

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

A Brief Survey of Software Architecture

Rikard Land
Mälardalen University

Department of Computer Engineering
Box 883

721 23 Västerås
+46 (0)21 10 70 35
rikard.land@mdh.se

Abstract: Software of today is becoming larger and more complex. More powerful ways of structuring complexity are
consequently required, whether it is about development methodologies, structural programming, naming conventions,
configuration management, or, as is discussed in this report, software architecture.

A software system’s architecture can be described as the “blueprint” of a system at the highest level of abstraction,
describing the main components and their most important interactions. We discuss in more detail how architectures can be
described and the uses of such descriptions. Much research so far has also been dedicated to methods and case studies, to
make the research of practical interest. This report describes how the quality of the software can be ensured to a certain
degree through informal approaches – not least because an architectural description provides a common understanding
around which different stakeholders can meet and discuss a system. Formal approaches are also emerging, and there are a
number of formal languages for description of a system’s software architecture.

This report presents a brief survey of the field of Software Architecture; both informal and formal approaches are covered
and discussed. The report concludes with presenting the author’s planned research, aiming at answering how component-
based architectures can be designed to handle change.

Keywords: Software Architecture, Architectural Views, Architectural Description Languages, Architectural Analysis.

1. INTRODUCTION
Complex software needs structure. Structure needs to be
implemented and documented. Implemented so that the
software can be understood and predictable [3,6,25,26,35];
documented so it can be communicated between people
having interests in the software [3,6]. However, until
recently, there have only been very informal approaches of
software structure in large. The lack of an adequate way of
describing and communicating structure is one among
several problems leading to budget and time overruns and
low quality software [35]. The rest of section 1 presents
different aspects of these problems in more detail, and the
rise of the research field of software architecture.

1.1 Problem Description
Software design documentation often begins with one or
several box-and-lines drawings said to describe the
system’s architecture, as sketched in Figure 1.

Figure 1. Informal description of a software

architecture

Unfortunately, such descriptions are often too informal to
be of any real use for others than the author. Do the arrows

A Brief Survey of Software Architecture 2 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

represent data flow, control, or some other type of
connection? Are the ellipses and rectangles classes, objects,
processes, or functions? What do the different shapes,
arrowheads, line weights and dashing mean? Why are
almost all arrows bi-directional? Are the horizontal dashed
lines some sort of border between processes or computers?
If the reader of the documentation has the same background
and understanding, he will probably understand the
description in much the same way as the author of it does.
However, the greater the difference between their
experience, the higher the probability that the reader will
misinterpret the architectural description, or be unable to
interpret it at all. And no matter how similar their
experience, there will always be room for
misunderstanding. If a more formal description were
available, there would be less potential sources of
misunderstandings; moreover it would be possible to
perform many analyses automatically, such as validation
and simulation.

In this report, we will explore how the notion of software
architecture is formalized. There are also more informal
approaches to the art of engineering software architecture,
which already has proven successful. Throughout this
report we will also stress how consciousness about the
notion of software architecture positively affects software
development as a whole.

1.2 Definition
It is difficult to capture the term “software architecture” in a
definition – what exactly is it? From Figure 1, we can
however draw some general conclusions about what is
usually intended. Software architecture deals with the
highest level of a system’s design, and a system’s
architecture can be described as a set of connected
components. Intuitively, this suits a graphical
representation, and accordingly, virtually all formal
approaches include box-and-lines representations.

A commonly quoted1 definition is given in [3]:

The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software components, the externally visible
properties of those components, and the relationships
among them.

A more informal description is also given:

Software architecture concerns the structures of large
software systems. The architectural view of a system is an
abstract view that distills away details of implementation,
algorithm, and data representation and concentrates on the
behavior and interaction of ‘black-box’ components. [3]

1 Quotations are e.g. found in [6] and [43].

This report will not further elaborate the definitions; we
assume that we have enough understanding of the term to
be able to continue.

1.3 History
During the history of computers, software has rapidly
become more and more complex. A number of approaches
have been proposed (and successfully used) to deal with
complexity on different levels, such as “structured
programming” [11] and Fred Brooks’ idea of “conceptual
integrity” [8]. The design phase in the software lifecycle
has often been split into high-level design and detailed
design. Many concepts in the field of ordinary (building)
architecture was found to be useful for describing software,
thus giving birth to the term “software architecture”. The
notion of “software architecture” appeared as a useful high-
level design solution to part of the complexity problems.

Brooks wrote in the seventies about the importance of
architecture, but he intended what we would call the user
interface today, however with a touch of today’s notion of
software architecture [8]. As late as in 1994, Denning and
Dargan proposed “software architecture” to be a new
software discipline [13], however, their description
resembles a development method more than a definition.

Consensus about the term was not achieved until the first
half of the nineties. Shaw and Garlan stated in 1996 that
“explicit attention to the architecture as a separate level of
software design is relatively recent” (italics added) and
accordingly their book is subtitled “perspectives on an
emerging discipline” [35].

1.4 Central Concepts
We will now introduce some central concepts of software
architecture and describe these briefly; we will elaborate on
more details in subsequent sections.

A software system can be described in many ways – e.g. as
a collection of classes or as a collection of processes.
Depending on the point of view different characteristics
will be discernible. Such different points of views have
been identified and named, and are simply called views.
Many systems are built in a similar way on the architectural
level, which makes the introduction of architectural styles
(or architectural patterns) make sense. One important step
in formalizing software architecture is to be able to describe
architectures in a formal language. A number of
architectural description languages, ADLs, have been
developed. As we have seen, architectures are easily
described graphically; many ADLs accordingly have
graphical representations and tools.

Two informal methods for evaluating architectures will be
described. Both emphasize the evaluation of quality
properties. A number of scenarios are developed, and the
impact of each scenario on the architecture is then

A Brief Survey of Software Architecture 3 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

evaluated. These methods can be viewed as means to close
the gap between requirements analysis and architectural
design. In particular, they intend to give more focus on
quality requirements so that the choice of architecture
includes conscious choices of expected quality properties.

1.5 The Architectural Community
A number of papers from the Software Engineering Institute
(SEI) at Carnegie Mellon University (CMU) were
published around 1993, pointing out the direction of the
forthcoming research by Gregory Abowd, Robert Allen,
Paul Clements, David Garlan, and Mary Shaw [1,19,34].
Shaw and Garlan also wrote a widely referenced book in
1996 [35]. Another influential book is [3], by Len Bass,
Clements, and Rick Kazman. Both these books contain
thorough surveys and serves as good guides for the novice
architect. The two analysis methods we will discuss were
described by Kazman and others [25,26].

So far, the people mentioned work at SEI. The architectural
research at SEI is organized under the Architecture Based
Languages and Environments (ABLE) project, aiming at
founding an engineering basis for software architecture. On
the project’s homepage (see section 7.1) we read:
“Components of this research include developing ways to
describe and exploit architectural styles, providing tools for
practicing software architects, and creating formal
foundations for specification and analysis of software
architectures and architectural styles.”

However there are other research institutions that have
contributed to software architectural research. We should
note Stanford University with professor David Luckham
who developed the architectural language Rapide [31].
Alexander L Wolf at University of Colorado at Boulder and
André van der Hoek at University of California, Irvine, has
conducted research in relating software architecture to other
disciplines, such as versioning, configuration management
and product families [37-42]. In Sweden, we can mention
Blekinge Institute of Technology (Blekinge tekniska
högskola) where Jan Bosch until recently led the research;
he is the author of a book on software architecture with
focus on product-line approaches [6]. Frank Buschmann,
Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal of Siemens AG, Germany, made a thorough
work in cataloguing architectural patterns in a widely used
and referenced book [9].

For thorough surveys of the field, please refer to the two
seminal books [3] and [35]. Hofmeister et al presents a
“best-practice” approach to the field based on their
industrial experience [22]. Wall surveys the field in a
technical report, biased at real-time systems [43].

The World-Wide Institute of Software Architects
(WWISA) is a nonprofit organization founded to, with their
own words from their homepage (see section 7.1),

“accelerate the establishment of the profession of software
architecture and to provide information and services to
software architects and their clients”.

1.6 Social Effects
An understanding of software architecture and its
importance affects the personal relations within a software
development project – hopefully to the better! Quoting Bass
et al, architecture “serves as an important communication,
reasoning, analysis, and growth tool for systems” [3].

The results of the informal architecture evaluation methods
we will describe are explicitly said to be both technical and
social [3,25,26]. The analysis “acts as a catalyzing activity
on an organization”, in the meaning that “participants end
up with a better understanding of the architecture” and
generates “deeper insights into the trade-offs that are
implicit in the architecture”, simply because the issue is
brought to attention [3].

In this context, it is worth to note that many of the
references discuss “stakeholders”, and emphasize the
importance of letting everybody involved influence the
choices made [3,5,6,25,26]. In itself, this is an important
step forward to create quality software.

1.7 Outline of the Report
Architectural views will be elaborated in section 2,
architectural styles and architectural patterns are presented
and discussed in section 3, architectural description
languages in section 4, and informal approaches in section
5.

2. ARCHITECTURAL VIEWS

“As soon as we attempt to diagram software structure, we
find it to constitute not one, but several, general directed
graphs, superimposed one upon another.” [8]

In other words, you may discover different properties
depending on the “angle” from which you view an
architecture (see Figure 2). Such a view [22,27] “represents
a partial aspect of a software architecture that shows
specific properties of a software system” [9].

.

.

.

View n

.

.

.

.

.

.

.

View 1

View 2

Figure 2. Architectures may be viewed from different

positions, and thus bring different properties into light.

A Brief Survey of Software Architecture 4 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

In [3], the term “structure”, which is what is called “view”
in this report, is described similarly:

Which notion of architecture is the right one, the one
whose components are modules or the one whose
components are runtime entities such as processes?
Obviously they both are. It is an axiom of this book that
assuming that the two structures are the same is a
fundamental design mistake, since they are optimized to
meet completely different criteria. [3]

2.1 The Use of Different Views
There are a number of well-known views, each revealing
certain aspects of the architecture being analyzed (on the
expense of other characteristics), and an architecture should
be described in several relevant architectural views. With
“relevant” we mean views that can unveil the properties that
are of interest. No more effort should be put into
elaborating views than can be ratified by the usage of them,
e.g. for analysis and understanding.

Views can be described graphically as a number of
components and connections, but the semantics of these
artifacts differ between views. For example, in a run-time
view of an object-oriented system, we may have the
component type “object” and the connector type “message”
to our disposal while a design-time view might include
“classes” and “inheritance” – if objects and classes are
mixed within a description, it would loose all sense. See
Figure 3.

Different views are furthermore suited for different
analyses. A view describing the run-time objects may be
used to estimate the system’s performance and find
bottlenecks, and a class view to e.g. estimate the
maintainability from the number of dependencies between
classes. Different software domains often need specific
views, such as a temporal view for real-time architectures.

a1

b1

c1

A

B C

Mess
ag

e()

Message()

Figure 3. Two views of the same system: a run-time
view (to the left) and a design-time view.

2.2 Lists of Views
For the purpose of this report, it is enough to state that it is
possible to view a piece of software from different views,
and that different views reveal different properties (and are

thus suited for different analyses). Three different lists of
views are presented below, without further comments.

In the first list of [9], views are called “architectures”.

• “Conceptual architecture: components, connectors”.

• “Module architecture: subsystems, modules, exports,
imports”.

• “Code architecture: files, directories, libraries,
includes”.

• “Execution architecture: tasks, threads, processes”.

In the second list of [9], there are four views.

• “Logical view: the design’s object model, or a
corresponding model such as an entity relationship
diagram.”

• “Process view: concurrency and synchronization
aspects.”

• “Physical view: the mapping of the software onto the
hardware and its distributed aspects.”

• “Development view: the software’s static organization
in its development environment.”

In [3], nine views are listed, called “structures”.

• “Module structure. The units are work assignments”.

• “Conceptual, or logical, structure. The units are
abstractions of the system’s functional requirements”.

• “Process structure, or coordination, structure. This
view […] deals with the dynamic aspects of a running
system. The units are processes or threads”.

• “Physical structure. This view shows the mapping of
software onto hardware”.

• “Uses structure. The units are procedures or modules;
they are linked by the assumes-the-correct-presence-of
relation”.

• “Calls structure. The unit are usually (sub)procedures;
they are related by the calls or invokes relation”.

• “Data flow. Units are programs or modules; the
relation is may-send-data-to.”

• “Control flow. Units are programs, modules, or system
states; the relation is becomes-active-after.”

• “Class structure. Units are objects; the relation is
inherits-from or is-an-instance-of.”

2.3 Graphical Representation
Unfortunately, none of the sources presented any
formalization or example of what the views look like
graphically. We can just note that the Universal Modeling
Language, UML [5], has been widely spread and can be

A Brief Survey of Software Architecture 5 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

used for describing architectural views (see section 4.7). In
this report, we use UML when we find it appropriate.

3. STYLES AND PATTERNS
3.1 Styles
An architectural style is an established pattern of
components with a name, such as a client-server
architecture. A common knowledge of styles is useful when
discussing a system, so that a statement like “X is a client-
server system” will readily give a common understanding
among people involved, and when detailed implementation
decisions has to be made, the programmer will choose a
solution that conforms to the style.

Often architectural styles are domain-specific (well, more
or less), as will be described for some styles below. A style
typically addresses specific problems, often quality-related:

When we have models of quality attributes that we believe
in, we can annotate architectural styles with their
prototypical behavior with respect to quality attributes. We
can then talk about performance styles (such as priority-
based preemptive scheduling) or modifiability styles (such
as layering) or reliability styles (such as analytic
redundancy) and then discuss the ways in which these
styles can be composed. [3]

The most commonly known styles are explained briefly
below. Please note that some elements in the figures
describing the architectures below look similar but have
different semantics; arrows may e.g. denote data flow,
function calls or some other type of connection.

3.1.1 Pipe-and-Filter
In a pipe-and-filter system the data flow in the system is in
focus [3,34,35,43]. There are a number of computational
components, where output from one component forms the
input to the next. A typical example is the use of Unix
pipes. See Figure 4, where each box is a processing unit,
and an arrow represents data flow2.

In its purest form, the different components are completely
separated (they share no data or state), and may start
processing as soon as input starts arriving. A close relative
of this architecture is the batch sequencing architecture,
where each step finishes before the next start.

2 We have avoided using UML on purpose, since a pipe-and-filter

architecture is only a logical abstraction, while UML symbols
would imply how its implementation. It could be implemented
e.g. as Unix processes and pipes, threads with shared buffers, or
function calls with data structures as parameters.

System
input

System
input

System
output

Figure 4. Two pipe-and filter systems, one very simple

and the second a little more complicated.

This style fits a program analyzing and formatting text or
data, but is not so useful for an interactive system. Because
data is copied (at least in the pure pipe-and-filter form)
from outputs to inputs, performance is generally decreased.

3.1.2 Object-Oriented Architecture
With an object-oriented architecture, the focus is on the
different items in the system, modeled as objects, classes
etc. Object orientation is one of the most widely spread
architectural styles, both in education, industrial practice
and science.

It can be discussed whether object-orientation is an
architectural style or belongs to lower levels of design.
Object-orientation as an architectural style is discussed in
[3,6,35].

3.1.3 Layered Architecture
With a layered (or onion) architecture, focus is laid on the
different abstraction levels in a system, such as the software
in a personal computer [3,6,34,35,43]. A stack of boxes or
a number of concentric circles is often used to represent a
layered architecture graphically (see Figure 5).

In its pure form, communications between the different
layers must only occur in the interfaces between two
adjacent layers. The style’s major drawbacks are that it is
not always easy to identify the appropriate abstraction
levels. It might also be the case that the system must
communicate in a more complex way than is implicated by
the layering, due to performance considerations.

Resource Allocation and Security

File System

I/O System

Memory System

Process Management,
Semaphores, Interrupts

Hardware

Applications

Figure 5. The layered architecture of a personal

computer (the layers according to [14]).

A Brief Survey of Software Architecture 6 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

3.1.4 Blackboard Architecture
A blackboard (or repository) architecture draws the
attention to the data in the system [3,34,35,43]. There is a
central data store, the blackboard, and agents writing and
reading data. The agents may be implicitly invoked when
data changes, or explicitly by some sort of external action
such as a user command. A blackboard architecture is
described in Figure 6, where the central data store is
represented by the rectangle, agents by the ellipses, and the
arrows denote requests to read and write data.

Data

Agent

Agent

Write

Read

Agent

ReadAgent
Read

Agent

Write

Agent

Read

Write

Read

Figure 6. A blackboard (repository) architecture.

A database can easily be described by the blackboard
architectural style, where the blackboard itself of course is
the data in the database. Examples of agents are client
applications, database triggers (small pieces of program
code that are executed automatically when data changes),
and administration tools.

3.1.5 Client-Server Architecture
A client-server architecture focuses on services different
clients want to perform [3,6,34,35,43]. This architecture is
especially fit when the hardware is organized as a number
of local computers (e.g. personal workstations) and one
central resource such as a file tree, database, or a cluster of
powerful central calculation computers. See Figure 7.

Client
Client

Client
Client Client Client

Client

Server
Figure 7. A view of a (hardware) client-server system.

In a software client-server system, there may be several
clients in one computer, and even the server can be running
on the same computer.

This is a way of describing a multi-user database, on a
different abstraction level than that of the blackboard
architecture.

3.1.6 Process Control
Real-world systems often control a physical reality, such as
control systems in a power plant. There are a number of
software paradigms for process control [35,43]. The
significant properties are that the software takes its input
from sensors (such as a flow sensor), and perform control
actions (such as closing a valve). The control loop may be
of feedback or feed-forward type.

3.1.7 State Machine
When designing a state machine architecture, the states of
the program can be in are identified, together with legal
transitions between them [35].

State machines are well known to mathematicians, and can
be thoroughly investigated and validated regarding loops,
illegal states etc, which makes this style common in safety-
critical systems. State machines are particularly well suited
for graphical description (see Figure 8).

Here it is appropriate to ask whether this is actually a style
or a view of an architecture. Maybe it is appropriate to talk
about the state machine as a style when the clearest
description of a system is as a set of states and transitions,
and as a view when trying to discern states and transitions
in an existing system – the border between styles and views
is not as sharp as one might believe! In the case of using a
state machine as a style, it should be possible to also
describe the system with another style – describing how the
state machine is implemented. Such heterogeneous styles
are discussed in the following section.

Off Standby

Running

On

Off

Off Start
Stop

Figure 8. A state machine.

3.2 Heterogeneous Architectural Styles
Reality is more complicated than what might have been
implied above. Many systems can be described with several
styles simultaneously. Shaw and Clements make this
property explicit:

We describe the styles in their pure forms, although they
seldom occur that way. Real systems hybridize and
amalgamate the pure styles, with the architect choosing
useful aspects from several in order to accomplish the task
at hand. Our classification does not impede this
heterogeneity, but rather enhances the selection and

A Brief Survey of Software Architecture 7 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

blending process by making stylistic properties explicit.
[34]

Some systems are just modifications of an architectural
style; others combine them, possibly on different
abstraction levels. Consider a system implementing a pipe-
and-filter system, where each filter abstracts the operating
system via a portability layer, to facilitate portability. The
lowest levels of abstraction could maybe be regarded as
technique rather than architecture (as was discussed, object
orientation can e.g. be thought of as an implementation
technique).

This issue is also discussed by Bass et al who state that
systems “are seldom built from a single style, and we say
that such systems are heterogeneous” [3]. Three kinds of
heterogeneity are identified:

• “Locationally heterogeneous“ – different runtime parts
use different styles.

• “Hierarchically heterogeneous” – different components
in a system of one style may be structured according to
another style, as our client-server example above.

• “Simultaneously heterogeneous” – several styles serve
as a description of the same system (as we saw, a multi-
user database can be viewed as both a blackboard and a
client-server architecture). This heterogeneity
“recognizes that styles do not partition software
architectures into nonoverlapping, clean categories”
[3].

3.3 Architectural Patterns
When creating an architecture, you should of course use
your knowledge and experience. However, creating a
“good” architecture is difficult and costly if the developers
have to gather knowledge through trial-and-error, especially
if they are not even conscious about the notion of “software
architecture”. Moreover, it is difficult to deduce general
knowledge from experience.

Buschmann et al collected such architectural patterns,
analyzed them, and made them available [9]. They adopt a
three-part schema underlying patterns consisting of a
problem within a context, and a solution. We believe that
every software architect should be armed with a set of
patterns, and recognize contexts and problems where there
exists a proven solution. It should be noted that there are
patterns for all levels of abstraction; Buschmann et al
divides patterns into architectural patterns, design patterns
and idioms [9] (we are in this report interested solely in
architectural patterns3).

3 Examples of design patterns are “Whole-Part” and “Publisher-

Subscriber”, while “Counted Pointer” is an example of an idiom

The knowledge of successful architectural patterns does of
course not exclude the need of an architectural evaluation.
A pattern is merely a pattern, and is only part of a system’s
architecture. Moreover, there may be circumstances making
a certain pattern unsuitable. For example, [9] presents two
patterns for interactive applications, each having different
pros and cons: the Model-View-Controller and the
Presentation-Abstraction-Control patterns.

We can note that Buschmann et al speak about e.g. the
“Pipes and Filters” architectural pattern, so their notion of
“pattern” somewhat overlaps what was called “style” in
section 3.1. It seems as there are two names for the same
thing: a system using the pipes-and-filters pattern can
always be said to conform to the pipe-and-filter style; the
opposite is equally true.

4. ARCHITECTURE DESCRIPTION
LANGUAGES
As we have seen, architectures can be described roughly as
a set of components connected by connectors. Depending
on the application domain and the view, the descriptions
can contain other entities as well. A number of formal
languages have been developed to allow for formal and
unambiguous descriptions. Such an Architecture
Description Language (ADL) often has a graphical
representation.

An ADL defines the basic elements to be used in an
architectural description. Different ADLs are designed to
meet slightly different criteria, and have somewhat different
underlying concepts (compare with the abundance of
programming languages – they are designed to be used for
different types of programming, and it would be naïve to
believe that one language is enough for all purposes). An
ADL specifies a well-defined syntax and some semantics,
making it possible to combine the elements into meaningful
structures. The advantages of describing an architecture
using a formal ADL are several:

• Some formal analyses can be performed, such as
checking whether an architectural description is
consistent and complete4.

[9]. Gamma et al collected a large number of design patterns
into the book on design patterns [16].

4 Allen provides a good explanation of these notions: “Informally,
consistency means that the description makes sense; that
different parts of the description do not contradict each other.
Completeness is the property that a description contains enough
information to perform an analysis; that the description does not
omit details necessary to show a certain fact or to make a
guarantee. Thus, completeness is with respect to a particular
analysis or property.” [2]

A Brief Survey of Software Architecture 8 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

• The architectural design can be unambiguously
understood and communicated between the participants
of a software project.

• We may also hope for a means to bridge the gap
between architectural design and program code by
transformation of a formal architectural description to a
programming language.

The rest of this chapter describes the most known ADLs
very briefly. The first four are ADLs in their own right, the
next, Acme, identifies the least common denominator of
other ADLs, ADML builds on Acme; we also discuss the
Universal Modeling language (UML) as an ADL. Most of
these, and others, have been compared by Medvidovic and
Taylor together within their framework for classifying
ADLs [32].

4.1 Rapide
The Rapide language [31], developed by David Luckham at
Stanford University, has quite a long history. It builds on
the notion of partial ordered sets, and thus introduces quite
new (but seemingly powerful) programming constructs; it is
also very useful in that it is both an architectural description
language and an executable programming language. A
number of tools have been built, e.g. for performing static
analysis and for simulation.

The combination of an architectural description language
with formal and informal methods to analyze it, as well as
actually being able to compile and execute it seems to be
very powerful.

4.2 UniCon
UniCon [35], developed by Mary Shaw at Carnegie Mellon
University, is “an architectural-description language
intended to aid designers in defining software architectures
in terms of abstractions that they find useful”.

UniCon is designed to make “a smooth transition to code”
[35], through a very generous type mechanism.
Components and connectors can be of types that are built-in
in a programming language (e.g. function call), or be of
more complex types, user-defined as code templates, code
generators or informal guidelines.

4.3 Aesop
Aesop [17], developed by David Garlan at Carnegie Mellon
University, is addressing the problem of style reuse. With
Aesop, it is possible to define styles and use them when
constructing an actual system.

Aesop provides a generic toolkit and communication
infrastructure that users can customize with architectural
style descriptions and a set of tools that they would like to
use for architectural analysis. Tools that have been
integrated with Aesop styles include: cycle detectors, type
consistency verifiers, formal communication protocol

analyzers, C-code generators, compilers, structured
language editors, and rate-monotonic analysis tools.

4.4 Wright
Wright [2] was developed at Carnegie Mellon University
and forms a basis for Robert Allen’s research. It is a formal
language including the following elements: components
with ports, connectors with roles, and glue to attach roles to
ports. Architectural styles can be formalized in the language
with predicates, thus allowing for static checks to determine
the consistency and completeness of an architecture.

4.5 Acme
Acme [18], developed by a team at Carnegie Mellon
University, can be seen as a second-generation ADL, in that
its intention is to identify a kind of least common
denominator for ADLs. It is thus not designed to be a new
or competing language, but rather to be an interchange
format between other languages and tools, and also allow
for use of general tools. One could devise one tool
searching for illegal cycles, and use it for descriptions in
any ADLs, as long as there exist translation functionality
between that ADL and Acme.

Acme defines 7 basic element types: components,
connectors, systems, ports, roles, representations, and rep-
maps (representation maps). See Figure 9 for a description
of the five most important (figure slightly modified version
from [18]). Acme’s textual representation of a small
architecture is found in Figure 10 (after [18]).

Component Role Port

Connector

System

Figure 9. Elements of an Acme description.

System simple_cs = {
 Component client = { Port sendRequest }
 Component server = { Port receiveRequest }
 Connector rpc = { Roles {caller, callee} }
 Attachments : {
 client.sendRequest to rpc.caller ;
 server.receiveRequest to rpc.callee
 }
}

Figure 10. An Acme description of a small architecture.

As was implied above, the success of Acme is highly
dependent on the existence of tools and translators. The
research team at SEI behind Acme has constructed the

A Brief Survey of Software Architecture 9 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

graphical architectural editor AcmeStudio. A screen
snapshot is presented in Figure 11 – the architectural
description is in the top right quadrant; to the left and
beneath it are different types of browsers for e.g.
components, connectors, properties, and rep-maps.
Translators between UniCon, Aesop, Wright, and Rapide
have also been constructed [18].

Figure 11. A snapshot of AcmeStudio.

However, voices doubting Acmes universality can also be
heard, stating that “its growth into an all-encompassing
mediating service never has taken place […] Acme should
probably be considered as a separate architecture
description language altogether” [12].

4.6 ADML
The Open Group found room for improvement of Acme
and have defined the Architecture Description Markup
Language (ADML). At ADML’s homepage (see section
7.1) we find the following description of ADML: “ADML
adds to ACME a standardized representation (parsable by
ordinary XML parsers), the ability to define links to objects
outside the architecture […], straightforward ability to
interface with commercial repositories, and transparent
extensibility”.

4.7 UML
In this context, it is appropriate to mention the Universal
Modeling Language (UML) [5]. It has been a de facto-
standard for the design and description of object-oriented
systems, and includes many of the artifacts needed for
architectural descriptions – processes, nodes, views etc. As
a consequence, software architecture and UML are often
mentioned together [5,22].

For informal descriptions, UML is very suited just because
it is a widely understood standard. It however lacks the full
strength needed for an adequate architectural description.
As an example, in UML the connectors are language
entities such as function calls, while an ADL would contain

such things as client-server connections and protocols of
interaction. UML is intended to be an object-oriented
modeling language, while an architecture could very well
be implemented in other types of programming languages –
but once again UML do include language-independent
artifacts such as processes. Hofmeister et al [22] use UML
to describe software architectures, and say in the
introduction that “some of our architecture concepts are not
directly supported by existing UML elements […] All in
all, we think the benefits to be gained by using a
standardized, well-understood notation outweigh the
drawbacks” [22]. It is possible to within UML define new
elements as meta-models, and it might be possible to extend
the common UML language with such new concepts to
build an ADL.

As was said, UML can today be used to give a good
informal description of an architecture by “bending” the
notation, but this is not the intention of a fully-fledged
ADL, especially when it comes to formal analyses of an
architecture.

5. INFORMAL ANALYSIS METHODS
We will continue by describing informal approaches to the
field. We shortly present a number of case studies and two
methods of performing informal architectural analysis.

5.1 Analysis Methods
Researchers at the Software Engineering Institute have
developed two informal architecture analysis methods. The
Software Architecture Analysis Method (SAAM) is a
method used for analyzing an architecture using scenarios
[25]; the Architecture Tradeoff Analysis Method (ATAM)
is a development of SAAM, introducing the notion of
“tradeoff points” [26].

Common for both is the methodology they implement –
quality requirements are evaluated and agreed upon
evolutionary as architectures are designed and evaluated.
They therefore resemble the “spiral” software lifecycle
model where requirements, design and implementation are
refined in a cyclic approach [4]. They are not designed for
any specific quality attributes or software metrics, but rather
to serve as a framework leading the analyst to focus on the
right questions at the right time. Any quality attribute can be
analyzed with these methods; examples are modifiability
[25,28], cost [26,28], availability [26], and performance
[24,28].

5.1.1 SAAM
The Software Architecture Analysis Method (SAAM) uses
scenarios to evaluate quality properties of an architecture
[25]. SAAM is applied early in the development cycle, and
gives the architect the possibility to choose an architecture
with an acceptable tradeoff between quality attributes. With
this method, architectures are informally compared through

A Brief Survey of Software Architecture 10 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

the use of scenarios, such as the use case “the user starts a
simulation” or the change scenario “the system is extended
with functionality to compare binary output files”. Of
course, to be able to compare architectures, they must be
described in a consistent and understandable way – thus
some sort of ADL must form the basis of the analysis.

Of course SAAM cannot give any absolute measurements
on quality properties, but should rather be used to compare
candidate architectures. The results are of the sort “system
X is more maintainable than system Y with respect to
change scenarios A, B, and C, but less maintainable with
respect to scenarios D and E”. These results thus form a
basis for project decisions where priorities as short-term
and long-term costs, time-to-market, future reusability are
weighed against each other. For the outcome of the analysis
to be reliable, it is crucial that the selected scenarios are
indeed representative for actual future scenarios. SAAM
emphasizes the participation of all stakeholders of the
system, i.e. project managers, users, developers etc.

SAAM was used in the M.Sc. thesis made by the author
[28], as part of a commercial development project, and our
experience is that it fulfils its expectations. A tool prototype
for aiding in SAAM analysis (as well as aiding in
documenting architecture at all), SAAMtool, has been built
[23].

5.1.2 ATAM
The Architecture Tradeoff Analysis Method (ATAM) is a
relative of SAAM, in which the importance of tradeoffs has
been noticed [26]. A tradeoff is the decision needed to
choose between alternative architectures, to arrive at a set
of properties that are acceptable; it is naïve to believe that
architectural design aims at finding the architecture,
meaning the cheapest to build and the most resource-
effective and the most portable and the most reusable.

It is obvious that one cannot maximize all quality
attributes. This is the case in any engineering discipline.
[…] The strongest bridge is not the lightest, quickest to
erect, or cheapest. The fastest, best-handling car doesn’t
carry large amounts of cargo and is not fuel efficient. The
best-tasting dessert is never the lowest in calories. [3]

Many such quality attributes are orthogonal, meaning that
improving one deteriorates another. The engineering
approach is thus to try and find an acceptable tradeoff,
considering not only the technical aspects of the software,
but include all related concerns such as management and
financial issues. ATAM supports projects when discussing
the system and agreeing upon an acceptable tradeoff by
introducing the notion of tradeoff points:

Once the architectural sensitivity points have been deter-
mined, finding tradeoff points is simply the identification

of architectural elements to which multiple attributes are
sensitive. For example, the performance of a client-server
architecture might be highly sensitive to the number of
servers (performance increases, within some range, by
increasing the number of servers). The availability of that
architecture might also vary directly with the number of
servers. However, the security of the system might vary
inversely with the number of servers (because the system
contains more potential points of attack). The number of
servers, then, is a tradeoff point with respect to this
architecture. It is an element, potentially one of many,
where architectural tradeoffs will be made, consciously or
unconsciously. [26]

5.2 Case Studies
Since the field of software architecture is to a large extent
informal, much of the work done so far has been to support
the theories with case studies, which is also reflected in the
titles of much of the work. In “Software Architecture in
Practice”, Bass et al describe aircraft navigation computers,
the World Wide Web (WWW), the design of CORBA, air
traffic control, flight simulation, and product line
development [3]. Garlan and Shaw investigate mobile
robotics and digital oscilloscopes [35], while Bosch uses
product lines, fire alarm, measurement systems, and a
dialysis system as examples [6]. Hermansson et al report on
how the architecture of a telecommunication system was
redesigned [21]. Bowman et al describe how they arrived at
an architectural description of Linux by reengineering the
code [7]. Hofmeister et al build their book “Applied
Software Architecture” heavily on industrial practice
gathered from throughout the Siemens corporation [22].

Bass et al describes how SAAM was used to evaluate two
competing financial management systems, and a revision
control system [3]. Kazman et al used ATAM in a case
study of a battlefield control system [24].

6. FUTURE RESEARCH
We are still in the middle of the development of this
exciting field. As the field matures, we can expect many of
the different research branches to converge, and more
formal definitions and methods to emerge. Informal aspects
of software architecture should not be neglected, however.
Many of the practical problems in the industry would be at
least partly solved merely by having a common vocabulary
and understanding of these issues. Therefore it is important
that research results are made accessible for, and widely
spread in, industrial practice.

Although work has been conducted in the following areas,
much remains to be done:

• For ADLs and views, major challenges are:

− How can styles be defined in an ADL – what
makes a style a style [1]?

A Brief Survey of Software Architecture 11 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

− How can architectures be automatically verified
and validated [2]?

− Can more patterns and styles be formalized in an
ADL, as a context-problem-solution triplet [9] that
can be found during analysis through some sort of
knowledge base or expert system?

− How can the relation between different views be
described? For example, exactly how does the
objects in a run-time view relate to the classes in a
design-time view?

− How can UML be extended to allow for a
standardized way of describing software
architecture?

− The field of Aspect-Oriented Programming (AOP)
focuses on separation of concerns [15], and shows
similarities with the concept of architectural views.
What do AOP and Software Architecture have in
common? How can these fields and techniques be
combined?

• In connection to development processes, major
challenges are:

− How is it possible to maintain a connection
between an architectural description and the
program code implementing it? This would
include several views5.

− How is it possible to maintain the connection
between a system’s requirements and its
architectural design, to make it possible to see how
the architecture fulfills the requirements?

− How can ATAM be extended to make it possible
to find “tradeoff points” formally or through
simulation rather than scenarios?

− How can SAAM and ATAM be extended with a
formal description of scenarios, making it possible
to automatically analyze a larger number of
architectures and scenarios?

− More patterns should be catalogued (such as has
been done by Buschmann et al [9]).

• Software architecture and Component Based Software
Engineering are two sides of the same coin:

− How can these fields be combined?

5 In a real system with many thousands of lines of code it is hard

to see how the architecture is implemented in code – which
lines implement the architecture and which lines implement
low-level algorithms in a real system? Probably it is impossible
to make such a division altogether, making this question even
harder to answer.

− Can the properties of an architecture be calculated
from the properties of its components? Which
properties? How?

• What happens with a system architecture when its
requirements, environment etc. changes?

− What types of changes can a particular architecture
tolerate? To how high degree?

− Put another way – how can a system’s architecture
be designed to tolerate change?

− What happens with the architecture when a system
ages [33]? How can the architecture be made to
survive longer than the components implementing
it?

− How can a system’s architecture be changed in
runtime (preferably automatically)?

Now we have arrived at the topics I will focus on in my
research. The rest of section 6 is devoted to describing how
I intend to reach the combined goals of contributing to the
research community in the area of software architecture and
achieving a Ph.D. degree.

6.1 Research Plan
My research will focus on the cross-section of three areas:
Software Architecture, Component Based Software
Engineering, and change (see Figure 12). In my Ph.D.
thesis, I hope to be able to answer how component-based
architectures can be designed to handle change.

Software
Architecture CBSE

Change

Research area
Figure 12. The cross-section of three research fields.

I will study existing research as described below, and try to
combine findings and techniques from these fields. My
licentiate thesis (half-way to the Ph.D. thesis) will contain a
thorough overview of the three areas, a thesis (yet to be
formulated), and a validation of it through argumentation
and case studies. Case studies can be done in cooperation
with Compfab and Westinghouse (see section 6.4); our
department, IDt, also has contact with other large software-
intensive companies like ABB, Bombardier Transportation,
Ericsson, and Volvo.

A Brief Survey of Software Architecture 12 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

6.2 Component Based Software Engineering
The research area of Component Based Software
Engineering (CBSE) [36] is closely related to the field of
software architecture – architecture is the way components
are composed to a structure, while in CBSE the focus in on
the components (and how they can be integrated). In this
context, a component is basically a binary executable. The
governing idea of CBSE is that when requirements for a
system has been formulated, instead of designing,
implementing, and testing the components, pre-built and
already tested commercial components are found and used.
There are in CBSE basically two ways of building software
– either building reusable components or combining
existing components into systems. See Figure 13.

This will of course affect the way in which the system’s
architecture is designed – somehow the architecture must
take into account that the components cannot be assumed to
conform exactly to the architect’s wishes (as would be the
case if the entire system was developed in-house). The
ultimate goal of CBSE is to found a conceptual base to
make it possible to find pre-built binary components,
assemble them with a minimum of effort, and predict the
properties of component assemblies. To make this possible,
there will be standards and certification mechanisms;
certified components will have a basic set of functionality
and be of known quality. The components in question are
commercially available, and the competing edge for a
component-developing company will be to include more
functionality than the standards require, or excel in quality.
This touches other research areas, such as how the
semantics of a component can be described and assessed,
and how to measure quality attributes in an unambiguous
way.

Requirements
Definition

Validation
(Acceptance)

Test

Verification
(Integration)

Test

Component
Integration

Componenet
Selection

Component
Requirements

Architectur
Design

Component
Construction

Certification

Marketing

Figure 13. A waterfall sequential representation of the

main tasks in CBSE.

Research on CBSE has been made at our department,
Department of Computer Engineering (Institutionen för
Datateknik, IDt) [10,30], and I will contribute to this

research through focusing on the architectural aspects of
CBSE.

6.3 Change
Change is a very broad term when associated with software
– it can mean e.g. source code modifications, administrative
changes to an installed system, or changes in runtime. There
are also a number of different types of causes of changes:
requirements are modified or added, errors need correction,
the quality needs to be improved, technology changes, other
systems in the environment change, parts of it is to be
reused etc. The question of change can be viewed either on
the architectural level [37,39-42] or from a component-
based point of view [30]. Part of my research will be to
combine these points of view.

There is a trend that more and more of a software system
should be variable, so that it is a system administrator who
should carry out needed changes rather than a programmer.
It is further complicated by the fact that the changes should
preferably be carried out in runtime (the system should
never be “down”), and preferably by the system itself
(without need for a human administrator). The program
should therefore be prepared to many types of changes. We
can discern a “scale of triviality”: names of files, servers,
etc. should never be hard-coded but changeable via e.g.
initialization files; the number of services could be
programmed to response to e.g. new load balancing
strategy; most difficult to handle is of course questions
about unforeseen changes (e.g. of requirements) and to how
high degree a system can be designed for dynamic changes.

To handle different types of change, there are today
research, practice, and tools for e.g. revision control,
configuration management, testing, and software
development processes. Some work has been done to
integrate these ideas with the fields of software architecture
and CBSE [30,37,39-42]. However, there is still much more
left to do, and I hope to be able to develop this area. In
particular, I will investigate which changes during runtime
an architecture can be designed for and whether there are
any configuration management techniques that can be
applied to runtime changes.

6.4 Concrete Plans
To arrive at this goal, I have to study some specific areas
more in detail. I learnt much from the field of software
architecture during my M.Sc. thesis project work, but will
study the related areas I will find more thoroughly and keep
up with the state-of-the-art; I will study the field of CBSE,
through self-studies and two courses: “Component-Based
Software Engineering” and “Component Technologies”; I
will also study techniques to handle change through
literature search – I will e.g. study the ideas of
configuration management, and will in particular study the
work of André van der Hoek [37,39-42].

A Brief Survey of Software Architecture 13 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

I intend to write and publish some papers. I have written a
paper about the work done in my M.Sc. thesis work,
performed at Westinghouse) and what can be learnt from
that [29]; I will also elaborate on some ideas I got then and
hopefully be able to draw some general conclusions on how
architectural views can be related. I have written one paper
with Erik Gyllenswärd and Mladen Kap about “Information
Organizer”, a product implementing a general architecture
for information systems [20] (see the Compfab URL,
section 7.1).

An important part of research education is to learn to
cooperate. I will collaborate with my colleagues at the
Software Engineering group here at IDt to connect my
architectural research with CBSE. I have already mentioned
that I have collaborated with Erik Gyllenswärd and Mladen
Kap at Compfab around their product “Information
Organizer” [20], and I plan to keep contact throughout my
research and validate my findings using their framework
and product. I am employed by Westinghouse, where I
performed my M.Sc. thesis work [28] (but I am currently on
leave of absence for my Ph.D. studies); they have
announced interest in my research and I will hopefully be
able to perform some case study in collaboration with them
[29]. Anders Wall and Joakim Fröberg at IDt are studying
software architecture in relation to real-time systems and
are potential collaborators [43].

7. CONCLUSION
We have studied the notion of software architecture, and
discussed how to describe and analyze it. We gave a
historical background and described where and by whom
major research has been performed, and gave references to
important literature. Architectural views are basically a set
of component types and connection types, with which
certain aspects of an architecture can be described. The
architecture of a piece of software can be described
formally in an Architectural Description Language (ADL),
and we presented some ADLs shortly. We also said that
many system architectures conform to well-known
architectural styles or patterns such as the pipe-and-filter
and client-server styles, and described some of these. We
presented two methods for informal analysis of
architectures: the Software Architecture Analysis Method,
SAAM, and the Architecture Tradeoff Analysis Method,
ATAM. As a recurring theme, we have also argued for the
opinion that a deeper understanding of software architecture
will increase the quality of both software development and
the software itself. We have thus showed that through the
notion of software architecture, we have presented a
powerful means of defining, formalizing, describing, and
enforcing structure to software systems.

Current research challenges and the focus of my research
were presented, together with a description of how I intend

to reach the joint goals of contributing to the field and
achieve a Ph.D. degree by describing how component-
based architectures can be designed to handle change.

7.1 Useful URLs
Below is a list of URLs to useful web pages, as of the date
of the release of this report (12-Feb-02).

ABLE: http://www.cs.cmu.edu/~able/

ACME: http://www.cs.cmu.edu/~acme/

ADML: http://www.opengroup.org/onlinepubs/009009899/

Aesop: http://www.cs.cmu.edu/~able/aesop/

Compfab: http://www.compfab.se/

Rapide: http://poset.stanford.edu/rapide/

Wright: http://www.cs.cmu.edu/~able/wright/

WWISA: http://www.wwisa.org/

UML: http://www.uml.org/

7.2 Credits
All research results presented in this report are due to other
people’s work as indicated. Christina Wallin made Figure
13. Anders Wall read an earlier draft of this report and gave
useful suggestions of improvements.

REFERENCES
 [1] Abowd G., Allen R., and Garlan D., "Using Style

to Understand Descriptions of Software
Architecture", In Proceedings of The First ACM
SIGSOFT Symposium on the Foundations of
Software Engineering, 1993.

 [2] Allen R. "A Formal Approach to Software
Architecture" Ph.D. Thesis Carnegie Mellon
University, Technical Report Number: CMU-CS-
97-144 1997

 [3] Bass L., Clements P., and Kazman R., Software
Architecture in Practice, Addison-Wesley, 1998.

 [4] Boehm, B., Spiral Development: Experience,
Principles and Refinements, report Special Report
CMU/SEI-2000-SR-008, Carnegie Mellon
Software Engineering Institute, 2000.

 [5] Booch G., Rumbaugh J., and Jacobson I., The
Unified Modeling Language User Guide,
Addison-Wesley, 1999.

 [6] Bosch J., Design & Use of Software Architectures,
Addison-Wesley, 2000.

A Brief Survey of Software Architecture 14 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

 [7] Bowman I. T., Holt R. C., and Brewster N. V.,
"Linux as a Case Study: Its Extracted Software
Architecture", In Proceedings of Proceedings 21st
International Conference on Software
Engineering (ICSE), 1999.

 [8] Brooks F. P., The Mythical Man-Month - Essays
On Software Engineering, 20th Anniversary
Edition, Addison-Wesley Longman, 1995.

 [9] Bushmann F., Meunier R., Rohnert H., Sommerlad
P., and Stal M., Pattern-Oriented Software
Architecture - A System of Patterns, John Wiley &
Sons, 1996.

 [10] Crnkovic Ivica and Larsson M., Challenges of
Component-based Development, Journal of
Software Systems, volume 2001, issue December,
2001.

 [11] Dahl O.-J., Dijkstra E. W., and Hoare C. A.,
Structured Programming, Academic Press, 1972.

 [12] Dashofy E. M. and van der Hoek A.,
"Representing Product Family Architectures in an
Extensible Architecture Description Language", In
Proceedings of The International Workshop on
Product Family Engineering (PFE-4), Bilbao,
Spain, 2001.

 [13] Denning P.J. and Dargan P. A., A discipline of
software architecture, ACM Interactions, volume
1, issue 1, 1994.

 [14] Eklund S., Programkonstruktion och
projekthantering, Studentlitteratur, 1993.

 [15] Elrad T., Filman R. E., and Bader A., Aspect-
oriented programming: Introduction,
Communications of the ACM, volume 44, issue 10,
2001.

 [16] Gamma E., Helm R., Johnson R., and Vlissidies J.,
Design Patterns - Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

 [17] Garlan D., Allen R., and Ockerbloom J.,
"Exploiting Style in Architectural Design
Environments", In Proceedings of SIGSOFT '94
Symposium on the Foundations of Software
Engineerng, 1994.

 [18] Garlan D., Monroe R.T., and Wile D., Acme:
Architectural Description of Component-Based

Systems, in Foundations of Component-Based
Systems, editors, Leavens G.T. and Sitarman M.,
Cambridge University Press, 2000.

 [19] Garlan D. and Shaw M., An Introduction to
Software Architecture, Advances in Software
Engineering and Knowledge Engineering, volume
I, 1993.

 [20] Gyllenswärd E., Kap M., and Land R.,
"Information Organizer - A Comprehensive View
on Reuse", In Proceedings of Proceedings of
International Conference on Enterprise
Information Systems (to appear), 2002.

 [21] Hermansson H., Johansson M., and Lundberg L.,
"A Distributed Component Architecture for a
Large Telecommunication Application", In
Proceedings of The Asia-Pacific Software
Engineering Conference (APSEC), Singapore,
IEEE, 2000.

 [22] Hofmeister C., Nord R., and Soni D., Applied
Software Architecture, Addison-Wesley, 2000.

 [23] Kazman R., "Tool support for architecture analysis
and design", In Proceedings of the second
international software architecture workshop
(ISAW-2) and international workshop on multiple
perspectives in software development (Viewpoints
'96) on SIGSOFT '96 workshops (jointly), 1996.

 [24] Kazman R., Barbacci M., Klein M., and Carriere
J., "Experience with Performing Architecture
Tradeoff Analysis Method", In Proceedings of The
International Conference on Software
Engineering, New York, 1999.

 [25] Kazman R., Bass L., Abowd G., and Webb M.,
"SAAM: A Method for Analyzing the Properties
of Software Architectures", In Proceedings of The
16th International Conference on Software
Engineering, 1994.

 [26] Kazman R., Klein M., Barbacci M., Longstaff T.,
Lipson H., and Carriere J., "The Architecture
Tradeoff Analysis Method", In Proceedings of The
Fourth IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS), (Monterey, CA), 1998.

 [27] Kruchten P., The 4+1 View Model of
Architecture, IEEE Software, volume 12, issue 6,
1995.

A Brief Survey of Software Architecture 15 (15)

Mälardalen Real-Time Research Center (MRTC) Report

Department of Computer Engineering, Mälardalen University, Västerås, Sweden, February 2002

 [28] Land R. "Architectural Solutions in PAM" M.Sc.
Thesis 2001

 [29] Land R., "Improving Quality Attributes of a
Complex System Through Architectural Analysis -
A Case Study", In Proceedings of 9th IEEE
Conference on Engineering of Computer-Based
Systems (to appear), 2002.

 [30] Larsson M. "Applying Configuration Management
Techniques to Component-Based Systems"
Licentiate Thesis Dissertation 2000-007,
Deparment of Information Technology Uppsala
University. 2000

 [31] Luckham D.C., Kenney J. J., Augustin L. M., Vera
J., Bryan D., and Mann W., Specification and
Analysis of System Architecture Using Rapide,
IEEE Transactions on Software Engineering, issue
Special Issue on Software Architecture, 1995.

 [32] Medvidovic N. and Taylor R. N., "A Framework
for Classifying and Comparing Architecture
Description Languages", In Proceedings of Sixth
European Software Engineering Conference,
ACM, 1997.

 [33] Parnas D. L., "Software Aging", In Proceedings of
The 16th International Conference on Software
Engineering, IEEE Press, 1994.

 [34] Shaw M. and Clements P., "A Field Guide to
Boxology: Preliminary Classification of
Architectural Styles for Software Systems", In
Proceedings of The 21st Computer Software and
Applications Conference, 1994.

 [35] Shaw M. and Garlan D., Software Architecture:
Perspectives on an Emerging Discipline, Prentice-
Hall, 1996.

 [36] Szyperski C., Component Software - Beyond
Object-Oriented Programming, Addison-Wesley,
1998.

 [37] van der Hoek A., "Configurable Software
Architecture in Support of Configuration
Management and Software Deployment", In
Proceedings of ICSE99 Doctoral Workshop, 1999.

 [38] van der Hoek A., "Capturing Product Line
Architectures", In Proceedings of 4th
International Software Architecture Workshop,
ACM Press, 2000.

 [39] van der Hoek, A., Heimbigner, D., and Wolf, A.
L., Investigating the Applicability of Architecture
Description in Configuration Management and
Software Deployment, report Technical Report
CU-CS-862-98, Department of Computer Science,
University of Colorado, 1998.

 [40] van der Hoek, A., Heimbigner, D., and Wolf, A.
L., Versioned Software Architecture, 1998.

 [41] van der Hoek, A., Heimbigner, D., and Wolf, A.
L., Capturing Architectural Configurability:
Variants, Options, and Evolution, report Technical
Report CU-CS-895-99, 1999.

 [42] van der Hoek A., Mikic-Rakic M., Roshandel R.,
and Medvidovic N., "Taming Architectural
Evolution", In Proceedings of The Sixth European
Software Engineering Conference (ESEC) and the
Ninth ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-9),
2001.

 [43] Wall, A., Software Architectures - An Overview,
Department of Computer Engineering, Mälardalen
University, 1998.

