
A Meta-Process to Construct Software Architectures for
System of Systems

Marcelo Benites Gonçalves1,2, Flavio Oquendo2, Elisa Yumi Nakagawa1

1Dept. of Computer Systems, University of São Paulo - USP, São Carlos, SP, Brazil
2IRISA-UMR CNRS/Université de Bretagne-Sud, Vannes, France
{marcelob, elisa}@icmc.usp.br, flavio.oquendo@irisa.fr

ABSTRACT
Nowadays, complex software systems tend to be the result of
operationally independent, constituent systems working to-
gether, arising a new class of software systems called Systems
of Systems (SoS). In another perspective, software architec-
tures are essential to promote the success and quality of
software systems, even more on SoS. However, the construc-
tion of SoS software architectures is typically ad-hoc without
well-defined and standardized architecting approaches. In
this context, the main contribution of this paper is the pro-
posal of a “Meta-process for SoS Software Architectures”
(SOAR), which supports the authoring of processes to con-
struct SoS software architectures. SOAR is also independent
of application domains and it is based on a broad, deep lit-
erature review as well as knowledge of experts. In order to
evaluate the feasibility of SOAR, we conducted a survey with
experts in SoS software architecture. The results of this sur-
vey indicate a good acceptance of SOAR among experts that
also provided insights for improving SOAR. Our intention is
to use SOAR as a framework to support the authoring of
architecting processes for SoS and, further, to provide spe-
cialized versions including architectural decisions for specific
application domains. Therefore, in some extent, we hope to
contribute to the development projects of the new, impor-
tant class of SoS software systems.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—life cycle,
software process models; D.2.11 [Software Engineering]:
Software Architectures—Domain-specific architectures

General Terms
Management, Standardization

Keywords
SOAR, Architectural Process, Survey, Software Architec-
ture, System of Systems, Architecting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC’15, April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04..$15.00.
http://dx.doi.org/10.1145/2695664.2695737.

1. INTRODUCTION
Software-intensive systems have increasingly become ubiq-

uitous, larger, and complex with considerable dissemina-
tion in various sectors and application domains, such as the
avionics, smart cities, healthcare, and Global Earth Obser-
vation. In several cases, these systems can be classified as
System of Systems (SoS) since they have arisen from the
integration of independent Constituent Systems (CSs). Ad-
equately coordinated, these CSs cooperate to provide emer-
gent functionalities, which cannot be provided by any CS
working separately. In this perspective, SoS is at the fore-
front of complex systems, being considered as a solution for
a number of complex software systems, in which CSs have
been integrated in a large-scale, networked, and dynamic
way.

In another perspective, software architectures have been
considered the backbone for any successful software-intensive
system [8] and have played a fundamental role in determin-
ing the system quality. In the system development, decisions
made at the architectural level directly enable, facilitate,
or interfere with the achievement of business goals as well
as functional and quality requirements (e.g., interoperabil-
ity, performance, portability, and maintainability). In this
scenario, the main purpose of processes that support the
construction of software architectures is to develop speci-
fications for a software-based system. This is a non-trivial
activity, even more for complex scenarios of SoS, which en-
compass several systems and organizations with different in-
terests and development approaches.

The development of SoS differs from monolithic systems
in several issues, such as the dynamic contribution and im-
pact of CSs, which are developed and managed by indepen-
dent sources [4]. In this context, several challenges emerge
on architecting SoS, such as the integration of heterogeneous
CSs and the determination of special communication proto-
cols and integration rules [12]. SoS have reached a thresh-
old in which traditional software engineering approaches are
no longer applicable [2]. Therefore, despite the existence of
processes and techniques for software architectures, new ap-
proaches must be investigated in order to encompass the
construction of SoS software architectures.

In this paper, we introduce SOAR (Meta-process for SoS
Software Architectures), conceived to support the develop-
ment of SoS software architectures. Moreover, considering
the different architectural perspectives encompassed by the
different categories of SoS, SOAR was conceived to support
Acknowledged SoS, which refers to a category in which goals,
management, resources, and authority are recognized while

the CSs retain their independent management. In this con-
text, changes in the SoS are dependent upon the negotiation
between stakeholders and developers of SoS and CSs.

SOAR combines the Systems Engineering experiences on
architecting SoS with Software Engineering knowledge on
developing software architectures. Moreover, the establish-
ment of SOAR was based on a broad, deep literature review
as well as knowledge of experts in SoS software architectures.
SOAR is represented by using the Essence approach1 that
comprises a language and a conceptual kernel to support
process authoring on software engineering. Both develop-
ment and evaluation of SOAR were supported by different
groups of experts that provided insights and improvements
for SOAR.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the issues surrounding the construction of
SoS software architectures. Section 3 presents SOAR. Sec-
tion 4 presents the evaluation concerning our proposal. Fi-
nally, Section 5 presents our conclusions and future work.

2. BACKGROUND
SoS is a system that results from other operationally inde-

pendent systems working together to reach common goals.
The most consensual SoS categories are [12]: (1)Virtual, in
which there is no central management authority and the
mechanisms to maintain the whole SoS are not evident; (2)
Collaborative, in which CSs voluntarily collaborate in order
to address common interests and a central authority offers
standards to enable the collaboration of the CSs; (3) Ac-
knowledged, in which SoS goals, management, resources, and
authority are all recognized and changes in the SoS depend
on the negotiation between the SoS and its CSs; and (4)
Directed, in which there is a central authority and CSs are
subordinated to the central control and its purposes.

In another context, software architecture represents the
structure (or a set of structures) of the system, which com-
prises software elements, the externally visible properties of
these elements, and the relationships among them. Regard-
ing its construction, Hofmeister et al. [6] presented a compar-
ison among five main processes, and highlighted similarities
and differences among them. As a result, the authors have
proposed a meta-process that comprises the main elements
expected to any software architecture development process.
This meta-process has been adopted as a relevant reference
when instantiating new processes for software architectures.

Particularly for SoS software architectures, the SoS Guide
of the American Departament of Defense [12] is a relevant
work that reflects the experience of government, industry,
and academy about the development of acknowledged SoS.
This guide establishes that the SoS architecture is a core
element and persistent framework to support the evolution
of SoS over time. Other examples of similar approaches in-
clude design frameworks [5], process model [3], and archi-
tectural simulation and validation techniques [9]. Although
these studies on systems engineering give important direc-
tions in developing SoS, they do not properly encompass
software architectures.

Furthermore, a Systematic Literature Review (SLR) pre-
sented in [11] identifies the architecturally relevant features
of SoSs and how their software architectures have been rep-
resented, evaluated, constructed, and evolved. In the same

1http://www.omg.org/spec/Essence/1.0/Beta2/

context, there are other studies that discuss the applicabil-
ity of already existing architectural solutions, such as Ar-
chitectural Description Languages (ADLs) [1], and Service
Oriented Architecture (SOA) [10]. Although these studies
point out the relevance of an adequate development of SoS
software architectures, they do not comprehensively address
what must be done to construct these architectures. In this
context, we have not found any specific approach, expressing
common challenges and solutions to support the construc-
tion of SoS software architectures.

3. THE SOAR META-PROCESS
Due to the recent challenges brought by the construction

of SoS software architectures, it is important to understand
what is expected from a process for constructing them. In
this scenario, we argue for a set of requirements that ex-
presses what any process should satisfy in order to ade-
quately support the development of SoS software architec-
tures. Table 1 presents this set of requirements based on the
construction challenges identified in a previous SLR [11]. By
analyzing the current approaches for software architectures
in the light of this set of requirements, we have not found
a process capable to adequately encompass the construction
of SoS software architectures. In this context, SOAR was
conceived to be adherent to these requirements. Therefore,
software architects, process managers, and other SoS stake-
holders can have a support to instantiate their own processes
when constructing SoS software architectures.

Furthermore, aiming at providing an useful, well-defined
meta-process, SOAR was established over the OMG’s Essence
Approach, which comprises the Essence Language and the
Essence Kernel. The Essence language provides a common
mean for authoring processes from different perspectives (e.g.,
meta-processes, practices, and instances of process). Fur-
thermore, since the Essence language allows an incremental
evolution of processes, development teams can experiment
and evolve their way of working to be as adequate as possible
in the context of each project. Therewith, Essence language
was chosen because it is compatible with the evolutionary
development required by SoS.

In the Essence Language, the process authoring can be
performed by using kernels and practices: kernels provide
conceptual grounding (i.e., the “what must be done”), and
practices provide the specific activities, work products, and
workflow to be performed (i.e., the “how to do”). In this per-
spective, the Essence Kernel itself was conceived to provide
a generic common basis for defining software development
practices and processes. The SOAR meta-process is adher-
ent to the basic concepts already established in the Essence
Kernel.

Due to the complex, multidisciplinary nature of SoS and
its software architecture, a modular strategy was adopted
when conceiving SOAR. The proposed meta-process was or-
ganized in different levels: (i) the software development, al-
ready encompassed in the Essence Kernel ; (ii) the develop-
ment of software architectures, encompassed in the Software
Architecture (SA) Kernel ; and (iii) the development of SoS
software architectures, encompassed in the SoS SA Kernel.

The SA Kernel provides general grounding on the con-
struction of software architectures. It includes general ele-
ments to support the construction of software architectures
independently from a system class (e.g., SoS), application
domain, and specific technologies. The SA Kernel is an adap-

Table 1: Requirements to the Construction of SoS Software Architectures

SoS Characteristics SoS Architecting Process Requirements

Operational Independence: each CS can deliver
its own functionalities when not working in the SoS
environment

1. Deal with the individual self-regulation capability of each CS
2. Allow for feedback from SoS operations

Managerial Independence: each CS can keep its
own managerial sphere

3. Support the integration of self-managed systems being consistent with
processes and interests of individual systems

Geographical Distribution: CSs of an SoS are
physically decoupled, thus only exchanging informa-
tion among them

4. Allow for geographically dispersed system interaction
5. Allow for connectivity support for heterogeneous CSs

Emergent Behavior: Behavior resulted from the
collaboration of the CSs and that cannot be provided
by any of these systems if they work as individual
entities

6. Provide the composition of SoS capabilities in a composition scheme of
emergent behaviors
7. Validate SoS capabilities
8. Allow for prediction of desired emergent behaviors
9. Allocate emergent behavior requirements to CSs
10. Continually analyze and assess SoS capabilities

Evolutionary Development: an SoS as a whole
may evolve over time to respond to changes in its
environment, of the CSs or of its own mission

11. Allow for incremental and evolutionary system deployment
12. Revise system functionality in response to SoS operations
13. The set of design decisions must be an explicit part of the architecture
(design decision model)
14. Develop and continually refine a SoS design decisions
15. Develop and continually refine SoS scenarios
16. Provide a dynamic integration strategy

tation of the meta-process proposed by Hofmeister et al. [6],
which depicts the essential activities and artifacts required
to any construction process for software architectures, and
it is represented by using the Essence Language.

The SoS SA Kernel is the core of SOAR meta-process, be-
ing conceived to provide an adequate grounding on the con-
struction of acknowledged SoS software architectures. This
kernel extends the basic elements for constructing software
architectures provided by the SA Kernel, coping with the
challenges of SoS context. Moreover, it is not attached to
any specific application domain or supporting technology,
such as architectural style or architectural pattern.

Figure 1 shows the main elements of the SoS SA Kernel
and their basic interrelationships organized in three main
areas of concern, as proposed by the Essence Kernel: cus-
tomer, solution, and endeavor. In the customer area, the
context of the SoS must be understood with the adequate
exploration of the opportunities that can be addressed by
the software architecture, involving multiple stakeholders of
the SoS. In the solution area, the team has to ensure the
most adequate architectural solutions for the SoS in an evo-
lutionary perspective based on emergent behaviors. Finally,
in the endeavor area, an adequate coordinated/distributed
development must be established and maintained, involv-
ing different development teams, stakeholders, and organi-
zations. Since these elements are the essential ones for con-
structing any SoS software architecture, generic elements of
SOAR provided by the Essence Kernel or the SA Kernel were
omitted in this paper for sake of simplicity. Next subsections
present the main elements of the SoS SA Kernel.

3.1 Alphas of SoS SA Kernel
In the Essence Language, alphas determine the “things to

work with”. The alphas of the SoS SA Kernel are:
Spheres of Interests: A group of stakeholders and orga-

nizations expressing common interests that typically influ-
ence the SoS context and related requirements. Spheres of
Interests are specially relevant to SoS since they encompass

one or more stakeholders and decision-making authorities,
thus expressing influences in various aspects of the SoS.

SoS Architecturally Significant Concerns (SoS
ASCs): Under the assumption that the general aspects of
SoS (mission, goals, and whole SoS requirements) were al-
ready provided by general system engineering processes, SoS
ASCs represent a set of specific interests pertaining to the
development of the SoS software architecture that is derived
from all available information about the general context of
the SoS. These interests are related to development, oper-
ation, or any other important aspect in the architectural
context (e.g., requirements from any sphere of interest, ar-
chitectural patterns, or any previously agreed design deci-
sions).

SoS Architecturally Significant Requirements
(SoS ASRs): An ASR is any functional or non-functional
requirement that is relevant for software architecture. Based
on ASCs, SoS ASRs are obtained after analysis, negotiation,
and decomposition. These ASCs are agreed through different
spheres of interests to be further handled by architectural
solutions.

SoS Software Architecture: It is a software structure
(or a set of structures) of the SoS, which comprises CSs, their
externally visible properties, and the relationships among
them. A SoS software architecture encompasses concepts,
properties, specifications, design principles, and design deci-
sions and patterns of SoS and its environment.

Constituent System (CS): Operationally and manage-
rially independent individual system that contributes to the
accomplishment of the SoS mission. Each CS has its own
architecture that typically is not visible, or accessible to
changes.

Acknowledged System of Systems (SoS): A complex
system resulted from the integration of other independent
and heterogeneous systems. The collaborative work of CSs
yields emergent functionalities in order to accomplish the
SoS goals/mission.

Emergent Behaviors: The result of the collaborative

Figure 1: Alphas and Activity Spaces of the SoS SA Kernel.

work of CSs. Four basic types of emergent behaviors can be
considered [7]: (i) predicted/desired; (ii) predicted/undesired;
(iii) unpredictable/desired and; (iv) unpredictable/undesired.
In general, predicted/desired behaviors come from architec-
tural solutions and unpredict-able/undesired ones must be
reduced as much as possible.

Distributed Development Environment: This alpha
expresses the complex development environment surround-
ing SoS, in which several distinct teams can collaborate to
the SoS architectural development and evolution.

The presented alphas express the main concerns when con-
structing SoS software architectures. In an instantiated pro-
cess, process authors must establish the most adequate work
products in order to allow these alphas in the specific context
of each development project.

3.2 Activity Spaces of the SoS SA Kernel
In the Essence Language, activity spaces determine “what

must be done”. Figure 2 shows a set of activity spaces pro-
vided by the SoS SA Kernel organized in a high-level work-
flow. This structure must be performed in each SoS devel-
opment cycle and followed when instantiating activities and
workflow of specific architectural projects. Therefore, activ-
ity spaces can be incrementally filled with activities, as SoS
evolves becoming more complex. These activity spaces are:

Understanding Multiple Spheres of Interests: In the
SoS development, there is a high amount of uncertainty that
surrounds such a system, not only in a technical sense, but
also in organizational and business senses. In this context,
this activity space must have activities to understand, iden-
tify, and represent Spheres of Interests and their relations.

Establishing SoS ASCs: SoS ASCs must be structured/
organized in order to express SoS concerns of different Spheres
of Interests. This activity space encompasses understanding
and establishing SoS ASCs.

Negotiating with Multiple Spheres of Interests: SoS
inherently have a more complex community in which deci-
sion authorities can naturally have a more self-serving per-
spectives of participation. In this context, this activity space

Figure 2: Activity Spaces of the SoS SA Kernel.

aims at promoting a collaborative environment in which
multiple Spheres of Interests can negotiate SoS ASCs, SoS
ASRs, and changes in the SoS.

Establishing SoS ASRs: The main purpose of this ac-
tivity space is to define the problems that SoS software ar-
chitecture must solve in terms of ASRs. For this, the exam-
ination of ASCs and negotiation with Spheres of Interests
in order to come up with SoS ASRs must be also consid-
ered. By following a top-down approach, SoS ASCs must
be structured/decomposed in order to meet SoS capabili-
ties. Furthermore, the software architecture can itself be a
source of requirements. In this sense, new requirements re-
sulted from the software architecture must be also identified.

Ensuring SoS Evolution: SoS are inherently evolution-
ary and their architectures must be developed considering
this perspective. This activity space must provide strategies
to promote evolutionary development by supporting/im-
proving other activities and alphas in the architectural anal-

ysis/synthesis.
Managing External Processes: In an SoS, the soft-

ware typically interacts with other processes (e.g., physical
and human) that influence its development. This activity
space encompasses the understanding and management of
how these processes influence the SoS software architecture
context in order to keep the coherence through different SoS
architectural perspectives. An example of strategy, is the
definition of common taxonomies and ontologies in order to
facilitate common understanding and improved communica-
tion among these different processes.

Supporting Multiple CSs Providers: This activity space
support Architectural Teams to work with different CS pro-
viders. These providers can have different interests and their
CSs can be in different stages of development. Therefore,
support activities must be instantiated to promote a collab-
orative environment that enables the management of capa-
bilities offered by CSs in the SoS context.

Supporting Distributed Architectural Development:
SoS development encompasses different organizations, per-
forming a collaborative, distributed development of the SoS
software architecture. In this context, this activity space
must encompass the required planning/support for this col-
laborative work through heterogeneous teams.

Proposing a new Architectural Version: In this ac-
tivity space, candidate architectural solutions are proposed
based on SoS ASCs and CS capabilities in order to meet
a set of SoS ASRs. For this, a bottom-up approach must
be established including the understanding of CS capabili-
ties, operational constraints, communication protocols, and
the set of emergent behaviors that can be produced by CSs
working together in order to meet the SoS ASRs. The main
result of this activity is the establishment of a new architec-
tural version to be further evaluated.

Describing a new Architectural Version: In this ac-
tivity space, the SoS software architecture is described ac-
cording to the development context of each SoS. Different
formalism levels can be considered (i.e., informal, semi-formal,
or formal) covering different viewpoints (e.g., structural and
behavioral). At more abstract architectural levels (e.g., sys-
tems engineering level), different aspects of SoS must be
included in the representation when appropriate (i.e., soft-
ware, hardware, and human). At more specific levels (i.e.,
the SOAR software engineering level), representation must
focus on software while maintaining the compatibility with
more abstract architectural levels.

Predicting Emergent Behaviors: Emergent behaviors
of an SoS are not simply a sum of parts (i.e., CSs and their
capabilities) and they must be predicted also considering
the identification of both desired and undesired behaviors.
A strongly recommended strategy is the use of executable
models and architectural simulations for analyzing and pre-
dicting such behaviors. Moreover, for architectural simula-
tions, representations with support to dynamism must be
considered in the Describing a new Architectural Version
activity space since it can help in dynamic analysis of how
CSs interact with each other yielding emergent behaviors.

Evaluating and Validating an Architectural Version:
The purpose of this activity space is to verify if the architec-
tural design decisions are the right ones. The SoS software
architecture is also verified against the ASRs, ASCs, and any
other relevant element in the SoS context. Although multiple
iterations are expected, the result is the validated architec-

ture. If not validated, the activity spaces of architectural
synthesis (see Figure 2) must be performed again.

The presented activity spaces express the main groups
of activities when constructing SoS software architectures.
In an instantiated process, process authors must establish
the most adequate activities and more specific workflows in
order to execute these activity spaces on each development
project.

3.3 Uses of SOAR
SOAR can be used as a basis for specific process instances

in which alphas and activity spaces can be encompassed by
different elements (e.g., activities and their workflow, work
products, and roles in architectural teams) in order to meet
the specific needs of each SoS under development. Therefore,
initially hidden details can later be elicited by each individ-
ual SoS for specific problem contexts. Furthermore, consen-
sual solutions for specific contexts (e.g., application domains
or development environments) can be included into SOAR
as good practices or extended versions.

The Essence approach offers the EssWork Practice Work-
bench2, a development environment for kernels, practices,
and instance processes. This tool provides an easy, intuitive
way to develop and deploy customized practices and pro-
cess based on kernels. Although the use of EssWork Practice
Workbench is not mandatory, the use of it is quite recom-
mended when adopting SOAR.

4. EVALUATION
In order to evaluate the relevance of SOAR, two teams of

SoS software architecture experts were consulted. The first
one was composed by three experts, which provided improve-
ments to our proposal. Afterwards, a qualitative survey was
conducted with a second team formed by six experts exter-
nal to our research group. These experts have been involved
to the development of SoS and software architecture in both
academy and industry. The survey aimed to verify if the
established requirements (see Table 1) were adequate, and
if SOAR meets the expectations of the SoS community as
a meta-process to support the construction of SoS software
architectures3. The chosen approach for gathering data was
the use of online questionnaires. Each respondent was asked
about a complete description of SOAR (including support
material about Essence approach) in terms of convenience
for use, completeness, correctness, coherence, intelligibility,
and usability.

Table 2 summarizes the results obtained with answers of
the non-discursive part of the questionnaire. In this part,
the main perspectives of evaluation (EP column) were ac-
complished by one or more non discursive questions (RQ
column). For each EP, the column “Yes” shows the percent-
age of experts that were favorable to SOAR in their answers,
and the column “No” shows the unfavorable ones. The col-
lected answers showed us that SOAR and the requirements
are clear, their elements are described without ambiguities
(80% of positive feedback for coherence), and the support
material provided with SOAR is enough to enable the eval-
uation team to understand all of the technical terms (75%

2http://www.ivarjacobson.com/EssWork_Practice_
Workbench/
3More information about this survey is available at http:
//goo.gl/i5qYYT

of positive feedback for usability). Results also pointed out
that the process requirements have a broad coverage, en-
compassing all important challenges that play a role in the
construction of SoS software architectures.

Table 2: Survey results of non-discursive questions

Evaluation Perspectives (EP) RQ Yes(%) No(%)
Completeness: Is SOAR complete for
what it is proposed?

3 73.3 27.6

Correctness: Is SOAR correct for with
no wrong or misunderstood statements?

1 100.0 0.0

Coherence: Is SOAR conceptually co-
herent with no relevant conflicts or
wrong placed elements?

1 80.0 20.0

Intelligibility: Is SOAR intelligible to its
audience?

2 70.0 30.0

Usability: Can SOAR be considered
well-organized, concise, helpful, and
easy to use?

4 75.0 25.0

Questions with discursive answers also provided relevant
insights to the improvement of SOAR and clearing how the
evaluation perspectives with lower acceptance percentages
could be improved. The experts confirmed that the require-
ments are adequate and that SOAR is adherent to such re-
quirements. Another mentioned benefit was the flexibility
brought by the independence of application domains. The
simplicity and incremental perspective of SOAR and the
Essence Language (in which the process can be incremented
gaining complexity as SoS evolves) were also highlighted.

Regarding the lacks, downsides, and disadvantages on the
usage of SOAR, the experts pointed that different types of
SoS emergent behaviors were not initially covered. This issue
was solved by extending the prediction of emergent behav-
iors to architectural synthesis and architectural evaluation
phases of the SoS SA Kernel (see Figure 2). Another men-
tioned point was the difficulty to understand the relationship
among different kernels (i.e., Essence Kernel, SA Kernel, and
SoS SA Kernel) and how the instantiated process can be ex-
ecuted in the context of SoS development. These problems
were handled in the complete documentation of SOAR with
additional explanations, diagrams, and guidelines for use. In
general, the evaluation results have regarded SOAR as an
adequate meta-process for acknowledged SoS software ar-
chitectures and the established process requirements as rep-
resentative for what is expected to any construction process
of SoS software architectures.

5. CONCLUSION
SOAR is a comprehensive framework that can support

the construction of SoS software architectures. It was the
result from an analysis of the state of the art of SoS in
conjunction with lessons learned with collaborating experts.
Initially focused on acknowledged SoS, SOAR can be valu-
able for several application domains. In this context, with
the maturation of new good practices as standard solutions
for SoS, new architectural decisions can be incorporated to
SOAR, yielding new versions for more specific contexts.

As future work, we envision the development of special-
ized versions of SOAR focused on specific application do-
mains. In this sense, it will be possible to build a family of
specialized processes, each one presenting sets of design de-

cisions for specific application domains. Moreover, we intend
to develop additional elements to improve the architectural
support of SOAR, such as a consensual quality model pro-
viding an essential set of quality attributes and guidelines
of how they must be handled in the SoS context. Another
future work is to enhance the EssWork Practice Workbench
tool in order to facilitate the use of SOAR. Finally, SOAR
will be extended in order to encompass other SoS categories
(i.e., virtual, collaborative, and directed) within a family of
meta-processes for the large, complex context of SoS.

6. REFERENCES
[1] T. Batista. Challenges for sos architecture description.

In SESoS, pages 35–37, Montpellier, France, 2013.

[2] B. Boehm and J. Lane. 21st century processes for
acquiring 21st century software-intensive systems of
systems. Journal of Defense Software Engineering,
19(5):4–9, 2006.

[3] A. Chigani and O. Balci. The process of architecting
for software/system engineering. Int. Journal of
System of Systems Engineering, 3(1):1–23, 2012.

[4] C. Dagli, N. Ergin, A. Enke, D. Gosavi, R. Qin,
J. Colombi, K. Rebovich, R. Giammarco, P. Acheson,
K. Haris, and L. Pape. An advanced computational
approach to system of systems analysis & architecting
using agent-based behavioral model. Technical Report
021-2, SERC, 2013.

[5] D. A. DeLaurentis. Appropriate modeling and analysis
for systems of systems: Case study synopses using a
taxonomy. In SoSE, pages 1–6, USA, 2008. IEEE.

[6] C. Hofmeister, P. Kruchten, R. Nord, H. Obbink,
A. Ran, and P. America. Generalizing a model of
software architecture design from five industrial
approaches. In WICSA, pages 77–88, Pittsburgh, PA,
USA, 2005.

[7] O. T. Holland. Taxonomy for the modeling and
simulation of emergent behavior systems. In
SpringSim, pages 28–35, San Diego, CA, USA, 2007.

[8] P. Kruchten, H. Obbink, and J. Stafford. The past,
present, and future for software architecture. IEEE
Software, 23(2):22–30, 2006.

[9] J. Michael, R. Riehle, and M.-T. Shing. The
verification and validation of software architecture for
systems of systems. In SoSE, pages 1–6, Albuquerque,
NM, USA, 2009.

[10] S. Mittal and J. Risco Martin. Model-driven systems
engineering for netcentric system of systems with devs
unified process. In WSC, pages 1140–1151,
Washington, DC, USA, 2013.

[11] E. Y. Nakagawa, M. Gonçalves, M. Guessi, L. B. R.
Oliveira, and F. Oquendo. The state of the art and
future perspectives in systems of systems software
architectures. In SESoS, pages 13–20, Montpellier,
France, 2013.

[12] A. ODUSD. System Engineering Guide for Systems of
Systems. Office of the Deputy Under Secretary of
Defense for Acquisition and Technology, Systems and
Software Engineering, 2008. Version 1.0.

