
Empirical Assessment of MDE in Industry
John Hutchinson, Jon Whittle, Mark Rouncefield

School of Computing and Communications
Lancaster University, UK

+44 1524 510492

{j.hutchinson, j.n.whittle,
m.rouncefield}@lancaster.ac.uk

Steinar Kristoffersen
Østfold University College and Møreforskning Molde AS

NO-1757 Halden
Norway

+47 6921 5000

steinar.kristoffersen@hiof.no

ABSTRACT

This paper presents some initial results from a twelve-month

empirical research study of model driven engineering (MDE).

Using largely qualitative questionnaire and interview methods we

investigate and document a range of technical, organizational and

social factors that apparently influence organizational responses to

MDE: specifically, its perception as a successful or unsuccessful

organizational intervention. We then outline a range of lessons

learned. Whilst, as with all qualitative research, these lessons

should be interpreted with care, they should also be seen as

providing a greater understanding of MDE practice in industry, as

well as shedding light on the varied, and occasionally surprising,

social, technical and organizational factors that affect success and

failure. We conclude by suggesting how the next phase of the

research will attempt to investigate some of these issues from a

different angle and in greater depth.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software Process; D.2.2 [Design

Tools and Techniques].

General Terms
Management, Design.

Keywords
Model Driven Engineering, Empirical Software Engineering.

1. INTRODUCTION
Model-driven engineering (MDE) is a term used to describe the

systematic use of software abstractions – or models – as primary

artifacts during a software engineering process [15]. Although

MDE claims many potential benefits – chiefly, gains in

productivity, portability, maintainability and interoperability – it

has been developed largely without the support of empirical data

[4]. There are many examples of success stories with MDE, but

there are also many cases of failure. As a result, companies

deciding whether or not to adopt MDE are often faced with

confusion: the success stories tend to paint things in their best

light, whereas the failure cases may not have applied MDE

properly. In short, there are a lack of guidelines for deciding

whether and how to adopt MDE

This paper presents results from a twelve-month empirical study

with the long-term goal of providing these guidelines based on

industry evidence. The study investigated factors – technical,

organizational and social – that affect how companies fare with

MDE. The methodology was to apply qualitative research

methods to understand when, how and why companies do or do

not succeed with MDE. A three pronged approach was followed:

(i) a questionnaire widely disseminated to MDE practitioners,

which received over 250 responses; (ii) in-depth interviews with

22 MDE professionals from 17 different companies; (iii) on-site

observational studies with companies practicing MDE.

The initial aims of the study were twofold: (1) to understand and

document how MDE is currently being applied in industry; and

(2) to identify the most important factors affecting MDE

success/failure, with a particular emphasis on uncovering social,

organizational and technical factors. The latter point is

particularly important, as it is often the case that a new

technique’s uptake depends as much on social as technical

considerations.

This paper presents results from the two methods mentioned

above, in the form of a survey summary and a number of lessons

learned, spanning a range of issues from education and training to

process and tool support. As with all qualitative research, these

lessons should be interpreted with care: they should be seen as

providing a greater understanding of MDE practice and as

offering hypotheses for future study.

The study takes a deliberately broad interpretation of MDE, as it

is intended to be exploratory. Therefore, all variants of MDE are

covered, including both domain-specific modeling languages

(DSMLs) and UML-based methods. The scope of the study is

defined by the responses of the participants. The only hard

criterion for excluding/including data was that the company must

have been using models as a primary development artifact.

Usually, but not exclusively, this meant code generation from

models.

It is also worth pointing out that the study is not an attempt to

survey penetration of MDE in industry; most of the interviewees

were experienced modelers, although not necessarily proponents

of MDE. The study is also deliberately agnostic with respect to

the usefulness of MDE; that is, it is as much interested in MDE

failure as it is in success.

The paper is structured as follows. Section 2 presents additional

motivation and related work on empirically assessing MDE.

Section 3 describes our methodology. Section 4 presents results

from the questionnaire. Section 5 describes lessons learned from

the in-depth interviews. Section 6 discusses the conclusions of the

study and areas for future work.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ICSE'11, May 21-28, 2011, Waikiki, Honolulu, HI, USA

Copyright © 2011 ACM 978-1-4503-0445-0/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

471

Table 1: Illustrative influences of MDE.

Impact Factor Illustrative Examples of MDE Influences

 Positive Influences Negative Influences

Productivity

• Time to develop code Reduced by: automatic code generation. Increased by: time to develop computer-readable models;

implement model transformations, etc..

• Time to test code

Reduced by: fewer silly mistakes in generated code; model-

based testing methods, etc.

Increased by: effort needed to test model transformations

and validate models, etc.

• ROI on modeling effort

Positive influences of modeling: more creative solutions;

developers see the “bigger picture”.

Negative influences of modeling: “model paralysis”;

distracting influence of models.

Portability

• Time to migrate to a new
platform

Reduced by: simply applying a new set of transformations. Increased by: effort required to develop new

transformations or customize existing ones.

Maintenance

• Time for stakeholders to
understand each other

Reduced since: easier for new staff to understand existing

systems; code is “self-documenting”.

Increased since: generated code may be difficult to

understand.

• Time needed to maintain
software

Reduced since: maintenance done at the modeling level;

traceability links automatically generated.

Increased since: need to keep models/code in sync, etc.

2. BACKGROUND AND RELATED WORK

2.1 MDE Influences
The primary technical advantages claimed by MDE proponents

are improvements in productivity, portability, maintainability and

interoperability [15]. These are complemented by social and

organizational benefits of abstraction such as the facility to see the

“bigger picture” and positive influences on training since

organizational knowledge is formalized within a code generator.

These benefits have reportedly led to productivity increases

ranging anywhere from 20 to 800% [18, 5]. On the other hand,

there is anecdotal evidence that cites reasons for decreased

productivity – quantified at 27% in [18] – such as poor tool

support, a tendency to over-model (“model paralysis”), increased

complexity, and the need to keep models/code in sync. The key

conclusion from these contrasting experiences is that it is difficult

to provide absolute measures of the benefits of MDE. In

particular, MDE involves dependent activities, some of which

have a positive effect and some a negative effect. For example,

code generation in MDE appears, at first glance, to have a positive

effect on productivity. But the need to integrate generated code

with existing systems may lead to maintenance problems. How the

balance between these two effects relates to context, and what

might lead one to outweigh the other, is simply not known. Table

1 illustrates this point by showing aspects that may benefit from

MDE but noting that, for any of them, there are positive and

negative influences that compete against each other. A major goal,

therefore, of an empirical assessment of MDE ought to be to

unpick these dependencies and to identify contexts where the

benefits outweigh the disadvantages (or vice versa).

Although MDE has been promoted as an approach for developing

software for a significant time, there have been only limited

attempts to assess its efficacy in industry in a systematic way.

Below, we briefly report on these. In the absence of a systematic

investigation, we are mostly limited to case studies, industry

reports and similar published work. Mohagheghi and Dehlen [20]

undertook an extensive review of such work, which we draw upon

and extend here.

2.2 Mohagheghi and Dehlen’s Review
Carried out as part of the European MODELPLEX IST project,

Mohagheghi and Dehlen’s study was primarily interested in the

impact of MDE on productivity and software quality. Their

methodology was a meta-analysis of the literature, using a set of

inclusion criteria to select 25 papers published in quality

conferences and venues between 2000 and 2007. 21 of these

papers were experience reports from single projects; four describe

comparative studies. Most of the papers present results

anecdotally: two include some quantitative data, three papers used

qualitative methods, and one attempted an experiment. As with

this paper, Mohagheghi and Dehlen limit their study to

approaches that generate “models, code and other artifacts from

models”: i.e., they focus on MDE rather than modeling more

generally.

MDE was found to be applied in a broad range of companies in a

number of different domains including telecommunications,

business/finance applications, defence/aerospace and web

applications. The experienced maturity of MDE was assessed on

automation. Mohagheghi and Dehlen note varying reports from

companies generating code where the degree of code generation

ranged from 65% to 100%, or possibly some unspecified lower

proportion. In some cases, this relied on developing DSMLs

and/or code generators. Other papers described the generation of

XML schemas and automation of testing, the latter resulting in a

reduction of “box test cycle time” of almost a third. Executable

models were mentioned in some papers, usually with reference to

accompanying difficulties.

Software processes were recognized as being of integral

importance in successfully applying MDE, yet mostly in the

context of describing the inadequacy of existing processes when

used for MDE. They note that none of the papers used existing

model-based methodologies (e.g. KobrA [16] and COMET [7]).

472

The importance of suitable tools was reported as of crucial

importance. There are two aspects to this: the first is that the

techniques necessary to apply MDE correctly depend on tool

support; the second is that within many of the significant software

projects in which MDE was being applied, or for which it was

being evaluated, there already existed a comprehensive tool chain

and integration of the necessary tools into this chain was essential.

Few of the papers surveyed provided strong empirical evidence of

the impact on productivity. Of the comparative studies, results

vary between a 35% gain to a 27% loss. Two of the studies

showed no net impact. Further claims were made about

productivity gains which were not supported by evidence from

comparative studies. Mohagheghi and Dehlen suggest there is a

more subjective quality to these reports and that they often emerge

from environments lacking a “common baseline”. Importantly,

though, some of the productivity gains described are far in access

of those discussed earlier: 2x, 5x and even 8x productivity

improvements. The study also looked for evidence that MDE

improves software quality. There were descriptions of defect

reductions, reduced need for code inspections, and maintenance

gains, but the evidence was anecdotal.

In conclusion, Mohagheghi and Dehlen suggest that there is a

need for more empirical studies evaluating MDE before sufficient

data will be available to prove the benefits of its adoption. They

also hint that immaturity is still an issue. For example, they cite

improved portability as a potential benefit of MDE but that its

realization is hindered by tool platform support. They do note,

though, that most papers consider models helpful in improving

understandability and communication between stakeholders.

2.3 Other Related Work
Other work empirically assessing the benefits of MDE is limited.

In particular, there are three key gaps in current understanding: a

lack of knowledge on how MDE is used in industry; a lack of

understanding of how social factors affect MDE use; and a failure

to assess aspects of MDE beyond UML, such as the benefits of

code generation, domain-specific abstractions and model

transformations.

Regarding the lack of knowledge on how MDE is used in

industry, there have been only a very limited number of attempts

to survey existing MDE practice. A 2005 study looked at the

penetration of UML and UML tools into the marketplace by

surveying 500 developers [19] but focused on UML not MDE.

Forward and Lethbridge [9] did survey practitioners’ opinions and

attitudes towards MDE. Surveys like these are important because

they often discover that commonly-held perceptions may not hold

true in practice [8].

Regarding the lack of understanding of how social factors affect

MDE use, most empirical studies have concentrated on technical

aspects of MDE. Anda et al [2] reported anecdotal advantages of

modeling such as improved traceability but also pointed to

potential negatives, such as increased time to integrate legacy

code with models and organizational changes needed to

accommodate modeling. Afonso et al [1] documented a case study

to migrate from code-centric to model-centric practices.

There has been quite a lot of research on evaluating the language

UML (e.g., [3, 17]) but this is not relevant to this paper, which

focuses on MDE.

3. METHODOLOGY
We employed an eclectic range of research techniques to gather

information for our study in an attempt to capture different kinds

of data and different ranges of experience with MDE. In a scoping

study such as this, the use of a variety of data collection

techniques – both quantitative and qualitative methods – ensured

a widespread coverage and capture of those factors that might

impact on the success or failure of MDE approaches as well as a

diversity of data types and, more importantly, data sources. This

approach allowed us to ask a series of questions about aspects of

MDE that were already apparent in the existing literature as well

as surfacing and documenting other aspects of experience with

MDE that were hidden. Quantitative techniques (questionnaire

surveys) were designed to enable us to develop some overall sense

of the number, frequency and generality of specific experiences,

responses and informed conclusions about MDE. Qualitative

approaches (in our case semi-structured in-depth interviewing and

ethnographic case studies) encouraged our respondents to reflect

on their experience and expertise and enabled us to explore in

greater detail and depth specific aspects of our respondents

experience of MDE as well as attempting to capture some

‘sensitivities’ [6] concerning the everyday practical realities of the

deployment of MDE.1

3.1 Interpretation of Results
We want to be particularly careful about how we interpret the

results of our work and the conclusions we try to draw from our

admittedly limited, though thorough, study. Accordingly, at this

very early stage of our work, we argue simply that our results are

interesting and suggestive rather than conclusive; that they

provide some sensitivities to the MDE experience rather than

indications of causal links between variables, sensitivities that will

be unpacked and developed as the research progresses. Analysis

of our questionnaire data, at this early stage, has involved some

basic enumeration and simple statistical calculations to get some

overall sense of MDE deployments. In contrast, our interview data

has been analyzed using a ‘grounded theory’ approach [12, 23]

looking for patterns, themes, and categories of analysis to emerge

out of the data (the transcribed interviews), rather than being

imposed prior to analysis. In this way, we attempt to capture the

meaning or experience of MDE from the varied situations and

contexts of our respondents. As many of our respondents admit,

quantification of the benefits and failures of MDE is complex and

difficult. Whilst we acknowledge the argument for the need for

more quantification and metrics, the evidence for our

understanding of MDE at this stage derives from the quality and

perceptiveness of our descriptions and our analysis rather than any

simple mathematization.

3.2 Forms of Investigation

3.2.1 Questionnaire
The questionnaire was implemented online using Survey Monkey

[24] and comprises mostly closed questions, using both multiple

choices and Lickert scales for answers. In the questionnaire’s

preamble, it was stressed that our target community was industrial

practitioners with experience of using modeling in industry. Based

1 Details of the questionnaire and interview questions are

available on the project website:
http://www.comp.lancs.ac.uk/~eamde

473

on experience of similar types of surveys, we judged that the

questionnaire should take no longer than approximately 15

minutes to complete and it was designed accordingly.

Although we wished to employ the questionnaire to elicit

information about modeling practices and related matters, we

were primarily interested in exploring the balance between the

types of positive and negative consequences of MDE use that

were illustrated in Table 1. For that reason, a significant part of

the questionnaire comprised a series of “paired” questions

designed to explore these issues. Examples are given in Table 2.

Table 2. “Paired” questions.

MDE

Aspect
First Question Second Question

Training

Does using MDE allow

you to employ developers

with less software

engineering experience

(e.g. new graduates)?

Does using MDE require

you to carry out

significant extra training

in modeling?

Code

generation

Is your use of code

generation an important

aspect of your MDE

productivity gains?

Is integrating generated

code into your existing

projects a significant

problem?

Note that the questions are not contradictory – nor are they “trick”

questions. Our aim was to understand something about the

balance between positive and negative consequences of MDE.

3.2.2 Interviews
We conducted a series of semi-structured in-depth interviews by

telephone with a number of respondents from a variety of

backgrounds and with a range of opinions about MDE. We were

particularly interested in attempting to balance those who had

positive experiences of MDE with others who clearly had less

enthusiastic accounts. The interviews lasted approximately 45-60

minutes and began with a question about the current position and

history of the respondent; there then followed a series of questions

that probed particular aspects of MDE experience. As with all

semi-structured interviews we had a list of general topics we

wanted to cover that included their particular approach to MDE,

their motivation for deploying MDE, their ideas about benefit,

success and failure, lessons learned and so on, but we particularly

encouraged our respondents to provide more detail or supporting

information about any response that they, and we, found

interesting. Our respondents were allowed to “follow their

interests” in order to obtain the rich detail that is the chief benefit

of this approach. The interviews were recorded and transcribed for

analysis with the permission of our respondents.

3.2.3 Case Studies
A final aspect of our research approach, that does not form part of

this paper, is the use of ethnographic, observational methods [22]

to explore the lived reality of MDE; combined with forms of

cultural or informational probes [11, 13] to uncover more

personal details of the everyday, mundane practice of working

within an MDE project.

4. QUESTIONNAIRE
We publicized the online questionnaire in a number of different

ways. A number of personal emails were sent to industrial

contacts drawing attention to the questionnaire’s presence.

Announcements were made on leading MDE and software

engineering email lists (PlanetMDE and SEWORLD

respectively). Finally, a notification and link were hosted on the

home page of the Object Management Group’s (OMG) website.

(The OMG is the body that standardizes UML and promotes

Model Driven Architecture (MDA) – a specific MDE approach.)

The responses to questions about personal experience, roles,

company size and MDE maturity tell us that the vast majority of

respondents have significant software engineering experience (e.g.

44%>10 years), that they are employed in a range of different

roles (e.g. 36% developers/modelers and 37% team

leaders/project managers), that there was a good spread of size of

company with respect to the number of people involved in

software development (e.g. 52%<100 and 19%>1000) and that

they were experienced in using MDE (60% having completed

multiple MDE projects).

83% of respondents think that MDE is a good thing and 5% that it

isn’t. The remainder were neutral or unwilling to commit. This

suggests that our respondents represent an experienced and

generally successful community of MDE users and provides an

important context for the answers to other questions.

The majority of respondents considered the use of MDE on their

projects to be beneficial in terms of personal and team

productivity, maintainability and portability (58-66%). However a

significant number disagreed (17-22%). When asked if MDE was

a success, 58% agreed and 20% disagreed. This latter figure is

significantly higher than those who question whether MDE is a

good thing and suggests that a good number of people have yet to

implement it successfully.

4.1 Modeling Languages and Their Use
MDE users employ multiple modeling languages. Almost 85% of

respondents make use of UML and almost 40% use a DSL of their

own design. A quarter of respondents report using BPMN; a

similar number use a DSL provided by a tool vendor and about

10% claim to use each of SysML and MATLAB/Simulink.

The types of modeling carried out by the survey’s respondents are

shown in Figure 1, which has an inclusion threshold of >2. It is

clear that Class, Activity, Use Case, Sequence and State Machine

diagrams are the most popular used. However, what Figure 1 does

not show is the wide range of diagrams used by smaller numbers

of people, which in our survey numbered over 35 and included

Abstract Syntax Graphs, Arrow Diagrams, UsiXML Stylistics and

ICONIX Robustness Diagrams.

0 20 40 60 80 100

Class Diagram

Activity Diagram

Use Case Diagram

Sequence Diagram

State Machine Diagram

DSL Diagram

Component Diagram

Flow Diagram

Entity Relationship Diagram

Deployment Diagram

Object Diagram

Composite Structure Diagram

Figure 1. The most popular diagrams used.

474

4.2 MDE Activities and Their Impact on

Productivity and Maintainability
Recognizing that MDE potentially means a different collection of

activities for different MDE users, we were keen to understand the

value of the different activities when it came to their impact on

productivity and maintainability. The activities were selected to

represent different interpretations of what MDE is, and different

levels of commitment to MDE. Although respondents were able to

indicate that they didn’t use a particular activity, they were

otherwise limited to saying that an activity increased or decreased

productivity/maintainability or made no difference. Table 3 shows

the proportions of respondents who judged each activity to

increase productivity and maintainability, along with those who

do not use that particular activity. This summary shows very

clearly the levels of uptake of the different MDE activities. The

proportion of respondents judging each activity to have a positive

effect on productivity/maintainability was the majority response in

all cases. (NB “Not used” figures vary slightly because slight

differences occur between the groups of people answering each

question.)

Table 3. The impact of MDE activities on productivity and

maintainability.

Activity

Productivity Maintainability

Increased
Not

Used
Increased

Not

Used

Use of models for team

communication
73.7% 7.0% 66.7% 6.7%

Use of models for

understanding a

problem at an abstract

level

73.4% 4.8% 72.2% 6.1%

Use of models to

capture and document

designs

65.0% 9.3% 59.9% 10.7%

Use of domain-specific

languages (DSLs)
47.5% 32.6% 44.0% 33.7%

Use of model-to-model

transformations
50.8% 24.6% 42.6% 28.4%

Use of models in testing 37.8% 33.9% 35.2% 32.4%

Code generation 67.8% 12.0% 56.9% 12.6%

Model simulation/

Executable models
41.7% 38.3% 39.4% 35.9%

4.3 MDE “In the Balance”
The paired questions, as described above, were intended to

explore the potential positive and negative consequences of using

MDE.

4.3.1 Training
Over 47% of respondents think that using MDE allows them to

employ less experienced software engineers whilst almost 35%

disagree. In contrast, an overwhelming 74% think that using MDE

requires them to carry out significant extra training (<9%

disagree). Of course, these are not contradictory; MDE represents

a need for new skills for most software engineers and regardless

of who those engineers are, they are likely to require extra

training. However, it seems to suggest that MDE adopters should

recognize the need for this training even if they are able to make

modelers out of less experienced software engineers.

4.3.2 Responding to Requirements Changes
Almost three quarters of respondents agreed that using MDE

made them faster at implementing new requirements. 11%

disagreed. When asked if MDE prevented respondents from

responding to business opportunities, the responses were far more

ambivalent, with 32% agreeing and 38% disagreeing. This

suggests that within a project, MDE users consider modeling

helps to make them flexible to requirements changes, but that they

do not think that this flexibility has wider benefits in responding

to new opportunities.

4.3.3 Code Generation
As we saw in Table 1, it is easy to imagine positive and negative

consequences of code generation. Figure 2 illustrates how

respondents answered the questions about code generation in our

paired questions. What is immediately obvious from Figure 2 is

that there are more respondents for whom code generation has a

positive impact on their productivity than there are those for

whom the integration of generated code is a problem.

(a)

Definitely Yes

Probably Yes

Neutral

Probably No

Definitely No

No Experience

(b)

Definitely Yes

Probably Yes

Neutral

Probably No

Definitely No

No Experience

Figure 2 (a) “Is your use of code generation an important

aspect of your MDE productivity gains?” (b) “Is integrating

generated code into your existing projects a significant

problem?”

The variation in the difficulty experienced by MDE users

integrating generated code is almost certainly significant in the

experiences of different MDE users. The explanation is far less

obvious. It may be differences in the process used, or differences

in the requirements of those projects on which is it used.

4.3.4 UML
There exists significant ambivalence about the balance between

UML’s complexity and its power. 43% of respondents think that

UML is too complex compared to 32% who disagree. However,

23% are neutral on the matter which suggests an implicit

understanding of the compromises that any general modeling

language must embody. 50% of respondents think that UML is

powerful enough for their needs compared to 32% who disagree.

475

Understanding the needs of MDE users who believe UML is not

powerful enough is clearly a question worthy of further research.

4.3.5 Round-Trip Engineering
The attitude to, and the role of, round-trip engineering within a

company’s use of MDE, speaks about that company’s

interpretation of what MDE is. Over 70% of respondents say they

mainly make updates on their models. Just under 40% say they

spend a lot of time synchronizing their models and code whereas

just over 40% say they don’t. This is another subtly process-

oriented question which leaves interpretation difficult, not least

because there is a similarity between the distributions of answers

for these questions and those illustrated in Figure 2. The majority

of MDE users do try to leave generated code alone, but keeping

code and models synchronized is clearly an issue and how that

issue is addressed within an organization’s development process

may be critical to their successful use of MDE.

4.3.6 Reasons to Model
Not all MDE users are convinced that organizations adopt MDE

for purely technical reasons. Figure 3 shows the answers received

to questions asked about this issue.

(a)

Definitely Yes

Probably Yes

Neutral

Probably No

Definitely No

No Experience

(b)

Definitely Yes

Probably Yes

Neutral

Probably No

Definitely No

No Experience

Figure 3 (a) “Do organizations adopt MDE for its technical

merits?” (b) “Do organizations adopt MDE to "jump through

hoops" or appear to do so?”

Figure 3 indicates that approximately 20% of respondents openly

question the adoption of MDE on its technical merits and roughly

40% think there is an element of “jumping through hoops” to the

use of MDE. If organizations adopt modeling or MDE techniques

to “appear to do so”, it suggests that some MDE users’ confidence

in, and commitment to, MDE is far from complete. It also

suggests that some form of non-product-oriented pressure is being

applied to organizations to motivate that adoption of MDE.

Within the context of other responses, these are interesting issues.

4.3.7 Understandability
Two thirds of respondents think that their use of MDE helps

understanding between stakeholders whilst almost a quarter

believe that their use of MDE results in unexpected confusion

and/or misunderstanding between stakeholders. These contrasting

experiences may result from the likelihood that the progress of an

MDE project will follow a different trajectory from one that is

code-centric and this may cause misunderstandings. However, it is

intriguing to note that more than 6% of respondents say they have

no experience of improved or reduced understandability when

using MDE.

4.3.8 Tool Costs
Although it may be theoretically possible to imagine an MDE

process that is not reliant on tools, all practical deployments

require tool support. 43% think that MDE tools are too expensive

(24% disagree). Conversely, 56% of respondents think that

organizations try to deploy MDE using inappropriate and/or

cheap tools (12% disagree). Even allowing for a reasonable

number of tool vendors in the survey sample, this indicates a

significant level of disaffection with the tools used for MDE

alongside a belief that the tools on offer are too expensive.

Against this background, it is interesting to note that more than 50

different tools are used by the survey’s respondents, which

suggests a lack of maturity in that definitive market leaders are yet

to emerge.

4.3.9 Paired Question Summary
The answers to the paired questions show a fascinating balance

between the positive and negative consequences of using MDE in

industry. Moreover, they illustrate how easily what could

otherwise be a successful attempt to adopt MDE could be fatally

undermined by some process decision or incorrect assumption.

For example, a company that believes that MDE will enable them

to hire software engineers with less experience but doesn’t

prepare for the necessary training may well find itself in a difficult

predicament and with a need for training time and costs that have

not been planned for. Similarly, if for some legitimate reason a

company finds that it must manually adapt code that is auto-

generated, it will probably need to explicitly address how it

should be done and what procedures are required to control the

process if it is not to encounter difficulties with keeping the model

and code synchronized.

The paired question answers suggest that companies which

successfully adopt MDE will make numerous small and not-so-

small decisions that maximize the benefits in their particular

context. In contrast, decisions that negate the benefits may result

in a failed MDE adoption attempt.

4.3.10 Interesting Correlations
We have looked for correlations (Pearson's product moment

correlation) in some of the questionnaire data that might help to

identify issues that require more investigation. Some of these

reveal patterns that are quite interesting. For example, there is a

significant (p<0.01) and medium negative correlation (r=-0.32)

between respondents’ perceptions of UML complexity and

powerfulness. In other words, the tendency is that those

respondents who find UML too complex also find it not powerful

enough.

There is a significant (p<0.01) and medium (r=0.345) correlation

between the belief that the use of MDE results in unexpected

confusion and/or misunderstandings and the perception that

organizations adopt MDE simply to “jump through the hoops”.

476

This contrasts with the correlation between the belief that MDE

leads to better understanding between stakeholders and the

perception that organizations adopt MDE on its technical merit

(r=0.49, p<0 .01). This may indicate that the understandability

improvements achieved by some organizations are central to their

perception of MDE use and success.

5. INTERVIEWS
We identified appropriate interviewees by focusing on their

experience within industry. We asked academic contacts, and any

others that we had, to identify practitioners in industry who might

be willing to be interviewed for the study. This equates to an

application of a type of snowball sampling, or respondent driven

sampling, where the first generation contacts were disregarded

because of their status as academics. Although we provided an

introduction to the project, we left it to our contacts to make the

request on our behalf, all of which were made by email. The

following extract is from one of those requests:

“...I am contacting you because of your experience in

applying MDE in practice and I am hoping that either you or

someone you feel is equally qualified can participate in this

study by answering to their call for participation (30 minutes

of your time for a phone interview). The more people

participate, the more accurate and the more useful the

results...”

This technique allowed us to get direct access, with introductions,

to a number of extremely experienced practitioners and other

recognized experts in the field. A small number of interviewees,

meeting similar criteria, were identified in other ways; for

example, opportune meeting of a keynote speaker at a conference,

informal contact with a consultant in the area, etc.

5.1 Interviewee Profile
At the time of this analysis, we had carried out more than 20

interviews. In total, interviewees represented about a dozen roles

in 17 different companies in about a dozen domains. The data

totaled almost 20 hours of recorded data and >130,000 words of

transcribed data. Cumulatively, our interviewees have >360 years

software development experience.

5.2 Analysis
It is important to acknowledge that the data set is so large that no

single analysis can capture anything other than a fraction of it. For

this reason, here we attempt to present a number of “key themes”

that represent a sort of “lessons learned”. These themes appear in

multiple interviews and refer to issues relating to technology,

process and organization. The range of interpretations, activities,

tools and processes is vast, so each of the following themes is

essentially based upon a collection of case studies.

5.2.1 A Lot of MDE Success is Hidden
“...when you build an enterprise system, do you program all

the low-level database stuff...the B+ trees... or do you define

a data model and feed it into a database management

system...are you constantly writing raw HTML or Java code

or are you using tools that allow you to paint a dialog box

and generate some code... for the front and back ends of our

systems, we long ago abandoned low-level coding as a

dominant abstraction of development...” (Transcript: 16)

We have already seen how different activities can contribute to a

process that is considered model-driven and those engaged in

MDE may employ some number of these activities. An external

and artificial view of MDE might suppose that MDE necessarily

will carry out all of the activities all of the time. Furthermore, they

might also suppose that MDE in practical terms equates to UML

and the use of certain types of tools. However, practical MDE is

often not quite like that. As the above quote suggests, the

development of a typical 3-tier architecture is far from the code-

centric activity that many programmers claim to be the only valid

development abstraction. Much of MDE in industry is the kind of

modeling and/or automation that represents pragmatism in the

face of an otherwise tedious or intractable problem.

A related issue is the maturity and suitability of commercial tools

and standard notations. Some users believe that had they adopted

off-the-shelf tools, it would effectively have killed that adoption

of MDE. This is a stark contrast when compared to tools routinely

used today for non model-driven tasks.

5.2.2 Choosing the Correct Project on Which to

Introduce or Trial MDE
“...we put it directly in the main line of the product so it was

a pilot but we are not allowed to fail. It sounds a little bit

strange but we didn’t have the capacity effort to have a

parallel project...we took some risks in introducing model

driven design...” (Transcript: 7)

When a company has made a decision to use MDE, or more likely

try out MDE, the choice of project may have an enormous

influence on its success or failure. This appears to be linked to

notions of motivation. The MDE users must be motivated to use

the new approach and the organization must be motivated to make

the project a success. Unlike process changes that involve

different development paradigms, languages or tools, MDE

challenges embedded perceptions of what software development

actually is.

Motivating Process Change

The aphorism “If it ain’t broke, don’t fix it” captures the notion of

user motivation quite well. In many instances, if the process

already employed by a company is working “sufficiently well”, it

will be very difficult to introduce as radical a change to that

process as introducing MDE. However, if the existing process is

itself a significant risk to a project, or if that process involves the

developers in difficult, time-consuming and uninspiring activities,

then process change in the form of MDE adoption will be more

readily embraced.

Motivating Project Success

Intuitively, many potential adopters of MDE consider prototyping

it on a part of a project that is isolated from important deadlines.

However, many successful MDE adopters become so by using it

on the critical path of a product development program. This

ensures that the organization makes the necessary commitment to

the project (e.g. using the best people).

5.2.3 Not Everyone Can Think Abstractly (or Wants

to)
“So the question is, is somebody naturally inclined to think

in terms of design or do they think more in terms of detail?

...I don’t think that the education that people get necessarily

gets them thinking towards design” (Transcript: 2)

477

“There are people who you can’t teach this to because they

think always in examples.” (Transcript: 4)

Software engineering comprises many different activities even if

they are predominantly attributed to “developers”. Even when not

fully actualized, roles such as requirements engineer, system

analyst, architect, etc. will often exist tacitly. This reflects the

needs for differing abilities in the development process. Not all

developers find making the transition to modeling straightforward.

However, there are differing views about whether the difficulty is

a result of an innate inability to think abstractly, or more a lack of

experience or appetite. The situation is further confused by the

fact that there are widely differing views on who finds it difficult;

some believe that newly trained graduates who have been exposed

to modeling in their education are ideal for MDE and that

established “gurus” are often not ideal. Others believe that the

very best programmers also make the best modelers. Some

maintain that it is having the right mix in the team, from

inexperienced software engineers to gurus to domain experts, that

is crucial. The idea that this is a cultural rather than a technical

issue is epitomized in the following quote from one of our

interviewees, asked about how people responded to the apparent

benefits of MDE:

“it’s a mentality thing.. there are people who just don’t want

to change.. who see the negatives in everything..(though)

sometimes the skepticism is realistic.. the most annoying

(are) people who can’t extrapolate from what they’ve seen to

another environment.. you have to prove it over and over

again.. then there are people who just don’t get it.. why

should you model in the first place?..they are people you

can’t teach this to. ..they always want examples, they are

unable to abstract. It’s the wrong kind of mindset.. then there

are people who are negative and cynical and don’t want to

change..” (Transcript: 4)

5.2.4 Training, Education and Related Perceptions
 “what we need is a community of programmers, well

modelers, that really know how to abstract and that know

then how to apply the tools that are available...we need a few

who can abstract and many who are focused on

support...Because if I was a business man I am going to say

‘you want me to put my business in the hands of two or three

people who might leave tomorrow are you mad? ‘I’d rather

have 10,000 Java programmers please’” (Transcript: 5)

MDE appears to upset the status quo and introduce more

uncertainty where there was previously perceived to be less.

Although this is a part of any change, it appears to be considered a

significant risk by many in the software development world. The

coverage of MDE in educational courses is considered inadequate

by many – some even question whether higher education even

teaches “modeling” as such and this means that trained junior

modelers are far rarer than trained junior programmers. If

programmers are the accepted currency of software companies,

modelers are an unknown quantity. The result is a myriad of

relatively small but legitimate risks embedded in significant

conservatism and/or skepticism in the face of proposed change.

5.2.5 Keep Domains Tight and Narrow for DSLs
“...the broader the domain you try and cover, the less the

productivity increase...the whole idea is to narrow things

down...I should say, with DSM, you're not looking at

building a modeling language for embedded

applications...you're going narrower...you're not looking at

building one for mobile applications...mobile embedded, or

even mobile phones or even Brand X mobile phones but a

particular product family of Brand X mobile phones...”

(Transcript: 1)

What is the ‘D’ in a DSL? Typically, people give examples such

as “insurance” or “banking”. Repeatedly, we have found that

successful users of DSLs create them for much narrower domains:

a single product line or even a single product. A correlate of this

appears to be that the creation of a DSL in an appropriate domain,

along with accompanying code generators, must be

accomplishable in a relatively short period of time. If creating the

DSL is taking many months, or even years, it may be that the

domain is not appropriate. Similarly, if an organization starts its

DSL adoption process by setting out to capture in the language

the entirety of their “world”, enthusiasm for, and commitment to,

the project will likely have faded before anything productive

occurs.

Factors that indicate the suitability of a domain include: a degree

of stability with recognized concepts; the domain is clearly

bounded; the domain evolves over time (rather than radically

shifting). For these reasons, DSLs are particularly successful

when developing embedded software.

5.2.6 Successful MDE Users Often Have to Lie
“A: Well we've seen cases of 4 or 5 times productivity and

with DSLs we've seen 7 or 8 times productivity.

Q: And what do you tell people?

A: 1.5 to 2...you cannot associate those higher numbers

with [my company]” (Transcript: 8)

The old saying “If it sounds too good to be true, it probably is”

can be a problem for some more successful users and proponents

of MDE – the productivity gains claimed can seem so large as to

be simply unbelievable. “We had supportive management

because it was an easy sell to management to say I used to type

this thousand lines of code and it took me a couple of days and

now I generate it in 10 seconds” (Transcript: 18). Some argue

that the motivation to use MDE will only be significant if the

benefits are large; small increases in productivity will never

outweigh the risks associated with the change required. However,

some users are so successful that when they try to report their

results, colleagues simply refuse to believe them. Perhaps the

most interesting aspect of this is that where it is encountered, the

high levels of productivity gains claimed are surprisingly similar.

Of course, productivity gains are not the only or even necessarily

the most important benefit of MDE. As one of our respondents

commented:

“So the idea of applying a sort of methodology approach to

modeling and code generation was really attractive – it

seemed like it was an obvious next step to take in insuring

quality and consistency and again not solving the same kinds

of problems over and over again. And for me it wasn’t

necessarily productivity enhancement although I guess that

is there.... I’ve never really been completely convinced or

even all that worried about the productivity side of model

driven engineering. To me it’s more about quality and

consistency.” (Transcript: 18)

478

But what these comments do point to is the need for some

subtleties in organizational knowledge, and in the politics of the

organization in order to foster and maintain support.

5.2.7 Companies That Don’t Do Software Do MDE
“At the moment, model driven approaches is not so much

intended for internal use - not for our own software

development. In our own software development, we have a

more, let's say, classical approach because there's a long

history of bad experiences [with, for example, CASE tools]

and so for traditional software development, at the moment it

is very difficult to introduce new [approaches] like model

driven engineering” (Transcript: 12)

Organizations that consider themselves to be in the business of

software engineering appear to find process change, and

particularly the adoption of MDE, a bigger challenge than those

for whom software development is subsidiary to some other

function. For example, companies that produce plant control

systems or electronic hardware must create software to control

their devices but appear to consider their main business the

hardware product. These companies are more willing to embrace

MDE as a way of rationalizing and improving their software

production because it represents a means to an end. By contrast,

software engineering organizations tend to see MDE as something

for the customers to do and develop tools to support it using

traditional, code-centric, approaches.

5.3 Lower-Level Analysis
In contrast to the higher level data-driven analysis presented

above, we also carried out a lower-level analysis of the data where

we applied a series of thematic labels, which emerged from the

data, to segments of text. As expected, many of the dominant

themes are related to issues described above, including processes

and practices, adoption process, risks, etc. However, other themes

appeared which were a little more unexpected. Some of these are

described below, along with example comments.

5.3.1 Culture
 “It is rarely the case that it is business driven today”

(Transcript: 2)

“I think creating a software engineering organization that

hasn’t done formal software engineering is definitely a much

easier task” (Transcript: 6)

Factors relating to the way things are perceived to be within

organizations: as in all walks of life, perceptions about “the way

things are” are rife within software engineering. These

perceptions, true or imagined, have an influence on decisions.

5.3.2 Expertise
 “I don’t think the level of adoption is significant. I would say

still there is not a lot of experience in the industry”

(Transcript: 2)

“I never thought about how important it was that the domain

expert is integrated into the construction of the DSL”

(Transcript: 4)

Issues relating to the availability and application of the necessary

knowledge: all process change requires expertise but MDE

appears to represent more than evolutionary change to some

organizations. It seems to be necessary to identify the need for

expertise and to deploy it where it is needed.

5.3.3 Evangelism
 “I would say that it is predominantly driven by somebody

who I would call a senior architect”. (Transcript: 2)

“[This guy] was fantastic ... he went over to individuals one

person at a time because it can’t just come down as a

managerial dictate” (Transcript: 6)

The role and impact of specific people in a company’s decision to

adopt MDE: this is probably related to the idea of expertise.

However, such is the personal investment to what being a

software developer is and the mental challenge that MDE

represents, that a specific individual often plays a key role in

facilitating the required changes. As one respondent stated:

“Somehow in my mind the question always comes back to

this – the individuals. And the right individuals being in

place, and having the right leverage, if you like. And that’s

where I think the ones that were successful. I have not

actually seen it fail ever when you have those right people in

there, and again just to repeat what I mean by right people,

these are opinion leaders, they’re open minded, they’re

interested in the product and how it gets used and they are

can-do types. So that’s right now I think the necessary factor

for the success of these things…. where it has failed is where

there is no such competent, respected, can-do open-minded

individual or group of individuals” (Transcript: 21)

6. CONCLUSION – EMPIRICAL

ASSESSMENT OF MDE
Although MDE claims many potential benefits in terms of gains

in productivity, portability, maintainability and interoperability, it

has been developed largely without empirical support for these

claims. This paper stands in contrast to previous studies in that we

have chosen to talk directly to those involved in MDE in business.

This approach is intended to address particular, key, gaps in our

current understanding: a lack of knowledge of exactly how MDE

is used in industry; a lack of understanding of how social and

organizational factors impact on MDE use; and a failure to assess

aspects of MDE beyond UML, such as the benefits of code

generation, domain-specific abstractions and model

transformations. The consequence of this lack of knowledge is

that organizational decisions whether or not to use MDE are

rarely based on hard empirical data but diverging expert opinions.

Without empirical evidence there is a danger that resources may

be wasted and that software tools will fail to develop

appropriately. Of course such empirical evaluation of MDE is

hard [10], not least because the social and organizational aspects

of MDE deployment and use, as opposed to mere technical

factors, require an interdisciplinary methodological perspective.

The approach we have adopted here marks the first step in the

development of an initial evaluation framework that can be used

by researchers and practitioners to measure and evaluate MDE

deployment.

This paper has attempted to carefully document some of our early

research into exactly how MDE is currently being applied in

industry and to identify the most important social, technical and

organizational factors affecting its success or failure. There are a

number of points to note about the lessons we have learned but we

focus on organizational and social factors since the success or

failure of MDE is affected as much by cultural considerations as

by purely technical ones. At this stage in our research we can

479

point to a number of interesting conclusions, highlighting issues

of implementation, communication, control and skill. Some

research conclusions undoubtedly simply support existing

research; some are quite surprising and even counter-intuitive and

some are divided (if not, on occasion, divergent). Some findings

point to specific issues with regard to DSLs or MDE tools, that,

for example, they were expensive or needed to be used in specific

ways. Some of the more significant results pointed to

organizational or human factors/training issues in the success or

failure of MDE [25]. Organizationally the benefits of MDE were

seen in terms of communication and control – responding quickly

to changing requirements, and increasing and communicating

organizational knowledge to stakeholders. Similarly, and perhaps

unsurprisingly, our research supported some existing ideas about

organizational ICT change, such as the need for a ‘champion’, for

picking the initial projects carefully and for various forms of

management intuition; as Grudin puts it: ‘who does the work and

who benefits’ [14]. Finally, some of our findings have seemed

genuinely surprising and merit further investigation, such as the

level of productivity gains associated with MDE and the extent to

which such success has been down-played, and the issue of

abstraction and the importance of training and education. These

latter views are especially worthy of further examination not least

because they point to organizational matters and suggest that

MDE users’ confidence in, and commitment to, MDE is far from

complete. Exactly what this looks like in practice as well as other

facets of MDE work, of what an MDE project looks like on a

daily basis and how success and failure manifests itself

organizationally and unfolds in real time, will be uncovered by

our forthcoming ethnographic, observational research.

7. ACKNOWLEDGMENTS
Our thanks to the hundreds of people who took the time to take

part in our online survey and the many MDE experts who agreed

to speak to us in person. Thanks also to Øystein Sørebø for his

assistance with the statistical analysis and the EPSRC who funded

this research: EP/H006249/1.

8. REFERENCES
[1] Afonso, M., Vogel, R., and Teixeira, J. 2006 "From code-

centric to model-centric software engineering: practical case

study of MDD infusion in a systems integration company," in

Workshop on MBD/MOMPES.

[2] Anda, B., Hansen, K., Gullesen, I., and Thorsen, H. 2006

"Experiences from Introducing UML-based Development in

a Large Safety-Critical Project," Empirical Software

Engineering, vol. 11, pp. 555-581.

[3] Arisholm, E., Briand, L., Hove, S. E., and Labiche, Y. 2006

"The Impact of UML Documentation on Software

Maintenance: An Experimental Evaluation," IEEE

Transactions on Software Engineering, vol. 32, pp. 365-381.

[4] Arisholm, E., Briand, L. C., and Anda, B. C. D. 2008 "First

Workshop on Empirical Studies of Model-Driven

Engineering at MODELS," CEUR Workshop Proceedings.

[5] Baker, P., Loh, P.S. and Weil, F. 2005 "Model-Driven

Engineering in a Large Industrial Context - Motorola Case

Study". In: ACM/IEEE 8th International Conference on

Model Driven Engineering Languages and Systems

(MoDELS/UML 2005). LNCS, vol. 3713, pp. 476–491.

Springer, Heidelberg.

[6] Blumer, H. 1954 What is wrong with social theory?

American Sociological Review, 18, pp. 3-10.

[7] X COMET:

http://www.uio.no/studier/emner/matnat/ifi/INF5120/v05/un

dervisningsmateriale/COMET_Method_v2-4.pdf

[8] Dobing, B. and Parsons, J. 2006 "How UML is Used," in

Communications of the ACM. vol. 49, pp. 109-113.

[9] Forward, A. and Lethbridge, T. 2008 "Problems and

opportunities for model-centric versus code-centric software

development," in Workshop on Models in Software

Engineering (at ICSE), pp. 27-32.

[10] France, R. 2008 "Fair treatment of evaluations in reviews,"

Software and System Modeling, vol. 7, pp. 253-254.

[11] Gaver, B., Dunne, T., and Pacenti, E. 1999 Cultural probes.

Interactions: New Visions of Human-Computer Interaction,

6(1), pp. 21-29.

[12] Glaser, B. G. and Strauss, A. L. 1967 The discovery of grounded

theory: Strategies for qualitative research. CHI: Aldine.

[13] Graham, C., Rouncefield, M., Gibbs, M., Vetere, F., and

Cheverst, K. 2007 "How probes work. " In Proceedings of

the 2007 Australasian Conference on Computer-Human

Interaction: Entertaining User Interfaces (pp. 29-37). New

York, NY: ACM.

[14] Grudin, J. 1989 "Why Groupware Applications Fail:

Problems in Design and Evaluation." Information

Technology & People. Vol. 4, no. 3, pp. 245-245.

[15] Kleppe, A. G., J. Warmer, et al. 2003 MDA Explained: The

Model Driven Architecture: Practice and Promise, Addison-

Wesley Longman Publishing Co., Inc.

[16] KobrA:

http://www.old.netobjectdays.org/pdf/02/papers/node/0308.pdf

[17] Lange, C. F. J. and Chaudron, M.R.V. 2006 "Effects of

Defects in UML Models: An Experimental Investigation," in

International Conference on Software Engineering.

[18] MODELWARE D5.3-1 Industrial ROI, Assessment, and

Feedback- Master Document. Revision 2.2 (2006),

[19] MediaDev. 2005 "Wide gap amongst developers' perception

of the importance of UML tools".

[20] Mohagheghi, P., Dehlen, V. 2008 " Where is the Proof? – A

Review of Experiences from Applying MDE in Industry".

Proc. 4th European Conference on Model Driven

Architecture Foundations and Applications (ECMDA’08),

LNCS 5095, pp. 432-443.

[21] Randall, D., Harper, R and Rouncefield, M. 2005 "Fieldwork

And Ethnography: A Perspective From CSCW".

Proceedings - Ethnographic Praxis in Industry Conference

Volume 2005, Issue 1, pp. 81–99.

[22] Randall, D., Harper, R, & Rouncefield, M. 2007 Fieldwork

for Design: Theory and Practice Kluwer

[23] Strauss, A., and Corbin, J. 1990 Basics of qualitative

research: Grounded theory procedures and techniques.

Newbury Park, CA: Sage.

[24] SurveyMonkey: http://www.surveymonkey.com

[25] Völter, M. 2009 "MD* Best Practices", JOT - Journal of

Object Technology, 2009-09.

480

