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Abstract: Facility location models have been applied to problems in the public and private sectors for years. In this article, the
author first presents a taxonomy of location problems based on the underlying space in which the problem is embedded. The article
illustrates problems from each part of the taxonomy with an emphasis on discrete location problems. Selected recent research in
the area is also discussed. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 55: 283–294, 2008
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1. INTRODUCTION

Facility location problems have proven to be a fertile
ground for operations researchers interested in modeling,
algorithm development, and complexity theory. Applications
of location modeling include locating emergency medical ser-
vice (EMS) bases, fire stations, schools, hospitals, reserves
for endangered species, airline hubs, waste disposal sites,
and warehouses to list only a small subset of the numerous
areas in which location models have been applied. Location
models have also found applications in nontraditional areas,
including medical diagnosis, vehicle routing, alignment of
candidates and parties along a political spectrum, and the
analysis of archeological sites [7].

Location theory and modeling has its roots in the pio-
neering work of Weber [65] who considered the problem of
locating a single facility to minimize the total travel distance
between the site and a set of customers. Later, Hotelling [29]
studied the location of two facilities on a line. In his simple
model, customers patronize the closer of the two facilities
and the vendors locate to maximize their market share. With
customers uniformly distributed along the line, the optimal
location for both vendors is in the middle of the line with each
vendor capturing exactly half of the market. Isard [30–32]
is viewed as the founder of regional science, a merger of
economics and location theory.

In this article, I begin with a taxonomy of modern loca-
tion models and provide examples of three of the four major
areas. The remainder of the article is devoted to the fourth
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area, discrete location modeling. I review the formulation of
five foundational models, briefly discuss solution algorithms
for these models and then summarize areas of ongoing and
future research.

2. A TAXONOMY OF LOCATION MODELS

While there are numerous ways of subdividing the broad
spectrum of location models, Fig. 1 illustrates a breakdown
based on the space in which the problems are modeled.

Analytic models are the simplest of location models. Such
models typically assume that demand is distributed in some
way (e.g., uniformly) over a service area and that facilities can
be located anywhere within the area. Analytic models are typ-
ically solved using calculus or other simple techniques. While
the strong assumptions required to develop such models limit
their applicability in particular instances, the insights derived
from such models tend to be applicable in a range of contexts.

To illustrate an analytic location model, assume that
demands are uniformly distributed in a square area, a. Travel
occurs along roads oriented at 45 degrees to the sides of the
square. Under these assumptions, it is easy to show that the
expected distance between a facility at the center of the ser-
vice area and a randomly selected demand is 2

3

√
a
2 . Now

consider the problem of locating N facilities to minimize
the sum of the facility location cost and the expected trans-
port cost. Let f be the fixed cost of locating a facility, ρ the
demand density, and c the transport cost per demand per unit
distance. With N facilities, each facility will serve an area of
(approximately) a/N and the expected distance to the near-
est of the N facilities from a randomly selected demand point
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Figure 1. Taxonomy of location models.
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. The expected facility and transport cost as a

function of the number of facilities located is

T C(N) = f N +
(
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)
cρa. (1)

Ignoring for the moment that N must be integer, we take the
derivative of this cost function with respect to N , the number
of facilities, and find

N∗ = a

(
cρ

√
2

6f

)2/3

. (2)

Thus, the optimal number of facilities grows as the 2/3 power
of the demand density and the cost per item per unit distance,
and decreases with the 2/3 power of the facility costs. As
expected the number of facilities increases linearly with the
area served. Substituting the optimal number (2) into the total
cost function (1), we obtain

T C(N∗) = af 1/3(cρ)2/3
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∼= 1.1447af 1/3(cρ)2/3 (3)

where the first term in the braces of (3) comes from the fixed
facility costs and the second comes from the transport costs.
Thus, at the optimal solution, the facility costs are roughly
50% of the transport costs. The total cost increases linearly
with the area served, with the 1/3 power of the facility costs
and the 2/3 power of the demand density and unit transport
cost.

The optimal number of facilities as given by (2) may be
fractional since we ignored the condition that N must be inte-
gral when we took the derivative of (1). Thus, we should be
interested in the error introduced by rounding the fractional
value of N to the nearest integer. Also, for a variety of rea-
sons exogenous to this simple model, the number of sites used
may differ significantly from the optimal number. If, instead

of using N∗ facilities, we use N = βN∗ facilities, the ratio
of the suboptimal cost to the optimal cost is given by

T C(N)

T C(N∗)
= β + 2/

√
β

3
(4)

For 0.63 ≤ β ≤ 1.53, the cost is within 5% of the optimal
cost and for 0.52 ≤ β ≤ 1.82 the cost is within 10% of the
optimal value. In short, in this simple model, the total cost
is relatively insensitive to changes in the number of facili-
ties deployed. Daganzo [12] uses models similar to this to
analyze more complex distribution systems.

While analytical models assume that demands are distrib-
uted continuously across a service region and that facilities
can be located anywhere within the region, continuous mod-
els typically assume that demands arise only at discrete points
(see Plastria [46] for an introduction to continuous location
modeling). The classical Weber [65] problem is typical of this
class. Demands occur at each of n discrete points. The loca-
tion of demand point i is given by (xi , yi) for i = 1, 2, . . . , n
and the intensity of demand at this location is given by hi . The
Weber problem seeks the location (X, Y ) of a single facility
to minimize the demand-weighted total distance between the
facility and the demand points. In other words, we want to

Minimize
X,Y

n∑
i=1

hi

√
(xi − X)2 + (yi − Y )2 (5)

This model is solved using iterative numerical procedures
such as the Weiszfeld [66] algorithm. Drezner et al. [18]
review this model, the Weiszfeld algorithm, and a variety
of enhancements to the algorithm to ensure and expedite
its convergence. They also outline extensions to this basic
model.

Network models assume that demands arise, and facilities
can be located, only on a network composed of nodes and
links. Often demands occur only on the nodes, while facilities
can be located anywhere on the network. The focus of much
of the network location literature is on finding polynomial
time algorithms, often for problems on specially structured
networks such as trees.

To illustrate a network location problem, consider the fol-
lowing problem on a tree. Demands arise only on the nodes
of the tree and the demand at node i is again given by hi .
A single facility can be located anywhere on the tree. The
objective is to minimize the demand-weighted total distance
between the facility and the nodes. This problem is called the
1-median problem on a tree. Goldman [25] showed that the
problem can be solved in O(n) time, where n is the num-
ber of nodes in the tree: Begin with any tip node of the tree.
If the demand at that node is equal to or greater than half
the total demand of all nodes, the optimal location is at that
node. If not, remove that node (and the link connecting it to
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the remainder of the tree) from the tree and add the node’s
demand to the demand of the node to which it had been linked.
The procedure continues until the revised demand of a node
is half or more of the total demand of all nodes in the tree.
Since each node is examined at most once, and examination
of each node requires only a comparison and an addition,
the algorithm runs in O(n) time. The problem of locating
p facilities on a tree to minimize the demand-weighted total
distance can also be solved in polynomial time [58]. Linear
time algorithms also exist for the unweighted (hi = 1, for all
i) problem of locating one or two facilities to minimize the
maximum distance between any node and the nearer facility.
Numerous other network location models have been studied
in the literature. A full review of this work is beyond the scope
of this paper; readers should consult Tansel et al. [60] for a
(somewhat dated) review of this literature.

3. DISCRETE LOCATION MODELS

The fourth and final branch of the location model taxon-
omy deals with discrete models. In such models, there may or
may not be an underlying distance metric. Distances or costs
between any pair of nodes may be arbitrary, although they
generally do follow some rule (e.g., Euclidean, Manhattan,
network, or great circle distances). Demands generally arise
on the nodes and the facilities are restricted to a finite set of
candidate locations.

Figure 2 further classifies discrete location models by sub-
dividing the class into three broad areas. Covering based

models assume that there is some critical coverage distance
or time within which demands need to be served if they are to
be counted as “covered” or “served adequately.” Such mod-
els are typically used in designing emergency services as
there are both practical and, in many jurisdictions, legisla-
tive guidelines for coverage. Note that coverage and service
are not identical. For example, in locating fire stations, a node
may not be covered (e.g., it may be more than 10 minutes from
the nearest station), but demands at that location would still
be served if they were within the service region. Increasingly,
covering models are also being used in the private sector as
coverage can be used as a proxy for high-quality service (e.g.,
“when it positively absolutely has to be there by. . ..”). Within
the class of covering models, three prototypical models are
the set covering model, the maximal covering model and the
p-center model.

Median-based models minimize the demand-weighted
average distance between a demand node and the facility to
which it is assigned. Such models are typically used in distri-
bution planning contexts in which minimizing the total out-
bound or inbound transport cost is essential. Two models are
shown in Fig. 2: the p-median model and the uncapacitated
fixed charge location problem.

Finally, there are models which do not fall into either of
these categories. For example the p-dispersion model [36]
maximizes the minimum distance between any pair of facili-
ties. This model is useful in locating franchise outlets, where
minimizing the cannibalization of one outlet’s market by
another franchisee is desirable. The model can also be used in

Figure 2. Breakdown of discrete location models.
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locating weapon supplies (e.g., nuclear weapons) where min-
imizing the likelihood that the destruction of any one cache
would impact other supplies is desirable. Within the category
of “other” models are a large number of formulations aimed
at locating undesirable facilities.

To illustrate the formulation of discrete location models,
we begin with the set covering model. Let I be a set of
demand nodes and J be a set of candidate locations. The
distance between demand node i ∈ I and candidate site
j ∈ J is dij . Demand node i is covered by candidate site
j if dij ≤ Dc where Dc is the coverage distance. Define
Ni = {j ∈ J : dij ≤ Dc}. In other words, Ni is the set of
all candidate sites which can cover demand node i. Finally,
define a binary decision variable Xj to be 1 if we locate at
candidate site j and 0 otherwise. The location set covering
model can now be formulated as follows [62]:

Min
∑
j∈J

Xj (6)

s.t .
∑
j∈Ni

Xj ≥ 1 ∀i ∈ I (7)

Xj ∈ {0, 1} ∀j ∈ J (8)

The objective function (6) minimizes the number of facili-
ties needed to cover all demands. Constraint (7) stipulates
that each demand node must be covered. Constraints (8) are
integrality constraints. While the set covering problem is NP-
hard, in practice the linear programming relaxation is likely
to have an all-integer solution. Even when the LP relaxation
is fractional, only a small number of nodes must typically be
explored in a branch and bound tree. As such, large instances
of the problem can often be solved in reasonable time. Despite
these observations, it is easy to construct instances that result
in fractional solutions. For example, consider a problem with
nodes at the four vertices of a square with sides of unit length.
For any coverage distance greater than or equal to 1 and less
than 2, the LP solution is to locate 1/3 of a facility at each
node.

Restricting the set of candidate sites to the nodes only is
likely to be subobtimal compared to allowing locations on the
nodes and links of a network. However, Church and Mead-
ows [8] present a method to augment the nodes on a network
with a finite set of additional points on the links such that the
optimal solution to formulation (6)–(8) using the augmented
candidate set, J , will result in a solution value equal to that
obtainable by locating anywhere on the links or nodes.

The location set covering problem has a number of weak-
nesses. First, it is often prohibitively expensive to locate the
number of facilities needed to cover all demands. In those
cases, it may be necessary to either increase the coverage dis-
tance or relax the requirement of total coverage. Second, there
are often a large number of alternate optima to the set cov-
ering model. In the simple 4-node problem outlined above,

locating at any two of the nodes would result in total cov-
erage. Third, the model does not distinguish between large
demand nodes and small demand nodes.

The maximal covering model [9] locates p facilities to
maximize the number of covered demands. This model dif-
ferentiates between big and small demands and allows some
nodes to be uncovered if the number of sites needed to cover
all nodes exceeds p. In addition to the notation defined above,
define a new decision variable, Zi , which equals 1 if demand
node i is covered and 0 otherwise. With this additional
notation, the maximal covering model can be formulated as
follows:

Max
∑
i∈I

hiZi (9)

s.t .
∑
j∈J

Xj = p (10)

Zi −
∑
j∈Ni

Xj ≤ 0 ∀i ∈ I (11)

Xj ∈ {0, 1} ∀j ∈ J (12)

Zi ∈ {0, 1} ∀i ∈ I (13)

The objective function maximizes the number of cov-
ered demands. Constraint (10) states that p facilities are
to be located. Constraints (11) link the location and cover-
age variables, while constraints (12) and (13) are integrality
constraints. Although the maximal covering model is also
NP-hard, it can be solved using a variety of heuristics includ-
ing the greedy adding heuristic and the greedy adding and
substitution algorithm. As in the case of the set covering
model, the maximal covering model can often be solved using
conventional mixed integer programming packages as the lin-
ear programming relaxation is often integer. Also, relaxing
constraint (11) and embedding Lagrangian relaxation [21,22]
in branch and bound works quite effectively [15, 24].

Figure 3 shows the percent of all demand covered as a
function of the number of facilities located for the 500 largest
counties in the contiguous United States. County populations
are the demand values. While these 500 counties represent
less than 1/6 of the 3109 counties in the contiguous states,
they account for nearly 75% of the total population. A total of
14 facilities are needed to cover all 500 demand nodes with a
coverage distance of 300 miles. Figure 4 shows this solution.
However, with only 7 facilities, 88.3% of the demand is cov-
ered. Figure 5 shows this solution. This result is typical of
most real-world datasets. Using only half the number of sites
needed to cover all demands results in 80% to 90% of the total
demand being covered. Two other observations are worth
making. First, Figs. 4 and 5 clearly illustrate that solutions
with fewer facilities are not necessarily subsets of solutions
with more sites. Thus, greedy algorithms will clearly be sub-
optimal in general. Second, using a greedy algorithm until all
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Figure 3. Percent of demand covered versus number of sites for
500 US counties. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

demands are covered results in a solution requiring 19 sites
to cover all demands, 36% more sites than are truly needed.
The greedy adding and substitution algorithm does somewhat
better, requiring 16 sites to cover all demands or 14% more
sites than are truly needed.

The p-center model finds the smallest possible coverage
distance such that every node is covered. On a network, the
absolute p-center model allows facilities to be located on the
nodes and the links, while the vertex p-center model restricts

sites to the nodes. Tansel et al. [59] provide an excellent
survey of early work on the median and center problems.

Covering models generally treat distances as binary: either
a node is covered or it is not. Median-based models account
for the actual distances. The p-median model [26,27] locates
p facilities to minimize the demand-weighted total (or aver-
age) distance between demands and the nearest facility. For
this model, define an assignment variable, Yij , which equals
1 if demand node i is assigned to a facility at candidate site
j , and 0 otherwise. With this notation, the p-median model
can be formulated as follows:

Min
∑
j∈J

∑
i∈I

hidijYij (14)

s.t .
∑
j∈J

Yij = 1 ∀i ∈ I (15)

Yij − Xj ≤ 0 ∀i ∈ I ; ∀j ∈ J (16)∑
j∈J

Xj = p (17)

Xj ∈ {0, 1} ∀j ∈ J (18)

Yij ∈ {0, 1} ∀i ∈ I ; ∀j ∈ J (19)

The objective function (14) minimizes the demand-weighted
total distance. Constraints (15) stipulate that each node is
assigned, while constraints (16) limit assignments to open or
selected sites. Constraint (17) states that p facilities are to be
located. Finally, constraints (18) and (19) are integrality con-
straints. Constraints (19) can be relaxed to (20) since each

Figure 4. Fourteen sites covering all demands in 300 miles. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Figure 5. Seven sites covering over 88 percent of the total demand. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

demand node will automatically be assigned to the closest
open site in any feasible solution.

0 ≤ Yij ≤ 1 ∀i ∈ I ; ∀j ∈ J (20)

Hakimi [27] showed that at least one optimal solution to
the p-median problem consists of locating only on a subset

of the demand nodes. This result has been extended to prob-
lems in which dij is replaced by a concave function of the
distance.

Kariv and Hakimi [35] showed that the p-median problem
is NP-hard. A number of algorithms have been developed
to solve the p-median model both heuristically and opti-
mally. The greedy adding algorithm adds facilities one at

Figure 6. Maximal covering solution with 10 facilities, % covered = 97.15%. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Figure 7. Ten-median solution, average distance = 134.62. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

a time so that the objective is minimized given the previ-
ously located sites. Maranzana [41] proposed a neighborhood
search algorithm which is based on the observation that the
1-median can be found in polynomial time by total enumer-
ation. The algorithm defines the neighborhood of a facility
as the set of demand nodes assigned to the facility; it then
finds the 1-median in each neighborhood. If any facility has

changed, new neighborhoods are computed and the process
continues. Teitz and Bart [61] introduced a more general
exchange algorithm which tends to outperform Maranzana’s
algorithm. Rolland et al. [48] present a tabu search algo-
rithm for the p-median problem. Rosing and ReVelle [49]
introduced the notion of heuristic concentration and applied
it successfully to the p-median problem. Rosing et al. [50]

Figure 8. Ten-center solution, maximum distance = 373. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Table 1. Summary of covering center and median solutions.

Solution

Max covering p-center p-median

Objective
Max covering 97.1 86.8% 88.2%
p-center 507 373 565
p-median 176.5 219.2 134.6
UFLP $2,839,650 $3,285,141 $2,403,191
Sites 52 - Pima C., AZ 159 - Tulare C., CA 1 - Los Angeles C., CA

150 - Knox C., TN 162 - Pulaski C., AR 21 - Alameda C., CA
159 - Tulare C., CA 242 - Bell C., TX 42 - DuPage C., IL
163 - Waukesha C., WI 257 - Alachua C., FL 70 - Pierce C., WA
180 - Luzerne C., PA 274 - Kanawha C., WV 87 - Hudson C., NJ
229 - Galveston C., TX 280 - Weber C., UT 104 - Jefferson C., CO
253 - Yakima C., WA 462 - Deschutes C., OR 118 - Polk C., FL
257 - Alachua C., FL 469 - San Juan C., NM 196 - Lorain C., OH
460 - Mesa C., CO 478 - Jefferson C., NY 348 - Brazos C., TX
500 - Jasper C., MO 496 - La Crosse C., WI 389 - Hall C., GA

Average site number 240.3 327.9 137.6

compared heuristic concentration and tabu search. Bozkaya
et al. [4] recently introduced a genetic algorithm that works
well for the p-median problem. Relaxing constraints (15)
results in an effective Lagrangian relaxation which can be
embedded in branch and bound to find optimal solutions [15].
Hale and Moberg [28] review extensions to median, center
and covering models.

The p-median problem ignores differences in the facil-
ity location costs at different sites. The Uncapacitated Fixed
Charge Location Problem (UFLP) problem is a close cousin
of the p-median problem. Letting fj be the fixed facility cost
of locating at candidate site j ∈ J , the UFLP minimizes (21)
subject to all of the constraints of the p-median model with
the exception of constraint (17)

∑
j∈J

fjXj + c
∑
j∈J

∑
i∈I

hidijYij (21)

where c is the transport cost per item per mile.
The UFLP is also NP-hard. It too can be solved effectively

for fairly large instances using procedures similar to those
developed for the p-median problem, including Lagrangian
relaxation [23]. In addition, Erlenkotter [20] introduced a dual
ascent algorithm for this problem. Van Roy and Erlenkot-
ter [64] extend this algorithm to a dynamic location context
in which new facilities can be added and existing sites can be
closed.

Finally, we formulate the p-center problem for the case in
which a finite set of candidate sites, J , is given. Define W

as the maximum demand-weighted distance (the unweighted
case is formulated identically with hi = 1 for all i). The
p-center problem is then simply to minimize W , subject to
constraints (15) through (19) and the additional constraint

(22) which defines W in terms of the assignment variables.

hi

∑
j∈J

dijYij − W ≤ 0 ∀i ∈ I (22)

The p-center problem is also NP-hard [34].
To illustrate the differences between some of these mod-

els, consider again the 500 largest counties in the contiguous
United States. Figures 6–8 show the solutions to the maxi-
mal covering, median and unweighted center problems for
10 sites. Again, a coverage distance of 300 miles was used.
Table 1 summarizes the key differences between these solu-
tions, lists the sites used in each of the 3 solutions, and
also shows the objective function value for the UFLP with
fj = 100, 000, ∀j ∈ J and α = 0.00005. Site numbers
beside the county names in Table 1 are the rank of the coun-
ties in decreasing order of population (with Los Angeles,
number 1, being the most populous).

The unweighted p-center problem ignores the demand lev-
els. As such it tends to locate in less populous, but more
central, areas than do the other two models. The average
county number for the p-center solution is 328. The maxi-
mum covering model accounts for population, but deals with
distance in a binary (covered or uncovered) manner. As shown
in Table 1, it tends to locate facilities in more populous loca-
tions than does the p-center model. The p-median model
accounts for both population and the actual distances, and it
tends to locate in more populous sites.

Significant differences in the objective function values can
also be seen. While 97.15% of the total demand can be cov-
ered with 10 facilities within 300 miles, the coverage distance
has to increase to 373 (almost a 25% increase) for all demands
to be covered by only 10 sites. This solution, however, has

Naval Research Logistics DOI 10.1002/nav
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Figure 9. Tradeoff between average and maximum distance with
10 facilities serving the 500 largest counties in the contiguous United
States. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

an average distance of 219 which is 63% greater than the
minimum possible distance of 135 miles shown in Fig. 7.

There is a clear tradeoff between the average and maxi-
mum distance objectives. Figure 9 plots the 38 nondominated
solutions on this tradeoff curve. The 9 supported solutions
that define the lower convex hull of the nondominated solu-
tions are shown with diamonds. This figure illustrates another
common observation in discrete location modeling. The opti-
mal solution for any one objective is likely to do poorly with
respect to other objectives, but there are very often many
good compromise solutions. For example, the fourth sup-
ported solution from the right in the figure (147.95, 414)
reduces the maximum distance by nearly 27% (compared
with the p-median solution shown at the far left of the figure)
while increasing the average distance less than 10%. The
next supported solution to the left (136.34, 516) reduces the
maximum distance by 8.67% while increasing the average
distance only 1.3% compared with the p-median solution.

Finally, we can compare the qualitative recommendations
of the fixed charge analytic model [Eqs. (1)–(4)] with the

results of a discrete fixed charge location model. Table 2
shows the results of 21 runs (9 with equal fixed costs per
site and 12 with costs that varied linearly with the popula-
tion) for the fixed charge location model applied to the 3109
counties of the contiguous United States. The cost per item
per mile shipped [c in (21)] was varied as shown in the sec-
ond row of the table (note that c also includes an embedded
conversion factor from population to demand). The 9 prob-
lems with equal fixed costs were solved to optimality while
the maximum gap between the lower and upper bounds for
the 12 unequal fixed cost runs was 0.036 percent. Solution
times for the equal fixed cost runs were all under 40 min
while the maximum time for the unequal fixed cost runs was
over 13 h. For strategic decision making problems of this
size (3109 integer location variables and nearly 10 million
assignment variables), these times are quite reasonable.

The last two rows of the table show the number of sites and
total cost as a function of the cost per item per mile [c in (1)–
(3) and (21)]. The analytic model results suggest that both the
number of sites [Eq. (2)] and the total cost [Eq. (3)] should
increase as the 2/3 power of c. The exponent of c in the four
regression equations ranges from about 0.5 to 0.7. Thus, the
regression equations—all with very high R2 values—show
that the number of sites and the total cost increase as a func-
tion of the cost per mile in a manner similar to that predicted
by the analytic model, despite significant violations of the
assumptions underlying the analytic model. For example, the
contiguous United States is not a convex region, great circle
distances were used in the discrete model as opposed to Man-
hattan, or right angle, distances used in the analytic model,
and the demand density is anything but uniform. In fact, the
population or demand density varies by 5 orders of magni-
tude from a high of over 9.5 million in Los Angeles County,
CA to a low of 67 in Loving County, TX.

4. WHERE TO FROM HERE?

Location modeling and theory remain active areas of
research. At the two most recent INFORMS Annual Meetings

Table 2. Number of sites and total cost as a function of the cost per item per mile.

Equal fixed costs Unequal fixed costs

Number of runs 9 12
Min and Max cost per item/mile, c 0.000001 and 0.01 0.000000025 and 0.01
Min and Max number of sites 1 and 320 1 and 560
Average time (s) 1,317 5,280
Max time (s) 2,202 48,454
Max % gap 0.000 0.036
Number of sites No sites = 5442.4c0.614 No sites = 4907.5c0.4945

R2 = 0.9987 R2 = 0.9962
Total cost Total cost = 1.044 · 109c0.5871 Total cost = 2.126 · 109c0.7003

R2 = 0.9999 R2 = 0.9985

Naval Research Logistics DOI 10.1002/nav
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in Pittsburgh and Seattle, respectively, there were 22 ses-
sions with 88 papers dealing explicitly with location problems
as well as 1 tutorial. Numerous other talks—on such topics
as homeland security, healthcare, and telecommunications—
also dealt with location problems. Clearly a review of all of
this is beyond the scope of this paper. Rather, I will focus on a
few emerging areas of research in discrete location modeling,
with apologies to researchers in other areas.

One active area of research has involved relaxing key
assumptions in the basic location models outlined earlier. For
example, Berman et al. [2] consider a gradual covering model
in which a demand is fully covered if the nearest facility is
within l, uncovered if the nearest facility is further than u and
partially covered if the nearest facility is between l and u dis-
tance units away. They show that, for convex decay functions,
the maximal gradual covering problem can be restructured as
a special case of the UFLP.

The incorporation of stochastic elements into location
models has been of interest for years. Larson [38, 39] intro-
duced the hypercube queueing model which addresses indi-
vidual server availability in the face of Poisson demand
and exponential service times. Jarvis [33] embedded this
model in an iterative heuristic search algorithm to identify
good facility locations. Daskin [13, 14] introduced the max-
imum expected covering location model which extends the
maximal covering model to accommodate facilities which
are busy or unavailable for part of the time. In the maxi-
mum availability location model developed by ReVelle and
Hogan [47], demand nodes are covered only if the probabil-
ity of a facility within the coverage distance being available
exceeds a given value. Marianov and Serra [42] explic-
itly embed a queueing model into the maximal covering
model. Berman and Krass [1] provide a review of stochas-
tic location models with congestion effects. Berman et al.
[3] merge partial coverage and queueing in set covering
context.

In the post-9/11 era, facility reliability has become an
increasingly important topic. Three broad categories of mod-
els have emerged. In the first, facilities fail randomly and the
objective typically deals with expected performance. Such
models are most appropriate for facility failures that are
uncorrelated. For example, Snyder and Daskin [54] extend the
p-median and UFLP models to account for facility reliabil-
ity and explore the tradeoff between the traditional objective
functions for these models and the costs when facilities fail.
Lim et al. [40] extend the analytic (1) and mixed integer
formulations (21) of the UFLP to account for two types of
facilities: those that fail with some probability q and more
costly facilities that do not fail at all. A carefully constructed
Lagrangian relaxation algorithm was able to solve a problem
with 3109 nodes (representing the counties of the contigu-
ous United States) in just over an hour. The gap between
the upper and lower bounds was 0.005% of the lower bound

for this instance with 29 million variables and 38 million
constraints.

Defender/interdictor models, in which disruptions are due
to enemy attacks and the objective generally deals with min-
imizing the worst-case results, represent the second broad
area of facility reliability modeling. Church et al. [11] extend
the p-median and maximal covering models to identify the
r most critical sites, the sites whose elimination results in
the greatest degradation of the original objective function.
Church and Scaparra [10] and Scaparra and Church [52]
extend the p-median model to a case in which a defender
can protect Q of the p facilities against attacks on R of
the facilities by an enemy. The objective is to find the Q

facilities to defend to minimize the worst-case attack. Snyder
et al. [57] and Snyder and Daskin [55] review these streams
of research.

Scenario planning represents a compromise between the
independence assumption that is often made in dealing with
random disruptions and the single worst-case assumptions
made in defender/interdictor modeling. A variety of objec-
tives ranging from expected performance to worst-case per-
formance and minimax regret have been employed in location
modeling as well as objectives that represent a compromise
between expected and worst-case objectives (e.g., Daskin
et al. [17]; Chen et al., [6]; Snyder and Daskin, [56]).

Facility location problems typically represent long-term
strategic planning issues in supply chain design. As such
these decisions impact, and are affected by, lower level tacti-
cal and operational decisions. Nozick and Turnquist [44, 45]
iteratively solve location and inventory models to integrate
these two decisions. Daskin et al. [16] and Shen et al. [53]
present a non-linear extension of the fixed charge location
model (21) that incorporates inventory decisions at a dis-
tribution center as well as shipments from a plant to the
distribution centers. Vehicle routing problems have also been
integrated into facility location models (see Min et al. [43]
for a review of this work). It is worth noting that a capacitated
fixed charge location model is at the heart of one of the more
effective heuristics for the vehicle routing problem (Bramel
and Simchi-Levi, [5]). Finally, researchers interested in the
field of reverse logistics or closed-loop supply chains are
utilizing extensions of the UFLP to identify desirable sites
for forward distribution centers and reverse collection, sort-
ing, recycling and remanufacturing facilities (Easwaran and
Uster, [19]; Sahyouni et al. [51]; and Uster et al. [63]).

5. CONCLUSIONS

Facility location problems have been a fertile ground for
the development of new modeling techniques, innovative
solution algorithms and exciting applications. This paper
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presented a taxonomy of location models based on the under-
lying space in which the problem is embedded. After a brief
review of three of the four areas, the paper outlined the formu-
lation of five key discrete location models: the set covering
model, the maximal covering model, the p-median model,
the uncapacitated fixed charge location problem and the p-
center problem. In contrast to the vehicle routing problem
for which only relatively small instances can be solved to
provably optimal solutions (Laporte, [37]), many location
problems, though NP-hard, can be solved effectively for
problems with thousands of demand nodes and candidate
sites.

Recent extensions of the basic discrete location models
were also highlighted with emphasis on models that account
for stochasticity, reliability and uncertainty and the inte-
gration of other logistical decisions into location modeling
frameworks. Location modeling remains an exciting area of
research for operations researchers and of application for
practitioners.
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