do desenvolvimento dos calendários é extremamente rica e mostra como o controle do tempo, traduzido pelo controle dos calendários, era um instrumento de poder fartamente utilizado desde o início da História até o Renascimento, quando a precisão exigida pelas medidas da passagem do tempo tirou definitivamente o controle dos calendários do clérigos e nobres.

Atualmente existem cerca de 40 calendários em uso (e muitos outros extintos) dos quais cerca de meia dúzia são utilizados por praticamente toda a humanidade.

2.2.2 Base astronômica dos calendários

Desde a antiguidade, o movimento aparente dos astros nos serviu de referência para medirmos a passagem do tempo. Os principais ciclos astronômicos para este fim são: o **dia** (movimento diurno do Sol devido à rotação da Terra em torno de seu eixo), o **mês** (ciclo das fases da Lua devido à sua translação em torno da Terra) e o **ano** (translação da Terra em torno do Sol). A diversidade e complexidade dos calendários vêm do fato que estes ciclos não são comensuráveis entre si, além de não serem exatamente constantes, por exemplo, o ano trópico (sec. 2.1.5) não pode ser dividido em um número inteiro de dias solares (sec. 2.1.4) ou de meses sinódicos (sec. 2.1.6).

Os calendários que foram utilizados durante toda a história da humanidade podem ser divididos em três categorias principais:

lunar, onde a unidade fundamental é o mês, baseado na recorrência das fases da Lua;

solar, baseado na periodicidade das estações do ano;

luni-solar, onde é definido um ano solar (baseado nas estações do ano) que é subdividido em meses que têm aproximadamente o mesmo período que o mês sinódico.

Semana, um ciclo não astronômico

Notamos aqui que a *semana* é um ciclo artificial usado nos calendários, sem um ciclo astronômico correspondente. A semana corresponde a um período de 7 dias solares que se repetem indefinidamente. Nem os meses (com exceção de Fevereiro em anos nãobissextos) e nem os anos possuem um número inteiro de semanas.

A introdução de um período de 7 dias vem da Mesopotâmia, onde cada dia era dedicado a um dos astros com movimento aparente conhecido: dia da Lua, de Marte, de Mercúrio, de Júpiter, de Vênus, de Saturno e do Sol. Estes nomes ainda estão em uso (total ou parcialmente) em diversas línguas como, espanhol, francês, e inglês, por exemplo. O uso do ciclo de 7 dias foi disseminado a partir da Mesopotâmia por culturas bíblicas, judeus e, posteriormente, cristãos.

Durante a Idade Média, a igreja católica tentou mudar o nome dos dias da semana para algo menos pagão, distanciando o calendário dos deuses greco-romanos (por sua vez ligados aos planetas, Lua e Sol). Apenas em Portugal esta mudança teve sucesso e, por isto, os dias da semana seguem uma ordem numérica: segunda, terça, quarta, quinta e sexta-feira. o nome Sábado vem do Hebreu, *Shabbat* – o dia do repouso –, e Domingo vem do Latim, *Dominica* – o dia do Senhor.

2.2.3 Calendário Egípcio

Os egípcios já usavam calendários há cerca de 6 mil anos atrás. O calendário egípcio daquela época era solar, baseado no início das cheias anuais do Nilo, tendo inicialmente 360 dias. Quando os egípcios passaram a utilizar a posição relativa da estrela Sirius em

relação ao Sol, notou-se que eram necessários mais 5 dias (totalizando 365) na duração do ano. Posteriormente, com observações mais precisas, os egípcios concluíram que era necessário acrescentar um dia a cada 4 anos para compensar um lento deslocamento da posição do Sol: concluiu-se que a duração do ano era de 365,25 dias.

Diferente das culturas de climas temperados, os egípcios dividiam o ano em três estações: a estação da enchente do Nilo, a estação da semeadura, e a estação da colheita.

2.2.4 Calendário Romano

O calendário romano era de origem lunar, com um ano de 10 meses, baseados no ciclo lunar, com 30 ou 31 dias: martius, aprilis, maius, junius, quintilis, sextilis, september, october, november, december. Um ano tinha 304 dias. Cerca de 61 dias, durante o inverno, simplesmente não eram contados.

Posteriormente, o calendário romano foi reformado com a introdução de 2 meses suplementares após december: ianuarius e februarius. O número de dias nos meses passou a ser 29 ou 30 dias (o período sinódico da Lua sendo em média 29,53 dias). Um ano de 12 meses tinha, portanto, 354 dias. Havia então uma diferença de cerca de 11 dias entre o ano assim definido e o ano trópico. Para resolver este problema, os romanos introduziam a cada 3 anos um 13° mês. Infelizmente, este mês extra era introduzido de maneira em geral arbitrária e irregular.

Apesar disto, a origem da maioria dos meses que utilizamos até hoje são originários deste calendário.

2.2.5 Calendário Juliano

O calendário Juliano foi instituído em 46 A.C. (ou 708 AUC, *ab urbe condita* – "depois da criação de Roma") por Júlio César seguindo o conselho do astrônomo Sosígenes de Alexandria para resolver as deficiências do antigo calendário romano. Este é um calendário de tipo solar, cujos meses tinham durações bem definidos. Os anos eram 'normais' com 365 dias ou 'bissextos' com 366. A introdução de um dia a cada 4 anos tinha por objetivo de manter o começo das estações do ano sempre na mesma data. Foi durante esta época, em que o calendário Juliano esteve em vigor, que os meses do ano que utilizamos até hoje foram definidos de maneira definitiva.

A origem do nome bissexto vem da forma romana de contar os dias do mês. Na introdução do calendário Juliano, foi estipulado que a cada quatro anos um dia a mais seria adicionado ao sexto dia que precedia as calendas de março (isto é, seis dias antes do início de março, ou seja dia 24 de fevereiro porque nesta época, fevereiro ainda tinha 30 dias). Por isso, haveria dois dias sextos, ou "bi-sexto". Isto significa também que o dia extra em fevereiro não é dia 29 mas é o dia 24 que ocorre duas vezes. Hoje em dia, em vez de contar duas vezes o dia 24, acrescentamos um dia a mais no fim de fevereiro.

No Início da Idade Média, estabeleceu-se que a origem do calendário Juliano (o ano número "1") seria o ano do nascimento de cristo. O cálculo que foi feito pelo abade Dionysius Exigus (Denis, o Pequeno) colocava este nascimento em 753 AUC; o ano 754 AUC passa a corresponder a 1 AD, *anno domini*. Contudo, o cálculo de Dionysius estava historicamente errado, pois Jesus nasceu enquanto Herodes ainda estava vivo, mas este morreu em 750 AUC, ou seja, no ano 4 A.C.! Isto, é claro, é sem importância pois a origem dos calendários é arbitrária.

2.2.6 Calendário Gregoriano

O calendário Juliano foi um grande avanço em relação aos calendários precedentes. Contudo, no calendário Juliano, o ano tinha em média 365,25 dias, isto é, $(3 \times 365 + 366)/4$ enquanto que o ano trópico (que corresponde ao ciclo das estações do ano) tem aproximadamente 365,2422 dias. Isto significa que, a cada 128 anos o início da primavera (ou qualquer outra estação) adianta de um dia em relação ao calendário Juliano.

Se nos primeiros séculos, a diferença de alguns dias era imperceptível, no século XVI a diferença já atingia cerca de 10 dias. A primavera no hemisfério norte, isto é, a passagem do Sol pelo ponto vernal, começava no dia 11 de março ao invés de 21 de março. Para a Igreja Católica isto era um problema grave, uma vez que a data da comemoração mais importante, a Páscoa, depende do dia do Equinócio de primavera (do hemisfério Norte).

Isto levou, em 1582, à adoção de um novo calendário – proposto por Aloysius Lilius e, posteriormente, por Cristóvão Clavius – oficializado pela Bula pontifícia "Inter Gravissimas" do papa Gregório XIII no Concílio de Trento. Para tanto, foram suprimidos por decreto os dias entre 4/10 e 14/10/1582, inclusive. A introdução do ano bissexto foi também modificada; a princípio, os anos múltiplos de 4 são bissextos mas os anos que são múltiplos de 100 e não são múltiplos de 400, não são bissextos. Assim, por exemplo, os anos 1980, 1996, 2000 são bissextos, mas 1700, 1800 e 1900 não o são.

Desta forma, o ano do calendário gregoriano tem, em média, uma duração de 365 + 1/4 - 1/100 + 1/400 dias ou 365,2425 dias. A diferença com o ano trópico passa a ser 0,0003 dias por ano ou 1 dia a cada 3300 anos aproximadamente. Isto significa que o ano 4880 ou 4884 não deverá ser bissexto!

A origem (o ano número 1) do calendário Gregoriano é a mesma do calendário Juliano (e com o mesmo erro histórico...).

Notemos por último que o calendário gregoriano não foi adotado simultaneamente por todos em 1582. No início, o calendário foi adotado pelos países majoritariamente católicos (já que era um decreto papal), sendo adotado posteriormente e aos poucos pelos outros países. Vários países o adotaram somente no século XX (por exemplo a Turquia e a antiga União Soviética).

2.2.7 Calendário Judaico

O calendário Judaico, assim como o Babilônico, é luni-solar, meses de 29 e 30 dias que se alternam (semelhante ao calendário Romano) mais um mês adicional que é intercalado a cada 3 anos segundo um ciclo de 19 anos, o *Ciclo de Meton* (Sec. 2.1.6). A origem deste calendário é o dia da criação do mundo, em 3761 A.C., segundo o Velho Testamento (isto é, um dia arbitrário qualquer, já que a Terra se formou há 4,5 bilhões de ano e o Universo há mais de 13 bilhões).

2.2.8 Calendário Muçulmano

O Calendário Muçulmano (ou Islâmico) é lunar com 12 meses, e portanto, o início dos meses (e do ano) varia em relação às estações do ano. O início de cada mês é dado pelo dia em que se avista o quarto crescente da Lua após a Lua Nova. A origem deste calendário é o dia após a *Hégira*, o dia em que Maomé vai de Meca para Medina, em julho/622 D.C.. Por exemplo, o ano 1431 do calendário Muçulmano teve início em 18/dezembro/2009; o ano 1441 inicia em 01/setembro/2019.

Diferentemente do calendario Gregoriano, em que o dia começa à meia-noite, o dia no calendário Muçulmano começa no pôr do Sol.

2.2.9 Calendário da Revolução Francesa

Após a revolução francesa, a Convenção Nacional adotou em outubro de 1793 o chamado *Calendário Republicano*. O ano neste calendário começa no dia do equinócio de outono (do hemisfério norte) medido pelo Observatório de Paris (dia 22, 23 ou 24 de setembro). Assim, o ano 1 começou à meia-noite do dia 22/09/1792.

O ano é dividido em 12 meses iguais de 30 dias cada e, ao final dos 12 meses são acrescentados 5 dias (dias complementares), totalizando um ano de 365 dias. A semana de 7 dias é abolida e cada mês é dividido em 3 partes iguais de 10 dias. A cada 4 anos é acrescentado mais um dia aos 5 dias complementares, chamado de Dia da Revolução; este ano bissexto é chamado Sextile.

Os meses do calendário republicano têm nomes relacionados às estações do ano:

- Outono: Vendémiaire, Brumaire, Frimaire;
- Inverno: Nivôse, Pluviôse, Ventôse;
- Primavera: Germinal, Floreal, Prairial;
- Verão: Messidor, Thermidor, Fructidor.

O calendário republicano nunca foi adotado universalmente e foi abolido por Napoleão I em 01/01/1806 (11 nivôse do ano 14).

2.3 Dia Juliano

Para se contar os dias de um modo prático para a utilização nos cálculos astronômicos, foi criado um sistema onde os dias são contados de maneira consecutiva. Este sistema é chamado *dia juliano*, JD. Cada dia do calendário corresponde a um certo dia juliano. Por definição a contagem dos dias julianos, o dia 0 (zero), começa ao meio dia da segunda-feira de 1º de janeiro de 4713 A.C. (extrapolando o calendário Juliano para o passado, ou na forma "astronômica" de contar os anos, -4712). Assim, por exemplo, o meio-dia de 1º de janeiro de 2000 D.C. corresponde a JD 2.451.545,0 e a meia-noite de 13 de março de 1970 corresponde a JD 2.440.658,5.

Um outro exemplo, na descontinuidade entre o calendário Juliano e o Gregoriano (Sec. 2.2.6) a contagem de dias julianos permanece contínua. Assim, o meio-dia de 4/10/1582 (calendário Juliano) corresponde a JD 2.299.160,0 e o meio dia de 15/10/1582 (Gregoriano) corresponde a JD 2.299.161,0. Ao contrário dos calendários utilizados habitualmente, a contagem de dias julianos não utiliza o conceito de meses ou anos.

Conversão calendário Gregoriano/Juliano para Dias Juliano. O cálculo do dia juliano para uma data qualquer é feito da seguinte forma (valida para JD > 0):

 Suponha que a data seja dada pelo dia D, mês M e ano A. O dia pode ser dado com decimais, por exemplo, o meio-dia do dia 13 é igual a 13,5. Os anos "A.C." são contados de maneira matemática, isto é, 1 A.C.= 0, 2 A.C. = −1, 10 A.C. = −9, etc.

- 2. Se $\mathcal{M} = 1$ ou 2, então $\mathcal{A} = \mathcal{A} 1$ e $\mathcal{M} = \mathcal{M} + 12$; caso contrário tanto \mathcal{M} quanto \mathcal{A} permanecem o mesmo.
- 3. Se a data for posterior a 15/10/1582 (calendário Gregoriano) então calcule, $A_1 = int(\mathcal{A}/100)$ e $A_2 = 2 - A_1 + int(A_1/4)$. Se a data for anterior a 4/10/1582 (calendário Juliano), então $A_2 = 0$.
- 4. Finalmente o dia juliano é: $JD = int(365,25 \times [\mathcal{A} + 4716]) + int(30,6001 \times [\mathcal{M} + 1]) + \mathcal{D} + A_2 - 1524,5.$

Conversão Dias Juliano para calendário Gregoriano/Juliano. Para calcularmos o dia do calendário, Gregoriano para depois de JD 2.299.160,0, Juliano antes disto, usamos o seguinte algoritmo:

- 1. Calcule Z = int(JD + 0.5);
- 2. Se Z < 2.299.161 então A = Z, senão calcule $Y = int\left(\frac{Z-1.867.216,25}{36524,25}\right)$ e, em seguida, A = Z + 1 + Y int(Y/4).
- 3. Agora calcule os seguintes números inteiros: B = A + 1524, C = int([B-121, 1]/365, 25), $D = int(365, 25 \times C)$, E = int([E-D]/30, 6001).
- 4. Calcule F = JD Z, a parte fracionária do dia. Obtemos assim, dia = $B - D - int(30, 6001 \times E) + F$; mês = $\begin{cases} E - 1 & ; se E < 14 \\ E - 13 & ; se E = 14 \text{ ou } E = 15; \end{cases}$ ano = $\begin{cases} C - 4716 & ; se mês > 2 \\ C - 4715 & ; se mês = 1 \text{ ou } 2. \end{cases}$

Século Juliano. Por definição, chamamos de século juliano, T, o intervalo de tempo igual a 36.525 dias. Em geral contamos os séculos julianos a partir de uma dada época. Ainda hoje encontramos as vezes T contados a partir do início do ano 1900 (mais precisamente o meio-dia de 31/12/1899, notado B1900.0), mas a época mais utilizada hoje em dia é a partir do início do ano 2000 (o meio-dia de 01/01/2000, ou J2000.0). Chamando de $T_{\rm B1900}$ os séculos julianos a partir de B1900.0 e $T_{\rm J2000}$ a partir de J2000.0 temos:

$$T_{\rm B1900} = \frac{\rm JD - 2.415.020}{36.525}$$
 e $T_{\rm J2000} = \frac{\rm JD - 2.451.545}{36.525}$. (2.8)

Eventualmente, chamaremos T_{J2000} simplesmente de T, isto é, utilizaremos como época inicial o J2000.0. Analogamente ao século juliano, também podemos definir um *milênio juliano* de 365.250 dias.

2.4 Relação entre tempo sideral e tempo universal

Como vimos, o tempo sideral, T_s , é o ângulo horário do ponto vernal e está diretamente relacionado com o dia sideral terrestre (o período de rotação terrestre em relação ao ponto vernal).

O tempo sideral que corresponde a $0^{\rm h}$ UT para um observador no meridiano principal (de Greenwich) é dado pelo fórmula proposta em 1982 pela União Astronômica Internacional (UAI):

 $T_s = 6^{h}41^{m}50, 5484 + 8.640.184, 812866 \times T_{J2000} + 0, 093104 \times T_{J2000}^2 - 6, 2 \times 10^{-6} \times T_{J2000}^3 . (2.9)$

Para qualquer outra hora que não seja $0^{\rm h}$ UT, multiplique a hora de tempo universal por 1,00273790935 e some com o resultado obtido utilizando a formula (2.9) para $0^{\rm h}$ do dia em questão. Este fator, 1,00273790935, nada mais é que a razão entre o dia solar (24^h) e o dia sideral (23^h56^m4;0989).

Se quisermos calcular o tempo sideral local, devemos simplesmente acrescentar ou subtrair a longitude do local (como foi dito na seção 2.1.3).

2.5 Cálculo do domingo de Páscoa

A Páscoa é um evento religioso central no mundo cristão. A importância desta data é tal que desde o primeiro Concílio de Niceia (atual Turquia) em 325 d.C. foram propostas regras para definir o cálculo do dia da Páscoa.

Com a reforma do calendário gregoriano foram fixadas a regra para determinação da Páscoa: o domingo de Páscoa é o primeiro domingo após a lua cheia que ocorre logo após o equinócio vernal (início do outono no hemisfério Sul). A regra não é aplicada de forma rigorosa em relação à astronomia, o equinócio vernal é fixado no dia 21/março (quando, na realidade, o equinócio vernal pode ocorrer até no dia 19/março e isto ainda depende do fuso horário adotado). Assim, o domingo de Páscoa só pode ocorrer entre os dias 22/março e 25/abril.

Um algoritmo prático para calcular o dia e o mês do domingo de Páscoa foi proposto por J.-M. Oudin em 1940. Neste algoritmo, todas as variáveis são números inteiros de forma que, nas operações de divisão, desprezamos os restos (por exemplo, 17/4 = 4, pois desprezamos o resto 0,25):

$$\begin{array}{ll} c = a/100 \ ; & n = a - 19 * (a/19) \ ; & k = (c-17)/25 \ ; \\ i = c - c/4 - (c-k)/3 + 19 * n + 15 \ ; \\ i = i - 30 * (i/30) \ ; \\ i = i - (i/28) * (1 - (i/28) * (29/(i+1)) * ((21-n)/11)) \ ; \\ j = a + a/4 + i + 2 - c + c/4 \ ; \\ j = j - 7 * (j/7) \ ; & l = i - j \ ; \end{array}$$

$$\Rightarrow \begin{cases} m = 3 + (l+40)/44 ; \\ d = l + 28 - 31 * (m/4) \end{cases}$$

onde o dia é d e o mês é m do domingo de Páscoa no ano a. Por exemplo, para o ano a = 1963 temos:

$$\begin{aligned} c &= 1963/100 = 19 \;; \qquad n = 1963 - 19 * (1963/19) = 6 \;; \qquad k = (19 - 17)/25 = 0 \;; \\ i &= 19 - 19/4 - (19 - 0)/3 + 19 * 6 + 15 = 138 \;; \\ i &= 138 - 30 * (138/30) = 18 \;; \\ i &= 18 - (18/28) * (1 - (18/28) * (29/(18 + 1)) * ((21 - 6)/11)) = 18 \;; \\ j &= 1963 + 1963/4 + 18 + 2 - 19 + 19/4 = 2458 \;; \\ j &= 2458 - 7 * (2458/7) = 1 \;; \qquad l = 18 - 1 = 17 \;; \\ \begin{cases} m &= 3 + (17 + 40)/44 = 4 \;; \end{cases} \end{aligned}$$

$$\Rightarrow \begin{cases} m = 3 + (17 + 40)/44 = 4; \\ d = 17 + 28 - 31 * (4/4) = 14; \end{cases}$$

isto é, o domingo de Páscoa foi no dia 14/abril/1963.

Como a igreja católica ortodoxa ainda usa o calendário Juliano, que não é uma aproximação tão boa quanto o calendário Gregoriano para o ano Trópico, sua comemoração da Páscoa se dá geralmente 2 semanas após a data calculada pelo método acima.

2.6 Radiação solar e Insolação

A fim de ilustrar o uso de vários conceitos ligados à passagem do tempo, estações do ano e coordenadas astronômicas e geográficas iremos calcular a potência da radiação incidente na Terra. Insolação é o fluxo de radiação solar (energia por unidade de tempo e por unidade de área) que atinge a Terra. A potência total do Sol é $L_{\odot} = 3,84 \times 10^{26}$ Watt. por comparação, em 2012, a potência elétrica produzida no Brasil foi de 6,5 × 10¹⁰ Watt.

Mas o Sol está a cerca de 1 AU de distância, logo o fluxo recebido no topo da atmosfera terrestre em um plano perpendicular aos raios solares é:

$$C_{\odot} = \frac{L_{\odot}}{4\pi (1 \text{ AU})^2} = 1365 \text{ Watt } \text{m}^2.$$

Este valor é chamado Constante Solar. Na literatura, encontramos o valor da Constante Solar entre 1361 a 1366 Watt ${\rm m}^2.$

O energia recebida no topo da atmosfera depende da posição do receptor (latitude), posição aparente do Sol e distância entre a Terra e o Sol. O Sol nem sempre está no zênite, portanto temos um efeito geométrico a considerar (Fig. 2.17).

A órbita da Terra não é exatamente um círculo, mas uma elipse atualmente com excentricidade e = 0,0167. Dentro de um intervalo de ±4000 anos, a excentricidade da órbita terrestre é dada por:

$$e = 0,01670862 - 4,2037 \times 10^{-5}T - 1,236 \times 10^{-7}T^{2} + 4 \times 10^{-11}T^{3}$$

onde T é o intervalo de tempo medido a partir de J2000 em séculos julianos (de 36.525 dias, veja Sec. 2.3). Devido à excentricidade a distância Terra–Sol varia e, consequentemente, a insolação varia proporcionalmente ao quadrado da distância:

$$F_{\odot} = C_{\odot} \left(\frac{1 \text{ AU}}{r}\right)^2 \cos(90^\circ - h), \qquad (2.10)$$

Figura 2.17: O fluxo solar, f, depende da inclinação relativa da posição do Sol. Quando o Sol não está no zênite (direita) o fluxo coletado se dilui por um fator $\cos\theta = \cos(90^\circ - h)$, onde h é a altura do Sol. Por exemplo, se h = 0, o fluxo coletado é nulo.

onde r é a distância entre o Sol e a Terra em unidades astronômicas¹ e aqui já levamos em conta a altura do Sol, ou o ângulo zenital, $\theta \equiv (90^{\circ} - h)$. A insolação, Eq. (2.10) depende da posição do Sol e do observador através das variáveis $h \in r$.

Usando a transformação de coordenadas horizontais para coordenadas horárias, Eq. (1.16), temos a relação:

$$\sin h = \sin(90^\circ - \theta) = \sin \delta \sin \phi + \cos \delta \cos \phi \cos H$$
$$\Rightarrow \quad \cos \theta = \sin \delta \sin \phi + \cos \delta \cos \phi \cos H \,,$$

onde ϕ é a latitude do observador, δ e Hsão a declinação e o ângulo horário do Sol.

Portanto, temos a insolação:

$$F_{\odot} = C_{\odot} \left(\frac{1 \text{ AU}}{r}\right)^2 \left(\sin \delta \sin \phi + \cos \delta \cos \phi \cos H \right) \,,$$

onde r é medido em Unidades Astronômicas (AU).

Usando agora a relação entre coordenadas eclípticas e equatoriais, Eq. (1.12), nós temos para o Sol:

$$\operatorname{sen} \delta = \operatorname{sen} \varepsilon \operatorname{sen} \lambda$$
, (assumindo $\beta = 0$),

onde $\varepsilon = 23$,439 é a obliquidade da eclíptica (inclinação do eixo de rotação da Terra), e λ é a longitude do Sol.

Para a longitude do Sol, podemos aproximar seu movimento como uniforme ao longo de um círculo (não estamos preocupados com uma precisão de horas aqui). Logo, o movimento médio do Sol ao longo da eclíptica é simplesmente:

$$\lambda(t) = \frac{2\pi}{P} t \quad (\text{em radianos}) \,,$$

onde P é o período de translação da Terra (1 ano $\approx 365, 2422$ dias) e t é o tempo. Em $t = 0, \lambda = 0$, isto é, o Sol está no ponto vernal (por volta de 20/março).

 $^{^1\}mathrm{A}$ Unidade Astronômica, AU, foi definida como o semi-eixo maior da órbita terrestre, com o Sol em um dos focos. 1 AU é aproximadamente a distância Terra-Sol. 1 AU = 149.597.870,7 km ou ~ 150 milhões de km.

A distância Terra–Sol é obtida pela equação de uma elipse (primeira lei de Kepler, veja Eq. (4.24):

$$r(t) = 1 \operatorname{AU} \frac{1 - e^2}{1 + e \cos \nu} \approx 1 \operatorname{AU} \frac{1 - e^2}{1 + e \cos[\lambda(t) - \omega]}$$

onde ω é a longitude do perigeu da órbita aparente do Sol, isto é, o periélio terrestre somado a 180° ($\approx 282,5$) e ν é a *anomalia verdadeira*, medida a partir do perigeu. Em uma primeira aproximação, podemos tomar $\lambda = \nu + \omega$.

Uma grandeza mais interessante do que o valor instantâneo de F_{\odot} é o valor médio da insolação durante um dia. Isto pode ser obtido integrando F_{\odot} entre o ângulo horário do nascer e do pôr do Sol. Por simetria, assumindo que as coordenas do Sol (declinação e raio r) não variem significativamente durante um dia, podemos escrever:

$$\overline{F}_{\odot} = \frac{1}{2\pi} \int_{-H_d}^{+H_d} F_{\odot} \,\mathrm{d}H = \frac{C_{\odot}}{\pi} \left(\frac{1 \,\mathrm{AU}}{r}\right)^2 \int_0^{+H_d} \left[\operatorname{sen}\delta\operatorname{sen}\phi + \cos\delta\cos\phi\cos H\right] \,\mathrm{d}H \,.$$

(Os limites de integração são simétricos porque o meio-dia solar corresponde a H = 0.) Finalmente, temos:

$$\overline{F}_{\odot} = \frac{C_{\odot}}{\pi} \left(\frac{1 \text{ AU}}{r}\right)^2 \left[H_d \sin \delta \sin \phi + \cos \delta \cos \phi \sin H_d,\right]$$
(2.11)

onde H_d é o ângulo horário do nascer do Sol, isto é, quando a altura do Sol é $h = 0^{\circ}$ (veremos isto em mais detalhes na Sec. 3.5) Utilizando a transformação de coordenadas horárias em horizontais temos a relação

$$\cos H_d = -\tan\phi\tan\delta\,.$$

Aqui devemos apenas ter o cuidado no cálculo de H_d pois, além do círculo polar o Sol pode não se pôr (então $H_d = \pi/2$) ou o Sol pode não nascer ($H_d = 0$).

A figura 2.18 mostra a insolação média diária em função da época do ano e latitude, acima da atmosfera da Terra, usando as aproximações acima.

Para calcular o valor médio anual, podemos somar a insolação média diária e dividir pelo período de um ano, $\overline{F}_{anual} = (\sum_{dia} F_{\odot})/365, 24$. Obtemos assim a Fig. 2.19.

Fica claro que, como esperado, em média o equador terrestre recebe a maior quantidade de radiação solar. Entre os trópicos e os círculos polares a insolação decresce rapidamente. No Equador, em um ano, a taxa de insolação de de ~ 420 W por dia, enquanto que no Polo Sul é apenas ~ 180 W e no Polo Norte, ~ 170 W por dia (a diferença é devido à Terra passar pelo periélio durante o Verão do Hemisfério Sul).

Figura 2.18: Insolação no topo da atmosfera em função da época do ano e da latitude. As linhas tracejadas horizontais marcam as latitudes dos trópicos de Câncer e Capricórnio e os círculos polares. As linhas tracejadas verticais mostram os momentos dos equinócios. A cor cinza é quando o Sol está abaixo do horizonte durante todo o dia.

Figura 2.19:Insolação média anual em função da latitude. Repare que o polo Sul recebe um pouco mais de radiação solar que o polo Norte devido à excentricidade da órbita terrestre. As horizontais linhas correspondem aos Trópicos de Câncer Capricórnio, aos e círculos polares e ao Equador.

Capítulo 3.

LMovimento, forma e perspectiva: Variação de coordenadas

3.1 Forma da Terra

A Terra não é uma esfera perfeita, mas, em primeira aproximação tem a forma de um elipsóide, "achatado" nos polos, Fig. 3.1. Mais precisamente, a forma da Terra pode ser aproximada por um elipsóide de revolução (a superfície descrita por uma rotação em torno do eixo menor de uma elipse) com um achatamento, $f \equiv 1-b/a = 1/298, 257223^1$, onde $a \in b$ são os raios equatorial (a = 6.378.136, 6 metros) e polar respectivamente. Este achatamento se traduz em uma diferença de aproximadamente 21 km entre os eixos equatorial e polar. Além disto, o eixo de rotação da Terra (que é equivalente ao eixo menor do elipsóide) é inclinado em relação ao plano de sua órbita em torno do Sol. Esta inclinação, ε , chamada *obliquidade da eclíptica*, é da ordem de 23°26'21″.

Figura 3.1: A forma da Terra pode ser aproximada por um elipsóide de revolução. A superfície de equipotencial (mesma aceleração da gravidade) define o *Geóide* que segue aproximadamente o nível do mar. Por fim temos a topografia da Terra com montanhas e vales acima e abaixo do Geóide.

Devido ao achatamento e à rotação da Terra, existem pelo menos três formas diferentes de se definir um sistema de coordenadas terrestres. Enquanto que a longitude é praticamente a mesma nos três sistemas, a latitude de um ponto na superficie terrestre é diferente segundo o sistema adotado.

A *latitude*, independentemente do sistema de coordenadas terrestre escolhido, é sempre medido a partir da "linha do equador" (ou melhor dizendo, do grande círculo do equador). A latitude é positiva ao norte do equador e negativa ao sul. Esta convenção sempre foi utilizada e nunca houve uma disputa quanto a isto.

Já para a *longitude*, a história é outra. As longitudes são medidas a partir de um meridiano principal mas como não existe um meridiano que se distingue dos outros, a definição de um meridiano principal é completamente arbitrária. Por exemplo, os franceses adotavam como meridiano principal o meridiano que passa pelo observatório de Paris, os norte americanos adotavam o meridiano de Washington, os holandeses, o meridiano

¹Valor do achatamento do elipsoide de referencia do padrão WGS-84 (World Geodetic Reference).

de Amsterdam, os espanhóis o meridiano de Tenerife (Ilhas Canárias), e os portugueses o meridiano do Cabo de São Vicente (sul de Portugal). A adoção do meridiano de Greenwich como meridiano principal universal só ocorreu em 1884 e, mesmo assim, alguns países ainda levaram algumas décadas para adotá-lo definitivamente.

3.1.1 Sistema astronômico de coordenadas geográficas

O sistema astronômico de coordenadas geográficas tem como plano fundamental o plano perpendicular ao eixo de rotação da Terra, definindo assim o *equador geográfico*. Para cada ponto na superfície terrestre, é definida ainda uma *vertical astronômica* que é a direção do zênite local, dado pela direção do campo gravitacional local, isto é, a vertical é aquela obtida com um fio de prumo (veja a figura 3.2).

Figura 3.2: Sistemas de coordenadas geográficas. A elipse representa um corte longitudinal do elipsóide de revolução que representa a Terra (o achatamento está aumentado para facilitar a interpretação da figura). O ponto c é o centro da Terra e ρ a distância de um ponto na superfície P ao centro. Os ângulos $\varphi \in \varphi'$ são as latitudes astronômicas e geocêntricas, respectivamente. O vetor \vec{g} representa o campo gravitacional local em P e Z é a direção do zênite

Como a Terra não é uma esfera perfeita, o prolongamento da vertical astronômica não passa pelo centro da Terra. O ângulo desta vertical com o plano do equador (ou o complemento do ângulo entre a direção do polo celeste com a vertical) define a *latitude astronômica* do ponto P.

3.1.2 Sistema geodético de coordenadas geográficas

A forma da Terra pode ser aproximada a um *geóide*. O geóide terrestre é a superfície de isopotencial gravitacional que coincide, em primeira aproximação, com o nível médio dos oceanos. A (pequena) diferença vem do fato que a distribuição de massas na Terra não é exatamente uniforme e, portanto, há pequenas diferenças entre o geóide e o nível médio dos mares. A superfície de isopotencial não é perfeita (e simples) como o elipsóide.

A diferença nas coordenadas geográficas determinadas no sistema astronômico e geodético é sempre inferior a alguns segundos de arco. As verticais do sistemas astronômico e geodético são praticamente as mesmas, a diferença é que a vertical do sistema geodético não é dada exatamente pela direção do campo gravitacional local. A diferença entre o geóide e o elipsóide de referência varia entre -108 (no Oceno Índico, ao sul da Índia) e +85 (na Indonésia) metros de altura.

É o sistema geodético de coordenadas que utilizamos para fins geográficos, atlas, mapas, etc.

3.1.3 Sistema geocêntrico de coordenadas geográficas

No sistema geocêntrico de coordenadas geográficas, também definimos o equador geográfico perpendicular ao eixo de rotação da Terra. Contudo, as *latitudes geocêntricas*, φ' , são definidas pelo ângulo entre o raio vetor, ρ , de um ponto na superfície terrestre e o centro da Terra (cf. Fig. 3.2).

Enquanto que a latitude geodética, φ , é utilizada para se localizar pontos na superfície terrestre, é necessário, por outro lado, a latitude geocêntrica na astronomia de posição. A latitude geocêntrica é utilizada, por exemplo, para se corrigir o fato do observador estar sobre a Terra e não no centro, isto é, transformar um sistema de coordenadas geocêntrico em topocêntrico.

Assim torna-se necessário transformar as coordenadas geodéticas (ou astronômicas) habituais em coordenadas geocêntricas (e, é claro, realizar a transformação inverso caso necessário). Dado a simetria axial do problema, as transformações que nos interessam são somente nas latitudes, as longitudes sendo as mesmas nos dois sistemas. Podemos simplificar o problema e tratá-lo com duas dimensões apenas. Fazendo-se um corte longitudinal na superfície do geóide, ao nível do mar, nós temos a equação da elipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad (3.1)$$

onde a e b são os semi-eixos equatorial e polar da elipse e, pela trigonometria, os ângulos φ e φ' são:

$$\tan \varphi' = \frac{y}{x} \quad \text{e} \quad \tan \varphi = \frac{y}{x} \frac{a^2}{b^2}. \tag{3.2}$$

Substituindo a equação de φ na equação da elipse obtemos duas relações para x e y:

$$x^{2} = \frac{a^{2} \cos^{2} \varphi}{1 - e^{2} \sin^{2} \varphi} \quad e \quad y^{2} = \frac{a^{2} (1 - e^{2})^{2} \sin^{2} \varphi}{1 - e^{2} \sin^{2} \varphi},$$
(3.3)

onde definimos a *excentricidade* da elipse como $e^2 \equiv 1 - (b/a)^2$. Mas, também podemos escrever uma elipse de forma paramétrica com as equações:

$$x = \rho \cos \varphi' \quad e \quad y = \rho \sin \varphi',$$
 (3.4)

o que resulta, substituindo as equações precedentes nas equações (3.3), em:

$$\rho \cos \varphi' = C \cos \varphi$$

$$\rho \sin \varphi' = S \sin \varphi, \qquad (3.5)$$

onde, com um pouco de álgebra obtemos:

$$S = \frac{a(1-e^2)}{(1-e^2 \sin^2 \varphi)^{1/2}} = (1-e^2) C$$

$$C = \frac{a}{[\cos^2 \varphi + (1-f)^2 \sin^2 \varphi]^{1/2}} = \frac{S}{(1-f)^2}.$$
(3.6)

Se o observador não estiver no nível do mar (isto é, sobre o geóide), mas tiver uma altitude a_{obs} , sendo $|a_{obs}| \ll \rho$, então as equações (3.5) podem ser escritas como:

$$\rho \cos \varphi' = (C + a_{obs}) \cos \varphi$$

$$\rho \sin \varphi' = (S + a_{obs}) \sin \varphi.$$
(3.7)

Finalmente, a razão entre as equações (3.5) nos dá:

$$\tan \varphi' = \left(\frac{b}{a}\right)^2 \tan \varphi = (1-f)^2 \tan \varphi.$$
(3.8)

A diferença entre as latitudes geodéticas e geocêntricas, $\varphi - \varphi'$, é chamada ângulo da vertical. Desenvolvendo com relações trigonométricas o termo $\tan(\varphi - \varphi')$ obtemos a identidade:

$$\tan(\varphi - \varphi') = \frac{\tan \varphi - \tan \varphi'}{\tan \varphi \tan \varphi' + 1}, \qquad (3.9)$$

e utilizando a equação (3.8) resulta em:

$$\tan(\varphi - \varphi') = \frac{\tan\varphi[1 - (1 - f)^2]}{(1 - f)^2 \tan^2\varphi + 1} = \frac{m \sin(2\varphi)}{m \cos(2\varphi) + 1},$$
(3.10)

onde definimos $m \equiv e^2/(2 - e^2)$. O ângulo da vertical pode ainda ser aproximado simplesmente por:

$$\varphi - \varphi \prime \approx 692,73 \operatorname{sen} 2\varphi - 1,716 \operatorname{sen} 4\varphi, \qquad (3.11)$$

que é obtido fazendo-se uma expansão em série válida para $f \ll 1$. O ângulo da vertical é nulo nos polos e no equador, e atinge um valor máximo de cerca de 11'30'' próximo da latitude de 45° (compare com a diferença entre os sistemas astronômico e geodético, onde a diferença é sempre menor que alguns segundos de arco).

Gravidade da Terra

Se a Terra fosse uma esfera, a aceleração da gravidade seria simplesmente

$$g_0 = -\frac{GM}{r^2} = -9,80 \text{ m s}^{-2} \pmod{100}$$
 (no nível do mar),

onde o sinal de menos indica que a aceleração é em direção ao centro da Terra, r é o raio da Terra e M é a massa da Terra no interior da esfera de raio r.

Contudo, com vimos a forma da Terra é melhor aproximada por um elipsoide. A não esfericidade introduz uma dependência de \vec{g} com a latitude que, para elipsoides pouco achatados, pode ser aproximado por:

$$g = g_0(1-f) \operatorname{sen}^2 \varphi' = g_0(1-f) \operatorname{sen}^2 \varphi + \frac{f^2}{8} \operatorname{sen}^2(2\varphi),$$

onde as latitudes φ e φ' são os ângulos definidos na Fig. 3.2 e fé o achatamento do elipsóide.

Além disto, a Terra está em rotação o que produz no referencia terrestre uma força centrifuga de direção oposta à força gravitacional. Combinando o elipsoide e a rotação da Terra, podemos escrever a aceleração efetiva no nível do mar como:

$$g = -9,78033 \left[1+0,0053024 \operatorname{sen}^2 \varphi + 0,0000059 \operatorname{sen}^2(2\varphi) \right].$$
(3.12)

3.1.4 GPS

GPS é a sigla para *Global Positioning System* (Sistema de Posicionamento Global), controlado pelos EUA, e funcionando desde 1995. Este sistema é baseado na posição recebida na Terra por três ou mais satélites entre o total de 24 que estão distribuídos em seis trajetórias orbitais diferentes a 20.200 km de altitude (Fig. 3.3). A esta altitude, cada satélite da uma volta completa em torno da Terra em 12 horas.

Cada satélite GPS envia continuamente sua posição e a hora atômica. Se um receptor capta o sinal de apenas um satélite podemos determinar a distância que estamos do satélite. Se captamos o sinal de três satélites podemos nos situar na superfície da Terra e, captando o sinal de 4 ou mais satélites temos também a altitude do detector, isto é, obtemos a posição em três dimensões. Em boas condições, com pelo menos 4 satélites visíveis (acima do horizonte), a resolução na superfície da Terra de da ordem de poucos metros.

Figura 3.3: Representação esquemática das 6 órbitas, cada uma com 3 satélites GPS. Todas as órbitas estão na mesma altitude.

Além do sistema norte-americano, a Rússia tem um sistemas semelhante, o GLO-NASS (Sistema de Satélites para Navegação Global), com os primeiros satélites lançados em 1982. Com o fim da União Soviética o desenvolvimento do GLONASS sofreu atrasos em sua implementação completa. A partir de 2011 sua cobertura se tornou completamente global e atualmente funciona paralelamente as sistema GPS (desde o início da década de 2010, muitos receptores captam os sinais do GPS e GLONASS).

A comunidade européia está implantando um sistema próprio de posicionamento via satélite, chamado GNSS *Galileo Navigation Satellite System*. Os primeiros satélites foram colocado em órbita em 2011. Este serviço deverá estar operacional em 2019. O *Galileo* terá 27 satélites (mais 3 reservas) distribuídos em três órbitas a 23.222 km de altitude.

3.2 Precessão e Nutação

Antes de vermos quais são as influências da precessão e nutação nas coordenadas dos astros, nós definiremos estes fenômenos e veremos quais são suas origens físicas.

3.2.1 Física da precessão e nutação

Como vimos, a Terra não é uma esfera perfeita e, além disto, seu eixo de simetria está inclinada em relação ao seu plano orbital (eclíptica) e ao plano orbital da Lua. A ação conjugada do Sol e da Lua no excesso de massa equatorial da Terra provoca um torque nesta. A figura 3.4 ilustra a ação de um corpo sobre o excesso de massa, δM , no equador terrestre. O torque é produzido pela diferença entre as forças $F - F_1 \in F - F_2$. Esta diferença é $F_M = F - F_1 \approx G\delta M M_L/[1/r^2 - 1/(r - R_T)^2]$ e, quando $r \gg R_T$ podemos expandir δF em série de Taylor, o que resulta (mantendo apenas o primeiro termo da expansão) em:

$$F_M \approx G\delta M \, M_L \frac{2R_T}{r^3} \,. \tag{3.13}$$

Esta força F_M é chamada de força de maré pois é ela que produz as marés que observamos no mar.

Figura 3.4: Força de maré. O corpo de massa M_L atua sobre um elemento de massa δM . As forças F_1 , $F_2 \in F$ diferem devido ao fato do corpo principal ter um raio não nulo (R_T) .

O efeito deste torque no eixo de rotação da Terra é o mesmo que ocorre com um pião cujo eixo de rotação não seja paralelo à vertical: o eixo de rotação gira em torno da vertical (no caso da Terra, a vertical é o eixo perpendicular à eclíptica). Este efeito de giroscópio dá origem ao fenômeno da *precessão luni-solar*, já conhecido por Hiparco no século II A.C.

O período da precessão luni-solar é cerca de 25.700 anos, sendo que aproximadamente dois terços deste efeito é devido à Lua e um terço à ação do Sol. A ação do planetas, neste caso, é completamente desprezível pois, como vimos, este efeito é proporcional a M/r^3 (M é a massa e r a distância do corpo perturbador).

A precessão luni-solar tem um período muito superior ao período de translação da Terra e, por isto dizemos que é um efeito secular. Se as órbitas da Terra em torno do Sol e da Lua em torno da Terra fossem circulares e coplanares e, além disto a forma da Terra fosse um elipsóide de rotação perfeito, então a precessão luni-solar seria o único efeito notável sobre o eixo de rotação da Terra. Contudo, as condições supra citadas não são verificadas exatamente o que resulta em um movimento mais complexo do eixo terrestre em torno do polo da eclíptica. Por tradição separamos estes efeitos em duas partes: por um lado a precessão luni-solar (secular) que vimos anteriormente, por outro lado um efeito de período mais curto, mas de pequena amplitude, chamada *nutação*.

A nutação tem como efeito uma mini-precessão do eixo em torno de sua posição média cujo período é cerca de 18,6 anos, sendo a Lua a principal responsável deste efeito. Na realidade, a nutação pode ser decomposta em várias centenas de termos periódicos, alguns com períodos da ordem de dias.

As órbitas dos planetas não são coplanares e, por esta razão, os demais planetas do sistema solar tem um efeito perturbador na órbita terrestre. Neste caso, não é o eixo de rotação da Terra que se move mas sim o plano da eclíptica (uma vez que este é definido pela órbita terrestre). Este efeito é chamado *precessão planetária*.

Finalmente, existe ainda um outro fenômeno que assimilamos à precessão, ligada à teoria da relatividade geral. Este efeito, muito menor que os precedentes, tem por origem o fato de que o referencial inercial na vizinhança da Terra (em órbita em torno do Sol) possui uma pequena rotação em relação ao referencial heliocêntrico inercial. Este fenômeno é chamado *precessão geodésica*.

3.2.2 Efeitos da precessão e nutação nas coordenadas

Na astronomia de posição, costuma-se tratar separadamente estes efeito nas coordenadas dos astros. A ação da Lua, Sol e planetas na inclinação do eixo terrestre e no movimento do eixo de rotação da Terra são divididos em três partes:

- Evolução secular da inclinação do eixo de rotação terrestre;
- Precessão geral, que inclui os termos seculares de grandes amplitudes devidos à precessão luni-solar, planetária e geodésica;
- Nutação, que inclui as variações periódicas de curta duração e pequena amplitude.

Evolução secular da obliquidade da eclíptica

Atualmente, a inclinação do eixo de rotação terrestre está diminuindo lentamente, isto é, a obliquidade da eclíptica, ε , diminui. O valor médio de ε é dado pela fórmula de J. Laskar válida para um intervalo de tempo de ±10.000 anos a partir do ano 2000:

$$\varepsilon = 23^{\circ}26'21''_{.}448 -4680''_{.}93t - 1''_{.}55t^{2} + 1999''_{.}25t^{3} - 51''_{.}38t^{4} - 249''_{.}67t^{5} -39''_{.}05t^{6} + 7''_{.}12t^{7} + 27''_{.}87t^{8} + 5''_{.}79t^{9} + 2''_{.}45t^{10},$$
(3.14)

onde t = T/100 e T é dado em séculos julianos a partir da época J2000, dado pela equação (2.8). O uso desta fórmula fora do seu período de validade dará resultados errados.

No início do Séc. XXI, $t \approx 0$, a taxa de variação da inclinação do eixo da Terra é de -0,''00128/dia. Isto corresponde a cerca de 14,4 metros/ano no nível do mar. Isto significa que hoje em dia a linha imaginária dos Trópicos de Capricórnio e Câncer estão se aproximando do equador no ritmo de 1,44 km/século.

Em intervalos de tempo maior, o comportamento do eixo da Terra é oscilatório, sendo que a obliquidade da eclíptica varia aproximadamente entre 22 e 24,5 graus em um período de ~ 41.000 anos. A Fig. 3.5 mostra a variação da obliquidade em um intervalo de tempo de 2 milhões de anos, segundo cálculo de J. Laskar do *Bureau de Longitudes de Paris*.

Precessão geral: rotação de coordenadas

A precessão também tem um efeito secular nas coordenadas. Por um lado, a precessão luni-solar produz uma rotação do eixo de rotação terrestre em torno do polo da eclíptica,

Figura 3.5: Evolução da inclinação do eixo terrestre (obliquidade da eclíptica) em um intervalo de tempo de ± 1 milhão de anos a partir do presente. Podemos notar facilmente o ciclo de 41.000 anos de oscilação do eixo da Terra.

fazendo com que o equador celeste (projeção do equador terrestre, perpendicular ao eixo de rotação) se mova em relação à eclíptica (veja figure 3.6).

Figura 3.6: Efeito da precessão luni-solar no eixo de rotação da Terra e, consequentemente, no equador celeste. Na figura estão ilustrados o equador celeste em dois momentos $T_1 \ e T_2$, mostrando o deslocamento do ponto vernal (origem dos sistemas equatorial e eclíptico de coordenadas) sobre a eclíptica. Aqui, 'PN' significa polo norte celeste e 'PE' polo norte da eclíptica.

Logo, a origem do sistema de coordenadas equatorial (e eclíptica) se move ao longo do grande círculo definido pela eclíptica.

Por outro lado, o efeito da precessão planetária é de alterar a orientação da órbita terrestre em torno do Sol em relação a um referencial fixo. Neste caso, é a própria eclíptica que precessa.

O principal efeito da precessão geral é um deslocamento retrogrado do ponto vernal em torno do polo da eclíptica com um período de ~ 25.700 anos ou cerca de 50,"4 por ano. Nas figuras 3.7 e 3.8 mostramos o percurso do polo celeste em torno do polo da eclíptica devido à precessão nos hemisférios Sul e Norte respectivamente.

O efeito total da precessão geral pode ser comparado a uma série de rotações tanto da eclíptica como do equador celeste, da mesma forma que quando fazemos uma trans-

Figura 3.7: Trajetória do polo sul celeste em torno do polo sul da eclíptica devido à precessão (círculo vermelho). A volta completa leva cerca de 25700 anos.

Figura 3.8: Trajetória do polo norte celeste em torno do polo norte da eclíptica devido à precessão (círculo vermelho).

formação de coordenadas. Na realidade, o que fazemos aqui é uma transformação de coordenadas de uma época que tem a origem em um ponto vernal dado para outra época. Assim, em coordenadas eclípticas, seja λ_{to} e β_{to} a posição de uma astro em t_0 (isto é, no sistema de coordenadas definidas pela posição do ponto vernal em t_0), e λ_f e β_f a posição em t_f (que tanto pode ser antes ou depois de t_0). A relação entre estas coordenadas é (veja a figura 3.9):

$$\mathbf{R}_{z}([p_{A} + \Pi_{A}])\mathbf{I}(\beta_{f}, \lambda_{f}) = \mathbf{R}_{x}(\pi_{A})\mathbf{R}_{z}(\Pi_{A})\mathbf{I}(\beta_{to}, \lambda_{to}), \qquad (3.15)$$

o que resulta, após simplificação, em:

$$\cos \beta_f \cos(p_A + \Pi_A - \lambda_f) = \cos \beta_{to} \cos(\Pi_A - \lambda_{to})$$

$$\cos \beta_f \sin(p_A + \Pi_A - \lambda_f) = \cos \beta_{to} \sin(\Pi_A - \lambda_{to}) \cos \pi_A - \sin \pi_A \sin \beta_{to}$$

$$\sin \beta_f = \cos \beta_{to} \sin(\Pi_A - \lambda_{to}) \sin \pi_A + \cos \pi_A \sin \beta_{to}, (3.16)$$

onde o ângulo Π_A é o arco $\Upsilon_{to}N$ e $p_A = \Upsilon_fN - \Upsilon_{to}N$.

Figura 3.9: Ângulos necessários para transformação de coordenadas de um instante t_0 a t_f devido à precessão geral (luni-solar e planetária). Definimos ainda $\zeta_A =$ $90^{\circ} - \Upsilon_{to}Q - e p_A = \Upsilon_f N - \Upsilon_{to}N$

A transformação em coordenadas equatoriais se faz utilizando as rotações:

$$\mathbf{R}_{z}([z_{A}+90^{\circ}])\mathbf{I}(\delta_{f},\alpha_{f}) = \mathbf{R}_{x}(\theta_{A})\mathbf{R}_{z}(90^{\circ}-\zeta_{A})\mathbf{I}(\delta_{to},\alpha_{to}), \qquad (3.17)$$

ou seja, após simplificação,

$$\cos \delta_f \cos(\alpha_f - z_A) = \cos \delta_{to} \cos(\alpha_{to} + \zeta_A) \cos \theta_A - \sin \delta_{to} \sin \theta_A$$

$$\cos \delta_f \sin(\alpha_f - z_A) = \cos \delta_{to} \sin(\alpha_{to} + \zeta_A)$$

$$\sin \delta_f = \cos \delta_{to} \cos(\alpha_{to} + \zeta_A) \sin \theta_A + \sin \delta_{to} \cos \theta_A, \quad (3.18)$$

onde $z_A = \widehat{\Upsilon_f Q} - 90^\circ$ e $\zeta_A = 90^\circ - \widehat{\Upsilon_{to} Q}$.

Nutação: coordenadas médias e verdadeiras

Contrariamente à precessão, que é um efeito secular de grande amplitude, a nutação corresponde a uma oscilação de curto período e pequena amplitude em torno de uma posição média (Fig. 3.10). Este efeito da nutação se traduz em uma oscilação da longitude e da obliquidade da eclíptica com período principal de cerca de 18,6 anos, e escrevemos as variações devido à nutação como $\delta \psi \in \delta \varepsilon$, respectivamente. O valor de $\delta \psi$ oscila entre $\pm 18,''5$ e $\delta \varepsilon$ entre $\pm 9,''8$ aproximadamente. Por ser muito menor que o efeito secular da precessão, a nutação só foi descoberta em 1747 por James Bradley.

Quando corrigimos as coordenadas de um astro apenas utilizando os termos seculares da precessão e da inclinação da eclíptica, dizemos que as coordenadas são *médias*. Quando corrigimos também os efeitos periódicos da nutação, dizemos que as coordenadas são *verdadeiras*. Desta forma, em coordenadas eclípticas, a relação entre as coordenadas médias e verdadeiras se escreve simplesmente como:

$$\begin{aligned}
\lambda_v &= \lambda_m + \delta\psi \\
\beta_v &= \beta_m \\
\varepsilon_v &= \varepsilon_m + \delta\varepsilon,
\end{aligned}$$
(3.19)

Figura 3.10: Efeito da nutação. O eixo de rotação da Terra oscila em torno de sua posição média (trajetória da precessão).

onde os índices $v \in m$ referem-se a verdadeiro e médio, respectivamente. Se quisermos as coordenadas equatoriais verdadeiras, devemos simplesmente utilizar as coordenadas eclípticas verdadeiras da Eq. 3.19 e realizarmos a transformação de coordenadas.

A teoria atual da nutação é baseada em um modelo geofísico da Terra complexo, levando-se em conta a elasticidade e não homogeneidade terrestre, além de um modelo detalhado dos movimentos relativos da Lua e da Terra em torno do Sol. Além do termo principal de período 18,6 anos, existem centenas de outros termos, com períodos de até alguns dias. Esta teoria nos dá os valores de $\delta \psi$ e $\delta \varepsilon$ com precisão de centésimos de segundo de grau para qualquer momento até cerca de quatro mil anos no futuro ou no passado (por exemplo, Fig. 3.11).

Figura 3.11: Variação da obliquidade $(d\varepsilon)$ e longitude $(d\psi)$ devido à nutação. A elipse representa o principal termo da nutação de 18,6 anos. Em destaque, detalhe do movimento de nutação.

3.3 Movimento do polo

Como vimos, a Terra não é uma esfera perfeita, mas sim um *elipsóide de revolução*. Isto implica que, se a direção do eixo de rotação não é exatamente a mesma que o eixo de simetria do elipsóide, então o eixo de rotação precessa em torno do eixo de simetria do elipsóide. Contrariamente à precessão e à nutação, este fenômeno é intrínseco da Terra, não dependendo da ação de outros astros.

Figura 3.12: Esquerda: Movimento anual do polo terrestre determinado a partir das medidas feitas pelo IERS (*International Earth Rotation Service*). No polo, 0, 32" corresponde a aproximadamente 10 metros na superfície da Terra. Direita: movimento médio do polo em 35 anos e seu deslocamento sistemático em direção ao Canadá.

Este efeito é pequeno e só foi medido pela primeira vez em 1891, apesar de que já havia sido previsto teoricamente desde o fim do século XVIII. A distância entre o polo definido pelo eixo de rotação instantâneo e o eixo de simetria nunca é superior a cerca de 20 metros, o que corresponde a alguns décimos de segundos de arco. Na figura 3.12 vemos o movimento do polo entre 1992 e os primeiros meses de 1999. A posição instantânea do eixo de rotação terrestre é dado em função de dois ângulos, $X \in Y$, que são medidos em direção do meridiano de Greenwich e na direção do meridiano 90°W, respectivamente.

Este movimento é na realidade muito complexo devido à distribuição irregular de massas da Terra, além do fato da Terra não ser um corpo perfeitamente rígido. Os principais componentes deste movimento são um termo anual aproximadamente elíptica (devido à translação da Terra) e um termo aproximadamente circular com um período de ~ 435 dias, chamado *termo de Chandler*. Além disto, a posição média do polo se desloca sistematicamente (e lentamente) na direção 80° Oeste.

Devido à sua complexidade, não é possível prever com precisão a posição instantânea do eixo de rotação da Terra por mais do que alguns meses. O que pode ser feito com precisão é monitorar este movimento – isto é feito por colaborações internacionais coordenadas pelo "National Earth Orientation Service" (NEOS) e o "International Earth Rotation Service" (IERS).

A correção do movimento do polo é muito pequena, e ela é feita principalmente para corrigir o tempo universal (após a correção o tempo universal é chamado UT1).

3.4 Refração atmosférica

A atmosfera terrestre não é homogênea: a densidade da atmosfera diminui progressivamente a medida que a altitude aumenta. Como o índice de refração da atmosfera é função da densidade (quanto maior a densidade, maior o índice de refração), a luz de um astro sofre uma alteração em sua trajetória ao atravessar a atmosfera terrestre e esta alteração será função da altitude.

3.4.1 Aproximação de planos paralelos

Figura 3.13: Refração atmosférica na aproximação de planos paralelos. Os índices de refração variam de n = 1 (vácuo) a n_0 , o índice à altitude do observador, igual a 1,00028 ao nível do mar, a 0°C, para a luz visível (centro do filtro V, igual a 5500 Å).

A figura 3.13 ilustra este fenômeno. Nós representamos a atmosfera como N camadas paralelas, cada uma com um índice de refração n_i . Nesta aproximação, nós desprezamos a curvatura da Terra, o que é válido apenas para direções próximas do zênite. Dado um astro cuja luz atinge a atmosfera com um ângulo z (ou seja, um astro de altura, $h = 90^{\circ} - z$), o raio luminoso é refratado pela atmosfera de forma que, na camada i, o ângulo com a vertical será z_i e assim por diante até o observador que medirá um ângulo z_0 . Aplicando a lei de Snell-Descartes para camadas consecutivas temos:

$$\dots n_{i+1} \operatorname{sen} z_{i+1} = n_i \operatorname{sen} z_i = n_{i-1} \operatorname{sen} z_{i-1} \dots$$
(3.20)

Como n = 1 fora da atmosfera, podemos então deduzir que sen $z = n_0 \operatorname{sen} z_0$, independentemente do número de camadas. Em outras palavras, este resultado é válido no limite de infinitas camadas ou de uma atmosfera continua. Por outro lado, esta aproximação é boa apenas para astros que se encontram próximos do zênite. Para astros de altitude menor, é necessário levarmos em conta a curvatura terrestre e a aproximação de planos paralelos deixa de ser boa. Notemos também que a refração é *independente* do azimute do astro.

Se definirmos o ângulo de refração, (também conhecido como refração astronômica) $R \equiv z - z_0$, podemos escrever a lei de Snell-Descartes como:

$$n_0 \operatorname{sen} z_0 = \operatorname{sen} R \cos z_0 + \cos R \operatorname{sen} z_0.$$
(3.21)

Para pequenos ângulos de refração, isto é, $R \ll 1$, podemos utilizar a aproximação sen $R \approx R$ e cos $R \approx 1$, o que implica em:

$$R = (n_0 - 1) \tan z_0 \,(\text{radiano}) \,. \tag{3.22}$$

Assim, para $n_0 = 1,00028$ por exemplo, $R \approx 2,8 \times 10^{-4} \tan z_0$ radianos ou $R \approx 57,78 \tan z_0$.

3.4.2 Fórmula geral da refração

Infelizmente a formula (3.22) só é valida para altitudes próximas de 90°. Para o caso geral, é necessário levarmos em conta a curvatura da Terra. A figura 3.14 representa este caso.

Figura 3.14: Refração atmosférica levando-se em conta a curvatura da Terra. A representação aqui é seme-lhante à figura 3.13 onde n é o índice de refração da atmosfera.

Utilizando a notação das figuras 3.13 e 3.14, a lei de Snell-Descartes nos dá, $n' \sec z' = n \sec \psi$ e, pelo triângulo CFE, nós temos $r' \sec \psi = r \sec w = r \sec z$ (pois $w = 180^{\circ} - z$). Assim, obtemos uma relação válida para qualquer camada:

$$r'n' \operatorname{sen} z' = r \, n \operatorname{sen} z \,. \tag{3.23}$$

Da mesma forma que para a aproximação de planos paralelos, podemos utilizar a relação acima até o observador resultando em

$$R_T n_0 \operatorname{sen} z_0 = r \, n \operatorname{sen} z \,, \tag{3.24}$$

onde R_T é o raio da Terra.

Calculemos agora a expressão (3.23) para duas camadas infinitesimais, isto é,

$$r n \operatorname{sen} z = (r + \delta r)(n - \delta n) \operatorname{sen}(z + \delta z)$$
(3.25)

onde lembramos que quando r aumenta o índice de refração n diminui. Desenvolvendo o produto acima e desprezando os termos cruzados de infinitesimais (como $\delta r \delta n$, por exemplo), obtemos

$$\frac{\delta z}{\tan z} + \frac{\delta r}{r} - \frac{\delta n}{n} = 0, \qquad (3.26)$$
onde utilizamos $sen(z + \delta z) = sen z + \delta z \cos z$.

Utilizando o triângulo infinitesimal EFG, podemos escrever tan $z = r\delta\theta/\delta r$, onde δr é o segmento GF e r é o segmento CG. Assim obtemos,

$$\frac{\delta z + \delta \theta}{\tan z} - \frac{\delta n}{n} = 0.$$
(3.27)

Introduzimos novamente o ângulo de refração R, a diferença entre o ângulo zenital aparente (90° - h) e verdadeiro (medido fora da atmosfera). O ângulo de refração entre duas camadas infinitesimais é $\delta R = \alpha' - \alpha$, de acordo com a Fig. 3.14. Mas a diferença $\alpha' - \alpha$ é igual a $\delta z + \delta \theta$ (vendo que $\alpha = \theta + z$, θ sendo o ângulo do zênite ao segmento CF). Obtemos, então:

$$\frac{\delta R}{\tan z} = \frac{\delta n}{n} \tag{3.28}$$

Finalmente, utilizando a Eq. (3.24) podemos reescrever z em função de z_0 ,

$$\operatorname{sen} z = \frac{R_T n_0}{r n} \operatorname{sen} z_0 \Rightarrow \tan z = \frac{R_T n_0 \operatorname{sen} z_0}{\sqrt{r^2 n^2 - R_T^2 n_0^2 \operatorname{sen}^2 z_0}},$$
(3.29)

e a Eq. (3.28) pode ser escrita em termos das quantidades referentes ao observador. Assim reescrevemos o termo tan z e transformamos as diferenças infinitesimais em diferencial e obtemos:

$$R = R_T n_0 \operatorname{sen} z_0 \int_1^{n_0} \frac{\mathrm{d}n}{n\sqrt{r^2 n^2 - R_T^2 n_0^2 \operatorname{sen}^2 z_0}},$$
(3.30)

onde os limites de integração são 1 fora da atmosfera e n_0 na camada do observador. Esta equação pode ser integrada, resultando em:

$$R = \arctan\left[\frac{\operatorname{sen} z_0}{\sqrt{\left(\frac{r}{n_0 R_T}\right)^2 - \operatorname{sen}^2 z_0}}\right] - \arctan\left[\frac{\operatorname{sen} z_0}{\sqrt{\left(\frac{r}{R_T}\right)^2 - \operatorname{sen}^2 z_0}}\right].$$
 (3.31)

Ao integrarmos a Eq. (3.30), nós consideramos a variável r constante; rigorosamente nós deveríamos levar em conta a dependência do índice de refração com a altura. Isto, contudo, é praticamente impossível dado o caráter dinâmico da atmosfera.

Podemos simplificar o problema da seguinte forma. Escrevemos o raio $r \mod r/R_T = 1 + s$, onde s é um número pequeno (a 65 km de altura a atmosfera já é tão tênue que a refração torna-se desprezível, o que corresponde a $s \sim 0,01$).

Além disto, introduzimos a quantidade α definida como $\alpha \equiv n_0 - 1$. Mesmo ao nível do mar, α é uma quantidade pequena, $\alpha \sim 3 \times 10^{-4}$.

Substituímos $r \in n_0$ na expressão 3.31, para em seguida fazermos uma expansão de Taylor em $s \in em \alpha$, o que resulta em:

$$R = \frac{\alpha [1 - 2s + \cos(2z_0)] \sec^2 z_0 \tan z_0}{2} \,. \tag{3.32}$$

Com um pouco de trigonometria e álgebra podemos escrever esta expressão como:

$$R = \alpha (1 - s) \tan z_0 - \alpha s \, \tan^3 z_0 \,. \tag{3.33}$$

Alguns autores conservam até termos contendo α^2 na expansão de Taylor da Eq. (3.31). Neste caso o ângulo de refração é dado por

$$R = \alpha (1 - s) \tan z_0 - \alpha \left(s - \frac{\alpha}{2}\right) \tan^3 z_0 .$$
 (3.34)

A fórmula acima é conhecida como *fórmula de Laplace* e, em geral é dada da seguinte forma:

$$R = \mathcal{A} \tan z_0 - \mathcal{B} \tan^3 z_0 \,, \tag{3.35}$$

Para $z_0 \leq 75^\circ$, a formula de Laplace é razoavelmente precisa e os coeficientes são dados por $\mathcal{A} = 57,''085$ e $\mathcal{B} = 0,''067$, determinados empiricamente para condições normais de temperatura e pressão. Pode-se ver que, para pequeno z_0 , a fórmula (3.35) nos dá o resultado obtido na aproximação de planos paralelos (lembrando que $s \ll 1$).

Os coeficientes $\mathcal{A} \in \mathcal{B}$ dependem das condições atmosféricas pois o índice de refração depende da densidade (ou da pressão e temperatura) da atmosfera, assim como do comprimento de onda observado. Por esta razão, em geral o ângulo R é tabelado para um dado lugar em função da distância zenital. No horizonte ($z_0 = 90^\circ$) em geral é adotado um valor de $0^{\circ}34'$ para o ângulo de refração.

Como α é proporcional à densidade da atmosfera, e s é proporcional à pressão atmosférica, costuma-se corrigir estas constantes da seguinte forma:

$$\alpha = \alpha_0 \frac{P}{101\,325} \frac{273,15}{T+273,15} \quad e \quad s = s_0 \frac{T+273,15}{273,15} \,, \tag{3.36}$$

onde $s_0 \in \alpha_0$ são os valores que correspondem às condições normais de temperatura e pressão. Na expressão acima P é a pressão em Pascais e T a temperatura em centígrados.

Para se levar em conta a variação do índice de refração com o comprimento de onda, utiliza-se a correção empírica seguinte:

$$R = R_0 \left(0,983 + \frac{0,00598}{\lambda^2} \right) \,, \tag{3.37}$$

onde R_0 é o ângulo de refração em condições normais (isto é, $\lambda = 0,590\mu$ m, que corresponde à cor amarela) e λ é o comprimento de onda em micrômetros. Entre a luz vermelha ($\lambda = 0,75\mu$ m) e violeta($\lambda = 0,4\mu$ m), o ângulo de refração aumenta de cerca de 5%.

3.5 Nascer, pôr e crepúsculos

Devido à rotação diurna da Terra, os astros se levantam (ou nascem) na direção leste e se põe no oeste (exceto é claro para os astros circumpolares). O mais notável destes eventos são o nascer e o pôr do Sol e da Lua.

Para os astros puntiformes (as estrelas e, em primeira aproximação, os planetas) o nascer e o $p\hat{o}r$ são definidos como o instante em que a altura h do astro é igual a zero. Para a Lua e o Sol, que têm um diâmetro aparente da ordem de meio grau, o nascer e o pôr são definidos em relação à parte superior do disco aparente. É importante notar que, para todos os astros, o nascer e o pôr são definidos levando-se em conta a refração atmosférica. Assim, utilizando as equações de transformação entre coordenadas horárias e horizontais, vemos que um astro se levanta (ou se põe) para um observador na latitude φ quando

$$\cos H = \frac{\sin h - \sin \varphi \sin \delta}{\cos \varphi \cos \delta}, \qquad (3.38)$$

onde h = -R - d/2, R sendo o ângulo de refração no horizonte (em geral tomamos igual a 0°34′) e d/2 é o semi-diâmetro do astro (para a Lua e para o Sol tomamos igual a 0°16′ e, para os demais astros, igual a zero). A declinação aqui é verdadeira (corrigida da precessão e nutação). Se quisermos desprezar a refração atmosférica, tomamos R = 0.

A Eq. (3.38) admite em geral duas soluções $(\pm H)$ que correspondem ao nascer e pôr do astro. Eventualmente podemos não ter nenhuma solução, isto é, $|\cos H| > 1$. Isto significa que o astro não se levanta nem se põe. Ele pode ser circumpolar ou estar sempre abaixo da linha do horizonte na latitude em questão.

O azimute do astro ao nascer ou se pôr é:

$$\cos A \cos h = \operatorname{sen} h \tan \varphi - \frac{\operatorname{sen} \delta}{\cos \varphi}$$
(3.39)

onde h é o mesmo da Eq. (3.38). O valor do azimute estará entre 0° e 180° no poente e entre 180° e 360° no nascer.

Uma vez calculado o ângulo horário pela Eq. (3.38), podemos calcular o tempo sideral de Greenwich para $\pm H$, que corresponde ao pôr e ao nascer do astro, simplesmente com:

$$T_s = \alpha \pm H - \lambda \tag{3.40}$$

onde α é a ascensão reta do astro e λ é a longitude do observador (negativa a Oeste de Greenwich, positiva a Leste). Devemos agora calcular o tempo sideral de Greenwich às 0h UT, T_{s0} , com a fórmula (2.9). O intervalo de tempo, medido em tempo sideral, entre as 0h UT e o momento que nos interessa (nascer ou poente) é a diferença $T_s - T_{s0}$. Esta diferença é transformada em tempo solar (universal) utilizando-se o fator de conversão entre o dia solar e o dia sideral (cf. seção 2.4), igual a 1,0027379. Matematicamente temos:

$$\Delta T_{UT} = 0,99727 \times (T_s - T_{s0}). \tag{3.41}$$

O instante do fenômeno será então 0h UT mais ΔT_{UT} , ou simplemente ΔT_{UT} . Deve-se então somar os fusos horários (e eventual "hora de verão") para obter-se o tempo legal na posição do observador.

3.5.1 Crepúsculo

Para o Sol em particular, definem-se outros fenômenos ligados ao nascer e pôr. Logo antes do nascer ou após o pôr do Sol, o céu não está totalmente escuro. Este intervalo de tempo que antecede o nascer ou sucede o ocaso do Sol, quando a iluminação é devido à luz solar espalhada pela alta atmosfera, chama-se *crepúsculo*. O início ou fim do crepúsculo (se é de madrugada ou à noite) são definidos em termos da altura do Sol (novamente, levando-se em conta a refração atmosférica). Existem três definições distintas:

crepúsculo civil é definido pelo instante em que o *centro* do disco solar se encontra 6° abaixo do horizonte (ou, $h = -6^{\circ}$). Em geral, este é o limite em que a iluminação artificial começa a ser necessária para atividades como dirigir;

- **crepúsculo náutico** é definido quando o centro do disco solar está a 12° abaixo do horizonte. Em geral, neste instante o horizonte aparente deixa de ser perceptível, isto é, confunde-se com o céu;
- **crepúsculo astronômico** é o momento em que o disco solar se encontra a 18° abaixo da linha do horizonte. Normalmente, neste momento a alta atmosfera deixa de ser iluminada pela luz solar e as observações astronômicas podem ter início.

É interessante notar que nem sempre estes fenômenos (crepúsculo, nascer e pôr do Sol) ocorrem nas latitudes mais elevadas da Terra.

3.6 Movimento próprio de estrelas

Apesar do termo "estrelas fixas", nenhum astro é realmente estacionário. Da mesma forma que os planetas orbitam o Sol, as estrelas também seguem suas órbitas nas galáxias. No caso da nossa galáxia, a Via Láctea, uma espiral gigante, praticamente todas as estrelas orbitam em torno do centro galáctico. Este movimento orbital pode ser decomposto em duas componentes principais: uma órbita aproximadamente circular em torno do centro galáctico e um movimento de direção aleatória. No caso das estrelas na vizinhança solar, o movimento em torno do centro galáctico tem magnitude da ordem de 200 km/s e o movimento aleatório cerca de 10–20 km/s.

Figura 3.15: Órbita típica de uma estrela da vizinhança solar. O principal movimento é a órbita aproximadamente circular (traço pontilhado) com velocidade v_{ϕ} . Superposto a este movimento há uma componente de direção aleatória que pode ser decomposta em coordenadas cilíndricas com módulos δv_z , (direção "vertical", perpendicular ao plano Galáctico) δv_R (direção radial) e δv_{ϕ} .

Do ponto de vista de um observador no Sistema Solar, o movimento próprio das estrelas, μ , é uma composição entre os movimentos das estrelas e do Sol em relação a um referencial fixo, uma vez que é observado da Terra. É claro que as estrelas terão, em geral, um movimento radial e transversal em relação ao Sol (e naturalmente à Terra), como mostra a figura 3.16. A componente radial não altera a posição de uma estrela na esfera celeste, apenas o movimento relativo transversal é que terá algum efeito na posição do astro (o movimento radial altera a distância da estrela nós).

O efeito do movimento próprio na posição aparente é pequeno devido à distância das estrelas. Uma estrela que tenha uma velocidade transversal de ~ 50 km/s e esteja a ~ 5 pc (ou ~ 16,3 anos-luz) terá um movimento aparente de apenas ~ 2" por ano. Foi somente em 1718 que Halley suspeitou da existência do movimento próprio das estrelas, comparando a posição de Arcturus (alfa Boötes ou Boieiro) medida por Hiparco 20 séculos antes de suas próprias medidas.

Figura 3.16: Decomposição do movimento próprio. \vec{v} é o vetor velocidade relativa da estrela em relação ao observador, \vec{v}_{rad} é a velocidade radial, na direção da linha de visada do observador, \vec{v}_{perp} é a componente perpendicular, contida no plano do céu. É esta componente que corresponde a μ e altera a posição do astro na esfera celeste.

Figura 3.17: Movimento próprio e paralaxe da estrela de Barnard observado por Dennis di Cicco. O traço contínuo é o movimento próprio (medido pelo satélite Hipparcos) enquanto que a oscilação em torno desta reta é devido à paralaxe (portanto um reflexo do movimento de translação da Terra em torno do Sol).

Existem cerca de 35 estrelas com movimento próprio superior a 3" por ano, sendo a estrela de maior movimento próprio a Estrela de Barnard, com um movimento de 10,"3 por ano (descoberto em 1916 por Edward Barnard; veja Fig. 3.17). Ela é uma anã vermelha invisível a olho nu (magnitude 9.54) que se encontra na constelação de Ophiuchus. A estrela visível a olho nu com maior movimento próprio é épsilon da constelação Indus, também uma anã vermelha com movimento próprio de 4,"69 por ano.

Outro efeito devido ao movimento próprio das estrelas é que a forma das constelações

se altera com o tempo. Este efeito é pequeno, mas para os primeiros habitantes da América do Sul, que chegaram talvez há cerca de 50.000 anos (sítio arqueológico de Pedra Furada, no Piauí), não havia o que hoje chamamos de constelação do Cruzeiro do Sul (Fig. 3.18).

Figura 3.18: Movimento próprio das estrelas que compõem o Cruzeiro do Sul. Da esquerda para a direita vemos as configurações observadas há 40.000 anos no passado, no centro hoje (no ano 2.000) e a direita no futuro, daqui 40.000 anos. Note que daqui há 20 mil anos a estrela α Centauri estará muito próxima da posição ocupada atualmente pela estrela δ Cruxis (conhecida como *Pálida*). O campo mostrado tem cerca de 9,5° de lado.

3.6.1 Efeito do movimento próprio nas coordenadas

Em geral, o movimento próprio das estrelas são dados em relação à ascensão reta e à declinação, $\mu_{\alpha} \in \mu_{\delta}$, em segundos de arco por ano. A variação temporal de μ em um dado referencial é desprezível (mas será possivelmente mensurável a partir das próximas observações espaciais). Se uma estrela tem coordenadas $\alpha_0 \in \delta_0$ em uma época t_0 , suas coordenadas em uma outra época t será, em primeira aproximação:

$$\begin{aligned} \alpha &= \mu_{\alpha}(t - t_0) + \alpha_0 \,, \\ \delta &= \mu_{\delta}(t - t_0) + \delta_0 \,. \end{aligned} \tag{3.42}$$

Notemos que os velocidades $\mu_{\alpha} \in \mu_{\delta}$ são dadas no mesmo equinócio (época) que as coordenadas $\alpha_0 \in \delta_0$. Isto significa que as coordenadas $\alpha \in \delta$ correspondem à posição do astro no momento t mas em relação ao equinócio t_0 : é necessária ainda a correção da precessão para que as coordenadas correspondam ao equinócio do momento t.

Em termos das componentes da velocidade própria, o movimento próprio total, μ , pode ser escrito como $\mu^2 = \mu_{\alpha}^2 \cos^2 \delta + \mu_{\delta}^2$.

Além das estrelas, os objetos extragalácticos (galáxias e quasares por exemplo) também se movimentam em relação a um referencial fixo e em relação a nós. Estima-se que o movimento próprio das galáxias mais longínquas deve ser inferior a 10^{-5} segundos de arco por ano. Contudo, para as galáxias próximas, sobretudo do grupo local, é possível que seus movimentos próprios sejam detectáveis nas próximas décadas.

3.7 Relação entre coordenadas geocêntricas e heliocêntricas

Em vários problemas de astronomia de posição é conveniente fazermos uma translação do sistema de coordenadas, passando do sistema geocêntrico ao heliocêntrico ou vice versa.

Figura 3.19: Translação de coordenadas geocêntricas e heliocêntricas. As direções x e x' apontam para o ponto vernal e z e z' para o polo da eclíptica.

Isto é feito de maneira mais simples utilizando-se o sistema de coordenas eclípticas (Fig. 3.19).

Em forma matricial, a translação se faz como $r\mathbf{I}(\lambda,\beta) - R_{\odot}\mathbf{I}_{\odot} = r'\mathbf{I}(\lambda',\beta')$, onde \mathbf{I}_{\odot} é a posição geocêntrica do Sol e as coordenadas "primas" são heliocêntricas. Explicitando vem:

$$r\cos\beta\cos\lambda - R_{\odot}\cos\lambda_{\odot} = r'\cos\beta'\cos\lambda'$$

$$r\cos\beta\sin\lambda - R_{\odot}\sin\lambda_{\odot} = r'\cos\beta'\sin\lambda'$$

$$r\sin\beta - 0 = r'\sin\beta'$$
(3.43)

onde utilizamos o fato de $\beta_{\odot} = 0$. Na realidade isto não é absolutamente verdadeiro pois, devido a perturbações planetárias, a latitude do Sol pode ser de alguns segundos de arco. Exceto por isso, a equação acima é geral e válida sempre. Note que aqui precisamos levar em conta a distância do astro (r em relação à Terra, r' em relação ao Sol). Isto é fundamental quando são corpos dentro do sistema solar, onde as distâncias são sempre comparáveis com a distância Terra–Sol (R_{\odot}).

As translações em coordenadas equatoriais podem ser feitas primeiro transformandoas em eclípticas, fazendo a translação e finalmente, transformando-as de volta em equatoriais.

3.8 Paralaxe

3.8.1 Paralaxe anual

Devido ao movimento anual da Terra em torno do Sol, a posição das estrelas mais próximas se desloca em relação às estrelas mais longínquas. Este efeito é chamado de *paralaxe* ou ainda *paralaxe anual* (Fig. 3.20). Comparando-se duas imagens da mesma região do céu com 6 meses de intervalo, o que é equivalente à metade do trajeto da Terra em torno do Sol, a posição das estrelas próximas se deslocam em relação às estrelas mais distantes devido a um efeito geométrico de perspectiva (paralaxe).

A paralaxe de uma estrela é definida como:

$$\operatorname{sen} \varpi = 1/r \,, \tag{3.44}$$

onde r é a distância da estrela medida em unidades astronômicas (AU, onde 1 AU é aproximadamente igual ao semi-eixo maior da órbita terrestre em torno do Sol, igual

Figura 3.20: Efeito da paralaxe na posição das estrelas mais próximas. Observando-se uma estrela próxima com 6 meses de intervalo, a posição aparente desta se desloca em relação ao fundo de estrelas distantes. O ângulo ϖ é a paralaxe da estrela, r é a distância da estrela e R a distância Terra-Sol.

149.597.870,7 km). Para as estrelas, o ângulo de paralaxe ϖ nunca é maior que 0,"8, razão pela qual a primeira medida de paralaxe anual foi feita somente em 1838 por Friedrich W. Bessel. Como $\varpi \ll 1$, podemos utilizar simplesmente $\varpi = 1/r$ (ϖ em radianos).

Se a paralaxe é dada em segundos de arco, então o seu inverso $1/\varpi$ tem unidades de *parsec* (do inglês PARalaxe SECond), isto é, por definição 1 pc é a distância que corresponde a uma paralaxe de 1". Um parsec é exatamente igual a 648.000/ π AU ou aproximadamente 3,2616 anos-luz.

Pela equação (3.44) fica claro que medindo-se a paralaxe obtemos imediatamente a distância da estrela. É desta forma que a distância das estrelas mais próximas são determinadas na prática. Atualmente, é possível determinar a paralaxe até cerca de 0,''001, o que significa que podemos determinar diretamente a distância das estrelas até cerca de 3.300 anos-luz (ou seja, cerca de 12% da distância ao centro da nossa galáxia). Este alcance irá mudar com as observações previstas pelo satélite Gaia da ESA, que poderá medir com precisão paralaxes de 10^{-4} a 10^{-5} segundos de arco.

Na tabela 3.1 está a lista das 23 estrelas mais próximas do Sol e a Fig. 3.21 mostra sua distribuição espacial. Estas estrelas estão contidas em um volume de raio R = 4,1 pc (para referência, a distância do Sol ao centro da Galáxia é $R \simeq 8,0 \text{ kpc}$).

Efeito da paralaxe anual nas coordenadas

O efeito da paralaxe nas coordenadas eclípticas pode ser calculado facilmente através da translação entre as coordenadas geocêntricas e heliocêntricas, lembrando que, observado do Sol, a posição de uma estrela não sofre o efeito da paralaxe (veja a Fig. 3.20). Para isto utilizamos as equações que fazem a translação das coordenadas eclípticas de geocêntrica a heliocêntrica, Eq. (3.43).

Como estamos interessados em corpos distantes do sistema solar podemos introduzir

Tabela 3.1: Paralaxe das estrelas mais próximas do Sol medidas pelo satélite Hipparcos. 'V
mag' e ' M_V ' são as magnitudes aparente e absoluta, respectivamente, na banda V; μ é o movimento próprio total da estrela.

Asc. Reta	Declinação 12000 0	μ	Paralaxe	Tipo Fenor	$V \operatorname{mag}$	M_V	Massa M	Nome	
14h20m42s0	<u> </u>	(/ ano)	0.77100	ME E	11.00	15 59	0.107	Duánima Cantanni	
$14 \ 29 \ 43,0$	-02 40 40	3.803 2.710	0.77199	M5.5 C2	11.09	10.03	0.107	Proxima Centauri	
14 59 50,5 14h20m2581	$-60^{\circ} 50'02$	3.710 2 794	0.74720 0.74722	G2 K0	0.01	4.30 5.71	1.144	alfa Centauri A	
$14 \ 59 \ 50, 1$ $17^{h} 57^{m} 49^{s} 5$	$-60^{\circ} 50^{\circ} 14^{\circ}$	0.724 10.259	0.74725	K0 M4.0	1.54	0.71	0.910	alfa Centauri B	
$17 \ 57 \ 40, 5$ $10^{h} 56^{m} 20^{s} 2$	+04 41 30 $+07^{\circ}$ 00'52''	10.556	0.04096	M6.0	9.00	16.55	0.100	Walf 250	
$10 \ 50 \ 29, 2$	$+07 \ 00 \ 03$	4.090	0.41910	M0.0	13.44	10.00	0.092	VUII 559	
11 05 20, 2	+35 38 12	4.602	0.39342	MI2.0	1.49	10.44	0.404	Circing (alfa CMa)	
$06 \ 45 \ 08,9$ $06^{h}45^{m}08^{s}9$	-16 42 58 -16° 42'58"	1.339 1.339	0.38002	DA2	-1.43 8.44	1.47 11.34	1.991	Sirius (alia CMa)	
$01^{\rm h}39^{\rm m}01^{\rm s}3$	$-17^{\circ} 57'01''$	3 368	0.37370	M5.5	12.54	15.40	0.109	BL Ceti	
$01^{\rm h}39^{\rm m}01,3^{\rm s}$	$-17^{\circ} 57'01''$	3.368	0.37370	M6.0	12.91 12.99	15.85	0.103 0.102	UV Ceti	
$18^{\rm h}49^{\rm m}49, ^{\rm s}4$	$-23^{\circ} 50'10''$	0.666	0.33722	M3.5	10.43	13.07	0.171	Ross 154	
$23^{h}41^{m}54,^{s}7$	$+44^{\circ} \ 10'30''$	1.617	0.31637	M5.5	12.29	14.79	0.121	Ross 248	
$03^{h}32^{m}55, 8$	$-09^{\circ} \ 27' 30''$	0.977	0.31122	K2	3.73	6.19	0.850	épsilon Eridani	
$23^{\rm h}05^{\rm m}52, 0$	$-35^{\circ} 51'11''$	6.896	0.30508	M1.5	7.34	9.75	0.529	Lacaille 9352	
$11^{\rm h}47^{\rm m}44, {}^{\rm s}4$	$+00^{\circ} \ 48'16''$	1.361	0.29814	M4.0	11.13	13.51	0.156	Ross 128	
$22^{h}38^{m}33, 4^{s}4$	$-15^{\circ} \ 18'07''$	3.254	0.28950	M5.0	13.33	15.64	0.105	EZ Aquarii	
$22^{h}38^{m}33, 4$	$-15^{\circ} \ 18'07''$	3.254	0.28950		13.27	15.58	0.106		
$22^{h}38^{m}33, 4$	$-15^{\circ} \ 18'07''$	3.254	0.28950		14.03	16.34	0.095		
$21^{h}06^{m}53.^{s}9$	$+38^{\circ} 44'58''$	5.281	0.28608	K5.0	5.21	7.49	0.703	61 Cygni A	
$21^{\rm h}06^{\rm m}55, 3$	$+38^{\circ} 44'31''$	5.172	0.28608	K7.0	6.03	8.31	0.630	61 Cygni B	
$07^{\rm h}39^{\rm m}18, 1$	$+05^{\circ} \ 13'30''$	1.259	0.28517	F5 IV	0.38	2.66	1.569	Prócion (alfa CMi)	
$07^{\rm h}39^{\rm m}18, {}^{\rm s}1$	$+05^\circ~13^\prime 30^{\prime\prime}$	1.259	0.28517	DA	10.70	12.98	0.5		
$18^{\rm h}42^{\rm m}46, {}^{\rm s}7$	$+59^{\circ}$ $37^{\prime}49^{\prime\prime}$	2.238	0.28383	M3.0	8.90	11.16	0.351		
$18^{\rm h}42^{\rm m}46, {}^{\rm s}9$	$+59^{\circ} \ 37'37''$	2.313	0.28383	M3.5	9.69	11.95	0.259		
$00^{\rm h}18^{\rm m}22, {}^{\rm s}9$	$+44^\circ~01^\prime23^{\prime\prime}$	2.918	0.27987	M1.5	8.08	10.31	0.486	GX And	
$00^{h}18^{m}22,9$	$+44^{\circ} \ 01'23''$	2.918	0.27987	M3.5	11.06	13.30	0.163	GQ And	
$22^{h}03^{m}21,^{s}7$	$-56^{\circ} 47'10''$	4.704	0.27607	K5	4.69	6.89	0.766	épsilon Indi	
$08^{h}29^{m}49,5$	$+26^{\circ} \ 46'37''$	1.290	0.27580	M6.5	14.78	16.98	0.087	DX Cancri	
$01^{\rm h}44^{\rm m}04, 1$	$-15^{\circ} 56'15''$	1.922	0.27439	G8	3.49	5.68	0.921	tau Ceti	
$03^{\rm h}36^{\rm m}00, 0$	$-44^{\circ} \ 30'46''$	0.814	0.27201	M5.5	13.03	15.21	0.113	RECONS 1	
$01^{\rm h}12^{\rm m}30,^{\rm s}6$	$-16^{\circ} 59'57''$	1.372	0.26884	M4.5	12.02	14.17	0.136	YZ Ceti	
$07^{h}27^{m}24, 5^{s}5$	$+05^{\circ} \ 13'33''$	3.738	0.26376	M3.5	9.86	11.97	0.257	Estrela de Luyten	
$18^{h}45^{m}05, 3$	$-63^{\circ} 57'48''$	2.664	0.25950	M8.5	17.40	19.47	0.07		
$02^{\rm h}53^{\rm m}00, 9$	$+16^{\circ} 52'53''$	5.106	0.25941	M6.5	15.14	17.21	0.08		
$05^{\rm h}11^{\rm m}40,^{\rm s}6$	$-45^{\circ} \ 01'06''$	8.670	0.25527	M1.5	8.84	10.87	0.393	Estrela de Kapteyn	
$21^{\rm h}17^{\rm m}15,^{\rm s}3$	$-38^{\circ} 52'03''$	3.455	0.25343	M0.0	6.67	8.69	0.600	AX Microscópio	
$10^{\rm h}48^{\rm m}14,^{\rm s}7$	$-39^{\circ} 56'06''$	1.530	0.24853	M8.5	17.39	19.37	0.07		
$22^{h}27^{m}59, 5$	$+57^\circ\ 41^\prime 45^{\prime\prime}$	0.990	0.24806	M3.0	9.79	11.76	0.279	Kruger 60 A	
$22^{h}27^{m}59,^{s}5$	$+57^\circ\ 41'45''$	0.990	0.24806	M4.0	11.41	13.38	0.160	Kruger 60 B	
$06^{h}29^{m}23, ^{s}4$	$-02^{\circ} \ 48'50''$	0.930	0.24444	M4.5	11.15	13.09	0.170	Ross 614 A	
$06^{h}29^{m}23, 4$	$-02^{\circ} \ 48'50''$	0.930	0.24444	M-	14.26	16.17	0.097	Ross 614 B	

Figura 3.21: Distribuição dos sistemas estelares mais próximos. A cor e o tamanho das estrelas são proporcionais ao seu tipo espectral e diâmetro. Figura tirada de RECONS (*Research Consortium on Nearby Stars*)

as seguintes transformações:

$$\begin{aligned} \lambda' &= \lambda - \Delta \lambda \\ \beta' &= \beta - \Delta \beta \\ r' &= r - \Delta r \,, \end{aligned} \tag{3.45}$$

onde os valores $\Delta \lambda \in \Delta \beta$ são ângulos muito pequenos e Δr é muito menor que r. Substituindo as equações (3.45) em (3.43), desenvolvendo os senos e cossenos das diferenças e ignorando os termos infinitesimais cruzados, obtemos:

$$\begin{array}{rcl}
R_{\odot}\cos\lambda_{\odot} &=& \cos\beta\cos\lambda\,\Delta r &-& r\sin\beta\cos\lambda\,\Delta\beta &-& r\cos\beta\sin\lambda\,\Delta\lambda\\ R_{\odot}\sin\lambda_{\odot} &=& \cos\beta\sin\lambda\,\Delta r &-& r\sin\beta\sin\lambda\,\Delta\beta &+& r\cos\beta\cos\lambda\,\Delta\lambda\\ 0 &=& \sin\beta\,\Delta r &+& r\cos\beta\,\Delta\beta\end{array} \tag{3.46}$$

o que resulta após simplificação em:

$$\Delta\lambda\cos\beta = -\varpi\operatorname{sen}(\lambda - \lambda_{\odot}),$$

$$\Delta\beta = -\varpi\cos(\lambda - \lambda_{\odot})\operatorname{sen}\beta,$$
(3.47)

onde utilizamos $\varpi = R_{\odot}/r$ (pois $R_{\odot} = 1$ AU).

As equações (3.47) representam uma elipse na esfera celeste de semi-eixos ϖ e ϖ sen β (Fig. 3.22) Esta elipse é chamada *elipse paraláctica* e representa o deslocamento aparente devido ao efeito de paralaxe ao longo de um ano. O semi-eixo maior é paralelo à eclíptica e o semi-eixo menor é perpendicular.

Figura 3.22: Elipse paraláctica. Trajetória aparente devido ao efeito de paralaxe anual. O gráfico a esquerda ilustra um exemplo com $\varpi = 0,...8$ e diferentes latitudes. Quando o astro se encontra no polo da eclíptica, sua trajetória aparente é praticamente um círculo; quando o astro está na eclíptica ($\beta = 0$) sua trajetória é um "vai-e-vem" linear.

Para coordenadas equatoriais podemos proceder da mesma forma, considerando a mesma situação da figura 3.19 (mas em coordenas equatoriais). A variação das coordenadas $\alpha \in \delta$ devido à paralaxe anual é dada por:

$$\begin{aligned} \Delta \alpha \cos \delta &= -\varpi (\sin \alpha \cos \lambda_{\odot} - \cos \varepsilon \cos \alpha \sin \lambda_{\odot}) ,\\ \Delta \delta &= -\varpi (\sin \delta \cos \alpha \cos \lambda_{\odot} + [\cos \varepsilon \sin \delta \sin \alpha - \sin \varepsilon \cos \delta] \sin \lambda_{\odot}) , (3.48) \end{aligned}$$

Em termos das coordenadas cartesianas geocêntricas do Sol, $X_{\odot} = \cos \lambda_{\odot}$ e $Y_{\odot} =$ sen $\lambda_{\odot} \cos \varepsilon$ (assumindo que $Z_{\odot} = 0$), a variação das coordenadas equatoriais se escreve como:

$$\Delta \alpha \cos \delta = -\varpi (X_{\odot} \operatorname{sen} \alpha - Y_{\odot} \cos \alpha),$$

$$\Delta \delta = -\varpi (X_{\odot} \cos \alpha + Y_{\odot} \operatorname{sen} \alpha) \operatorname{sen} \delta.$$
(3.49)

3.8.2 Paralaxe diária

A paralaxe diária ou geocêntrica, p, ocorre devido ao fato de que um observador não se encontra no centro da Terra mas na sua superfície. Em outras palavras, a paralaxe diária corresponde à translação que transforma um dado sistema de coordenadas de geocêntrico a topocêntrico (Fig. 3.23). A paralaxe diária só é relevante para a Lua ($p_{\text{Lua}} \leq 57'$), o Sol ($p_{\text{Sol}} \leq 8,''8$) e, eventualmente, os planetas mais próximos.

A paralaxe diária p é a diferença entre os ângulos com a vertical geocêntrica, z, e topocêntrica, z', isto é, p = z' - z. Pela lei dos senos temos (veja a figura 3.23):

$$\operatorname{sen} p = \frac{\rho}{r} \operatorname{sen} z'.$$
(3.50)

Figura 3.23: Paralaxe diária. A distância geocêntrica do observador ao centro da Terra é ρ , r é a distância geocêntrica do astro observado e r' a distância topocêntrica. A esquerda, o ângulo p é a paralaxe diária; a direita, o ângulo P é a paralaxe horizontal (o astro está no horizonte, $z' = 90^{\circ}$).

Quando a altura do astro é 0° (ou $z' = 90^{\circ}$), chamamos o ângulo p de paralaxe horizontal e utilizamos a notação P. Assim temos simplesmente,

$$\operatorname{sen} P = \frac{\rho}{r} \,. \tag{3.51}$$

Como z' = p + z, então sen $z' = \operatorname{sen} p \cos z + \cos p \operatorname{sen} z$ e podemos escrever a paralaxe diária em função de z e da paralaxe horizontal como:

$$\tan p = \frac{\operatorname{sen} z \operatorname{sen} P}{1 - \cos z \operatorname{sen} P}.$$
(3.52)

É importante notarmos que, pelo fato de não estarmos no centro da Terra, haverá um efeito de paralaxe devido à rotação terrestre sobre o seu eixo, análogo ao caso da paralaxe anual (Fig. 3.24).

Figura 3.24: Efeito da paralaxe diária na posição de um astro próximo devido à rotação da Terra. Observando-se um astro próximo com 12 horas de intervalo, a posição aparente desta se desloca em relação ao fundo de estrelas distantes. O ângulo p é a paralaxe do astro, r é a distância geocêntrica e r' a distância topocêntrica.

Efeito da paralaxe diária nas coordenadas

Da mesma forma que fizemos para a paralaxe anual, podemos calcular o efeito da paralaxe diária na posição de um astro utilizando uma translação do sistema de coordenadas geocêntrico para topocêntrico. Contudo, neste caso, é mais conveniente trabalharmos no sistema de coordenadas horizontais ou horárias (veja a Fig. 3.25 para o sistema de coordenadas horárias).

Figura 3.25: Translação de coordenadas horárias topocêntricas para geocêntricas. φ' é a latitude geocêntrica e ρ a distância do observador O ao centro da Terra, C.

Assim, em notação vetorial, a translação de um sistema de coordenadas horizontais geocêntrico para topocêntrico se faz pela soma de vetores $r\mathbf{I}(A, h) = r'\mathbf{I}(A', h') + \vec{\rho}_{\text{horiz}}$, onde as grandezas 'primas' são topocêntricas. Isto corresponde ao sistema de equações:

$$r \cos A \cos h = r' \cos A' \cos h' + \rho \operatorname{sen}(\varphi - \varphi')$$

$$r \operatorname{sen} A \cos h = r' \operatorname{sen} A' \cos h' + 0$$

$$r \operatorname{sen} h = r' \operatorname{sen} h' + \rho \cos(\varphi - \varphi'),$$

(3.53)

onde $\vec{\rho}_{\text{horiz}}$ é a posição geocêntrica do observador no sistema de coordenadas horizontais, que é obtido por uma rotação de 90° – φ (note que é a latitude geodética utilizada na rotação) da posição geocêntrica em coordenadas horárias ($\vec{\rho}_{\text{horário}}$):

$$\mathbf{R}_{y}(90^{\circ} - \varphi) \quad \underbrace{\begin{pmatrix} \rho \cos \varphi' \\ 0 \\ \rho \sin \varphi' \end{pmatrix}}_{\rho_{\text{horário}}} = \underbrace{\begin{pmatrix} \rho \sin(\varphi - \varphi') \\ 0 \\ \rho \cos(\varphi - \varphi') \end{pmatrix}}_{\rho_{\text{horizontal}}}.$$

Em coordenadas horárias, utilizamos a mesma soma vetorial, mas neste caso temos $r\mathbf{I}(H, \delta) = r'\mathbf{I}(H', \delta') + \rho_{\text{horário}}$, lembrando que $H = T_s - \alpha$ e $H' = T_s - \alpha'$ (T_s sendo o tempo sideral local do observador, igual ao tempo sideral de Greenwich corrigido da longitude). Obtemos assim o sistema de equações:

$$r \cos H \cos \delta = r' \cos H' \cos \delta' + \rho \cos \varphi'$$

$$r \sin H \cos \delta = r' \sin H' \cos \delta' + 0$$

$$r \sin \delta = r' \sin \delta' + \rho \sin \varphi'.$$
(3.54)

Utilizando transformações análogas àquelas utilizadas na paralaxe anual, isto é:

$$H' = H - \Delta H$$

$$\delta' = \delta - \Delta \delta$$

$$r' = r - \Delta r, \qquad (3.55)$$

e tomando as diferenças como infinitesimais obtemos os resultados seguintes:

$$\Delta H \cos \delta = -P \cos \varphi' \operatorname{sen} H,$$

$$\Delta \delta = -P(\cos H \operatorname{sen} \delta \cos \varphi' - \cos \delta \operatorname{sen} \varphi'), \qquad (3.56)$$

onde utilizamos $P = \rho/r$.

No caso da Lua e de objetos muito próximos (satélites artificiais), não podemos supor que as diferenças nas equações (3.55) sejam infinitesimais. Neste caso é necessário utilizarmos o sistema de equações (3.54) sem fazermos aproximações.

3.9 Aberração da Luz

A aberração é um fenômeno que ocorre devido ao movimento relativo do observador ao astro observado e à velocidade finita de propagação da luz (mais precisamente, da radiação eletromagnética). Este efeito foi descoberto por James Bradley em 1728 com observações da estrela Gama Draconis (Dragão). A figura 3.26 ilustra este efeito.

Figura 3.26: Esquerda: Aberração devida à velocidade V do observador. A diferença $\theta - \theta' = a$ é devida à aberração. Direita: Este efeito é análogo à mudança de direção aparente da chuva quando corremos ou ficamos parado.

Se a velocidade da luz fosse infinita ou se o observador estivesse imóvel em relação ao astro, este astro seria observado com um ângulo θ . Mas como o observador tem uma velocidade V, enquanto a luz do astro percorre o trecho EO' em um tempo τ , o observador se desloca de O a O', percorrendo uma distância $V\tau$. Assim, o astro é observado em O' com um ângulo θ' .

A diferença entre os ângulos $\theta \in \theta'$ é o ângulo de aberração. Note que este ângulo não depende do comprimento EO'. Pela lei dos senos temos:

$$\operatorname{sen}(\theta - \theta') = \frac{V}{c} \operatorname{sen} \theta', \qquad (3.57)$$

onde c é a velocidade da luz. Como $V \ll c$, $(V \sim 30 \text{ km/s})$ a diferença $\theta - \theta'$ é pequena e o seno pode ser simplificado resultando em:

$$\theta - \theta' = \kappa \operatorname{sen} \theta'; \operatorname{com} \kappa = \frac{V}{c} \frac{1}{\operatorname{sen} 1''},$$
(3.58)

onde κ é a constante de aberração. O termo sen 1" é utilizado para que κ tenha unidades de segundos de arco. Novamente, como $\theta \in \theta'$ são muito próximos, podemos empregar θ no lugar de θ' na expressão (3.58).

A observação do fenômeno de aberração (anual, discutido no próximo parágrafo) da luz é uma evidência direta do movimento da Terra ao redor do Sol. Logo, trata-se de uma evidência do sistema heliocêntrico defendido por Copérnico (Sec. 4.8.1), 185 anos antes da observação de Bradley.

3.9.1 Aberração anual

A aberração anual ou estelar é devido ao movimento da Terra em torno do Sol. Neste caso, o parâmetro de aberração tem o valor da velocidade média de translação da Terra:

$$\kappa = \frac{2\pi a}{Pc(1-e^2)^{1/2}} \frac{1}{\operatorname{sen} 1''}$$
(3.59)

onde a é o semi-eixo da órbita terrestre, P o período (ou seja, o ano sideral) e e é a excentricidade. O valor de κ é de 20,"49552 para a época J2000.0 (a época deve ser dada porque tanto P, a e e têm variações seculares devido às perturbações planetárias).

O procedimento para se corrigir a aberração anual é muito semelhante à correção da paralaxe, isto é, trata-se de uma soma vetorial. Neste caso temos:

$$r'\mathbf{I}(\lambda',\beta') = r\mathbf{I}(\lambda,\beta) + r\frac{\mathbf{V}}{c}, \qquad (3.60)$$

onde **c** é a velocidade da luz no vácuo, $r'\mathbf{I}(\lambda', \beta')$ são as coordenadas *aparentes* (corrigida da aberração) e $r\mathbf{I}(\lambda, \beta)$ são as coordenadas verdadeiras. **V** é a velocidade do observador em relação ao astro observado.

Vamos considerar agora o caso de um observador na Terra, portanto girando em torno do Sol. Neste caso, \mathbf{V} é a própria velocidade de translação da Terra em torno do Sol (supondo, inicialmente que a observação seja feita no sistema geocêntrico). Temos assim, em coordenadas eclípticas, o sistema de equações:

$$r' \cos \beta' \cos \lambda' = r \frac{V_x}{c} + r \cos \beta \cos \lambda$$

$$r' \cos \beta' \sin \lambda' = r \frac{V_y}{c} + r \cos \beta \sin \lambda$$

$$r' \sin \beta' = 0 + r \sin \beta$$
(3.61)

onde utilizamos o fato de V_z (a velocidade da Terra perpendicular à eclíptica) ser praticamente igual a zero. Utilizando novamente as transformações (3.45), nas equações (3.61) obtemos:

$$-\Delta r \cos\beta\cos\lambda + \Delta\beta r \cos\lambda \sin\beta + \Delta\lambda r \cos\beta \sin\lambda = r \frac{V_x}{V_y} -\Delta\lambda r \cos\beta\cos\lambda - \Delta r \cos\beta \sin\lambda + \Delta\beta r \sin\beta\sin\lambda = r \frac{V_y}{C} 0 - \Delta\beta r \cos\beta - \Delta r \sin\beta = 0,$$
(3.62)

onde eliminamos os termos infinitesimais de ordem superior a um. A equação matricial acima corresponde a um sistema de três equações que pode ser resolvida facilmente, resultando em:

$$\Delta\lambda\cos\beta = \frac{V_x}{c}\sin\lambda - \frac{V_y}{c}\cos\lambda$$
$$\Delta\beta = \sin\beta(\frac{V_x}{c}\cos\lambda + \frac{V_y}{c}\sin\lambda)$$
(3.63)

A velocidade da Terra em torno do Sol é dado pela derivada temporal da posição do raio vetor R_{\odot} (que nos dá a posição heliocêntrica da Terra). Para uma trajetória elíptica temos:

$$\frac{V_x}{c} = -\kappa(\operatorname{sen} \lambda_{\odot} + e \operatorname{sen} w)$$

$$\frac{V_y}{c} = \kappa(\cos \lambda_{\odot} + e \cos w)$$

$$\frac{V_z}{c} = 0$$
(3.64)

onde λ_{\odot} , $w \in e$ são a longitude do Sol, a longitude do periélio e a excentricidade da órbita terrestre, respectivamente. Assim, podemos escrever finalmente:

$$\Delta\lambda\cos\beta = -\kappa[\cos(\lambda_{\odot} - \lambda) + e\cos(w - \lambda)]$$

$$\Delta\beta = -\kappa\,\sin\beta[\sin(\lambda_{\odot} - \lambda) + e\sin(w - \lambda)]. \qquad (3.65)$$

O efeito da aberração anual é fazer com que as estrelas descrevam uma elipse na esfera celeste, de forma análoga à paralaxe anual. Se desprezarmos a elipticidade da órbita terrestre, a expressão acima se simplifica substituindo e = 0.

Em coordenadas equatoriais, o efeito da aberração anual é dado por:

$$\Delta \alpha \cos \delta = -\kappa [(\sin \lambda_{\odot} + e \sin w) \sin \alpha + (\cos \lambda_{\odot} + e \cos w) \cos \varepsilon \cos \alpha] \Delta \delta = -\kappa [(\sin \lambda_{\odot} + e \sin w) \cos \alpha \sin \delta + (\cos \lambda_{\odot} + e \cos w) (\sin \varepsilon \cos \delta - \cos \varepsilon \sin \alpha \sin \delta)].$$
(3.66)

3.9.2 Aberração planetária

No caso da aberração anual, nós só levamos em consideração o movimento da Terra em torno do Sol, desprezando o movimento próprio das estrelas. No caso dos astros do sistema solar é necessário levarmos também em conta seus movimentos. Desta forma devemos reescrever a equação (3.60) da seguinte forma:

$$\mathbf{r}' = \mathbf{r} + r \frac{\mathbf{V}_{\text{Terra}} - \mathbf{V}_p}{c} \,, \tag{3.67}$$

Por outro lado, para os corpos do sistema solar conhecemos com grande precisão a suas posições e, principalmente, seus movimentos. Por isso, ao invés de calcularmos a correção da aberração planetária utilizando a Eq. (3.67) e o método descrito acima para a aberração anual, o que se faz é calcularmos as posições tanto da Terra como do astro em questão a um instante δt anterior ao tempo que queremos. Este intervalo δt é dado por $c \times r$, onde c é a velocidade da luz e r a distancia geocêntrica do astro. Em outras palavras, levamos em consideração a velocidade finita da luz calculando as posições da Terra e do astro em um instante anterior ao da observação. Isto só é possível e relevante no caso de astros com movimento e posições bem determinados, como os corpos do sistema solar.

3.9.3 Aberração secular

O Sol, como todas as estrelas da Via Láctea, tem um movimento próprio em relação ao centro da Galáxia. Um sistema de referência centrado na Galáxia seria uma melhor aproximação de um referencial inercial do que um sistema ligado ao Sol.

Isto significa que o movimento do Sol na Via Láctea (e, consequentemente, o movimento da Terra) produz um efeito de aberração que chamamos de *aberração secular*. Este efeito, contudo, não é levado em conta na prática.

3.9.4 Aberração diária

A aberração diária é devido ao movimento de rotação da Terra em torno de seu eixo. Como a velocidade de rotação da Terra ($\sim 0, 46 \text{ km/s}$) é menor que sua velocidade de translação, este efeito é proporcionalmente menor que a aberração anual.

Outra diferença é que o eixo da rotação não é o mesmo que o eixo de translação; portanto a correção da aberração diária é feita de forma mais simples em coordenadas horárias. O procedimento para deduzirmos a correção devido à aberração diária é exatamente como para a aberração anual (soma vetorial).

Devemos lembrar que a velocidade de rotação de um observador sobre a Terra depende de sua distância geocêntrica (que podemos considerar constante sobre toda a Terra) e sua latitude geográfica, φ . A velocidade do observador é, portanto, $V = 2\pi\rho\cos\varphi/86.164$, onde 86.164 é o número aproximado de segundos SI em um dia sideral e ρ é a distância geocêntrica.

As equações que obtemos para a correção da aberração diária são:

$$\Delta \alpha \cos \delta = -\kappa' \cos \varphi \cos H$$

$$\Delta \delta = -\kappa' \sin \delta \sin \varphi \sin H, \qquad (3.68)$$

onde φ é a latitude geográfica do observador, $H = T_s - \alpha$ (o tempo sideral T_s é local) e κ' é a constante de aberração do movimento diário, $\kappa' = 0,...,320$.

3.10 Desvio gravitacional da luz

Desde Newton, alguns físicos cogitaram que a trajetória da luz poderia ser afetada pela gravitação. Em 1911, Einstein faz uma previsão, baseada no que viria a ser alguns anos mais tarde a Teoria da Relatividade Geral, que os raios de luz de uma estrela distante sofreriam um desvio em sua trajetória devido à massa do Sol. Este efeito foi confirmado experimentalmente durante um eclipse total, na manhã de 29 de maio de 1919 no Ceará, quando foi observado que as estrelas próximas (em distância angular) do Sol apresentavam um desvio em suas posições esperadas.

Este fenômeno ocorre sempre que um fóton (não necessariamente de luz visível, podendo ser raios-X, rádio, etc...) passa nas proximidades de um corpo massivo (Fig. 3.27). É este desvio gravitacional da luz que produz os chamados *arcos gravitacionais* que são imagens de galáxias longínquas deformadas devido ao campo gravitacional de algum objeto que se encontre entre nós e a galáxia (por exemplo, um aglomerado de galáxias que funciona como uma *lente gravitacional*).

No caso da astronomia de posição, estamos interessados na mudança da posição aparente de astros cujos raios luminosos são desviados pela massa do Sol. A teoria geral

Figura 3.27: Desvio gravitacional da luz devido a presença de um corpo massivo (no caso, o Sol). O astro é observado em uma posição aparente distante $\Delta \theta$ da posição verdadeira.

da relatividade prevê que o desvio gravitacional da luz será:

$$\Delta \theta = \frac{2GM_{\odot}}{c^2 R_{\odot}} \frac{\operatorname{sen} \psi}{1 + \cos \psi}, \qquad (3.69)$$

onde ψ é o ângulo entre o astro e a Terra visto do Sol, M_{\odot} e R_{\odot} são a massa do Sol e sua distância da Terra; G e c são a constante da gravitação e a velocidade da luz no vácuo, respectivamente. A constante na Eq. (3.69) vale 0,"0041. O desvio tem um valor mínimo (e nulo) quando $\psi = 0$, o astro está exatamente entre o Sol e a Terra (o que ocorre com os planetas internos e a Lua).

Para os astros que estão a uma distância muito maior que a distância Terra–Sol (qualquer astro fora do sistema solar e, em primeira aproximação os planetas mais distantes), podemos dizer que $D \approx 180^{\circ} - \psi$, onde D é a *elongação* geocêntrica do astro (a distância angular entre o Sol e o astro). Podemos dar, então, o desvio gravitacional da luz em função da elongação:

D	90°	45°	20°	5°	2°	1°	0,5	0,25
$\Delta \theta$	0,''0041	0,''0098	0,''023	0,''093	0,''233	0,''466	0,''933	1,''866

Note que quando a elongação é menor do que $\sim 0,25$ o astro está oculto, atrás do Sol.

A princípio, a trajetória da luz de um astro também é afetada pelo campo gravitacional da Terra, onde se encontra o observador. Contudo este efeito é sempre inferior a 0,"0003 e pode ser desprezado sem problemas.

Em coordenadas equatoriais, o desvio gravitacional é calculado da seguinte maneira:

$$\cos D = \sin \delta \sin \delta_{\odot} + \cos \delta \cos \delta_{\odot} \cos (\alpha - \alpha_{\odot}) ;$$

$$\Delta \alpha = 0;00027 \frac{\cos \delta_{\odot} \sin(\alpha - \alpha_{\odot})}{(1 - \cos D) \cos \delta}$$

$$\Delta \delta = 0,0041 \frac{\sin \delta \cos \delta_{\odot} \cos(\alpha - \alpha_{\odot}) - \cos \delta \sin \delta_{\odot}}{(1 - \cos D)} ,$$
(3.70)

onde α_{\odot} e δ_{\odot} são as coordenadas geocêntricas do Sol.

3.11 Redução das coordenadas celestes: Redução ao dia

A transformação das coordenadas celestes de um astro entre dois sistemas de referências, em geral de uma posição catalogada para a posição aparente em uma data arbitrária, é chamada *redução ao dia*. A redução é um procedimento que envolve a precessão, nutação, aberração da luz, paralaxe, movimento próprio, e desvio gravitacional da luz.

Atualmente, as coordenadas das estrelas são geralmente dadas no chamado referencial J2000, por exemplo baseado no catálogo FK5 (*Fifth Fundamental Catalogue*), em relação ao equinócio médio de 01/01/2000, com origem no baricentro do Sistema Solar. O procedimento da redução das coordenadas está resumido abaixo:

A partir das coordenadas verdadeiras da data, podemos ainda obter as *coordenadas aparentes* topocêntricas, corrigindo as coordenadas pelo efeito da aberração diária, refração atmosférica e da paralaxe diária, se for necessário.

Para dar um exemplo, vamos calcular as coordenadas verdadeiras da Estrela de Barnard para o dia 13/11/2021 às 20 h UT. Iniciamos listando as coordenadas médias da estrela:

Coordenadas: asc. Ret.: $17^{h}57^{m}48, 498$; decl.: $+04^{\circ}41'36, 21$ (J2000). Movimento próprio: $\mu_{\alpha} = -0, 7986$; $\mu_{\delta} = 10, 3281$ ["/ano]. Paralaxe: 0.5483''.

A dia juliana é JD = 2.459.532,333 (lembrando que JD começa ao meio-dia). Para este caso, nós temos as seguintes correções:

	$\Delta \alpha$	$\Delta\delta$			
Mov. Próprio	$-17,\!4920$	$226,\!1896$			
Aberração	$-16{,}5245$	$5,\!9612$			
Paralaxe	-0,3393	-0,2033			
Desvio grav.	0,0083	0,0039			
Nutação	$-14,\!3499$	-4,2829			
(em segundos de arco)					

Obtemos assim as coordenadas geocêntricas médias J2000:

 $\alpha = 17^{\rm h}57^{\rm m}46,^{\rm s}209 \ ; \, \delta = +4^{\circ}45'28,''19 \ {\rm (J2000)}.$

As coordenadas geocêntricas médias da data são obtidas aplicando a correção da precessão:

 $\alpha = 17^{h}58^{m}51,025$; $\delta = +4^{\circ}45'24,''96$ (data).

E, finalmente, as coordenadas geocêntricas verdadeiras são obtidas aplicando a correção da nutação:

 $\alpha = 17^{h}58^{m}50,068$; $\delta = +4^{\circ}45'20,08$ (data).

A partir deste ponto poderíamos calcular as coordenadas aparentes topocêntricas para um observador na superfície da Terra, dada suas coordenadas geográficas.

Astronomia Clássica

4.1 Introdução

A astronomia é tão antiga quanto a História. Contudo, no início, a astronomia tratava apenas de observações e da previsão de alguns fenômenos celestes de forma puramente empírica. Não havia a preocupação em criar-se teorias que explicassem os fenômenos observados. Isto não impediu que civilizações na Babilônia, China, Egito, México, etc..., desenvolvessem um conhecimento sofisticado do movimento aparente do Sol, da Lua e dos planetas.

Foi somente a partir do século VII A.C., na Grécia, que verdadeiras teorias cosmológicas começaram a serem criadas com o intuito de não apenas descrever as observações mas explicá-las a partir de princípios básicos. É claro, não podemos esquecer que foram as observações acumuladas por séculos pelos povos da Mesopotâmia e do Egito que possibilitaram de maneira fundamental o desenvolvimento da astronomia como ciência na Grécia clássica.

É importante lembrar que a evolução das ideias astronômicas não evoluem de maneira linear, isto é, algumas ideias surgem para depois desaparecerem e apenas muito tempo depois voltarem; as vezes conceitos contraditórios surgem ao mesmo tempo para que um, nem sempre o fisicamente correto, prevaleça. A figura 4.1 nos dá uma linha do tempo dos principais filósofos e astrônomos gregos que contribuíram para a astronomia.

Figura 4.1: Linha do tempo do principais filósofos da Grécia clássica que tiveram destaque na astronomia.

4.2 Grécia clássica

4.2.1 Escola jônica

Grande parte do nosso conhecimento do pensamento e filosofia da Grécia pré-socrática (anterior a cerca de 400 A.C.) são de segunda mão: em muitos casos são traduções

ou comentários feitos por autores mais recentes que chegaram a nós de maneira muito fragmentada.

O que se sabe das ideias do filósofo jônico **Tales de Mileto** ($\sim 624-547$ A.C.) vieram de relatos de terceiros. Ele acreditava que a Terra fosse um disco circular achatado flutuando como uma madeira em um oceano cuja a água seria o princípio de tudo e limitado pela abóbada celeste. Chega a ser surpreendente que Tales tenha sido capaz de prever um eclipse do Sol (como se alega) tendo a concepção de mundo que tinha. Se realmente ele pôde prever este eclipse, talvez isto tenha sido uma consequência do conhecimento adquirido em suas viagens pelo Egito.

Um contemporâneo de Tales, **Anaximandro** (~ 611–546 A.C.) é reputado por ter introduzido a utilização do gnômon (conhecer em grego; é uma vareta do relógio solar utilizada para se medir o azimute e a altura do Sol através de sua sombra) na Grécia. Anaximandro acreditava que a Terra deveria estar em equilíbrio no centro do Universo pois nesta posição a Terra não cairia em lugar algum. A Terra seria um cilindro e o céu seria esférico (e não um hemisfério), formado por várias camadas a distâncias diferentes, onde o Sol se encontraria na mais distante e as estrelas fixas na camada mais próxima. A Lua estaria numa camada intermediária. Isto mostra que Anaximandro desconhecia o fenômeno de ocultação das estrelas pela Lua (o que só é possível se a Lua estiver mais próxima que as estrelas), mas tem o mérito da introdução da ideia de distância dos astros à Terra.

Figura 4.2: Universo de Anaximandro. A Terra fica no centro do Universo, as estrelas são furos em uma esfera sólida, por onde escapa a luz. Em seguida vem um anel com a Lua e um anel mais distante com o Sol.

Anaxímenes de Mileto (585–526 A.C.), também da escola jônica, acreditava que as estrelas estariam "pregadas" na esfera celeste, que seria um sólido cristalino, e a Terra seria um disco achatado flutuando no ar. Esta era a visão de **Leucipo de Mileto** (~480–420(?) A.C.), onde a Terra é o hemisfério de uma esfera e, acima, o ar preenche o hemisfério superior (Fig. 4.3). Neste caso, as estrelas preenchem a última esfera.

Assim, para a escola jônica, a Terra era um disco achatado que estaria flutuando no Universo ou no seu centro, as estrelas eram "pregadas" na abóbada celeste e os planetas eram mencionados apenas superficialmente. Todos os astros seriam derivados de substâncias primárias (como o ar, fogo e água).

Figura 4.3: Modelo de Universo de Leucipo. A Terra é uma semi-esfera e os astros são fixados em esferas concêntricas transparentes.

4.2.2 Escola eleática

A escola eleática foi fundada por **Xenofanes de Colophon** (~ 570–478 A.C.) e desenvolvida por **Parmênides** (nascido em Elea 504–450 A.C.). Esta é a época em que Atenas foi o maior centro filosófico do mundo antigo.

Xenofanes acreditava em uma Terra plana e sem limites, ancorada no infinito, com o ar acima também infinito. O Sol, estrelas e cometas seriam "nuvens" condensadas nesta atmosfera. A trajetória dos astros deveria ser retilínea sendo que, a aparência circular do movimento diário seria uma ilusão devida à distância que nos separa destes astros.

Apesar da influência de Xenofanes, Parmênides acreditava que a Terra era uma esfera o que foi sem dúvida um dos maiores passos no avanço da ciência. Ele foi provavelmente o primeiro a dividir a Terra em cinco zonas: uma tropical (ou tórrida), duas temperadas e duas glaciais. A noção de esfericidade provavelmente surgiu a partir dos relatos de viajantes que descreviam estrelas visíveis no Sul (Egito, por exemplo) mas invisíveis na Grécia como a brilhante Canopus (declinação $\approx -52^{\circ}42'$) ou estrelas que se tornam circumpolar quando viajamos para o norte. Também eram relatados mudanças na duração do dia; no verão, os dias eram mais "longos" nas regiões mais ao norte. Parmênides também considerava o Universo como uma série de camadas esféricas concêntricas, com a Terra no centro. Ele também sabia que as "estrelas" vespertina e matutina (ou estrela d'alva) eram o mesmo objeto (que hoje bem sabemos, é Vênus) e que a Lua brilhava graças à luz do Sol. Finalmente, ele acreditava que o Sol e a Lua seriam formados por matéria que havia se desprendido da Via Láctea (o Sol feito por matéria quente e a Lua, fria). Curiosamente, como Anaximandro, Parmênides acreditava que as estrelas estariam mais próximas da Terra que o Sol e a Lua.

Notemos apenas que, nesta mesma época (século V A.C.), surgiram as teorias da matéria composta por átomos (minúsculas partículas indivisíveis, a chamada *teoria atomista*) defendidas por Leucipo (já citado acima), Empédocres e Demócrito (que foi aluno de Leucipo).

4.2.3 Escola pitagórica

A escola pitagórica foi fundada por **Pitágoras** (nascido em 580 A.C. em Samos e morto em Metaponto por volta do ano 497 A.C.) no sul da Itália mais ou menos na mesma época do florescimento da escola eleática. Da mesma forma que a maioria de seus contemporâneos, nada do que foi feito por Pitágoras chegou a nós diretamente. A escola pitagórica teve grande influência no pensamento do mundo antigo não apenas pela sua longevidade (cerca de dois séculos como escola propriamente dita e até o século II D.C. haviam seguidores da escola pitagórica) como também pelo fato de seu membros terem uma participação política importante.

A principal ideia da filosofia de Pitágoras era de que o Universo era governado pela matemática. A regularidade dos movimentos celestes e os intervalos regulares das harmonias musicais levou os pitagóricos à conclusão de que cada um dos planetas, assim como as estrelas, estariam em esferas cujo movimento produziriam uma nota musical. Esta música celestial seria, é claro, impossível de ser escutada pelos seres humanos.

Segundo Pitágoras, o Universo seria formado de quatro elementos (terra, água, ar e fogo), tendo uma forma esférica assim como a Terra, também esférica e localizada no centro. É possível que tenha sido Pitágoras o primeiro a utilizar a palavra "cosmo" (em grego, $\kappa \delta \sigma \mu o \varsigma$) para designar o firmamento. Pitágoras também reconheceu que as "estrelas" matutina e vespertina eram o mesmo corpo celeste (Vênus), que a Lua brilhava refletindo a luz solar e que os planetas tinham uma trajetória inclinada em relação ao equador celeste (o que hoje em dia explicamos pelo fato dos planetas do sistema solar estarem praticamente confinados a um plano, o plano da eclíptica).

Foi provavelmente na escola pitagórica que o movimento de oeste para leste dos planetas foi descoberto (para a escola jônica, acreditava-se que os planetas se moviam de leste para oeste mas as vezes mais lentamente que as estrelas fixas).

Filolau (ou Philolaus, nascido no sul da Itália por volta de 480 A.C.), discípulo de Pitágoras, foi provavelmente o primeiro filósofo grego a sugerir que a Terra não se encontra no centro do Universo. Segundo Filolau, no centro do Universo existiria um fogo central chamado Héstia $(E\sigma\tau i\alpha)$. A Terra (esférica) giraria diariamente em torno deste fogo central, mostrando sempre a mesma face, o lado não habitável; a Europa e o mundo conhecido dos gregos ficaria do lado oposto ao fogo central. É interessante notar que, apesar da teoria de Filolau implicar na rotação da Terra em torno de seu eixo, ele não reconheceu este fato explicitamente. A Lua, o Sol e os planetas também girariam em torno de Héstia, além da órbita terrestre. A partir do fogo central nós teríamos a Terra, a Lua, o Sol, Vênus, Mercúrio, Marte, Júpiter e Saturno.

Filolau também supôs a existência de uma 'anti-Terra', um mundo que eventualmente se localizaria entre a Terra e o fogo central (portanto invisível da Europa). A conjectura desta anti-Terra foi motivada em parte pelo fato do número dez ser considerado perfeito pelos pitagóricos. Deveria haver, portanto, dez corpos no Universo – a Terra, a Lua, o Sol, os cinco planetas conhecidos e a esfera das estrelas fixas somavam apenas nove.

4.2.4 Sistema de Eudoxo

O matemático e filósofo **Eudoxo** nasceu em Cnidus, na Ásia Menor por volta do ano 408 A.C. e morreu em 355 A.C. Eudoxo viajou muito, estudando vários meses com Platão (Atenas 427–347 A.C.), passando mais de um ano no Egito e na volta construiu um observatório próprio. Ele foi o primeiro a propor um ciclo solar de 4 anos, com três anos de 365 dias e um ano de 366, ciclo este que somente foi posto em prática pela primeira vez por Júlio César (o calendário Juliano) cerca de 3 séculos mais tarde. Ele também contribuiu para as primeiras descrições sistemáticas das constelações.

Mas a maior contribuição de Eudoxo foi o seu sistema de *esferas homocêntricas* (de mesmo centro), que daria uma explicação teórica aos movimentos irregulares dos astros. De acordo com os paradigmas da época, Eudoxo acreditava que cada planeta, o Sol e a Lua estavam fixados em esferas, com a Terra no centro. Além disto, o único movimento permissível seriam circulares e regulares (as esferas de cada astro girariam uniformemente).

A inovação de Eudoxo foi supor que cada planeta estaria ligado a várias esferas homocêntricas, e não apenas uma. Cada uma destas esferas giraria de forma uniforme, mas a composição de seus movimentos (que seriam independentes) produziria o movimento irregular observado. Se Eudoxo acreditava ou não na existência física destas esferas, não sabemos.

Para os planetas, Eudoxo imaginou quatro esferas: a primeira que gira em um dia tendo um eixo polar (isto reproduz o movimento diário de leste para oeste); uma segunda esfera cujo eixo seria perpendicular à eclíptica com rotação oposta à primeira (responsável pelo fato dos planetas percorrerem a eclíptica de oeste para leste, e não o equador celeste). Uma terceira esfera é necessária para produzir o movimento retrógrado dos planetas e a quarta esfera, ligada à terceira, seria responsável pela pequena inclinação dos planetas em relação à eclíptica. Para o Sol e a Lua, apenas três esferas homocêntricas eram necessárias (figura 4.4).

Figura 4.4: Movimento do Sol segundo a teoria das esferas homocêntricas de Eudoxo. As esferas têm mesmo raio e foram desenhadas desta forma para maior clareza. A primeira esfera (mais externa no desenho), é responsável pelo movimento aparente diário; as duas outras esferas reproduzem o movimento aparente anual do Sol. A inclinação da terceira esfera (mais central) é igual à obliquidade da eclíptica. A Terra fica imóvel no centro.

Apesar de sofisticada, a teoria de Eudoxo era capaz apenas de explicar o movimento dos planeta de modo aproximado; no caso de Marte a teoria das esferas homocêntricas apresentava grandes divergências. Contudo, esta teoria podia explicar relativamente bem as diferenças de duração das estações do ano. Dado o estado das observações da época, esta teoria foi sem dúvida um marco na astronomia de posição.

4.2.5 Sistema de Aristóteles

Aristóteles (Stagira, Macedônia 384–322 A.C.), foi discípulo de Platão (e tutor de Alexandre Magno da Macedônia), mas no fim da vida desenvolveu seu trabalho em direções menos espirituais que as de seu mestre (o qual dizia que as ideias e os espíritos são o mundo real, e os fenômenos visíveis uma simples representação grosseira do mundo espiritual). É graças a Aristóteles que nós conhecemos muito da Grécia pré-socrática.

Aristóteles acreditava que o Universo era esférico e finito, composto por quatro elementos básicos: água, terra, fogo e ar. A Terra, esférica, ocupava a posição central e era imóvel. Aristóteles também acreditava que os planetas estivessem fixados em esferas e adotou o sistema de esferas homocêntricas de Eudoxo. Contudo, Aristóteles acreditava que estas esferas eram reais, feitas por cristais transparentes. Aristóteles ainda desenvolveu o sistema de Eudoxo acrescentando mais esferas a alguns planetas (em particular Marte), melhorando assim o acordo entre observação e teoria. O modelo de Universo de Aristóteles (Fig. 4.5) conheceu um tal sucesso que, ainda hoje, quando fazemos referência ao modelo onde a Terra está imóvel no centro do Universo, dizemos modelo aristotélico.

Além disto, Aristóteles compreendia que as fases da Lua dependiam de quanto a Lua é iluminada pelo Sol, em relação a um observador na Terra. Também explicou que os eclipses do Sol ocorrem devido à ocultação deste pela Lua. Da mesma forma, um eclipse da Lua ocorreria quando esta passa pela sombra da Terra. Observando que a sombra da Terra projetada na Lua era esférica, Aristóteles dava outro argumento para a esfericidade da Terra. Como Parmênides, Aristóteles também argumenta sobre a esfericidade terrestre notando que algumas estrelas visíveis do Egito, não o são da Grécia. Aristóteles chega mesmo a citar o trabalho de matemáticos (infelizmente sem citar os nomes) que estimam em 400.000 stadia (~ 63.000 km) a circunferência da Terra.

4.3 Sistema híbrido de Heráclides

Heráclides Ponticus (de Pontus) viveu entre c. 388–315 A.C., sendo portanto contemporâneo de Aristóteles. Apesar de nascido em Heráclea, logo imigrou para Atenas, onde talvez tenha tido contato com Platão. Provavelmente ele também foi influenciado pelos pitagóricos.

Contrariamente aos seus contemporâneos, Heráclides explicava o movimento diário dos astros dizendo que a Terra girava em torno dela mesma em torno de um eixo que passava pelos polos celestes. Infelizmente, foi a visão de Aristóteles, isto é, de uma Terra imóvel, que prevaleceu nos séculos que vieram.

Mas a maior contribuição de Heráclides diz respeito às órbitas dos planetas. Sempre houve muita controvérsia sobre as posições de Mercúrio e Vênus: alguns autores colocavam-nos acima do Sol; outros os colocavam entre a Lua e o Sol. Um meio termo foi encontrado por Heráclides colocando estes dois planetas não em órbita em torno da Terra, mas em torno do Sol. Estes planetas girariam em círculos em torno do Sol que, por sua vez, giraria em torno da Terra (como os demais planetas e a Lua). Isto explicava entre outras coisas a presença destes dois planetas sempre próximos do Sol.

4.3.1 Aristarco

O matemático **Aristarco**, nascido em Samos (c. 310–230 A.C.), foi influenciado pelas ideias de Heráclides e foi sem dúvida o primeiro a defender claramente a ideia de que o Sol estava no centro do Universo. A Terra e os demais planetas girariam em círculos em torno do Sol. Como Heráclides, o movimento diário dos astros era explicado por Aristarco devido à rotação da Terra em torno de seu eixo.

Tanto o modelo geocêntrico de Aristóteles como o heliocêntrico de Aristarco davam conta das observações disponíveis nesta época. A preferência pelo modelo geocêntrico foi mais motivada por razões místicas, religiosas e ideológica do que argumentos científicos.

Aristarco também contribuiu para o estudo das distâncias e tamanho da Lua e do Sol. Apesar dos resultados errôneos – por exemplo, ele dava a distância do Sol igual a cerca de 20 vezes a distância da Lua à Terra – seus métodos estavam teoricamente corretos.

4.3.2 Eratóstenes

Eratóstenes de Cirena (276–194 A.C., contemporâneo de Arquimedes) foi um dos primeiros diretores da Biblioteca de Alexandria. Eratóstenes foi o primeiro a medir precisamente o diâmetro da Terra por volta de 240 A.C. Antes desta medida, já havia aquela dada por Aristóteles e uma outra citada por Arquimedes (isto é, não foi ele o autor da medida) dando o valor de 300.000 *stadia*¹

Eratóstenes sabia que na cidade de Siena (atualmente Assuã, próximo à primeira catarata do Nilo, no Egito), um gnômon não produzia sombra ao meio-dia (verdadeiro) do dia do solstício de verão (em outras palavras, Siena se encontra praticamente no trópico de Câncer). Por outro lado, também no solstício de verão, o Sol não se encontra exatamente na vertical em Alexandria, mas a cerca de 7°,2 do zênite (ou 1/50 de circunferência). Eratóstenes concluiu que Alexandria deveria estar a 1/50 da circunferência da Terra ao norte de Siena, ou seja, a diferença em latitudes das duas cidades seria 7°,2. Por outro lado, Eratóstenes conhecia a distância entre estas duas cidades, cerca de 5000

¹O stadium (pl. stadia) é uma unidade de comprimento usada na Antiguidade. Devido a uma falta de padronização, a conversão entre stadium e metro é incerta, podendo ser equivalente desde ~ 150 até ~ 210 metros.

stadia e sabia que elas se encontravam praticamente no mesmo meridiano (na realidade há uma diferença de ~ 2,°5 em longitude, isto implica em um erro de ~ 4% na medida da circunferência da Terra). Por uma simples regra de três, Eratóstenes concluiu que a circunferência total da Terra seria $50 \times 5000 = 250.000$ stadia (Fig. 4.21, página 109). Este valor foi posteriormente mudado para 252.000 stadia.

A questão é, quanto valia exatamente um *stadium*, já que esta unidade tinha valores diferentes em diferentes momentos da História e para diferentes povos. Se o valor de um *stadium* é 158 metros (possivel valor usado no Egito, na época de Eratóstenes), então a circunferência da Terra teria ~ 39.700 km, valor muito próximo da circunferência polar medida hoje em dia, 39.940,6 km.

Eratóstenes também determinou mais precisamente o valor da inclinação do eixo terrestre, a obliquidade da eclíptica, $\varepsilon = 23^{\circ}51'$ (o valor na época era $\varepsilon = 23^{\circ}43'30''$).

4.4 Hiparco

Hiparco de Nicea, que viveu entre cerca de 190 a 126 A.C., na maior parte do tempo na ilha de Rhodes, é considerado o mais importante astrônomo da Grécia antiga. Ele fez observações durante 33 anos em seu observatório, onde realizou medidas muito mais precisas que até então eram disponíveis e foi responsável por importantes inovações teóricas na astronomia.

Hiparco descobriu a precessão dos equinócios, mostrando que as coordenadas das estrelas variavam sistematicamente quando eram dadas em relação ao ponto vernal. Pelo mesmo raciocínio, ele explicou que a duração do ano não dependia do retorno das estrelas à mesma posição (ano sideral), mas sim da recorrência das estações, isto é, a recorrência de um dado solstício ou equinócio (ano trópico). Ele chegou a dar a duração do ano trópico como 365 dias e um quarto, diminuído de $\frac{1}{300}$ de dia, valor muito próximo do valor real. Ele interpretou corretamente este fato como devido ao movimento retrógrado, regular e contínuo, do ponto vernal.

Hiparco também confirmou o valor da obliquidade da eclíptica obtido por Eratóstenes, concebeu novos métodos para se medir a distância da Lua à Terra utilizando os eclipses do Sol e da Lua e produziu o primeiro catálogo de estrelas com 850 objetos, listando a latitude e a longitude em coordenadas eclípticas. As estrelas eram divididas segundo seu brilho em 6 'magnitudes', sendo a 1ª magnitude as estrelas mais brilhantes e a 6ª, correspondendo às estrelas mais fracas. O sistema atual de magnitudes é muito semelhante ao sistema de Hiparco.

4.4.1 Gêmino de Rodes

Após Hiparco, a astronomia grega entra em um período de decadência, quando as inovações e pensamentos originais diminuem. Temos, contudo, astrônomos que compilam o conhecimento da época de forma didática e cuja obra tem um alcance considerável. Este é o caso de **Gêmino de Rodes** (~ 130 A.C. – 60 A.C. ou ~ 10 A.C. – 60 D.C. segundo a fonte); pouco se sabe sobre este grego (apesar do nome latim) que viveu na ilha de Rodes e publicou "Introdução aos Fenômenos". Este livro cita desde os dados colhidos na Babilônia até autores como Eudoxo e Eratóstenes. Gêmino descreve o céu e chama a atenção para o fato de que as estrelas fixas não estão situadas na superfície da

esfera celeste, mas estão a distâncias diferentes. Ele conclui que nossa visão não pode distinguir estas distâncias e por isto a diferença entre estas distâncias é imperceptível.

4.5 Sistema de epiciclos: Ptolomeu

A teoria dos epiciclos surgiu gradualmente, talvez começando com a ideia de composição de movimentos de Eudoxo, a partir do final do século III A.C. A motivação observacional desta teoria estava no movimento aparente dos planetas, ora direto, ora retrógrado, e estacionário quando passa de direto para retrógrado (chamado 'estações' do planeta). **Apolônio** de Perga (~ 262 –190 A.C.) foi o primeiro a dar uma forma rigorosa à teoria dos epiciclos por volta de 230 A.C. (Fig. 4.6, à esquerda). Apolônio discorreu sobre as seções cônicas (veja na seção 4.12.1) e propôs um sistema de mundo onde os planetas giravam ao redor do Sol e o Sol ao redor da Terra.

Figura 4.6: Sistema de epiciclos. Esquerda: a Terra se encontra no centro do círculo (deferente) onde o epiciclo orbita. O planeta por sua vez gira em torno do ponto C, centro do epiciclo. Meio: Hiparco notou que, para levar em conta a velocidade variável no movimento anual do Sol, a Terra deveria ser deslocada do centro do deferente (E). Isto é, existe uma excentricidade na posição da Terra (ainda hoje se emprega este termo quando nos referimos a elipses, cujo centro não coincide com o foco). Direita: Para poder explicar precisamente todas as irregularidades das órbitas dos planetas, Ptolomeu introduziu epiciclos que giram em torno de epiciclos.

Na verdade, a semente do pensamento que levou ao sistema de epiciclos já aparecia no sistema híbrido de Heráclides, onde os planetas inferiores giravam em torno do Sol que, por sua vez, girava em torno da Terra. No sistema de epiciclos, contudo, os planetas não giravam em torno de um corpo ou ponto material: não havia nada no centro dos epiciclos.

Hiparco foi o responsável pelo desenvolvimento e aprimoração da teoria proposta por Apolônio, com a introdução do conceito de excentricidade, isto é, a Terra não estava no centro do deferente (Fig. 4.6, no meio). Hiparco também notou que, para que o epiciclo seja sempre menor que o deferente (um requisito da teoria), era necessário introduzir epiciclos suplementares para cada planeta (Fig. 4.6, à direita).

4.6 Sistema geocêntrico de Ptolomeu

Cláudio Ptolomeu, o último dos grandes astrônomos gregos da Antiguidade, viveu entre cerca de 85 a 165 D.C., na maior parte do tempo em Alexandria. Entre outras coisas, Ptolomeu estendeu o catálogo de Hiparco, acrescentando cerca de 130 estrelas e aumentando a precisão das medidas das coordenadas. O catálogo original foi perdido, mas traduções sobreviveram até nós graças aos astrônomos árabes. Por isto o catálogo de Ptolomeu é conhecido como Almagesto, do árabe Al-majisti, uma corruptela do grego $\mu \epsilon \gamma i \sigma \tau \eta$ ("magiste", magistral).

Foi Ptolomeu quem deu a forma definitiva para o sistema geocêntrico do Universo, baseado na teoria dos epiciclos, e foi com esta forma que este sistema de Mundo sobreviveu até o século XV. Graças às suas novas observações e habilidade com a geometria, ele melhorou consideravelmente a precisão da teoria dos epiciclos.

O sucesso do sistema de Ptolomeu vem da precisão e relativa facilidade em se prever a posição dos planetas, Sol e Lua. No entanto, com o passar do tempo, a qualidade das observações foram aumentando e para que esta teoria continuasse a funcionar era necessário muitas vezes acrescentar alguns epiciclos a mais para um dado planeta.

Uma versão simplificada do sistema de Ptolomeu (Fig. 4.7) pode ser descrita da seguinte maneira: o raio dos epiciclos dos planetas internos, Mercúrio e Vênus são definidos pela *elongação máxima* (as configurações planetárias será visto na seção 4.9) que estes planetas podem ter (cerca de 28° para Mercúrio e 47° para Vênus). O centro do epiciclo destes planetas estão sempre alinhados com o Sol. Já para os planetas externos, o período de translação do planeta ao longo do círculo do epiciclo é igual ao período de translação do Sol ao redor da Terra, um ano. Isto ocorre para que as laçadas dos planetas externos (veja Fig. 1.9 na seção 1.3) ocorram com a frequência e na posição corretas. Como consequência, o raio que liga o centro do epiciclo ao planeta externo é sempre paralelo à direção Terra–Sol.

Figura 4.7: Sistema de Ptolomeu mostrando a relação entre as posições dos epiciclos de Mercúrio e Vênus alinhado com a direção Terra–Sol, assim como os raios dos epiciclos dos planetas externos paralelos à direção Terra–Sol.

É interessante notar que, do ponto de vista matemático, não há nenhum problema intrínseco com a teoria de epiciclos. Na verdade, esta teoria nada mais é do que uma representação em série de funções circulares (senos e cossenos) da posição dos planetas. Na mecânica celeste atual, é desta maneira que representamos as posições dos planetas, Lua e Sol, com a diferença de que a série de funções circulares é obtida com a teoria da gravitação universal e não de forma puramente empírica.

O problema da teoria de Ptolomeu estava na interpretação física. O fato dos planetas girarem em séries de epiciclos em torno de nada não tem sentido fisicamente em um referencial inercial. Fenômenos como a aberração e a paralaxe (desconhecidos na época) também são incompatíveis com o Universo geocêntrico.

Por outro lado havia o problema de que, seguindo os princípios gregos (e sustentados fervorosamente pela toda poderosa igreja católica medieval) o círculo era a única forma geométrica perfeita e os epiciclos só poderiam ser compostos de círculos (e não elipses, por exemplo) e o movimento em cada epiciclo deveria ser uniforme. Além disto, a Terra, como obra divina, só poderia estar no centro do Universo, e não perambulando por aí. Foram estes vínculos que, durante séculos, obrigavam Ptolomeu e seus seguidores a complicar a teoria dos epiciclos a cada novo avanço das observações para poder explicá-las.

4.7 Entre Ptolomeu e Copérnico

4.7.1 Astronomia fora da Europa

A ciência Helênica, que já estava perdendo seu vigor desde a época de Hiparco, deixa de ter um papel importante acompanhando a queda do império Romano na Europa ocidental (século V D.C.). O último trabalho de destaque foi a enciclopédia de **Marci-ano Capella** ($\sim 400-450$?) publicada por volta de 420, alguns anos após o saque de Roma pelos Visigodos liderados por Alarico I. Nesta enciclopédia o destaque é o modelo geocêntrico com a exceção de Mercúrio e Vênus que estariam em órbita ao redor do Sol (como o modelo híbrido de Heráclides). A enciclopédia de Capella foi importante e discutida durante o período de Carlos Magno, quatro séculos mais tarde.

Cerca de 2 séculos depois do início da expansão islâmica em 632 D.C., a Astronomia se desenvolve com vigor no mundo árabe. Em um primeiro momento, até meados do séc. IX D.C. a cultura islâmica absorve e traduz tratados gregos e indianos versando sobre astronomia, matemática e geometria. Em particular é feita a tradução árabe da obra de Ptolomeu, *Almagesto* (e, por isto, é conhecida por nós pelo seu nome árabe). Em 830, **Muhammad al-Khwarizmi** (~ 780–850?) de cultura Persa, publica a primeira obra de impacto da astronomia islâmica, o *Zij al-Sindh* (*Zij* significa um manual de astronomia). Neste livro, estão resumidos conceitos matemáticos e astronômicos indianos e gregos.

A astronomia de posição está intimamente ligada à religião islâmica pois, em suas orações, o muçulmano deve se posicionar na direção de Meca. Esta direção, um ângulo azimutal medido a partir do norte, é chamado *Qibla* e é determinado com métodos astronômicos. O Qibla aponta para a direção mais curta, isto é, para o segmento de grande círculo que liga a Meca ao local da prece (veja Seção 1.6.1).

Ahmad al-Fargani (~ 800?–861), nascido no atual Uzbequistão escreveu "Elementos de Astronomia sobre movimentos celestes" em Bagdá onde, além de resumir o trabalho de Ptolomeu, atualiza algumas das constantes astronômicas e posições de estrelas. Seus livros chegaram à Europa onde foram traduzidos em Latim.

Por volta do ano 900, **Muhammad al-Battani** (853–929, na Europa conhecido como Albatenius) determina com precisão de segundos a duração do ano trópico e descobre o movimento do periélio da órbita terrestre, isto é, a precessão da órbita terrestre (não confunda com a precessão do eixo da Terra).

Abd al-Rahman (903–986, dito al-Sufi, isto é, o Sábio) publica em 964 um extenso e preciso catálogo de estrelas com desenhos de constelações onde figura pela primeira vez a galáxia de Andrômeda. al-Sufi também menciona o que pode ser a Grande Nuvem de Magalhães, galáxia irregular vizinha da Via Láctea visível a partir do Sul do Península Arábica (ao sul do paralelo 15° N).

Ibn al-Haytham (964–1040) nascido na Pérsia, escreveu no Egito o *Kitab al-Manazir*, o Livro de Óptica, um precursor da óptica física de grande influência na Idade Média.

O iraniano **Abu al-Biruni** (973–1048) se especializou em instrumentação astronômica, escrevendo tratados sobre a esfera armilar, o astrolábio e o planisfério. Para al-Biruni, além da Terra esférica e em rotação ser um modelo natural de Universo, ele imaginava que todos os corpos tenderiam a cair para o centro da Terra.

Em 1270, **Nasir al-Din al-Tusi** (1201–1274), argumenta sobre a rotação da Terra utilizando-se da observação da paralaxe de cometas. No livro *Zij-i Ilkhani*, publica o mais sofisticado modelo de movimento dos planetas até então. Nasir al-Tusi foi diretor do importante observatório de Maragheh (hoje no Irã), construído por ordem do neto de Genghis Khan.

Muhammad Taragi ibn Shah-Rukh ibn-Timur, mais conhecido como **Ulugh Beg** (ou Bek, $\sim 1394-1449$), neto de Tamerlão, construiu o maior observatório até então em Samarcanda (hoje no Uzbequistão) no final da década de 1420, baseado no observatório de Maragheh. Lá foram catalogadas cerca de 1000 estrelas, com várias correções em relação a catálogos mais antigos.

4.7.2 Precursores da revolução copernicana

Aos poucos, principalmente após o século X, o conhecimento astronômico do mundo islâmico penetra na Europa por Constantinopla (Istambul, Turquia) e, principalmente, através da Espanha.

Geraldo de Cremona (1114?–1187) traduz pela primeira vez o Almagesto diretamente do Árabe para o latim, além de outros trabalhos sobre ciências desenvolvidas no Islã.

Robert Grosseteste (1175?–1253) bispo inglês, produziu vários tratados científicos. Por volta de 1225, Grosseteste publica o livro "*De Luce*" (sobre a luz) onde argumenta sobre a origem das esferas celestes (onde se encontram os astros) devido a uma possível interação entre luz e matéria. Em seu cenário cosmológico, o Universo começa com uma explosão, seguido de uma condensação da matéria

João de Sacrobosco (1195?–1256?) nascido possivelmente na Inglaterra, foi o autor de uma das obras de astronomia mais populares da Idade Média, o *Tratado da Esfera* (1230), o primeiro livro de Astronomia a ser impresso (em 1472). Este livro, didático e bem ilustrado, explicava fenômenos como os eclipses, o sistema de Ptolomeu e argumentava sobre a esfericidade da Terra e da esfera celeste, e foi utilizado e reproduzido com frequência até o século XVIII. **Campano de Novara** (1220–1296), matemático italiano, escreveu a primeira obra européia sobre planetários (movimento dos planetas) e se interessou pela descrição geométrica do movimento retrógrado dos planetas.

Nicolas de Oresme (1323–1382), nascido na França, foi um filósofo influente que estudou diversas disciplinas, entre elas física e astronomia. Ele discutiu criticamente as ideias de Aristóteles, discordando do conceito de uma Terra estática. Para Nicolas, a rotação da Terra em torno de um eixo poderia explicar o movimento diurno dos astros.

Nicolau de Cusa (1401–1464) sugeriu que a Terra fosse esférica (o que já era conhecido na Grécia clássica) e que orbitava o Sol. Também sugeriu que as estrelas eram "sois" distantes.

Georg von Peuerbach (1423–1461), também escrito Peurbach, foi um astrônomo austríaco autor de um dos primeiros livros impressos, "*Theoricae novae planetarum*", baseado em autores árabes como al-Battani e al-Fargani. Seu livro é citado por Copérnico e Kepler e é reeditado até o século XVII.

Johannes Müller de Königsberg conhecido como Regiomontanus ou Monte Regio (1436–1476), escreveu vários tratados de Astronomia utilizando várias fontes árabes, em particular o Almagesto. A partir de 1454, utiliza a então recém inventada imprensa para publicar seus livros e de outros autores, por exemplo, o livro de von Peuerbach citado no parágrafo acima. Em 1456, observa o cometa que seria reconhecido mais tarde como cometa de Halley.

Regiomontanus foi convocado a Roma pelo Papa Sisto IV para estudar uma possível reforma do calendário Juliano, que apresentava uma divergência notável com o início das estações do ano. Contudo ele morre antes de completar este trabalho. A reforma do calendário só será feita cerca de um século mais tarde.

4.8 Sistema heliocêntrico de Copérnico

4.8.1 Copérnico

Nicolau Copérnico (Niklas Koppernigk) nasceu em 19/02/1473 em Torun, na Polônia. Em 1491 ele foi estudar na universidade de Cracóvia. Em 1496 ele foi para a Itália estudar direito e em 1501 voltou novamente à Itália para estudar medicina. Durante seus estudos, Copérnico teve contato com a renascença italiana e foi muito influenciado pelo pensamento grego clássico. A ideia de uma Terra que gira em torno de si mesma e que não está no centro do Universo, não era desconhecida de Copérnico.

Sua grande obra, *De revolutionibus orbium cœlestium* ("Sobre as revoluções das órbitas celestes") foi publicada no ano de sua morte, 1543. Neste trabalho, Copérnico refuta os argumentos de Ptolomeu de que a Terra não poderia se mover e estava no centro do Universo. Ptolomeu dizia (com razão) que, se a Terra se movesse, haveria mudança na aparência das constelações (o que chamamos hoje de paralaxe). Mas Copérnico argumentou (também corretamente) que as estrelas deveriam estar muito afastadas, com distâncias muito maiores que o diâmetro da órbita terrestre (ou seja, a paralaxe não é perceptível em observações a olho nu).

O que provavelmente levou Copérnico a adotar o sistema heliocêntrico, onde o Sol estaria imóvel no centro do Universo, foi a complexidade em que se encontrava o sistema de epiciclos na sua época. Devido ao avanço das observações, era necessário um sistema extremamente complexo para poder explicar precisamente o movimento dos planetas. Uma vez que Copérnico se convenceu de que não havia nenhuma contradição com a hipótese de uma Terra em movimento, ele pôde enfim conceber um sistema de mundo muito mais simples que o sistema geocêntrico, capaz de explicar o movimento observado dos planetas, baseado nas ideia gregas antigas (Filolau, Heráclides e, principalmente, Aristarco de Samos).

Figura 4.8: O sistema solar segundo Copérnico. Os planetas se movem em órbitas circulares em torno do Sol. Para poder prever corretamente a posição dos planetas, Copérnico também precisou introduzir epiciclos em seu sistema Heliocêntrico.

Em seu sistema heliocêntrico, os planetas giram em torno do Sol em círculos perfeitos e apenas a Lua gira em torno da Terra (Figura 4.8). Além disto, todos os planetas girariam de maneira uniforme e no mesmo sentido. O movimento diário da esfera celeste era explicado simplesmente pela rotação da Terra em torno de seu eixo.

O grande feito de Copérnico não foi apenas recuperar ideias da Grécia antiga e aplicá-las com êxito na descrição do Sistema Solar, mas também ir de encontro a mais de 15 séculos de preconceito contra um Universo onde a Terra poderia mover-se.

4.8.2 Galileu Galilei

Algumas décadas mais tarde, em 1610, **Galileu Galilei** (1564–1642) fez descobertas que enterrariam de vez o sistema geocêntrico. Com a utilização da primeira luneta, Galileu descobriu os quatro maiores *satélites de Júpiter* (que claramente não orbitavam a Terra) e as *fases de Vênus* (veja na Fig. 4.9 as diferentes previsões de como seriam as fases dos planetas internos).

Mas antes das descobertas de Galileu, durante a segunda metade do século XVI, começou a ficar claro que mesmo o sistema heliocêntrico de Copérnico, com órbitas circulares, não podia explicar em todos os detalhes o movimento dos planetas, em particular de Marte e da Lua. Também era necessária a introdução de epiciclos no sistema heliocêntrico, o que foi feito pelo próprio Copérnico em seu modelo planetário.

Figura 4.9: Esquerda: Fases de um planeta interno (Mercúrio ou Vênus) visto da Terra no modelo heliocêntrico. Direita: Fases de um planeta interno observadas da Terra no modelo geocêntrico. Antes do uso da luneta por Galileu, não era possível distinguir as fases destes planetas.

4.8.3 Brahe e Kepler

Nesta mesma época, dados de altíssima qualidade foram obtidos pelo astrônomo dinamarquês **Tycho Brahe** (1546–1601). Tycho fez as medidas mais precisas até então da posição de muitas estrelas e, principalmente, dos planetas. Inicialmente, Tycho fez suas observações a partir do observatório de *Uraniborg* (hoje parte da Suécia). Em 1597, Tycho foi forçado a deixar a Dinamarca e emigrou para Praga (na época parte da Bohemia, Alemanha) onde continuou seu trabalho até morrer.

Além de observações precisas, Brahe propôs um sistema misto geocêntrico mas heliocêntrico para os planetas Mercúrio e Vênus (Fig. 4.10), semelhante ao modelo de Heráclides Ponticus do séc. IV A.C.

Figura 4.10: Universo segundo Tycho Brahe, com a Terra no centro mas com Mercúrio e Vênus orbitando o Sol.

Tycho Brahe tinha um brilhante assistente, o alemão **Johannes Kepler** (1571– 1630). De familia protestante, Kepler aprendeu o sistema de Copérnico na universidade de Tübingen, Alemanha, e tornou-se um adepto do heliocentrismo. Após mudar-se para a universidade de Graz, Áustria, Kepler publicou o livro "Mysterium Cosmographicum" onde apresenta seu modelo de Universo heliocêntrico baseado nos sólidos platônicos (Fig. 4.11). Estes objetos geométricos são poliedros regulares e convexos (onde todos os lados são iguais e regulares) e existem apenas 5 no espaço tridimensional: tetraedro, cubo, octaedro, dodecaedro, e icosaedro Estudados e descritos por Euclides e Platão, eram considerados sólidos geométricos perfeitos.

O Sistema Solar de Kepler era construído colocando uma esfera central que continha a órbita de Mercúrio. Ao redor desta esfera coloca-se um octaedro e, ao redor do octaedro vem a esfera de Vênus. Em seguida vem um icosaedro inserido em mais uma esfera, a da Terra. Depois temos um dodecaedro e a esfera de Marte, um tetraedro e a esfera de Júpiter e, por fim, um cubo e a esfera de Saturno. Com este arranjo, as órbitas dos planetas têm as seguintes dimensões: 0,4588, 0,7947, 1, 1,2584, 3,7752, e 6,5389 (tomando o raio da órbita da Terra igual a um). Kepler tinha um conhecimento suficientemente bom das distâncias no Sistema Solar para verificar que estas distâncias não correspondiam às observadas, especialmente para os planetas externos. Assim, este modelo dos sólidos platônicos foi logo abandonado.

Mais tarde, nos primeiros anos do século XVII, Kepler, após estudar minuciosamente os dados de Tycho Brahe, chegou à conclusão de que os planetas não se moviam uniformemente em círculos (e eventualmente em epiciclos) em torno do Sol, mas simplesmente se moviam em elipses, com o Sol em um dos focos (veremos isto mais abaixo, Seção 4.12).

Finalmente havia-se chegado a um modelo de Universo simples, elegante e extremamente preciso para a época e, como foi visto posteriormente, fisicamente aceitável, como demonstrou a teoria da gravitação universal de **Isaac Newton** (1643–1727), publicada em 1687 no "*Philosophiae naturalis Principia Mathematica*".

4.9 Configurações planetárias

Chamamos de *configurações planetárias* as posições relativas da Terra, do Sol e de um dos planetas. Na figura 4.12 estão ilustradas as principais configurações planetárias.

Figura 4.12: Configurações planetárias mais importantes. $P_e e P_i$ se referem aos planetas exteriores e interiores, respectivamente. Em parênteses, as seguintes configurações: oposição (op), conjunção superior (cs), conjunção inferior (ci), máxima elongação ocidental (oc), máxima elongação oriental (or), quadratura ocidental (qoc) e quadratura oriental (qor).

No caso dos *planetas interiores*, isto é, planetas mais próximos do Sol do que a Terra (Mercúrio e Vênus), chamamos de *conjunção inferior* quando o planeta se encontra alinhado entre o Sol e a Terra. Note que não podemos observar o planeta neste momento, exceto nas raras ocasiões em que este alinhamento é perfeito e podemos ver a silhueta do planeta atravessando o disco solar. Quando o planeta interior se encontra alinhado com a Terra e o Sol mas do lado oposto – o Sol se encontra entre o planeta e a Terra – chamamos esta configuração de *conjunção superior*.

A distância angular aparente entre um planeta e o Sol é chamado elongação. Este ângulo, para um planeta interno, oscila entre 0° nas conjunções superior e inferior até um certo valor máximo. Estes valores extremos definem as máximas elongações ocidental (a oeste do Sol) e oriental (a leste do Sol), veja a figura 4.13. O momento em que planeta interno está na sua máxima elongação é o momento mais propício para sua observação. Na elongação ocidental, o planeta é visto no fim da madrugada); na oriental, ele é visto no início da noite.

Os planetas exteriores, aqueles além da órbita terrestre (Marte, Júpiter, Saturno, Urano, Netuno e Plutão), nunca estão em conjunção inferior (pois eles não podem estar entre a Terra e o Sol) e sua elongação varia entre 0° e 360° . Quando temos o alinhamento Terra–Sol–planeta exterior, chamamos esta configuração de *conjunção superior*, tal qual para os planetas interiores. Nesta configuração, o planeta se encontra na posição mais distante da Terra. Quando o alinhamento é Sol–Terra–planeta exterior, o planeta exterior está em *oposição*. Este é o momento mais propício para observação de um planeta exterior. Finalmente, quando o ângulo entre o planeta e o Sol é de 90° , chamamos esta configuração de *quadratura*. Esta pode ser oriental ou ocidental, dependendo da posição relativa do planeta ao Sol, a leste ou a oeste, respectivamente.

O intervalo de tempo entre duas configurações planetárias idênticas consecutivas (por

Figura 4.13: Detalhe das configurações planetárias mais importantes. Um planeta interior é visível no Leste, pouco antes do nascer do Sol (ou seja, o planeta está a Oeste do Sol), e visível no Oeste pouco depois do pôr do Sol (ou seja, o planeta está a Leste do Sol).

exemplo, duas oposições de Marte ou duas elongações ocidentais máximas de Vênus) define o *período sinódico* do planeta.

O período sinódico de um planeta está relacionado aos períodos de translação da Terra e do planeta em torno do Sol:

$$\frac{1}{P_{\rm sinód}} = \pm \left(\frac{1}{P_{\rm Terra}} - \frac{1}{P_{\rm planeta}}\right),\tag{4.1}$$

onde o sinal é '+' se o planeta for externo e '-' se o planeta for interno.

4.10 Eclipses

Um eclipse ocorre quando um corpo deixa de ser visto devido a uma sombra. No caso do *eclipse do Sol*, este deixa de ser visto porque a Lua está entre o observador (na Terra) e o Sol, isto é, a sombra da Lua passa pelo observador. No caso do *eclipse da Lua*, esta deixa de ser vista porque entra na sombra da Terra.

Quando a fonte luminosa e o corpo iluminado não são puntiformes existem duas regiões de sombra: a *umbra*, região que não recebe luz nenhuma da fonte luminosa, e a *penumbra*, região que recebe luz apenas de alguma parte da fonte. Isto é precisamente o que ocorre no sistema Sol-Terra-Lua (todos os corpos são extensos).

4.10.1 Eclipse do Sol

A geometria de um eclipse do Sol está ilustrada na figura 4.14.

No caso desta figura, damos o exemplo de um eclipse total: a umbra da Lua atinge a superfície da Terra, todo o disco solar é ocultado pela Lua. Como as distâncias entre a Lua e a Terra e entre o Sol e a Terra não são constantes, nem sempre os eclipses são totais. Dependendo da distância, o diâmetro aparente da Lua varia entre 29'22'' e 33'29''; o do Sol varia entre 32'00'' e 32'31''. Assim, quando o diâmetro aparente da Lua é menor que o do Sol, temos um eclipse anular (Fig. 4.15)

Observamos também que a sombra da Lua percorre apenas uma pequena fração da superfície da Terra. Para observadores que não se encontram no caminho da totalidade,

Figura 4.14: Representação de um eclipse total do Sol. Para observadores que se encontram na umbra, o disco solar está completamente oculto pela Lua. Para os observadores que se encontram na penumbra, o disco solar está apenas parcialmente oculto (eclipse parcial). Caso a Terra estivesse mais próxima do Sol ou a Lua mais distante da Terra, o eclipse seria anular (o disco aparente da Lua seria menor que o disco solar).

Figura 4.15: A esquerda, os três tipos de eclipse do Sol. No caso do eclipse anular, a Lua se encontra próxima do apogeu e seu diâmetro aparente é menor do que o do Sol; no eclipse total, a Lua se encontra próxima do perigeu. A direita, representação da observação de um eclipse do Sol.

mas próximo dele (isto é, na penumbra), o eclipse será parcial (apenas uma parte do disco solar será ocultado pela Lua). Observadores ainda mais distantes, não observarão o eclipse. Isto é simplesmente um efeito da paralaxe diária na posição aparente da Lua.

O tamanho da umbra na superfície da Terra pode ser estimado utilizando as seguintes relações (veja Fig. 4.16):

$$\operatorname{sen}(\theta/2) = \frac{r_{\odot}}{l_U} = \frac{r_L}{l_U - (D_{\odot} - D_L)} = \frac{r_U}{l_U - (D_{\odot} - r_T)};$$
(4.2)

onde D_{\odot} e D_L são as distâncias geocêntricas do Sol e da Lua, r_{\odot} , r_L e r_T são os raios do Sol, Lua e Terra, respectivamente. O raio da umbra na superfície terrestre é r_U (supondo que a projeção da umbra seja circular). Com um pouco de álgebra, mostramos que

$$l_U = \frac{D_{\odot} - D_L}{1 - r_L/r_{\odot}} \approx D_{\odot} \left(1 + \frac{r_L}{r_{\odot}} \right) , \qquad (4.3)$$

e teremos um eclipse total se $l_U \ge (D_{\odot} - r_T)$, isto é, a umbra atinge a superfície da Terra. Esta relação é equivalente a $d_L \ge d_{\odot}$, o diâmetro aparente da Lua é maior do que o da Sol.

O tamanho da umbra na superfície da Terra é dado por:

$$r_U = \frac{r_L (D_{\odot} - r_T) - r_{\odot} (D_L - r_T)}{D_{\odot} - D_L} \approx r_L - r_{\odot} \frac{D_L - r_T}{D_{\odot}}, \qquad (4.4)$$

Figura 4.16: Geometria de um eclipse do Sol para estimarmos o tamanho da umbra na superfície terrestre.

onde assumimos que a projeção da umbra lunar na Terra é circular. Devido à curvatura da Terra isto não é verdade. Este é um valor mínimo do tamanho da umbra, devido à curvatura da Terra este valor pode até dobrar. A umbra lunar tem no máximo 270 km de largura e tipicamente varia de algumas dezenas a ~ 100 km.

A umbra se move na superfície da Terra com velocidade entre 1700 a 3400 km/h, no sentido Oeste para Leste (esta velocidade é pelo menos o dobro da velocidade dos aviões comerciais). O movimento da umbra na superfície terrestre é o resultado da composição de 3 movimentos: translação da Lua ao redor da Terra, translação da Terra em torno do Sol e a rotação terrestre. A principal componente é a translação da Lua e a velocidade da umbra na direção do Leste reflete a velocidade da Lua em órbita da Terra.

A fase de totalidade pode durar no máximo cerca de 7 minutos e meio (entre 3000 A.C. e 5000 D.C., o mais longo eclipse será em 16/jul/2186 com 7m29s de duração). Os eclipses anulares podem ser mais longos, chegando a durar até cerca 12 minutos e meio.

Pela geometria do eclipse, é claro que um eclipse do Sol só pode ocorrer na Lua Nova.

4.10.2 Eclipse da Lua

O eclipse da Lua se produz quando esta entra no cone de sombra da Terra como mostra a Fig. 4.17. Pela figura, vemos que os eclipses lunares só podem ocorrer na Lua Cheia.

Chamamos de fase de totalidade o intervalo de tempo em que a Lua percorre a umbra terrestre (Fig. 4.18). A fórmula (4.3) também vale para a umbra da Terra, bastando trocar r_L por r_T e fazendo $D_L \rightarrow 0$. A umbra da Terra é apenas 0,00925 vezes a distância Terra–Sol, mas isto significa que umbra se prolonga cerca de 1,4 milhões de km além da Terra, muito além da órbita da Lua. Um observador na Lua nunca verá um eclipse anular do Sol.

Em contraste com os eclipses solares, que só podem ser vistos em uma pequena região sobre a Terra, os eclipses lunares são vistos por todo o hemisfério onde é noite. Em outras palavras, basta que a Lua esteja acima do horizonte (levando-se em conta a refração e a paralaxe) para que o fenômeno seja observável.

Figura 4.17: Representação de um eclipse da Lua.

A duração máxima de um eclipse da Lua é de cerca de $3^{h}50^{m}$ e a duração da fase total não pode superar cerca de $1^{h}40^{m}$.

4.10.3 Ocorrência de eclipses

Como foi dito, os eclipses solares e lunares só podem ocorrer nas luas Novas e Cheias, respectivamente. Então porquê não observamos dois eclipses por mês? Os eclipses não ocorrem com esta frequência porque os planos orbitais da Lua em torno da Terra, e da Terra em torno do Sol não são coplanares (veja Fig. 4.19).

Como a órbita da Lua é inclinada de cerca de 5° em relação à eclíptica, na Lua Nova nem sempre ela estará exatamente alinhada com o Sol e a Terra. Assim um eclipse só pode ocorrer quando o Sol e a Lua estiverem próximos à linha dos nodos da órbita lunar. Pode-se mostrar que a Lua não deve estar a mais de 4°,6 do nodo para que o eclipse lunar seja total, e não mais que 10°,3 para o eclipse total do Sol. Em um ano, podem ocorrer no mínimo 2 eclipses (neste caso os 2 são solares) e no máximo 7 (dos quais no mínimo 2 são lunares).

O plano orbital da Lua não é invariante, ele possui um movimento de precessão devido às perturbações do Sol, dos planetas e da não esfericidade da Terra. Podemos definir um período de tempo entre duas passagens consecutivas do Sol pelo nodo ascendente da órbita lunar; este é o ano draconiano. Este ano, como já foi visto, tem cerca de 346,62

Figura 4.19: Geometria da órbita da Lua em relação à eclíptica. As órbitas não são coplanares e a reta da intersecção é chamada linha dos nodos. A inclinação da órbita da Lua em relação à eclíptica é de cerca de 5°.

dias. Dezenove anos draconianos correspondem quase exatamente a 223 meses sinódicos (um mês sinódico ou lunação tem em média cerca 29,53 dias), o que corresponde a 18 anos trópico e 11,3 dias. Em outras palavras, as configurações Sol–Lua se repetem com este período e, portanto, a sequência de eclipses também se repete com este período. Esta recorrência dos eclipses já era conhecida dos Babilônios e é chamado *período de Saros*.

A figura 4.20 mostra os eclipses do Sol, anular e total, da primeira década do século XXI. O próximo eclipse total visível no Brasil será em 12/08/2045, quando a totalidade será observada em Belém, São Luis e Recife.

4.11 Determinação clássica de distâncias no Sistema Solar

4.11.1 Diâmetro da Terra

Como foi visto na seção 4.3.2, Eratóstenes foi o primeiro a dar uma medida precisa da circunferência da Terra. Seu método, como já foi descrito, baseava-se na comparação do ângulo zenital, z, do Sol nas cidades de Alexandria e Siena (hoje, Assuã no Egito), esquematizado na Fig. 4.21.

O ângulo zenital medido em Alexandria, z, corresponde à fração de circunferência entre as duas cidades. Assim, ignorando o efeito de refração, z está para a distância entre as cidades, d, assim como 360° está para a circunferência total da Terra. Seja C a circunferência da Terra, temos:

$$C = d \, \frac{360^{\circ}}{z^{\circ}} \,, \tag{4.5}$$

onde z° é a distância zenital medida em graus. Consequentemente temos:

$$R = \frac{d}{z} \tag{4.6}$$

onde R é o raio (polar) da Terra e z é medido em radianos.

Figura 4.20: Eclipses do Sol, total (azul) e anular (verde, data em itálico) entre 2001 e 2020. Figura e cálculos dos eclipses foram feitos por Fred Espenak, NASA/Goddard Space Flight Center. Para mais informações sobre o mapa, veja o *site*: http://sunearth.gsfc.nasa.gov/eclipse/eclipse.html.

4.11.2 Distância Terra – Lua

Método de Hiparco

Hiparco de Nicea descobriu maneiras para determinar a distância da Lua à Terra utilizando os eclipses da Lua e do Sol. A geometria do método baseado no eclipse da Lua está ilustrada na Fig. 4.22.

Este método é baseado no tamanho da umbra terrestre atravessada pela Lua durante um eclipse. Hiparco mediu o intervalo de tempo entre o início do eclipse umbral (quando a Lua entra no cone da umbra da Terra) e o fim do eclipse, t_{eclipse} . Como ele conhecia o período sinódico da Lua ($t_{\text{sinódico}}$, o intervalo de tempo entre duas luas cheias), ele tinha:

$$\frac{2c}{t_{\text{eclipse}}} = \frac{360^{\circ}}{t_{\text{sinódico}}} = \text{ movimento médio da Lua}$$
(4.7)

e, portanto, ele tinha o valor do ângulo c. O semi-diâmetro do Sol é facilmente medido $(d_\odot\approx 16'),$ e também era conhecido por Hiparco.

Observando a geometria do problema (Fig. 4.22) podemos escrever o ângulo representado pelo traço pontilhado da seguinte forma:

$$d_{\odot} + \underbrace{(180^{\circ} - 90^{\circ} - p_{\odot})}_{\text{triângulo retângulo com } p_{\odot}} + \underbrace{(180^{\circ} - 90^{\circ} - a)}_{\text{triângulo retângulo com } a} + c = 180^{\circ}$$

Figura 4.22: Método de Hiparco para determinar a distância D_L da Lua utilizando um eclipse lunar. Os ângulos p_{\odot} e d_{\odot} são a paralaxe diária e o semi-diâmetro angular aparente do Sol. O ângulo a é a paralaxe diária da Lua e c é o semi-diâmetro da sombra da Terra na órbita lunar, a uma distância D_L da Terra. R_T é o raio da Terra. O ângulo representado pela linha pontilhada tem 180°.

$$\Rightarrow \quad p_{\odot} + a = d_{\odot} + c \,. \tag{4.8}$$

Há uma dificuldade, contudo, pois a paralaxe diária do Sol não era conhecida na época de Hiparco. Mas o ângulo p_{\odot} é muito menor que os outros ângulos que aparecem na Eq. (4.8), $p_{\odot} \approx 8, 8$. Desprezando a paralaxe diária do Sol vem:

$$a = d_{\odot} + 180^{\circ} \, \frac{t_{\text{eclipse}}}{t_{\text{sinódico}}} \,, \tag{4.9}$$

ou seja, a paralaxe diária da Lua é obtida. Pela definição da paralaxe e pela Fig. 4.22, temos sen $a = R_T/D_L$ e, portanto, a distância Terra–Lua é achada em função do raio da Terra (que pode ser determinado pelo método de Eratóstenes, por exemplo).

Medida da paralaxe por dois observadores

Vamos supor dois observadores, $O_1 \in O_2$, no mesmo meridiano, com latitudes geocêntricas $\varphi_1 \in \varphi_2$, que observam a Lua simultaneamente (veja Fig. 4.23 e o exemplo da Fig. 4.24).

Desprezando a refração atmosférica, cada observador pode medir diretamente uma distância zenital topocêntrica da Lua, z'_1 e z'_2 .

Do ângulo formado por O_1 , $C \in O_2$ temos:

$$z_1 + z_2 = |\varphi_1 - \varphi_2|, \qquad (4.10)$$

26

24

Figura 4.24: Paralaxe da Lua. A Lua e as Plêiades observadas simultaneamente em dois lugares com a mesma longitude, mas latitudes diferentes. Note a diferença da posição da Lua. A diferença em latitude é de cerca de 26 graus (ou 2872 km).

onde z_1 e z_2 são as distâncias zenitais geocêntricas da Lua. Note que se o observador O_2 estiver no hemisfério Sul, $\varphi_2 < 0$, e a Eq. (4.10) pode ser reescrita como $z_1 + z_2 = \varphi_1 + |\varphi_2|$.

Utilizando a definição de paralaxe diária, z' = z + p, temos para cada observador:

$$z_1 = z'_1 - p_1$$
 e $z_2 = z'_2 - p_2$, (4.11)

o que implica na relação:

$$p_1 + p_2 = z'_1 + z'_2 - |\varphi_1 - \varphi_2|.$$
(4.12)

ou seja, a soma das paralaxes pode ser determinada diretamente pelas observações (uma vez que conhecemos as latitudes dos observadores).

Vamos definir o ângulo θ como $\theta \equiv p_1 + p_2$, que é um ângulo obtido diretamente a partir das observações de O_1 e O_2 . A definição de paralaxe diária nos fornece as seguintes equações:

$$\operatorname{sen} p_1 = \frac{\rho}{D_L} \operatorname{sen} z'_1 \quad e \quad \operatorname{sen} p_2 = \frac{\rho}{D_L} \operatorname{sen} z'_2, \qquad (4.13)$$

onde ρ é o raio da Terra (que supomos o mesmo para os dois observadores, isto é, desprezamos a achatamento terrestre) e D_L é a distância geocêntrica da Lua. Substituindo $p_1 = \theta - p_2$ e desenvolvendo $sen(\theta - p_2)$ obtemos:

$$\cos p_2 \sin \theta - \cos \theta \sin p_2 = \frac{\rho}{D_L} \sin z'_1.$$
(4.14)

Dividindo a equação acima por sen p_2 (basta que O_2 não observe a Lua no zênite) resulta em:

$$\frac{\operatorname{sen}\theta}{\tan p_2} = \cos\theta + \frac{\rho}{D_L}\frac{\operatorname{sen}z_1'}{\operatorname{sen}p_2},\tag{4.15}$$

e substituindo sen p_2 [da Eq. (4.13)] podemos eliminar $\rho \in D_L$:

$$\tan p_2 = \frac{\operatorname{sen} \theta}{\cos \theta + \frac{\operatorname{sen} z_1'}{\operatorname{sen} z_2'}}.$$
(4.16)

A equação (4.16) nos dá a paralaxe diária p_2 a partir das latitudes geocêntricas e das distâncias zenitais topocêntricas medidas por cada um dos observadores. Uma vez que conhecemos p_2 , a distância da Lua é obtida através da própria definição de paralaxe:

$$D_L = \rho \frac{\operatorname{sen} z'_2}{\operatorname{sen} p_2} \quad \text{ou} \quad \operatorname{sen} P = \frac{\operatorname{sen} p_2}{\operatorname{sen} z'_2}, \tag{4.17}$$

onde P é a paralaxe horizontal da Lua. Com um pouco de álgebra temos ainda:

$$\operatorname{sen} P = \frac{\operatorname{sen} \theta}{\sqrt{\operatorname{sen}^2 z_1' + \operatorname{sen}^2 z_2' + 2\cos\theta \operatorname{sen} z_1' \operatorname{sen} z_2'}}.$$
(4.18)

4.11.3 Distância Terra – Sol

Aristarco de Samos concebeu um método para medir a distância da Terra ao Sol em função da distância Terra–Lua (veja Fig. 4.25).

Figura 4.25: Método de Aristarco. D_L é a distância da Terra à Lua, D_{\odot} é a distância Terra-Sol. O ângulo θ corresponde ao momento em que metade do disco lunar (visto da Terra) está iluminado (quarto crescente como na figura ou quarto minguante).

Aristarco supôs corretamente que, no momento do quarto crescente ou quarto minguante, a Terra, a Lua e o Sol formariam um triângulo retângulo como mostra a figura 4.25. Se o ângulo θ , a distância angular entre a Lua e o Sol, for medido temos imediatamente a distância Terra–Sol:

$$D_{\odot} = \frac{D_L}{\cos\theta}.\tag{4.19}$$

O problema deste método está na dificuldade em determinar exatamente o momento do quarto crescente (ou minguante) e em se medir precisamente a distância angular entre a Lua e o Sol neste momento. O valor medido por Aristarco foi de cerca de 87° (na linguagem da época, "um quadrante diminuído de um treze avos de quadrante"), enquanto que o valor correto é $\theta \approx 89^{\circ}51'$, variando durante o ano devido à órbita elíptica da Terra. Em outras palavras, devido a um erro que não chega a 3°, Aristarco subestimou a razão entre as distâncias $D_L \in D_{\odot}$ por um fator ~ 20.

4.11.4 Distância Planetas – Sol

Os métodos descritos abaixo para determinarmos as distâncias dos planetas ao Sol foram propostos por Copérnico. Em ambos os casos, supomos que as órbitas dos planetas são circulares e que a velocidade angular dos planetas é constante (veja a Fig. 4.26).

Figura 4.26: Método de Copérnico para determinação da distância dos planetas ao Sol. (A) Planetas inferiores (ou interiores), (B) planetas superiores (ou exteriores).

Planetas Interiores

Para se determinar a distância dos planetas inferiores (Mercúrio e Vênus) basta medir a distância angular entre o Sol e o planeta no momento em que este está em máxima elongação (isto é, sua distância angular em relação ao Sol é máxima). Isto pode ser feito medindo-se sistematicamente a distância angular do planeta ao Sol e daí determinar o valor máximo.

Por outro lado, a distância do planeta ao Sol também é obtida resolvendo o triângulo retângulo formado pela Terra, Sol e o planeta (Fig. 4.26, a esquerda):

$$D_P = D_{\odot} \, \operatorname{sen} \theta \,. \tag{4.20}$$

onde θ é a elongação do planeta.

Temos então a distância do planeta ao Sol em função da distância Terra–Sol, que pode ser obtida, por exemplo, pelo método de Aristarco.

Planetas Exteriores

Para determinarmos a distância dos planetas superiores ao Sol devemos resolver o triângulo retângulo formado pelo Sol, T_2 (a Terra no momento t_2) e P_2 (o planeta neste mesmo momento, Fig. 4.26, a direita).

O problema está em medirmos o ângulo β . Isto pode ser feito observando o planeta superior em dois instantes, t_1 , quando o planeta esta em oposição (isto é, ele está alinhado com a Terra e o Sol), e t_2 , quando o planeta está em quadratura (isto é, visto da Terra, o planeta e o Sol estão a 90° um do outro). Estes dois momentos podiam ser facilmente determinados por Copérnico.

Bastava então determinar quanto a Terra e o Planeta haviam percorrido em suas órbitas respectivas entre este dois momentos, $t_1 e t_2$. Conhecendo-se os períodos siderais da Terra e dos planetas superiores é fácil determinar $\lambda_P e \lambda_T$:

$$\lambda_T = 360^{\circ} \frac{t_2 - t_1}{T_{\text{sid Terra}}} \quad \text{e} \quad \lambda_P = 360^{\circ} \frac{t_2 - t_1}{T_{\text{sid Plan}}},$$
(4.21)

onde $T_{\text{sid Terra}}$ é o ano sideral terrestre (~ 365, 25 dias) e $T_{\text{sid Plan}}$ é o ano sideral do planeta superior. Desta forma temos:

$$\beta = 360^{\circ}(t_2 - t_1) \left(\frac{1}{T_{\text{sid Terra}}} - \frac{1}{T_{\text{sid Plan}}} \right) \,. \tag{4.22}$$

A distância do planeta ao Sol será finalmente dada por:

$$D_P = \frac{D_{\odot}}{\cos\beta}.\tag{4.23}$$

4.12 Leis de Kepler

Johannes Kepler nasceu em 1571 na cidade alemã de Weil e começo a cursar a universidade de Tübing em 1589. Em 1594 Kepler se torna professor de matemática em Graz, Áustria. Em 1600, foi convidado por Tycho Brahe para trabalhar em Praga. Após a morte de Brahe em 1601, Kepler foi nomeado "Matemático Imperial", título que teve até 1612. Neste ano, Kepler se mudou para Linz onde ficou até 1626. Kepler morreu em 1630, na cidade de Regensburg.

Com os dados de excelente qualidade de Tycho Brahe – em particular em relação às posições de Marte –, Kepler descobriu as três **leis de movimento planetário** que levam o seu nome:

- 1^a lei (1609) As órbitas dos planetas são elipses, com o Sol localizado em um dos focos.
- 2ª lei (1609) A linha ligando o Sol ao planeta varre áreas iguais em intervalos de tempo iguais.
 - (A $1^{\underline{a}} \in 2^{\underline{a}}$ leis foram publicadas na obra "Astronomia nova").
- 3ª lei (1619) O quadrado da razão dos períodos de translação de 2 planetas é proporcional ao cubo da razão de seus semi-eixos maiores, isto é,

$$\left(\frac{P_1}{P_2}\right)^2 = \left(\frac{a_1}{a_2}\right)^3.$$

(A 3^a lei foi publicada no livro "Harmonice Mundi").

As leis de Kepler, deduzidas empiricamente, podem ser deduzidas a partir da teoria de gravitação universal de Isaac Newton (*Principia Mathematica*, publicado em 1687).

4.12.1 Primeira lei de Kepler

Rigorosamente, em um sistema de dois corpos puntiformes que interagem apenas pela gravitação, cada corpo descreve uma seção cônica (círculo, elipse, parábola ou hipérbole, veja Fig. 4.27), com o centro de massa da dupla em um dos focos. Se os corpos estão ligados gravitacionalmente, como no caso dos planetas com o Sol, por exemplo, então as órbitas são esféricas ou elípticas, dadas por:

$$r = \frac{a(1-e^2)}{1+e\,\cos\theta}\,,\tag{4.24}$$

onde $e \equiv \sqrt{1 - (b/a)^2}$ é a excentricidade da elipse.

Figura 4.27: Seções cônicas, círculo, elipse, parábola e hipérbole. Acima: representação geométrica, intersecção de um cone por um plano. Abaixo: curvas planas das seções cônicas.

No caso onde a massa de um dos corpos é muito maior que do outro (p.ex., Solplaneta, planeta-satélite) o centro de massa coincide, com grande precisão, com o corpo mais maciço. No caso do sistema Terra-Sol, o centro de massa se encontra a ≈ 450 km do centro do Sol (que tem um raio de 700 mil km).

A Fig. 4.28 mostra para comparação algumas elipses com diferentes elipticidades, inclusive uma elipse que corresponde à órbita terrestre.

4.12.2 Segunda lei de Kepler

A segunda lei de Kepler, ilustrada na Fig. 4.29, é uma consequência da conservação do *momento angular*. Assumindo que tratamos de um sistema de 2 corpos onde a massa de um dos corpos é muito maior que o outro, temos

$$\vec{L} = \vec{r} \times \vec{p} = m \, \vec{r} \times \vec{v} \,, \tag{4.25}$$

Figura 4.28: Elipses (e um círculo a esquerda, e = 0) para comparação. A excentricidade e = 0,017 corresponde à órbita da Terra, dificilmente distinguível a olho de um círculo. A elipse mais a direita corresponde a uma razão entre o semi-eixo meno e maior igua a 1/2. O foco das elipses e o centro do círculo estão na origem, (0, 0).

Figura 4.29: Ilustração geométrica da segunda lei de Kepler: em intervalos de tempo iguais, o raio vetor varre áreas iguais. Aqui, as áreas a, b, $c \in d$ são iguais.

onde L é o momento (quantidade de movimento) angular, p é a quantidade de movimento linear e $r \in v$ são o raio vetor e a velocidade do corpo mais leve de massa m.

A área varrida pelo raio vetor que liga o corpo maciço (Sol, p.ex.) ao corpo mais leve (um planeta, p.ex.) é dada por (veja Fig. 4.30):

área varrida
$$\equiv \delta A = \frac{1}{2} |\vec{r} \times \delta \vec{r}| = \frac{1}{2} |\vec{r} \times \vec{v} \,\delta t| = \frac{1}{2} \frac{|L|}{m} \,\delta t \,.$$
 (4.26)

Mas como o momento angular se conserva, $|L|/m = \text{constante e, portanto}, \delta A \propto \delta t$. Ou seja, para um mesmo intervalo δt , a área varrida δA é a mesma.

Figura 4.30: Área varrida pelo raio vetor r que percorre uma elipse.

Uma consequência da segunda lei de Kepler é que os corpos se deslocam com maior velocidade quando estão no periastro e com menor velocidade quando estão no apoastro.

4.12.3 Terceira lei de Kepler

A terceira lei de Kepler está relacionada com a conservação de energia. Para o caso de uma órbita circular podemos deduzir a 3ª lei de Kepler utilizando igualando a força centrípeta com a força gravitacional:

$$\frac{m v^2}{r} = \frac{g M m}{r^2} \quad \Rightarrow \quad v^2 = \frac{GM}{r} \,, \tag{4.27}$$

onde M é a massa do corpo mais maciço e vemos que, neste caso, não há dependência da massa do corpo menos maciço, m. Lembrando que o período orbital é $P = 2\pi r/v$, então vem:

$$\frac{(2\pi)^2 r^2}{P^2} = \frac{GM}{r} \quad \Rightarrow \quad \frac{r^3}{P^2} = \frac{GM}{4\pi^2} \,. \tag{4.28}$$

No Sistema Solar, em relação às órbitas dos planetas, M é sempre a mesma (a massa do Sol). Logo, para qualquer planeta, $r^3 \propto P^2$, onde r é o raio da órbita (assumindo órbita circular); genericamente, temos $a^3 \propto P^2$, onde a é semi-eixo maior da órbita elíptica. Em outros sistemas estelares ou planetários a terceira Lei de Kepler também é válida (Fig. 4.31).

Figura 4.31: A terceira Lei de Kepler se traduz em uma relação dita em lei de potência, P \propto $a^{3/2}$. Aqui observamos esta lei para os planetas (círculos vermelhos) e planetasanões (círculos azuis) do Sistema Solar, assim como para os satélites de Júpiter (destaque no alto a esquerda).

Para o caso geral, a expressão acima tem uma pequena dependência com a massa do corpo mais leve:

$$\frac{a^3}{P^2} = \frac{G(M+m)}{4\pi^2} \,. \tag{4.29}$$

Com a terceira lei de Kepler é possível deduzir o tamanho do semi-eixo maior das órbitas planetárias conhecendo o período de translação. Em outros casos, se podemos medir o semi-eixo maior e o período, então podemos deduzir a massa do sistema.

4.13 Variações seculares dos movimentos da Terra

A órbita da Terra ao redor do Sol não é fixa, assim como a orientação da Terra, a inclinação do eixo de rotação em relação à eclíptica, (obliquidade) também não é, como vimos na Sec. 3.2.2.

A órbita da Terra é descrita por *parâmetros orbitais* que definem a trajetória da Terra no espaço. Devido às perturbações gravitacionais planetárias, não esfericidade do Sol e da Terra, e efeitos relativísticas, a órbita da Terra não é uma elipse fixa no espaço. A figura 4.32 ilustra a variação de alguns parâmetros orbitais em um intervalo de 2 milhões de anos.

Figura 4.32: Variação secular de alguns parâmetros orbitais terrestre no intervalo de tempo de 2 milhões de anos centrado em J2000.

Além de alterar a posição da Terra, e consequentemente, dos astros na esfera celeste, estas alterações podem ter um impacto no clima terrestre. Variações da excentricidade, longitude do periélio e da obliquidade afetam a insolação da atmosfera (veja Sec. 2.6). A variação do semi-eixo maior da órbita da Terra (mais precisamente, do sistema Terra-Lua) é inferior a 0,003% em um intervalo de tempo de 500 milhões de anos centrado em J2000.

A interação entre os parâmetros orbitais da Terra e mudanças climáticas foi sugerido em 1842 pelo matemático francês Joseph-Alphonse Adhémar, após a descoberta dos ciclos de glaciação e aquecimento, em seu livro "*Révolutions de la mer, déluges périodiques*".

Esta ideia foi levada adiante de forma mais quantitativa pelo pesquisador sérvio Milutin Milankovitch (ou Milanković) em 1920, estendendo a relação entre órbita e clima para outros planetas do Sistema Solar.

Figura 4.33: Esquerda: Duração em dias das estações do ano para o hemisfério Sul (para o hemisfério Norte basta trocar Primavera por Outono e Verão por Inverno). Nos painéis central e a direita, detalhe mostrando a duração das estação próximo da época atual. Para Primavera e Verão a duração é de 88 dias e 21 horas mais o número de horas indicado no gráfico. Para Outono e Inverno, as horas são somadas a 92 dias e 15 horas.

A duração das estações do ano, definida pelas passagens do Sol pelos equinócios e solstícios (Secs. 1.3.1 e 1.5.2) também são afetadas pelas variações seculares do movimento da Terra. Calculando a duração de cada estação em função do tempo obtemos a Fig. 4.33. Durante o século 13, a duração do Outono (hemisfério Sul) era virtualmente igual à duração do Inverno (93 dias e 7 horas), enquanto que a Primavera e o Verão tinham a mesma duração de 89 dias e 8 horas cada.

Devido a não simetria da distribuição de massas continentais e oceanos, a variação da duração das estações do ano podem levar a variações climáticas. As variações do movimento da Terra podem levar a mudanças climáticas em escalas de tempo de dezenas ou centenas de milhares de anos, mas não podem explicar alterações no clima em escalas de alguns séculos.

Bibliografia

- [1] Boczko R., 1984, 'Conceitos de astronomia', Editora Edgard Blücher Ltda.
- [2] Carroll B.W., Ostlie D.A., 1996, 'Modern Astrophysics', Addison-Wesley Publ. Company Inc.
- [3] 'Connaissance des Temps Éphémerides Astronomiques', publicação anual do Bureau des Longitudes de Paris, França
- [4] Dreyer J.L.E., 1953, 'A History of Astronomy from Thales to Kepler', 2^a edição, Dover Publications, Inc.
- [5] Kovalevsky J., 1995, 'Modern Astrometry', Astronomy and Astrophysics Library, Springer Verlag
- [6] Meeus J., 1991, 'Astronomical Algorithms', Williann-Bell Inc.
- [7] Pannekoek A., 1961, 'A History of Astronomy', Dover Publications, Inc.
- [8] Seidelmann P.K., 1992, 'Explanatory Supplement to the Astronomical Almanac', University Science Books
- Smart W.M., 1977, 'Textbook on Spherical Astronomy', 6^a edição, Cambridge University Press
- [10] Taff L.G., 1981, 'Computational Spherical Astronomy', Wiley-Interscience Publication

Índice

Abd al-Rahman, 97 aberração secular, 83 Abu al-Biruni, 97 Ahmad al-Fargani, 96 al-Sufi, 97 Almagesto, 95, 96 altura, 12 analema, 29 Anaxímenes de Mileto, 87 Anaximandro, 87 Andrômeda, 2 ângulo da vertical, 56 ângulo de refração, 65 ângulo horário, 16 anno domini, 44 ano, 26, 43 ano anomalístico, 33 ano draconiano, 34 ano trópico, 32 anomalia verdadeira, 51 Antártico, 15 Apolônio, 94 arcos gravitacionais, 83 Áries, 14 Aristóteles, 91 Aristarco, 92 Ártico, 15 ascensão reta, 14 asterismos, 4 astrometria, 2 astronomia de posição, 2 Astronomia nova, 113 atmosfera terrestre, 65 azimute, 12

Bureau de Longitudes de Paris, 59 círculo grande, principal, 11 círculo polar, 15 calendário, 42 Calendário Republicano, 46 Campano de Novara, 98 catálogo fundamental, 11 Ciclo de Meton, 45 Ciclo Metônico, 35 ciclos astronômicos, 26 circumpolar, 19 Cláudio Ptolomeu, 95 configurações planetárias, 102 conjunção inferior, 102 conjunção superior, 102 constante de aberração, 81 Constante Solar, 49 constelações, 3 coordenadas aparentes, 81 médias, 62 verdadeiras, 62 coordenadas aparentes, 85 crepúsculo, 69 cronologia, 42 De Luce, 97 De revolutionibus orbium cœlestium, 98 declinação, 14 dia, 26, 42, 43 dia estelar, 28 dia juliano, 46 dia sideral, 26

dia solar, 28 Dominica, 43 eclíptica, 10 eclipse da Lua, 103 eclipse do Sol, 103 elipsóide de revolução, 64 elipse paraláctica, 76 elongação, 84, 102 elongação máxima, 95 época, 47 equação do tempo, 29 equador celeste, 13 Equador Galáctico, 18 equador geográfico, 54 equinócio, 32 equinócio vernal, 14 Eratóstenes, 92 esfera celeste, 1 esferas homocêntricas, 90 estações, 15, 33 estações do ano, 10 Estrela de Barnard, 85 Eudoxo, 89 European Space Agence, 2 excentricidade, 55 fórmula de Laplace, 68 fórmula fundamental, 24 fases, 6 fases de Vênus, 99 Fifth Fundamental Catalogue, 85 Filolau, 89 FK5, 85 fuso horário, 40 Gêmino de Rodes, 93 Galileo Navigation Satellite System, 57 Galileu Galilei, 99 Geóide, 53 geóide, 54 geocêntrico, 11 geodésica, 23 Georg von Peuerbach, 98 Geraldo de Cremona, 97 Global Positioning System, 57 GLONASS, 57 gnômon, 87

gravitação universal, 114 Greenwich Mean Time, 30 Hégira, 45 Harmonice Mundi, 113 heliacal, 31 heliocêntrico, 12 Heráclides Ponticus, 91 Hiparco, 93 Hipparcos, 2, 75 Horário de Verão, 41 hora sideral de Greenwich, 27 hora sideral local, 26, 27 hora sideral média, 27 hora sideral verdadeira, 27 horizonte, 2 horizonte astronômico, 12 horos, 2 Ibn al-Haytham, 97 IERS Rapid Service/Prediction Center, 36 Insolação, 49 International Celestial Reference Frame, 11 International Celestial Reference System, 11 International Earth Rotation Service, 64, 65Isaac Newton, 101 João de Sacrobosco, 97 Johannes Kepler, 100 Johannes Müller de Königsberg, 98 Kitab al-Manazir, 97 latitude, 53 latitude astronômica, 54 latitude eclíptica, 16 latitudes, 11 latitudes geocêntricas, 55 leap second, 39 leis de movimento planetário, 113 lente gravitacional, 83 Leucipo de Mileto, 87 longitude, 53 longitude eclíptica, 16 longitudes, 11 lunação, 34

mês, 26, 34, 43 mês sideral, 35 mês sinódico, 34 Marciano Capella, 96 meridiano principal, 11 meteoros, 2 milênio juliano, 33, 47 milha náutica, 25 momento angular, 114 Monte Regio, 98 movimento anual, 14 movimento aparente, 5 movimento diário, 5 movimento direto, 14 movimento médio do Sol, 31 movimento próprio, 3, 70 movimento próprio total, 72 movimentos próprios, 6 Muhammad al-Battani, 97 Muhammad al-Khwarizmi, 96 Mysterium Cosmographicum, 101 nadir, 2 nascer. 68 nascimento heliacal, 32 Nasir al-Din al-Tusi, 97 National Earth Orientation Service, 65 Nicolas de Oresme, 98 Nicolau Copérnico, 98 Nicolau de Cusa, 98 nodos, 6 nutação, 58 nuvens de Magalhães, 2 obliquidade da eclíptica, 53

oposição, 102 orientação, 3

Pálida, 72 pôr, 68 parâmetros orbitais, 117 paralaxe, 73 paralaxe anual, 73 paralaxe diária, 77 paralaxe horizontal, 78 Parmênides, 88 parsec, 74 passagem meridiana, 18

penumbra, 103 período de Saros, 107 período sinódico, 103 Pitágoras, 89 planetas exteriores, 102 planetas interiores, 102 planisfério, 23 plano principal, 11 polo celeste, 5 precessão, 6 precessão geodésica, 59 precessão luni-solar, 58 precessão planetária, 59 Principia, 101 Principia Mathematica, 114 Qibla, 96 quadratura, 102 Révolutions de la mer, déluges périodiques, 117 realização, 11 redução ao dia, 85 refração astronômica, 65 Regiomontanus, 98 Research Consortium on Nearby Stars, 76 retrógrado, ver movimento Robert Grosseteste, 97 século juliano, 47 sólidos platônicos, 101 satélites de Júpiter, 99 segundo de tempo sideral, 27 segundo intercalar, 39 semana, 26, 43 Shabbat, 43 Sistema de referência, 11 sistema de referências, 2 Sol médio, 28 Sol verdadeiro, 28 solstício, 33 stadia, 91-93 stadium, 92, 93 Tales de Mileto, 87 tectônica de placas, 38 Tempo Atômico Internacional, 36

tempo civil, 30

tempo das efemérides, 35 tempo dinâmico, 35 tempo dinâmico baricêntrico, 35 tempo dinâmico terrestre, 35 tempo sideral, 27 tempo sideral local, 16 Tempo Terrestre, 36 Tempo Universal, 30 tempo universal coordenado, 39 teoria atomista, 88 termo de Chandler, 64 Theoricae novae planetarum, 98 topocêntrico, 12 topocêntricos, 19 Trópico de Câncer, 15 trópico de capricórnio, 15 Tratado da Esfera, 97 Tycho Brahe, 100

Ulugh Beg, 97 umbra, 103 Universal Time, 30 Uraniborg, 100 Uranometria, 3

vertical astronômica, 54 $\,$

World Geodetic Reference, 53

Xenofanes de Colophon, 88

zênite, 2 Zij al-Sindh, 96 Zij-i Ilkhani, 97

Almanaque

Início das estações do ano, definido por $\lambda_{\odot} = 0, 90^{\circ}, 180^{\circ}, e 270^{\circ}$. Data em Tempo Universal Coordenado (UTC). Para hora legal de Brasília subtraia 3 horas (2 horas durante o horário de Verão). O erro é inferior a 20 segundos. Tabela calculada usando a teoria planetária VSOP87 (Bretagnon et al. 1987).

		Outono		Inverno			Primavera			Verão		
Ano		mar	ço		jun	ho		set	embro		dezembro	
1995	#	21	02:14:26	#	21	20:34:23	#	23	12:13:00	#	22	08:16:48
1996	#	20	08:03:05	#	21	02:23:44	#	22	18:00:06	#	21	14:05:53
1997	#	20	13:54:40	#	21	08:19:56	#	22	23:55:46	#	21	20:07:02
1998	#	20	19:54:32	#	21	14:02:35	#	23	05:37:12	#	22	01:56:28
1999	#	21	01:45:49	#	21	19:49:07	#	23	11:31:30	#	22	07:43:48
2000	#	20	07:35:15	#	21	01:47:42	#	22	17:27:35	#	21	13:37:26
2001	#	20	13:30:43	#	21	07:37:43	#	22	23:04:28	#	21	19:21:29
2002	#	20	19:16:08	#	21	13:24:24	#	23	04:55:23	#	22	01:14:22
2003	#	21	00:59:46	#	21	19:10:28	#	23	10:46:49	#	22	07:03:48
2004	#	20	06:48:38	#	21	00:56:52	#	22	16:29:50	#	21	12:41:36
2005	#	20	12:33:25	#	21	06:46:07	#	22	22:23:09	#	21	18:34:56
2006	#	20	18:25:34	#	21	12:25:51	#	23	04:03:22	#	22	00:22:05
2007	#	21	00:07:25	#	21	18:06:25	#	23	09:51:13	#	22	06:07:48
2008	#	20	05:48:17	#	20	23:59:21	#	22	15:44:28	#	21	12:03:44
2009	#	20	11:43:37	#	21	05:45:31	#	22	21:18:34	#	21	17:46:47
2010	#	20	17:32:11	#	21	11:28:24	#	23	03:09:00	#	21	23:38:26
2011	#	20	23:20:42	#	21	17:16:29	#	23	09:04:36	#	22	05:30:01
2012	#	20	05:14:24	#	20	23:08:47	#	22	14:48:57	#	21	11:11:35
2013	#	20	11:01:53	#	21	05:03:55	#	22	20:44:06	#	21	17:10:58
2014	#	20	16:57:04	#	21	10:51:12	#	23	02:29:02	#	21	23:02:59
2015	#	20	22:45:07	#	21	16:37:53	#	23	08:20:31	#	22	04:47:55
2016	#	20	04:30:09	#	20	22:34:09	#	22	14:21:05	#	21	10:44:08
2017	#	20	10:28:36	#	21	04:24:07	#	22	20:01:46	#	21	16:27:54
2018	#	20	16:15:25	#	21	10:07:15	#	23	01:54:03	#	21	22:22:41
2019	#	20	21:58:23	#	21	15:54:12	#	23	07:50:07	#	22	04:19:23
2020	#	20	03:49:34	#	20	21:43:37	#	22	13:30:35	#	21	10:02:16
2021	#	20	09:37:24	#	21	03:32:05	#	22	19:21:01	#	21	15:59:14
2022	#	20	15:33:20	#	21	09:13:46	#	23	01:03:37	#	21	21:48:08
2023	#	20	21:24:21	#	21	14:57:44	#	23	06:49:53	#	22	03:27:16
2024	#	20	03:06:18	#	20	20:50:54	#	22	12:43:33	#	21	09:20:28
2025	#	20	09:01:22	#	21	02:42:09	#	22	18:19:13	#	21	15:02:58
2026	#	20	14:45:50	#	21	08:24:23	#	23	00:05:05	#	21	20:50:06
2027	#	20	20:24:33	#	21	14:10:42	#	23	06:01:34	#	22	02:42:01
2028	#	20	02:17:00	#	20	20:01:51	#	22	11:45:09	#	21	08:19:31
2029	#	20	08:01:49	#	21	01:48:08	#	22	17:38:20	#	21	14:13:56
2030	#	20	13:51:56	#	21	07:31:08	#	22	23:26:43	#	21	20:09:27

Datas das passagens da Terra pelo periélio e afélio (Tempo Universal Coordenado, UTC), com as respectivas distâncias em Unidades Astronômicas e a longitude eclíptica do Sol. O erro é inferior a 45 segundos.

	Perié	lio				Afélio				
	data		dist [AU]	long[graus]		data		dist [AU]		
1995	04/01	11:05:21	0.9833023	283.622538	#	04/07	02:16:37	1.0167418		
1996	04/01	07:24:43	0.9832228	283.215705	#	05/07	18:59:53	1.0167173		
1997	01/01	23:16:09	0.9832674	281.601269	#	04/07	19:19:15	1.0167536		
1998	04/01	21:15:03	0.9832998	284.325284	#	03/07	23:50:17	1.0166963		
1999	03/01	13:00:23	0.9832809	282.704005	#	06/07	22:50:47	1.0167180		
2000	03/01	05:17:55	0.9833214	282.132906	#	03/07	23:49:11	1.0167411		
2001	04/01	08:52:18	0.9832860	284.078294	#	04/07	13:37:23	1.0166426		
2002	02/01	14:08:55	0.9832898	282.013644	#	06/07	03:47:08	1.0166882		
2003	04/01	05:01:42	0.9833204	283.419495	#	04/07	05:39:22	1.0167282		
2004	04/01	17:41:48	0.9832648	283.709403	#	05/07	10:52:58	1.0166937		
2005	02/01	00:35:18	0.9832968	281.718147	#	05/07	04:57:35	1.0167416		
2006	04/01	15:30:01	0.9833270	284.144796	#	03/07	23:09:50	1.0166973		
2007	03/01	19:43:04	0.9832602	283.053819	#	06/07	23:52:37	1.0167059		
2008	02/01	23:51:04	0.9832801	281.963061	#	04/07	07:41:17	1.0167535		
2009	04/01	15:29:36	0.9832730	284.418516	#	04/07	01:39:59	1.0166664		
2010	03/01	00:09:39	0.9832897	282.496864	#	06/07	11:30:05	1.0167020		
2011	03/01	18:32:20	0.9833413	283.030716	#	04/07	14:53:51	1.0167404		
2012	05/01	00:31:53	0.9832841	284.058478	#	05/07	03:31:23	1.0166751		
2013	02/01	04:37:21	0.9832905	281.946951	#	05/07	14:44:28	1.0167085		
2014	04/01	11:58:33	0.9833347	284.050127	#	04/07	00:13:04	1.0166816		
2015	04/01	06:36:21	0.9832774	283.572108	#	06/07	19:40:15	1.0166821		
2016	02/01	22:48:27	0.9833039	281.976161	#	04/07	16:24:37	1.0167509		
2017	04/01	14:17:44	0.9833094	284.428590	#	03/07	20:10:57	1.0166756		
2018	03/01	05:34:56	0.9832843	282.791564	#	06/07	16:46:33	1.0166961		
2019	03/01	05:19:50	0.9833012	282.532164	#	04/07	22:10:48	1.0167543		
2020	05/01	07:47:49	0.9832436	284.428475	#	04/07	11:34:40	1.0166943		
2021	02/01	13:50:31	0.9832571	282.396766	#	05/07	22:27:22	1.0167292		
2022	04/01	06:54:19	0.9833365	283.891066	#	04/07	07:10:20	1.0167154		
2023	04/01	16:17:35	0.9832956	284.041274	#	06/07	20:06:11	1.0166806		
2024	03/01	00:38:13	0.9833070	282.111546	#	05/07	05:06:03	1.0167255		
2025	04/01	13:27:50	0.9833274	284.450078	#	03/07	19:54:34	1.0166437		
2026	03/01	17:15:32	0.9833021	283.343193	#	06/07	17:30:15	1.0166440		
2027	03/01	02:32:08	0.9833335	282.469730	#	05/07	05:05:52	1.0167289		
2028	05/01	12:28:02	0.9833074	284.685744	#	03/07	22:17:36	1.0166798		
2029	02/01	18:13:37	0.9832917	282.646003	#	06/07	05:11:40	1.0167127		
2030	03/01	10:13:04	0.9833418	283.076666	#	04/07	12:57:19	1.0167226		

Data da Lua Cheia (Tempo Universal Coordenado, UTC) e distância Terra–Lua nesta data. O erro é inferior a 45 segundos.

d/ m/ ano	h: m: s	dist[km]	d/ m/ ano	h: m: s dist[km]	d/ m/ ano	h: m: s	dist[km]
30/01/2010	6:18:08	; 356607	14/02/2014	23:53:42 ; 403469	2/03/2018	0:51:55	; 368039
28/02/2010	16:38:25	; 358433	16/03/2014	17:09:00 ; 395641	31/03/2018	12:37:28	; 378491
30/03/2010	2:25:58	; 364689	15/04/2014	7:42:56 ; 385100	30/04/2018	0:58:50	; 389462
28/04/2010	12:19:03	; 374087	14/05/2014	19:16:30 ; 374224	29/05/2018	14:20:14	; 398835
27/05/2010	23:07:56	; 384884	13/06/2014	4:12:02 ; 365040	28/06/2018	4:53:39	; 404792
26/06/2010	11:31:02	; 395113	12/07/2014	11:25:26 ; 358975	27/07/2018	20:21:03	; 406099
26/07/2010	1:37:14	; 402798	10/08/2014	18:09:52 ; 356896	26/08/2018	11:56:52	; 402419
24/08/2010	17:05:16	; 406294	9/09/2014	1:38:42 ; 359181	25/09/2018	2:53:05	; 394465
23/09/2010	9:17:54	; 404703	8/10/2014	10:51:09 ; 365664	24/10/2018	16:45:49	; 383846
23/10/2010	1:37:12	; 398190	6/11/2014	22:23:26 ; 375445	23/11/2018	5:39:47	; 372719
21/11/2010	17:28:00	; 388057	6/12/2014	12:27:24 ; 386777	22/12/2018	17:49:08	; 363367
21/12/2010	8:14:05	; 376526	5/01/2015	4:53:56 ; 397241	21/01/2019	5:16:37	; 357714
19/01/2011	21:21:59	; 366157	3/02/2015	23:09:38 ; 404342	19/02/2019	15:54:07	; 356843
18/02/2011	8:36:13	; 359101	5/03/2015	18:06:06 ; 406323	21/03/2019	1:43:25	; 360769
19/03/2011	18:10:35	; 356577	4/04/2015	12:06:16 ; 402833	19/04/2019	11:12:44	; 368586
18/04/2011	2:44:31	; 358796	4/05/2015	3:42:44 ; 394984	18/05/2019	21:11:57	; 378795
17/05/2011	11:09:12	; 365166	2/06/2015	16:19:38 ; 384742	17/06/2019	8:31:17	; 389565
15/06/2011	20:14:10	; 374512	2/07/2015	2:20:09 ; 374184	16/07/2019	21:38:52	; 398909
15/07/2011	6:40:14	; 385226	31/07/2015	10:43:27 ; 365116	15/08/2019	12:29:57	; 404935
13/08/2011	18:58:09	; 395404	29/08/2015	18:35:43 ; 358991	14/09/2019	4:33:29	; 406247
12/09/2011	9:27:20	; 403045	28/09/2015	2:51:02 ; 356879	13/10/2019	21:08:34	; 402365
12/10/2011	2:06:26	; 406381	27/10/2015	12:05:40 ; 359329	12/11/2019	13:35:04	; 393971
10/11/2011	20:16:49	; 404372	25/11/2015	22:44:49 ; 366155	12/12/2019	5:12:53	; 382862
10/12/2011	14:37:05	; 397257	25/12/2015	11:12:05 ; 376268	10/01/2020	19:21:53	; 371541
9/01/2012	7:30:44	; 386721	24/01/2016	1:46:23 ; 387702	9/02/2020	7:33:50	; 362476
7/02/2012	21:54:20	; 375309	22/02/2016	18:20:33 ; 397951	9/03/2020	17:48:17	; 357399
8/03/2012	9:40:02	; 365502	23/03/2016	12:01:33 ; 404625	8/04/2020	2:35:37	; 357030
6/04/2012	19:19:12	; 359080	22/04/2016	5:24:19 ; 406249	7/05/2020	10:45:45	; 361183
6/05/2012	3:35:36	; 356955	21/05/2016	21:15:07 ; 402698	5/06/2020	19:12:56	; 369007
4/06/2012	11:12:06	; 359259	20/06/2016	11:02:58 ; 394999	5/07/2020	4:44:59	; 379151
3/07/2012	18:52:26	; 365490	19/07/2016	22:57:11 ; 384827	3/08/2020	15:59:24	; 389879
2/08/2012	3:28:02	; 374646	18/08/2016	9:27:09 ; 374105	2/09/2020	5:22:45	; 399204
31/08/2012	13:58:43	; 385281	16/09/2016	19:05:39 ; 364752	1/10/2020	21:05:58	; 405150
30/09/2012	3:19:17	; 395532	16/10/2016	4:23:38 ; 358473	31/10/2020	14:49:51	; 406166
29/10/2012	19:50:09	; 403228	14/11/2016	13:52:35 ; 356520	30/11/2020	9:30:22	; 401725
28/11/2012	14:46:40	; 406349	14/12/2016	0:06:06 ; 359448	30/12/2020	3:28:52	; 392771
28/12/2012	10:21:54	; 403873	12/01/2017	11:34:32 ; 366881	28/01/2021	19:16:51	; 381519
27/01/2013	4:39:03	; 396392	11/02/2017	0:33:29 ; 377421	27/02/2021	8:17:55	; 370593
25/02/2013	20:26:41	; 385862	12/03/2017	14:54:26 ; 388860	28/03/2021	18:48:43	; 362173
27/03/2013	9:27:54	; 374760	11/04/2017	6:08:47 ; 398717	27/04/2021	3:32:03	; 357616
25/04/2013	19:57:40	; 365316	10/05/2017	21:43:11 ; 404918	26/05/2021	11:14:23	; 357461
25/05/2013	4:25:28	; 359110	9/06/2017	13:10:17 ; 406272	24/06/2021	18:40:12	; 361562
23/06/2013	11:32:47	; 356991	9/07/2017	4:07:15 ; 402623	24/07/2021	2:37:27	; 369213
22/07/2013	18:16:03	; 359172	7/08/2017	18:11:16 ; 394793	22/08/2021	12:02:33	; 379234
21/08/2013	1:45:09	; 365343	6/09/2017	7:03:26 ; 384376	20/10/2021	14:57:22	; 399421
18/10/2013	23:38:18	; 385705	5/10/2017	18:40:43 ; 373411	20/10/2021	14:57:22	; 399421
18/10/2013	23:38:18	; 385705	4/11/2017	5:23:28 ; 364000	19/11/2021	8:58:09	; 405300
17/11/2013	15:16:25	; 396284	3/12/2017	15:47:31 ; 357982	19/12/2021	4:36:12	; 405934
17/12/2013	9:28:47	; 403902	2/01/2018	2:24:37 ; 356602	17/01/2022	23:49:07	; 401022
16/01/2014	4:52:53	; 406527	31/01/2018	13:27:17 ; 360199	16/02/2022	16:57:10	; 391886

Domingo de páscoa:

15	Abril	1990	;	4	Abril	2010	;	21	Abril	2030
31	Março	1991	;	24	Abril	2011	;	13	Abril	2031
19	Abril	1992	;	8	Abril	2012	;	28	Março	2032
11	Abril	1993	;	31	Março	2013	;	17	Abril	2033
3	Abril	1994	;	20	Abril	2014	;	9	Abril	2034
16	Abril	1995	;	5	Abril	2015	;	25	Março	2035
7	Abril	1996	;	27	Março	2016	;	13	Abril	2036
30	Março	1997	;	16	Abril	2017	;	5	Abril	2037
12	Abril	1998	;	1	Abril	2018	;	25	Abril	2038
4	Abril	1999	;	21	Abril	2019	;	10	Abril	2039
23	Abril	2000	;	12	Abril	2020	;	1	Abril	2040
15	Abril	2001	;	4	Abril	2021	;	21	Abril	2041
31	Março	2002	;	17	Abril	2022	;	6	Abril	2042
20	Abril	2003	;	9	Abril	2023	;	29	Março	2043
11	Abril	2004	;	31	Março	2024	;	17	Abril	2044
27	Março	2005	;	20	Abril	2025	;	9	Abril	2045
16	Abril	2006	;	5	Abril	2026	;	25	Março	2046
8	Abril	2007	;	28	Março	2027	;	14	Abril	2047
23	Março	2008	;	16	Abril	2028	;	5	Abril	2048
12	Abril	2009	;	1	Abril	2029	;	18	Abril	2049