

Contents lists available at ScienceDirect

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier.com/locate/ympev

Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia

Daniel L. Distel^{a,*}, Mehwish Amin^b, Adam Burgoyne^b, Eric Linton^c, Gustaf Mamangkey^d, Wendy Morrill^b, John Nove^a, Nicole Wood^a, Joyce Yang^a

^a Laboratory for Marine Genomic Research, Ocean Genome Legacy, Inc., 240 County Road, Ipswich, MA 01938, United States

^b University of Maine, Orono, ME 04473, United States ^c Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, United States

^d James Cook University, Townsville, QLD 4811, Australia

ARTICLE INFO

Article history: Received 12 April 2010 Revised 17 May 2011 Accepted 30 May 2011 Available online 13 June 2011

Keywords: 18S rRNA 28S rRNA Bacterial endosymbiosis Bivalvia Evolution Pholadidae Phylogeny Shipworms Symbiosis Teredinidae Wood-boring **Xylophagainae Xylotrophy**

ABSTRACT

The ability to consume wood as food (xylotrophy) is unusual among animals. In terrestrial environments, termites and other xylotrophic insects are the principle wood consumers while in marine environments wood-boring bivalves fulfill this role. However, the evolutionary origin of wood feeding in bivalves has remained largely unexplored. Here we provide data indicating that xylotrophy has arisen just once in Bivalvia in a single wood-feeding bivalve lineage that subsequently diversified into distinct shallowand deep-water branches, both of which have been broadly successful in colonizing the world's oceans. These data also suggest that the appearance of this remarkable life habit was approximately coincident with the acquisition of bacterial endosymbionts. Here we generate a robust phylogeny for xylotrophic bivalves and related species based on sequences of small and large subunit nuclear rRNA genes. We then trace the distribution among the modern taxa of morphological characters and character states associated with xylotrophy and xylotrepesis (wood-boring) and use a parsimony-based method to infer their ancestral states. Based on these ancestral state reconstructions we propose a set of plausible hypotheses describing the evolution of symbiotic xylotrophy in Bivalvia. Within this context, we reinterpret one of the most remarkable progressions in bivalve evolution, the transformation of the "typical" myoid body plan to create a unique lineage of worm-like, tube-forming, wood-feeding clams. The well-supported phylogeny presented here is inconsistent with most taxonomic treatments for xylotrophic bivalves, indicating that the bivalve family Pholadidae and the subfamilies Teredininae and Bankiinae of the family Teredinidae are non-monophyletic, and that the principle traits used for their taxonomic diagnosis are phylogenetically misleading.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Wood-eating (xylotrophic) and wood-boring (xylotrepetic) bivalves have attracted considerable interest for their unusual biology and morphology, destructive economic impacts, problematic taxonomy, potential role in marine carbon cycles, capacity to degrade woody (lignocellulosic) plant materials, potential as a source of novel enzymes for industry, and extraordinary bacterial endosymbioses. These bivalves cause more than a billion dollars in damage to ships, fishing equipment, and wooden structures in marine environments annually, and may have influenced historical events ranging from the defeat of the Spanish Armada to the demise of the fourth expedition of Christopher Columbus. More

* Corresponding author. E-mail address: distel@oglf.org (D.L. Distel). URL: http://www.oglf.org (D.L. Distel).

recently, these bivalves and their symbionts have attracted interest as potential sources of novel enzymes for the cellulosic biofuel industry (Distel, 2003; Cobb, 2002).

Clams that eat and/or burrow in wood are found in two bivalve families, Teredinidae and Pholadidae. Teredinidae (commonly known as shipworms) are the principle degraders of wood in shallow, temperate and tropical marine waters. They are found in floating, sunken, or living wood at depths ranging from the inter-tidal zone to \sim 150 m. This diverse group contains more than 65 welldefined species and includes some of the most highly modified and most destructive marine bivalves (Turner, 1966). Their common name derives from the wormlike appearance of adult specimens, whose extremely elongate body plan, greatly reduced valves (shells), habit of burrowing in wood, ability to form shelllined burrows (tubes), and possession of shell-like plates (pallets) that are used to seal the burrows, distinguish them from all other bivalve taxa (Fig. 1). With the possible exception of one species

^{1055-7903/\$ -} see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2011.05.019

Fig. 1. Anatomical comparison of *Bankia setacea* (Teredinidae) and *Zirfea crispata* (Pholadidae) *Bankia setacea* (Teredinidae) a, b; *Zirfea crispata* (Pholadidae) c; anus, A; anterior adductor, AA; caecum, C; digestive gland, DG; excurrent siphon, ES; foot, F; gill, G; gonad, Gd; heart, H; intestine, I; incurrent siphon, IS; kidney, K; labial palps, LP; mantle, M; pallet, P; posterior adductor, PA; stomach, S; valve, V. Note that the major visceral organs of shipworms are posterior to and cannot be withdrawn within the confines of the valves as in other bivalves.

(*Kuphus polythalamia*), all Teredinidae burrow in and ingest wood or woody plant material. At least one species (*Lyrodus pedicellatus*) has been shown to grow and reproduce normally on a diet composed solely of wood (Gallager et al., 1981).

In contrast, most Pholadidae burrow in substrates other than wood. Exceptions are members of the subfamily Xylophagainae, which burrow in and ingest wood, and Martesianae, which burrow in wood and other substrates (Jenner et al., 2003; Scott, 1991; Springer and Beeman, 1960) but do not feed on wood particles (Turner, 1955). The distribution of Xylophagainae is limited largely to sunken wood deposits in deep marine waters (~100–7500 m) where these species are the most important consumers of deposited wood (Turner, 1973; Turner, 2002). Like other Pholadidae, Xylophagainae display none of the unusual vermiform characteristics of Teredinidae.

The mechanism of wood digestion in marine bivalves differs from that found in terrestrial wood consumers. Terrestrial organisms that consume wood as food contain within their digestive tracts communities of symbiotic microorganisms that are thought to aid in the digestion and metabolism of wood (Haigler and Weimer, 1991). Wood-boring bivalves appear to lack such highly developed microbial communities within their guts (Liu and Walden, 1970). Instead, the ability of both teredinid and xylophagainid clams to feed on wood is thought to depend on intracellular bacterial endosymbionts contained within specialized cells (bacteriocytes) of their gills. In Teredinidae, these bacterial endosymbionts are thought to produce cellulolytic enzymes that aid the host in digestion of wood (Distel, 2003), and that are known to fix nitrogen (Lechene et al., 2007; Waterbury et al., 1983) that may supplement the host's nitrogen deficient diet. These intracellular bacteria constitute a consortium of closely related species (Distel et al., 2002a; Luyten et al., 2006), only one of which has been grown in pure culture. This cultivated species, *Teredinibacter turnerae*, has been shown to degrade cellulose and to fix nitrogen in pure culture (Distel et al., 2002b; Waterbury et al., 1983). Members of Xylophagainae have also been shown to harbor bacterial endosymbionts within their gills (Distel and Roberts, 1997) although none have yet been cultivated.

Despite dramatic differences in body plan, Teredinidae and Xylophagainae share a number of traits that are unique or rare among bivalves, leading us to ask whether xylotrophy and xylotrophic symbiosis evolved independently in these taxa, as proposed previously (Turner, 1966; Turner, 2002) and as is implied by widely cited taxonomic treatments (e.g., (Newell, 1969)), or whether these properties evolved just once in a recent common ancestor of these nominally distinct lineages. The former would imply convergence, while the latter would suggest similarity due to homology.

Few phylogenetic treatments have been attempted for xylotrophic bivalves (Santos et al., 2005), in part because the highly modified body plans and highly specialized life habits of many xylotrophic bivalves create difficulties in identifying homologous traits and distinguishing them from convergent adaptations to the common challenges of wood-boring and wood-feeding habits (Hoagland and Turner, 1981). Indeed, the most comprehensive synthesis of the biology of wood-boring bivalves assembled to date (Turner, 1966) describes the taxonomy of these bivalves as being "in a chaotic state."

Only five studies have specifically addressed evolutionary relationships among wood boring bivalves using biochemical or molecular methods; four of these studies were based on analysis of electrophoretic mobility of allozymes (Cole and Turner, 1978; Cole and Turner, 1977; Hoagland, 1986; Hoagland and Turner, 1981) and one was based on comparison of mitochondrial small subunit rRNA gene sequences (Santos et al., 2005). Although none of these studies have sampled wood-boring bivalves comprehensively, two raised significant questions with regard to widely accepted taxonomic treatments, both questioning the monophyly of the subfamilies of Teredinidae (Hoagland and Turner, 1981; Santos et al., 2005).

Analyses based on anatomical characters have also suggested alternative relationships among wood boring bivalves. For example, Purchon (1941) and Monari (2009) proposed that Xylophagainae share a more recent common ancestor with Teredinidae than with other Pholadidae, the latter conclusion resulting from a cladistic analysis (Monari, 2009; Purchon, 1941).

Here, to avoid the potentially confounding influences of convergent morphology, we infer a robust phylogeny for xylotrophic bivalves based on molecular characters that are independent of the xylotrophic habit. We then map the distribution of morphological characters and character states among modern taxa and use maximum parsimony to infer ancestral characteristics of xylotrophic bivalves.

2. Materials and methods

2.1. Taxon selection

Sixteen species of the family Teredinidae were selected, including representatives of all three teredinid subfamilies, Kuphinae, Bankiinae, and Teredininae, and five of the six anatomical groups (I, II, III, IV and VI) proposed by Turner (Turner, 1966). In addition, ten species of the family Pholadidae are considered. These include four species of the subfamily Xylophagainae that represent each of the three named genera (*Xylophaga, Xylopholas*, and *Xyloredo*). As of this writing (01/23/2011) the World Registry of Marine Species (http://www.marinespecies.org) lists 71 and 159 valid species names for Teredinidae and Pholadidae respectively. Reference taxa include representatives of the myoid families Myidae, Gastrochaenidae, and Hiatellidae, and additional selected species from Heterodonta, Paleoheterodonta, and Pteriomorphia. Taxonomic nomenclature is according to (Newell, 1969). A complete list of taxa used in this study appears in Table 1.

2.2. DNA extraction and sequencing

Tissue samples were stored frozen (-80 °C) or in 70–95% ethanol prior to analyses. DNA was extracted from mantle or gill tissue of 39 specimens representing 37 bivalve species (see Table 1) as in (Distel, 2000). Briefly, tissues were ground under liquid nitrogen and dissolved in a medium containing 5 M guanidinium thiocyanate. Insoluble material was sedimented by centrifugation and discarded. DNA was precipitated by addition of ethanol, redissolved in TE buffer, and extracted by the phenol chloroform method (Maniatis et al., 1982). Large and small subunit nuclear rRNA genes were amplified from the resultant DNA preparations by polymerase chain reaction (PCR) using high fidelity polymerase (Pfu; Stratagene or Phusion; Finnzymes) with the following amplification parameters (35 cycles, 1 min, 95 °C, 1 min 55 °C, 1 min 70 °C) and the primers listed in Table 2 (Lane, 1991; Medlin et al., 1988; Park and O' Foighil, 2000). Bidirectional sequencing was performed

using an ABI 3100 capillary DNA sequencing platform with standard BigDye[™] chemistry, thermal cycling conditions, and dye terminator removal, either directly on products pooled from three PCR amplifications, or on three independently sequenced clones from PCR products inserted into PCRblunt[™]vector (Invitrogen).

2.3. Phylogenetic analyses

DNA sequences were aligned using MacGDE v. 2.3 (Genetic Data Environment for Macintosh) taking into consideration secondary structural information inferred by comparison to *Placopecten magellanicus* large and small subunit rRNA secondary structure models (Comparative RNA Website and Project; http://www.rna.ccbb.utexas.edu). Nucleotide positions within structural features of variable length and other positions of uncertain alignment were removed from further consideration.

Phylogentic analyses were performed using PAUP^{*} 4.0b10 (Swofford, 2003) and MrBayes v.3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003) as implemented in Mac-GDE. Maximum parsimony (MP), minimum evolution (ME), maximum likelihood (ML), and Bayesian inference (BI) methods were evaluated. PAUP* was used for MP, ME, and ML analyses, while Mr. Bayes was used for BI. A character matrix consisting of 1686 bases for the small (18S) and 1148 bases for the large (28S) subunit rRNA genes, determined for each taxon in the study, was used for phylogenetic inference. Three data partitions were examined: 18S alone, 28S alone, and the combined [18S + 28S] data set. The partition homogeneity test (Cunningham, 1997) with 100 replicates was used to evaluate the validity of combining datasets. For analyses employing ML and BI, the best-fit model of evolution (GTR + I + G) and parameter value estimates were determined by the hierarchical log-likelihood ratio tests using algorithms from MODELTEST (Posada and Crandall, 1998) as implemented in MacGDE

ME analyses were performed using a substitution model that allows approximation of variable substitution rates (HKY-85: (Hasegawa et al., 1985)), with rates assumed to follow a gamma distribution with shape parameter estimated from data, branch swapping algorithm = tree-bisection-reconnection (TBR), and minimum evolution optimality criterion. MP analyses were performed using the heuristic search option with random sequence addition (100 replicates) and TBR branch swapping. Characters were weighted equally (weight = 1) and gaps were treated as missing data. BI and ML analyses were performed using the general time reversible substitution model, assuming variable substitution rates with gamma shape parameter (GTR + I + G) with and without specifying parameter values estimated from data. Specified parameters, determined using (Posada and Crandall, 1998), were: Base = (0.2098 0.2743 0.3165), Nst = 6, Rmat = (0.8580 1.6452 0.9880 0.9840 3.4369), Rates = gamma, Shape = 0.4678, and Pinvar = 0.4588. Four chains in the MCMC analyses were used in each of four independent runs. For BI analyses, one million generations were performed with phylogenetic hypotheses sampled every 100 generations, resulting in 10,000 generations being saved. A burn-in of 20% (2000 generations) was used, resulting in a majority rule consensus of 8001 generations. Each of the independent runs converged on similar optimal log likelihood scores (as verified via the sump command in MrBayes) and identical tree topologies. Bootstrap analyses were performed with 1000 repetitions for MP and ME analyses. ML analyses were limited to 100 bootstrap repetitions due to the greater computational demands of this technique.

Where relationships (topologies) within the resultant trees were inconsistent with previously published taxonomic treatments or evolutionary hypothesis, the one-tailed Kishino–Hasegawa (KH) (Kishino and Hasegawa, 1989) and Shimodaira-Hasegawa (SH) (Shimodaira and Hasegawa, 1999) tests under ML criteria were per-

Table 1

Species examined in this investigation.

Ahr niridaDQ279960DQ279963Angulas runidaM774524MAT75Antcis kindukaU9355AF12051ATLANDERAntrate castnereS00478AP12051ATLANDERAstarte castnereS00494J893020J899174Manado Eay, IndonesiaBankia carinataS00494J893020J898175Lar Bay, Nonire, Nehleriands AntillesBankia carinataS00494J893020J898175Lar Bay, Nonire, Nehleriands AntillesBankia carinataS00494J893020J898177Harport Ever, Indon, N.Bankia carinataS00485AF120671Tobago, diritwoodBankia carinataS00485AF12057ATT20671Tobago, diritwoodBarnee carinataS00484J8982020J899178Wachapreague, VACarinata di aritwaAM774541AM779715Wachapreague, VACarinata di aritwaAM774545AM774500GuadeloupeCarinata di aritwaS00482AM774543AM779717Wachapreague, VACarinata di aritwaS00470AM774543AM779717Wachapreague, VACarinata di aritwaS00470AM7745454AM779717Wachapreague, VACarinata di aritwaS00477AM774545AM779717Wachapreague, VACarinata di aritwaS00477AM774514AM779717Wachapreague, VACarinata di aritwaS00477AM774514AM779717Wachapreague, VACarinata di aritwaS00477AM774514AM779717Wachapreague, VACarinata di	Species name	Voucher number*	GenBank accession 18S	GenBank accession 28S	Collection site
Argin termis AN774234 AN772635 Artrice istantikon U39355 AN77480 AN77480 Astarte succor AN77480 AN77480 AN77480 Bankia carinata S00494 JF889202 JF889175 Lac Ray, Roante, Netherlands Astrilles Bankia carinata S00492 JF889202 JF889175 Lac Ray, Roante, Netherlands Astrilles Bankia carinata S00483 JF889204 JF889176 Nevyora River, Beaufort, NC Bankia carinata S00483 JF89204 JF889176 Nevyora River, Beaufort, NC Bankia carinata S00483 JF89206 JF889178 Wartheree Barnen parco AN774504 AN774500 Cardeloupe Cardeloupe Corrbital fumine AN774503 AN779719 Cardeloupe Cardeloupe Corrbital fumine S00473 JF899207 JF899177 Vact coast of Manabaa Perinisula, Indonesia Dipsulfer marini S00475 JF892020 JF89177 Vest coast of Manabaa Perinisula, Indonesia Dipsulfer marini S00475 JF892020 JF89183	Abra nitida		D0279940	D0279965	
Artare ostandica U3355 ANT79737 Artare ostance S00478 ANT20551 AT20612 Falmouth, MA Artare ostance S00492 JF389203 JF389174 Manado Bay, Indonesia Bankis curine S00492 JF389205 JF389175 La Kay, Bonaire, Netherlands Antilles Bankis curine S00485 AF120652 AF120671 Tohago, drithwood Barnee curine ANT74441 ANT79715 Horkis curine S00485 AF120672 Barnee curine S00485 ANT74545 ANT79716 Galda urbicularis Caladeloupe Carbidus artensis S00482 ANT74545 ANT79713 Galda urbicularis S00479 JF389207 JF389173 Wachapreague, VA Carbidus fammine S00477 AF120657 ANT797132 Galda urbicularis S00477 AF389173 Wachapreague, VA Diografifier mani S00500 JF389209 JF389181 Fields Pand, Crinigton ME Field diversis S00477 AF120657 AT79717 Markas Sunaita Markas Sunaita <	Angulus tenuis		AM774524	AM779698	
Attract existence SO478 AT72051 AF120612 File Bankia curstalis S00494 JF899020 JF899175 Lac Ray, Bonalo Ray, Indonesia Bankia curstalis S00492 JF899204 JF899175 Lac Ray, Bonale, Reither Indonesia Bankia gendia JF899204 JF899177 Brown's Bay, WA Bankia serice S00493 AT720612 AT720715 Barmee candida AT724512 AT727715 Wachapreague, VA Cardial arbitrularis S00483 AT7274512 AT773722 Cardial arbitrularis S00484 JF899206 JF89178 Wachapreague, VA Cardial arbitrularis S00479 JF89207 AT773722 Cardial seriesia Conduct arbitrularis S00479 JF89179 Wachapreague, VA Cardial seriesia S00479 JF89207 JF89179 Wachapreague, VA Atr73911 Cardial seriesia S00477 AT73573 Machapreague, VA Atr739179 Cardial seriesia S00477 JF89207 JF892011 JF899181 Indeendo, Arrington ME <tr< td=""><td>Arctica islandica</td><td></td><td>U93555</td><td>AM779737</td><td></td></tr<>	Arctica islandica		U93555	AM779737	
Autra culculaAM774480AM779654Barnkia curinatia\$04942JF399203JF399174Manada Bay, IndonesiaBarnkia curinatia\$04942JF399203JF399175La Eay, Bonaire, Netherlands AntillesBarnkia curinatia\$0485AF120625AF120671Tobago, driftwoodBarnkia curinatia\$0485AF120627AT7474541AM779716Barnen parvaAM774541AM779715CadaelougeBarnen parva\$0485AF120627JF399173CadaelougeCadakia un funcatia\$0482AM774545AM779712Cadakia un funcatia\$0492AM774545AM779173Carbalia sciencisM774455AM779173CadaelougeCarbalia sciencisS0477JF399208JF399179Wachapreague, VADirjostral polymopha\$04977JF399208JF399181Fields Pand, Crinigton MEEriss directis\$04977JF399209JF399181Fields Pand, Crinigton MEEriss directis\$04971AM774515AM77917AM77451Alleladi ansas\$04971JF399210JF399181Fields Pand, Crinigton MEEriss directis\$04971JF399124JF399183La Jolla, CA, 15 mKaphus polythalamia\$00497JF399124JF399183Banaa Kine, Fields Machane, PhilippinesLucinoma berlinetis\$00473JF399124JF399183Banaa Kine, Fields Machane, PhilippinesLucinoma berlinetis\$00497JF399124JF399183Banaa Kine, Fields Machane, PhilippinesLucinoma	Astarte castanea	S00478	AF120551	AF120612	Falmouth, MA
Banka custraliaS00494JF899204JF899174Manado Bay, IndonesiaBanka custraliaJF899204JF899176Newport River, Beaufort, NCBanka setzeeS00485JF899205JF899177Brown's Netherlands ArtillesBanka setzeeS00485JF899205JF899177Brown's Dag, VABarne cundiduM774541M7729716Barne cundiduM774542M7729716Barne truncataS00484JF890206JF890178Vachapreague, VAColdidu orbicularisS00482A1779732Corbicul filmineM774545A1779737Corbicul filmineS00475JF890170Vachapreague, VACorbicul filmineS00475JF890170Vest casat of Minahasa Peninsula, IndonesiaDiryathfer norminS00500JF80203JF8901817Corbicul filmineS00475JF89203JF890181Vest casat of Minahasa Peninsula, IndonesiaDiryathfer norminS00500JF80203JF890181Field Pend, Orrington MEElliptio complexaM77501JF890182Zanboarg del Sur, Mindanao, PhilippinesLucinoma boretisS00475JF899213JF890182Zanboarg del Sur, Mindanao, PhilippinesLucinoma boretisS00495JF899213JF899184Manado Bay, IndonesiaLyndus pedicellatusS00495JF899213JF899184Manado Bay, IndonesiaLyndus pedicellatusS00495JF899213JF899184Manado Bay, IndonesiaLyndus pedicellatusS00496JF89	Astarte sulcata		AM774480	AM779654	
Banka corrinatia S00492 [F899203 [F899175 Lac Bay, Bonaire, Necherlands Antilles Banka settore S00485 [F899205 [F899177 Newport Nere, Boutfort, NC Banka settore AN774541 AN779715 Tobago, driftwood Barnee parro AN774542 AN779715 Janea condida AN774542 Barnee parro AN774542 AN779716 Guidelouge Coldada arbitratis S00482 AN779576 AN779732 Corbitulis fuminee AN774545 AN779732 Corbitulistical fuminee AN774545 AN779717 Cyrtoplanta S00475 JF899207 JF899180 Westcasted Minahas Peninsula, Indonesia Dicyathjer manni S00600 JF899208 JF899180 Vestcasted Minahas Peninsula, Indonesia Dicyathjer manni S00607 JF899207 JF899180 Vestcasted Minahas Peninsula, Indonesia Cyrtoplanta S00471 AN774543 AN779717 Felds Pond. Orrington ME Ensis directus S00473 JF999102 JF999163 Felds Pond. Orrington ME Ensis directus S00473	Bankia australis	\$00494	IF899202	IF899174	Manado Bay, Indonesia
Banki genuli JPR 2014 JPR 20176 Newport River, Boarliner, NC Bankia serce S00485 AFI 20625 AFI 20671 Tobago, driftwood Barner candida MA774541 AM779716 Barner candida S00485 AFI 20625 AFI 20671 Tobago, driftwood Barner canucat S00484 AFR79674 AM779716 Cadadia orbicularis S00482 AM779574 AM774540 Cadadia orbicularis Cadadia orbicularis S00482 AM779574 AM779730 Cadadia orbicularis S00475 JPR 20077 JPR 20178 Vest coast of Minahasa Peninsula, Indonesia Drivesten polymorpha AM774545 AM779719 Vest coast of Minahasa Peninsula, Indonesia Drivesten polymorpha AM774545 AM779717 Elifyein complanata S00477 JPS 2008 JPR 2008 Falmouti, MA Elifyein complanata S00477 JPS 2018 JPS 2018 Falmouti, MA Markasa Elifyein complanata S00477 JPS 2018 JPS 2018 La Jolla, CA, 15 m Lucinoma borealis S00471 AM774540 AM772642 JPS 2018 <td>Bankia carinata</td> <td>S00492</td> <td>JF899203</td> <td>IF899175</td> <td>Lac Bay, Bonaire, Netherlands Antilles</td>	Bankia carinata	S00492	JF899203	IF899175	Lac Bay, Bonaire, Netherlands Antilles
Bankin searce S00489 PR99205 PR99177 Brown's Bay, WA Barnea candida AM774541 AM779715 Barnea candida AM774542 AM779715 Barnea truncata S00485 AM774542 AM779715 Barnea truncata S00482 AM779574 AM779732 Corbicul fluminea AM774550 Caleloupe Corbicul fluminea AM774545 AM779732 Corbicul fluminea S00479 JR999208 JR99179 Wachapreague, VA Dicyathjer morni S00475 JR999208 JR99179 Wachapreague, VA Dicyathjer morni S00475 JR99208 JR99181 Fields Pond, Orrington ME Castrocheane dubia S00475 JR99208 JR99181 Fields Pond, Orrington ME Castrocheane dubia S00475 JR99208 JR99181 Fields Pond, Orrington ME Liptic complemata S00471 JR982080 JR99181 Fields Pond, Orrington ME Liptic complemata S00473 AM774501 AM774504 La Jolia, CA, 15 n Kaphus polytho	Bankia gouldi		JF899204	JF899176	Newport River, Beaufort, NC
Banka carinata S00485 AF120625 AF120671 Tobago, driftwood Barnec carind AM774544 AM779716 Herma carina S00484 JP899206 JP899178 Wachapreague, VA Codula orbicularis S00484 JP899206 JP899178 Wachapreague, VA Corbicul finimea AF120557 AM779719 Wachapreague, VA Corbicul finimea S00479 JP899207 JP899179 Wachapreague, VA Drivesten doptompha AM774543 AM779719 West coast of Minahasa Peninsula, Indonesia Drivesten doptompha AM774543 AM779710 Herman Elliptic complenata S00477 AY533978 JP99603 Falmonth, MA Castrochema dubia S00471 AM774511 AM77650 MI Bay, Salcombe, UK Lucinomo borealls S00473 AM774501 JP998182 Zamboanga del Sur, Mindanao, Philippines Lucinomo borealls S00473 AM774501 AM778774 Long Bach, CA Kaphus pedicellutus S00492 JP998181 Branaa Sure, FL, managrove wood Lyrodus pedicellutu	Bankia setacea	S00489	JF899205	JF899177	Brown's Bay, WA
Barnea candidaAM774541AM779715Barnea parvaAM774542AM779716Barnea parvaSO0454JF899206JF899178GuadeloupeCorbicula fiumineaAF120557AM779732Corbicula fiumineaAM77455AM7797372Corbicula fiumineaSO0452AM779579Cyrtopleura costataSO0475JF899207JF899180Wactapreague, VADicynthijer momitSO0500JF899208JF899180Wactapreague, VADicynthijer momitSO0475JF899209JF899181Fields Fond, Orrington MEEnsis directusSO0477AY533978JF999181Fields Fond, Orrington MEEnsis directusSO0475JF8992010JF899183Ealmouth, MACastrochean duiaAY192686AF120623Hitella arcticaSO0473AM774511AM779675Mill Bay, Salcombe, UKLyrodius predicellarusSO0497JF8992121JF899183Banana River, FL, mangrove woodLyrodius predicellarusSO0501JF899213JF899185West coast of Minahasa Peninsula, IndonesiaLyrodius predicellarusSO0495JF899213JF899185West coast of Minahasa Peninsula, IndonesiaLyrodius predicellarusSO0501JF899213JF89181Hancek County, MEMarreasi StrudaSO0505JF899213JF89185West coast of Minahasa Peninsula, IndonesiaMarreasi StrudaSO0506JR7755JR79700JR79700Marreasi StrudaSO0506JR7755JR99188Praia Dura, Ubatuba, Arazi <t< td=""><td>Bankia carinata</td><td>S00485</td><td>AF120625</td><td>AF120671</td><td>Tobago, driftwood</td></t<>	Bankia carinata	S00485	AF120625	AF120671	Tobago, driftwood
Barnes parvaAM774542AM77916Barnes truncataS00484JF899206JF899178Wachapreague, VAColdakia orbicularisS00482AM79674AM774500CuadeloupeCorbicula fumineaAM774565AM779722Corbula sinensisAM774545AM77919Cyrtopleur costataS00479JF899207JF899179Wachapreague, VADicyathfer manniS00500JF899208JF899180West coast of Minahasa Peninsula, IndonesiaDireisena polyomphaAM774513AM7797017Fields Pand, Orrington MEElliptia complemateS00477AY53078JF899180Fields Pand, Orrington MEElliptia complemateS00477AY53078JF899182La Jolla, CA, 15 mKuphus polythulamiaS00487JF899210JF899182La Jolla, CA, 15 mHiarelia arcticaS00473AM774501AM79675Mill Bay, Salcombe, UKLucimona borealisS00483JF899212JF899183Banana Kver, FL, mangrove woodLyrodus mascaS00480JF89213JF899183West coast of Minahasa Peninsula, IndonesiaLyrodus mascaS00493JF89213JF899183West coast of Minahasa Peninsula, IndonesiaMacroma bathiricaS00501JF899213JF899183West coast of Minahasa Peninsula, IndonesiaMarcaina arcreariaS00493JF89213JF899183West coast of Minahasa Peninsula, IndonesiaMarcaina arcreariaS00491JF899213JF899183West coast of Minahasa Peninsula, IndonesiaMarcaina	Barnea candida		AM774541	AM779715	
Barnea trunctar CorbicularityS00482KP89206JP899178Wachapreague, VACorbicula flumineaAF12057AM774500CadeloupeCorbicula finaminesAM774545AM779719Cyropheur costataS00470JP899207JP899179Wachapreague, VADirycuhifer maniS00500JP899207JP899179Wachapreague, VADirycuhifer maniS00475JP899208JP899180Weic coast of Minahasa Peninsula, IndonesiaDirycuhifer maniS00477JP89209JP899181Fields Pond, Orington MEEnsis directusS00477AM774511AM779653La Jolla, CA, 15 mCastrocheara dubiaS00487JP899170JP899182La Jolla, CA, 15 mKuphus polytholimiaS00487JP899121JP899183Banana River, FL, mangrove woodLyradus macasS00495JP899213JP899183Banana River, FL, mangrove woodLyradus pedicellutusS00501JP899213JP899183West coast of Minahasa Peninsula, IndonesiaMarreasi striataS00495AM774560AM77970MetrosistriataMareasi striataS00491JP899213JP899187West coast of Minahasa Peninsula, IndonesiaMareasi striataS00491JP899214JP899180Praia Dura, Uhatuha, BrazilMareasi striataS00491AF120657Hing Banana River, FLMareasi striataS00491JP899216JP899181Hancock County, MEMareasi striataS00491JP899216JP899180Vest coast of Minahasa Peninsula, Indonesi	Barnea parva		AM774542	AM779716	
Codekia orbicularisS00482AM779674AM774500GuadeloupeCorbicula fumineaAK720577AM7797322Corbicula sinersisAM774545AM7797922Corbicula sinersisS00679JF899207JF899179Wachapreague, VADriestena polyomphaAM774543AM779717Elliptia camplenataS00475JF899208JF899181Fields Pand, Orrington MEElliptia camplenataS00477AY55078JF909603Falmouth, MACastrocheana dubiaAM774511AM779655La Jolla, CA. 15 mKuphus polythalamiaS00477JF899210JF899183Zamboanga del Sur, Mindanao, PhilippinesLucimoma borealisS00473AM774501AM79675Mill Bay, Salcombe, UKLyndus messaS00493JF899212JF899183Banana River, FL, magrove woodLyndus pedicellatusS00501JF899213JF899183Banana River, RL, magrove woodLyndus pedicellatusS00501JF899213JF899183West coast of Minahasa Peninsula, IndonesiaMateriasi artistaS00501JF899214JF899185West coast of Minahasa Peninsula, IndonesiaMateriasi artistaS00501JF899217JF899186Cobscook Bay, MEMateriasi artistaS00493JF899216JF899180Sanish Bay, WAMateriasi artistaS00506JF899217JF899187West coast of Minahasa Peninsula, IndonesiaMateriasi artistaS00493JF89214JF899180Sanish Bay, WAMateriasi artistaS00490JF899217 <t< td=""><td>Barnea truncata</td><td>S00484</td><td>JF899206</td><td>JF899178</td><td>Wachapreague, VA</td></t<>	Barnea truncata	S00484	JF899206	JF899178	Wachapreague, VA
Corbital fumineaAH7 20557AM779732Corbula sinensisAM7745456AM779719Cyrtopleura costataS00500JF8980207JF899179West coast of Minabasa Peninsula, IndonesiaDreisseng polymorphaAM774543AM779717Elliptic complanataS00477AY553978JF899180West coast of Minabasa Peninsula, IndonesiaDreiss directinaS00477AY553978JF909603Falmouth, MACastrochaena dubiaAN174511AM779655La Jolla, CA, 15 mHatella arritaS00487JF899210JF899182Zamboanga del Sur, Mindana, PhilippinesLucinoma borealisS00487JF899210JF899182Zamboanga del Sur, Mindana, PhilippinesLyrodus massaS00495JF899211JF899183Banana River, EL, mangrove woodLyrodus pedicellatusS00501JF899213JF899185West coast of Minabasa Peninsula, IndonesiaMacroma balthriaS00493AM774506AM779700Martasi striataMacroma balthriaS00491AM72657Hill Suy, Salcome, UKMurina lateralisL11268AF131003Martasi striataMya arenariaS00491JF899213JF899187West coast of Minabasa Peninsula, IndonesiaNaustora durolperiS00493JF899214JF899180Cobscok Ray, MEMurancaiS00496JF899214JF899180Sanish Bay, VAPanpeg generosaS00505JF899217JF899189Praia Dura, Ubatuba, BrazilNaustora durolperiS004491X192697JF899180 <t< td=""><td>Codakia orbicularis</td><td>S00482</td><td>AM779674</td><td>AM774500</td><td>Guadeloupe</td></t<>	Codakia orbicularis	S00482	AM779674	AM774500	Guadeloupe
Corbula sinensisAMT 74545AMT 79719Cyrtopleur costataS00479JF899207JF899179West coast of Minabasa Peninsula, IndonesiaDreissena polymorphaAMT 74543AMT 79717Elliptic complanataS00475JF899209JF899181Fields Pond, Orrington MEEnsis directusS00477A1553978JF909603Falmouth, MACastrocheana dubiaA172686AF120623Hittella arcticaS00471AMT 74511AMT 79685La Jolla, CA, 15 mKuphus polytaldamiaS00487JF899210JF899182Zamboanga del Sur, Mindanao, PhilippinesLucinoma borealisS004973AMT 74501AMT 79675Mill Bay, Salcombe, UKLyrodus pedicellatusS00502JF8992112JF899183Banana River, FL, mangrove woodLyrodus pedicellatusS00502JF899213JF899185West coast of Minabasa Peninsula, IndonesiaMarceia striataS00235AMT 74566AMT 79740Long Beach, CAMatricai striataS00505JF899214JF899185West coast of Minabasa Peninsula, IndonesiaMy aremariaS00493AP120560AT 120521Hancok County, MEMy arunataS00491AY120567JF899187West coast of Minabasa Peninsula, IndonesiaNausitora fusciculaS00491AY120560AF13003My arunataS00493JF899215JF899187West coast of Minabasa Peninsula, IndonesiaNausitora fusciculaS00493JF899219JF899190Sanish Bay, WAPericola pholodiformisS0048	Corbicula fluminea		AF120557	AM779732	
Cytropleura costata S00479 JF899179 Wack happregue, VA Dicyathifer manni S00500 JF899208 JF899180 West cost of Minabasa Peninsula, Indonesia Dreissena polymorpha AM774543 AM779717 Fileds Pond, Orrington ME Ensis directus S00477 AV553978 JF909603 Falmouth, MA Castrochema duba AV174511 AM77652 La Jolla, CA, 15 m Kuphus polythalamia S00473 AM774501 AM779675 Mill Bay, Salcombe, UK Lucinoma borealis S00487 JF899210 JF899183 Banana River, EL, mangrove wood Lyrodus pedicellatus S00495 JF899213 JF899185 West coast of Minabasa Peninsula, Indonesia Lyrodus pedicellatus S00501 JF899213 JF899185 West coast of Minabasa Peninsula, Indonesia Maccoma balthria S0051 JF899213 JF899185 West coast of Minabasa Peninsula, Indonesia Marcona balthria S00424 AP120560 AP179700 Matasia Peninsula, Indonesia Marcona balthria S00424 AP120560 AF131003 Mest coast of Minabasa Penins	Corbula sinensis		AM774545	AM779719	
Dicyathifer manniS00500JFE89208JFE89180West coast of Minahasa Peninsula, IndonesiaDreissen polymorphaS00477JFE89209JFE89181Fields Pond, Orrington MEElliptic complanataS00477AY553978JFB09603Falmouth, MAGastrochaena dubiaAY192686AF120623Hamouth, MACastrochaena dubiaAM774511AM776855La Jolla, CA, 15 mHitatella arcticaS00471AM774510JR89182Zamboanga del Sur, Mindanao, PhilippinesLucinoma borealisS00473AM774501AM779575Mill Bay, Salcombe, UKLyrodus pedicellatusS00502JFE89211JFE89183Banana River, FL, mangrove woodLyrodus pedicellatusS00502JFE89213JFE89183Banana River, FL, mangrove woodLyrodus pedicellatusS00505AM774566AM779714Long Beach, CAMarceia striataS00235AM774566AM779704Mulnina lateralisL1268AF120650AF120621MaraniaS0056JF899215JF899185Marina dunlopeiS00505JF899215JF899186Nausitora dunlopeiS00499JF899217JF899188Nausitora dunlopeiS00490JF899217JF899180Paria Dura, Ubatuba, BrazilParia Dura, Ubatuba, BrazilNausitora dunlopeiS00490JF899217JF899180Paria Dura, Ubatuba, BrazilParia Dura, Ubatuba, BrazilParopecer margellaricusS00493JF899217JF899180Paria Dura, Ubatuba, BrazilParia	Cyrtopleura costata	S00479	JF899207	JF899179	Wachapreague, VA
Dreissena polymorphaAM774513AM779717Elliptic complanataS00477KPS9209JFS99181Fields Pond, Orrington MEEnsis directusS00477AY553978JFS09603Falmouth, MAGastrochaena dubia-AY1592686AF120623-Hitatelia arcticaS00471AM774511AM779675La Jolla, CA, 15 mKuphus polythalamiaS00487JFS99210JFS99182Zamboanga del Sur, Mindanao, PhilippinesLucinoma borealisS00473AM774501AM779675Mill Bay, Salcombe, UKLyrodus massaS00495JFS99212JFS99183Banana River, FL, mangrove woodLyrodus pedicellatusS00502JFS99213JFS99183Banana River, FL, mangrove woodMartesia striataS00501JFS99213JFS99185West coast of Minahasa Peninsula, IndonesiaMartenariaMartenariaJFS99214JFS99186Cobscook Bay, MEMartenariaS00424AF120560AF120621Hancock County, MEMya arenariaS00499JFS99217JFS99187West coast of Minahasa Peninsula, IndonesiaNusitora dunlopeiS00490JFS99217JFS99180Priai Dura, Ubatuba, BrazilNusitora dunlopeiS00490JFS99214JFS99180Priai Dura, Ubatuba, BrazilNotoreedo reyneiS00480JFS99218JFS99190Samish Bay, WAPetricola pholaliformisS00480JFS99218JFS99190Samish Bay, WAPetricola pholaliformisS00480JFS99218JFS99190Collection panels, Be	Dicyathifer manni	S00500	JF899208	JF899180	West coast of Minahasa Peninsula, Indonesia
Elliptic complanata S00475 JF899209 JF899181 Fields Pond, Orrington ME Ensis directus S00477 AYS53978 JF909603 Falmouth, MA Gastrochaena dubia Y192686 AF120623 La Jolla, CA, 15 m Kuphus polythdamia S00471 AM774511 AM779685 La Jolla, CA, 15 m Kuphus polythdamia S00473 AM774501 AM7797675 Mill Bay, Salcombe, UK Lyrodus massa S004973 AM774501 AM779775 Mill Bay, Salcombe, IK Lyrodus pedicellatus S00502 JF899211 JF899183 Banana River, FL, mangrove wood Lyrodus pedicellatus S00502 JF892131 JF899185 West coast of Minahasa Peninsula, Indonesia Marcenaria mercenaria S00256 JF89213 JF899186 Cobscook Bay, ME Mutinia lateralis L11268 AF120621 Hancock County, ME Mya arenaria S00424 AF120560 AF120621 Hancock County, ME Mya truncata S00506 JF899214 JF899186 Cobscook Bay, ME Nausitora dustafe S0049	Dreissena polymorpha		AM774543	AM779717	
Ensis directusS00477AYS5378JF090603Falmouth, MACostrochenot adubiaAYT92686AF120623La Jolla, CA, 15 mKuphus polythalamiaS00487JF899210JF899182Zamboanga del Sur, Mindanao, PhilippinesLucinoma borealisS00473AM774501AM779675Mill Bay, Salcombe, UKLyrodus massaS00495JF899211JF899183Banan River, FL, mangrove woodLyrodus pedicellatusS00469AM774506AM779700Marcoma bathriaS00501JF899213JF899185West coast of Minahasa Peninsula, IndonesiaMarcoma bathriaS00501JF899213JF899185West coast of Minahasa Peninsula, IndonesiaMulinia lateralisL11268AF131003Hancock County, MEMya trancataS00505JF89214JF899186Cobscook Bay, MENausitora dinalopeiS00499JF89217JF899187West coast of Minahasa Peninsula, IndonesiaNausitora dinalopeiS00490JF89219JF899180Daria, Ubatuba, BrazilNausitora dinalopeiS00490JF89219JF899180Daria, Ubatuba, BrazilPanopoz generosaS00400JF89219JF899180Daria, Ubatuba, BrazilPanopoz generosaS00460JF89212JF899190Samish Bay, WAPartoda pholadiformisS00483JF89213JF899191Wachapresque, VAPholas dactylusS00480JF89212JF899191Manado Bay, IndonesiaNoticredo reyneiS00480JF89223JF899195Lagoen, Bonaire, NA, drift	Elliptio complanata	S00475	JF899209	JF899181	Fields Pond, Orrington ME
Gastrochaena dubia AY192686 AF120G3 Hiatella arctrica S00471 AM774511 AM779685 La Jolla, CA, 15 m Kuphus polythalamia S00487 JF899210 JF899182 Zamboanga del Sur, Mindanao, Philippines Lucionara barealis S00473 AM774501 AM779675 Mill Bay, Salcombe, UK Lyrodus pedicellatus S00502 JF899211 JF899183 Banana River, FL, mangrove wood Lyrodus pedicellatus S00502 JF899213 JF899183 Banana River, FL, mangrove wood Martesia striata S00502 JF899213 JF899185 West coast of Minahasa Peninsula, Indonesia Martesia striata S00235 AM774566 AM779740	Ensis directus	S00477	AY553978	JF909603	Falmouth, MA
Hiatella arctica S00471 AM774511 AM779655 La Jolla, CA, 15 m Kuphus polythalamia S00473 JR99910 JF899182 Zamboanga del Sur, Mindanao, Philippines Lucinoma borealis S00473 AM774501 AM779675 Mill Bay, Salcombe, UK Lyrodus pedicellatus S00495 JF899212 JF899183 Banana River, FL, mangrove wood Lyrodus pedicellatus S00469 AM774540 AM779700 Marcena balthica Comba balthica S00501 JF899213 JF899185 West coast of Minahasa Peninsula, Indonesia Marcenaria mercenaria S00501 JF899213 JF899185 West coast of Minahasa Peninsula, Indonesia Mya truncarda S00424 AF120560 AF131003 Hancock County, ME Mya truncarda S00490 JF899215 JF899187 West coast of Minahasa Peninsula, Indonesia Nausitora fusticula S00491 AY192697 JF899188 Praia Dura, Ubatuba, Brazil Nausitora fusticula S00491 AY192697 JF899189 Praia Dura, Ubatuba, Brazil Panopea generosa S00505 JF899212 <td< td=""><td>Gastrochaena dubia</td><td></td><td>AY192686</td><td>AF120623</td><td></td></td<>	Gastrochaena dubia		AY192686	AF120623	
Kuphus polythalamiaS00487JF899210JF89212Zamboanga del Sur, Mindanao, PhilippinesLucinomo borealisS00495JF899212JF899184Manado Bay, IndonesiaLyrodus pedicellatusS00502JF899211JF899183Banan River, FL, mangrove woodLyrodus pedicellatusS00502JF899213JF899183Banan River, FL, mangrove woodLyrodus pedicellatusS00502JF899213JF899185West coast of Minahasa Peninsula, IndonesiaMartesia striataS00235AM774566AM779740Mulinia lateratisL11268AF120501Hancock County, MEMya arenariaS00244AF120500AF120621Hancock County, MEMya arenariaS00506JF899215JF899187West coast of Minahasa Peninsula, IndonesiaNausitora dunlopeiS00499JF899217JF899187West coast of Minahasa Peninsula, IndonesiaNausitora fusticulaS00401AY12667JF899187West coast of Minahasa Peninsula, IndonesiaNausitora fusticulaS00490JF899219JF899190Samish Bay, WAPanopea generosaS00505JF899219JF899190Samish Bay, WAPetricola pholadiformisS00480JF899219JF899192Rocky shore, Charmouth, Dorset, UKPlacopeeten magellanicusS0443JF899220JF899193Manado Bay, IndonesiaSpathotered obtusaS00496JF899223JF899195Lagoen, Boaire, NA, driftwoodSpathotered obtusaS00496JF899225JF899195Lagoen, Boaire, NA, driftwood </td <td>Hiatella arctica</td> <td>S00471</td> <td>AM774511</td> <td>AM779685</td> <td>La Jolla, CA, 15 m</td>	Hiatella arctica	S00471	AM774511	AM779685	La Jolla, CA, 15 m
Lucinoma borealis S00473 AM774501 AM79675 Mill Bay, Salcombe, UK Lyrodus massa S00495 JF899121 JF899184 Manado Bay, Indonesia Lyrodus pedicellatus S00502 JF899211 JF899183 Banana River, FL, mangrove wood Macoma balthica AM774540 AM779714 Long Beach, CA Macoma balthica MM774566 AM77970 Vest coast of Minahasa Peninsula, Indonesia Marcenaria mercenaria S00235 AM774566 AM779740 Vest coast of Minahasa Peninsula, Indonesia Mya truncata S00506 JF899214 JF899186 Cobscook Bay, ME Nausitora funlopei S00499 JF899217 JF899187 West coast of Minahasa Peninsula, Indonesia Nausitora fusticula S00490 JF899217 JF899187 West coast of Minahasa Peninsula, Indonesia Neateredo reynei S00400 JF899217 JF899189 Praia Dura, Ubatuba, Brazil Panopea generosa S00405 JF899219 JF899191 Wachapreague, VA Photosa doctylus S00493 JF899219 JF899191 Machapreague, VA	Kuphus polythalamia	S00487	JF899210	JF899182	Zamboanga del Sur, Mindanao, Philippines
Lyrodus massa S00495 JF899212 JF899184 Manado Bay, Indonesia Lyrodus pedicellatus S00502 JF899211 JF899183 Banana River, FL, mangrove wood Lyrodus pedicellatus S00469 AM774540 AM779704 Long Beach, CA Marceia striata S00235 AM774566 AM779700 Sec coast of Minahasa Peninsula, Indonesia Marceia striata S00235 AM774566 AM779700 Hancock County, ME Mya arenaria S00424 AF120560 AF120621 Hancock County, ME Mya truncata S00506 JF899215 JF899186 Cobscook Bay, ME Nausitora dulopei S00490 JF899217 JF899189 Praia Dura, Ubatuba, Brazil Nausitora dulopei S00490 JF899217 JF899189 Praia Dura, Ubatuba, Brazil Neateredo reynei S00480 JF899219 JF899191 Wachapreague, VA Panopea generosa S00480 JF899219 JF899191 Wachapreague, VA Pholas dactylus S00480 JF899222 JF899191 Wachapreague, VA P	Lucinoma borealis	S00473	AM774501	AM779675	Mill Bay, Salcombe, UK
Lyrodus pedicellatus S00502 JF899211 JF89183 Banana River, FL, mangrove wood Lyrodus pedicellatus S00469 AM774540 AM779714 Long Beach, CA Macoma balthica AM774526 AM779700 Martesia striata S00501 JF899213 JF899185 West coast of Minahasa Peninsula, Indonesia Marcenaria mercenaria S00505 AM774566 AH719700 Marcenaria mercenaria S00424 AF120560 AF131003 Mya turncata S00505 JF899214 JF899186 Cobscook Bay, ME Nausitora dunlopei S00499 JF899217 JF899188 Praia Dura, Ubatuba, Brazil Nausitora fusticula S00490 JF899217 JF899180 Praia Dura, Ubatuba, Brazil Panopea generosa S00505 JF899218 JF899190 Samish Bay, WA Petricola pholatiformis S00480 JF899217 JF899191 Wachapreague, VA Pholos dactylus S00480 JF899219 JF899190 Samish Bay, WA Petricola pholatiformis S00480 JF899220 JF899191 Wachapreague, VA	Lyrodus massa	S00495	JF899212	JF899184	Manado Bay, Indonesia
Lyrodus pedicellatus S00469 AM774540 AM779714 Long Beach, CA Macoma balthica AM774526 AM779700 Martesis striata S00501 JF899185 West coast of Minahasa Peninsula, Indonesia Mercenaria mercenaria S00235 AM774566 AM779700 Mulinia lateralis L11268 AF131003 Mya arenaria S00490 JF899186 Cobscook Bay, ME Musitora dunlopei S00499 JF899215 JF899186 Cobscook Bay, ME Nausitora dunlopei S00490 JF899217 JF899188 Praia Dura, Ubatuba, Brazil Nausitora fusticula S00490 JF899218 JF899190 Samish Bay, WA Panopea generosa S00505 JF899218 JF899190 Samish Bay, WA Petricola pholadiformis S00480 JF899220 JF899192 Rocky shore, Charmouth, Dorset, UK Placopecten magellanicus X53899 AF342798 M774544 AM779518 Sphenia perversa AM774544 AM779518 Collection panels, Belfast pier, Belfast, ME Teredora nalleolus S	Lyrodus pedicellatus	S00502	JF899211	JF899183	Banana River, FL, mangrove wood
Macroma balthica MM774526 MM779700 Martesia striata \$000501 JF899213 JF899185 West coast of Minahasa Peninsula, Indonesia Martesia striata \$00235 AM774566 AM779740 Mulinia lateralis I.11268 AF131003 Mya arenaria \$00424 AF120560 AF13063 Mya tarenaria \$00409 JF899214 JF899186 Cobscook Bay, ME Nausitora dunlopei \$00491 AY192697 JF899188 Praia Dura, Ubatuba, Brazil Nausitora fusticula \$00490 JF899217 JF899189 Praia Dura, Ubatuba, Brazil Panopea generosa \$00505 JF899219 JF899191 Wachapreague, VA Petricola pholadiformis \$00480 JF899219 JF899191 Wachapreague, VA Pholas dactylus \$00483 JF899220 JF899193 Manado Bay, Indonesia Sophenic perversa AM774544 AM779718 Martesion Martesion Sophenic perversa \$00496 JF899225 JF899197 Bachelor's Beach, Bonaire, NA, driftwood Teredo n	Lyrodus pedicellatus	S00469	AM774540	AM779714	Long Beach, CA
Marcesia striata 500501 JF899213 JF899185 West coast of Minahasa Peninsula, Indonesia Mercenaria S00235 AM774566 AM779740 Mulinia laterafis L11268 AF121003 Mya arenaria S00424 AF120560 AF120621 Hancock County, ME Mya arenaria S00499 JF899215 JF899186 Cobcook Bay, ME Musitria dunlopei S00499 JF899215 JF899188 Praia Dura, Ubatuba, Brazil Nausitora fusticula S00490 JF899217 JF899188 Praia Dura, Ubatuba, Brazil Neoteredo reynei S00490 JF899218 JF899190 Samish Bay, WA Petricola pholadiformis S00480 JF899219 JF899192 Rocky shore, Charmouth, Dorset, UK Placopecter magellanicus X53899 AF342798 Spathoteredo obtusa S00493 JF899222 JF899193 Manado Bay, Indonesia Spathoteredo obtusa S00493 JF899223 JF899197 Bachelor's Beach, Bonaire, NA, arm Spathoteredo navalis S00486 JF899223 JF899195 Lagoen, Bonaire, NA, drif	Macoma balthica		AM774526	AM779700	
Mercenaria mercenaria S00235 AM774566 AM779740 Mulinia lateralis L11268 AF131003 Mya arenaria S00424 AF120560 AF120621 Hancock County, ME Mya arenaria S00506 JF899214 JF899186 Cobscook Bay, ME Nausitora fusticula S00490 JF899215 JF899187 West coast of Minahasa Peninsula, Indonesia Nausitora fusticula S00491 AY192697 JF899188 Praia Dura, Ubatuba, Brazil Neoteredo reynei S00490 JF899217 JF899189 Praia Dura, Ubatuba, Brazil Panopea generosa S00505 JF899218 JF899190 Samish Bay, WA Petricola pholadiformis S00480 JF899219 JF899191 Wachapreague, VA Pholas dactylus S00483 JF899220 JF899192 Rocky shore, Charmouth, Dorset, UK Placopecten magellanicus X53899 AF342798 Teredo navalis S00493 JF899225 JF899193 Manado Bay, Indonesia Sphenia perversa AM774525 AM779718 Lagoen, Bonaire, NA, driftwood Teredor avalis <td>Martesia striata</td> <td>S00501</td> <td>JF899213</td> <td>JF899185</td> <td>West coast of Minahasa Peninsula, Indonesia</td>	Martesia striata	S00501	JF899213	JF899185	West coast of Minahasa Peninsula, Indonesia
Mulinia lateralis L11268 AF131003 Mya arenaria \$00424 AF120560 AF120621 Hancock County, ME Mya truncata \$00506 JF899214 JF899186 Cobscook Bay, ME Nausitora dunlopei \$00499 JF899215 JF899187 West coast of Minahasa Peninsula, Indonesia Nausitora fusticula \$00490 JF899217 JF899188 Praia Dura, Ubatuba, Brazil Neoteredo reynei \$00490 JF899217 JF899189 Praia Dura, Ubatuba, Brazil Panopea generosa \$00505 JF899218 JF899190 Samish Bay, WA Petricola pholadiformis \$00483 JF899220 JF899191 Wachapreague, VA Pholos dactylus \$00483 JF899221 JF899193 Manado Bay, Indonesia Spathoteredo obtusa \$00493 JF899221 JF899193 Manado Bay, Indonesia Sphenia perversa AM774544 AM779718 Lagoen, Bonaire, NA, 3 m Teredo navalis \$00496 JF899223 JF899197 Bachelor's Beach, Bonaire, NA, 3 m Teredora malleolus \$004970	Mercenaria mercenaria	S00235	AM774566	AM779740	
Mya arenaria S00424 AF120560 AF120621 Hancock County, ME Mya truncata S00506 JF899214 JF899186 Cobscook Bay, ME Nausitora dunlopei S00499 JF899215 JF899187 West coast of Minahasa Peninsula, Indonesia Nausitora fusticula S00490 JF899217 JF899188 Praia Dura, Ubatuba, Brazil Panopea generosa S00505 JF899218 JF899190 Samish Bay, WA Petricola pholadiformis S00480 JF899219 JF899191 Wachapreague, VA Pholas dactylus S00483 JF899220 JF899192 Rocky shore, Charmouth, Dorset, UK Placopecten magellanicus X53899 AF342798 Manado Bay, Indonesia Solves Sphenia perversa AM774544 AM779718 Am774525 AM779699 Teredon amalleolus S00496 JF899223 JF899195 Lagoen, Bonaire, NA, driftwood Teredora malleolus S00496 JF899225 JF899195 Lagoen, Bonaire, NA, 3 m Thyasira flexuosa S00470 AJ581870 AJ581903 Port Alberni, BC, Canada	Mulinia lateralis		L11268	AF131003	
Mya truncata S00506 JF899214 JF899186 Cobscook Bay, ME Nausitora dunlopei S00499 JF899215 JF899187 West coast of Minahasa Peninsula, Indonesia Nausitora fusticula S00490 JF899217 JF899188 Praia Dura, Ubatuba, Brazil Neoteredo reynei S00490 JF899217 JF899189 Praia Dura, Ubatuba, Brazil Panopea generosa S00505 JF899218 JF899190 Samish Bay, WA Petricola pholadiformis S00480 JF899210 JF899191 Wachapreague, VA Pholas dactylus S00483 JF899220 JF899192 Rocky shore, Charmouth, Dorset, UK Placopecten magellanicus X53899 AF342798 Manado Bay, Indonesia Shenia perversa Spathoteredo obtusa S00493 JF899222 JF899193 Manado Bay, Indonesia Minabas Peninsula, ME Strigila euronia AM774544 AM779518 Marzonia Minabas Peninsula, Me Teredo navalis S00496 JF899225 JF899195 Lagoen, Bonaire, NA, driftwood Teredoravalis S00470 AJS81870	Mya arenaria	S00424	AF120560	AF120621	Hancock County, ME
Nausitora dunlopeiS00499JF899215JF899187West coast of Minahasa Peninsula, IndonesiaNausitora fusticulaS00491AY192697JF899188Praia Dura, Ubatuba, BrazilNeoteredo reyneiS00490JF899217JF899189Praia Dura, Ubatuba, BrazilPanopea generosaS00505JF899218JF899190Samish Bay, WAPetricola pholadiformisS00480JF899219JF899191Wachapreague, VAPholas dactylusS00483JF899220JF899192Rocky shore, Charmouth, Dorset, UKPlacopectern magellanicusS00493JF899221JF899193Manado Bay, IndonesiaSpathoteredo obtusaS00493JF899222JF899194Collection panels, Belfast pier, Belfast, MESpathoteredo avadisS00496JF899222JF899195Lagoen, Bonaire, NA, driftwoodTeredo navalisS00496JF899224JF899195Lagoen, Bonaire, NA, driftwoodTeredora malleolusS00470AJ581870AJ581903Port Alberni, BC, CanadaThyasira flexuosaS00470AJ581870AJ581903Port Alberni, BC, CanadaThyasira flexuosaS00472AY070123AY07013212 miles east of Southwest Harbor, ME, 100 mXylophaga ap.S00488JF899226JF899199Dredged wood, Friday Harbor, WAXylophaga sp.S00544JF89928JF899200Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 mXylopholas sp.S0053JF899229JF899201Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Mya truncata	S00506	JF899214	JF899186	Cobscook Bay, ME
Nausitora fusticula S00491 AY192697 JF899188 Praia Dura, Ubatuba, Brazil Neoteredo reynei S00490 JF899217 JF899189 Praia Dura, Ubatuba, Brazil Panopea generosa S00505 JF899218 JF899190 Samish Bay, WA Petricola pholadiformis S00480 JF899219 JF899191 Wachapreague, VA Pholas dactylus S00483 JF899220 JF899192 Rocky shore, Charmouth, Dorset, UK Placopecten magellanicus S00493 JF899221 JF899193 Manado Bay, Indonesia Sphenia perversa S00493 JF899222 JF899193 Manado Bay, Indonesia Strigilla euronia AM774524 AM779718 Collection panels, Belfast pier, Belfast, ME Teredon analleolus S00496 JF899223 JF899195 Lagoen, Bonaire, NA, driftwood Teredora malleolus S00470 AJS8170 AJS81903 Port Alberni, BC, Canada Thyasira flexuosa S00472 AJS81870 AJS81903 Port Alberni, BC, Canada Venerupis philippinarum EF426293 AM779742 Ylophaga sp. S00	Nausitora dunlopei	S00499	JF899215	JF899187	West coast of Minahasa Peninsula, Indonesia
Neoteredo reyneiS00490JF899217JF899189Praia Dura, Ubatuba, BrazilPanopea generosaS00505JF899218JF899190Samish Bay, WAPetricola pholadiformisS00480JF899219JF899191Wachapreague, VAPholas dactylusS00483JF899220JF899192Rocky shore, Charmouth, Dorset, UKPlacopecten magellanicusX53899AF342798Spathoteredo obtusaS00493JF899221JF899193Manado Bay, IndonesiaSplenia perversaAM774544AM779718Strigilla euroniaAM774525AM779699Teredo navalisS00496JF899223JF899195Lagoen, Bonaire, NA, driftwoodTeredo navalisS00496JF899225JF899197Bachelor's Beach, Bonaire, NA, 3 mThyasira flexuosaS00470AJ581870AJ581903Port Alberni, BC, CanadaThyasira gouldiS00472AY070123AY07742Yuphaga atlanticaXylophaga sp.S00481JF899226JF899199Dredged wood, Friday Harbor, WA, 100 mXylophaga sp.S00503JF899228JF899200Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 mXylopredo sp.S00503JF899229JF899201Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Nausitora fusticula	S00491	AY192697	JF899188	Praia Dura, Ubatuba, Brazil
Panopea generosa S00505 JF899218 JF899190 Samish Bay, WA Petricola pholadiformis S00480 JF899219 JF899191 Wachapreague, VA Pholas dactylus S00483 JF899220 JF899192 Rocky shore, Charmouth, Dorset, UK Placopecten magellanicus X5389 AF342798 Manado Bay, Indonesia Spathoteredo obtusa S00493 JF899221 JF899193 Manado Bay, Indonesia Sphenia perversa AM774544 AM779718 Collection panels, Belfast pier, Belfast, ME Teredo navalis S00486 JF899223 JF899195 Lagoen, Bonaire, NA, driftwood Teredothyra dominicensis S00470 AJ581870 AJ581903 Port Alberni, BC, Canada Thyasira flexuosa S00474 JF899226 JF899196 Mill Bay, Salcombe, UK Venerupis philippinarum EF426293 AW779742 Yuophaga sp. S00488 JF899226 JF899199 Dredged wood, Friday Harbor, ME, 100 m Xylophaga sp. S00504 JF899227 JF899199 Dredged wood, Friday Harbor, WA Xylophaga sp. S00503 <	Neoteredo reynei	S00490	JF899217	JF899189	Praia Dura, Ubatuba, Brazil
Petricola pholadiformis S00480 JF899219 JF899191 Wachapreague, VA Pholas dactylus S00483 JF899220 JF899192 Rocky shore, Charmouth, Dorset, UK Placopecten magellanicus X53899 AF342798 Spathoteredo obtusa S00493 JF899221 JF899193 Manado Bay, Indonesia Sphenia perversa AM774544 AM779718 Collection panels, Belfast pier, Belfast, ME Strigilla euronia AM774525 AM779699 Lagoen, Bonaire, NA, driftwood Teredo navalis S00496 JF899223 JF899195 Lagoen, Bonaire, NA, driftwood Teredothyra dominicensis S00470 AJ581870 AJ581903 Port Alberni, BC, Canada Thyasira flexuosa S00472 AY070123 AY070132 12 miles east of Southwest Harbor, ME, 100 m Xylophaga asp. S00488 JF899226 JF899199 Dredged wood, Friday Harbor, WA Xylophaga sp. S00504 JF899228 JF899199 Dredged wood, Friday Harbor, WA Xylophaga sp. S00503 JF899229 JF899108 SE of Port Dunford (29°02.2'S, 32°19.6'E)800 m	Panopea generosa	S00505	JF899218	JF899190	Samish Bay, WA
Pholas dactylusS00483JF899220JF899192Rocky shore, Charmouth, Dorset, UKPlacopecten magellanicusX53899AF342798Spathoteredo obtusaS00493JF899221JF899193Manado Bay, IndonesiaSphenia perversaAM774544AM779718Strigila euroniaAM774525AM779699Teredo navalisS00486JF899222JF899195Lagoen, Bonaire, NA, driftwoodTeredora malleolusS00497JF899225JF899197Bachelor's Beach, Bonaire, NA, 3 mThyasira flexuosaS00470AJ581870AJ581903Port Alberni, BC, CanadaThyasira gouldiS00474JF899224JF899196Mill Bay, Salcombe, UKVenerupis philippinarumEF426293AM779742Xylophaga atlanticaS00472AY070123AY07013212 miles east of Southwest Harbor, ME, 100 mXylophaga sp.S00481JF899226JF899199Dredged wood, Friday Harbor, WAXylopholas sp.S00503JF89228JF899200Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 mXyloredo sp.S00503JF899229JF899201Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Petricola pholadiformis	S00480	JF899219	JF899191	Wachapreague, VA
Placopecten magellanicusX53899AF342798Spathoteredo obtusaS00493JF899221JF899193Manado Bay, IndonesiaSphenia perversaAM774544AM779718Strigilla euroniaAM774525AM779699Teredo navalisS00486JF899222JF899194Collection panels, Belfast pier, Belfast, METeredo navalisS00497JF899223JF899195Lagoen, Bonaire, NA, driftwoodTeredothyra dominicensisS00496JF899225JF899197Bachelor's Beach, Bonaire, NA, 3 mThyasira flexuosaS00470AJ581870AJ581903Port Alberni, BC, CanadaThyasira gouldiS00474JF899224JF899196Mill Bay, Salcombe, UKVenerupis philippinarumEF426293AM779742Xylophaga atlanticaS00488JF899226JF899198SE of Port Dunford (29°02.2'S, 32°19.6'E)800 mXylophaga washingtonaS00481JF899228JF899200Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 mXyloredo sp.S00503JF899229JF899201Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Pholas dactylus	S00483	JF899220	JF899192	Rocky shore, Charmouth, Dorset, UK
Spathoteredo obtusaS00493JF899221JF899193Manado Bay, IndonesiaSphenia perversaAM774525AM779718Strigilla euroniaAM774525AM779699Teredo navalisS00486JF899222JF899194Collection panels, Belfast pier, Belfast, METeredora malleolusS00497JF899223JF899195Lagoen, Bonaire, NA, driftwoodTeredothyra dominicensisS00496JF899225JF899197Bachelor's Beach, Bonaire, NA, 3 mThyasira flexuosaS00470AJ581870AJ581903Port Alberni, BC, CanadaThyasira gouldiS00474JF899224JF899196Mill Bay, Salcombe, UKVenerupis philippinarumEF426293AM779742Xylophaga atlanticaS00472AY07123AY07013212 miles east of Southwest Harbor, ME, 100 mXylophaga sp.S00481JF899227JF899199Dredged wood, Friday Harbor, WAXylophalas sp.S00504JF899228JF899200Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 mXyloredo sp.S00503JF899229JF899201Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Placopecten magellanic	rus	X53899	AF342798	
Sphenia perversaAM774544AM779718Strigilla euroniaAM774525AM779699Teredo navalisS00486JF899222JF899194Collection panels, Belfast pier, Belfast, METeredora malleolusS00497JF899223JF899195Lagoen, Bonaire, NA, driftwoodTeredothyra dominicensisS00496JF899225JF899197Bachelor's Beach, Bonaire, NA, 3 mThyasira flexuosaS00470AJ581870AJ581903Port Alberni, BC, CanadaThyasira gouldiS00474JF899224JF899196Mill Bay, Salcombe, UKVenerupis philippinarumEF426293AM779742Xylophaga atlanticaS00472AY070123AY07013212 miles east of Southwest Harbor, ME, 100 mXylophaga sp.S00488JF899226JF899198SE of Port Dunford (29°02.2'S, 32°19.6'E)800 mXylophaga sp.S00504JF899228JF899200Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 mXyloredo sp.S00503JF899229JF899201Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Spathoteredo obtusa	S00493	JF899221	JF899193	Manado Bay, Indonesia
Strigilla euroniaAM774525AM779699Teredo navalisS00486JF899222JF899194Collection panels, Belfast pier, Belfast, METeredora malleolusS00497JF899223JF899195Lagoen, Bonaire, NA, driftwoodTeredothyra dominicensisS00496JF899225JF899197Bachelor's Beach, Bonaire, NA, 3 mThyasira flexuosaS00470AJ581870AJ581903Port Alberni, BC, CanadaThyasira gouldiS00474JF899224JF899196Mill Bay, Salcombe, UKVenerupis philippinarumEF426293AM779742Xylophaga atlanticaS00472AY070123AY07013212 miles east of Southwest Harbor, ME, 100 mXylophaga sp.S00488JF899226JF899198SE of Port Dunford (29°02.2'S, 32°19.6'E)800 mXylophaga sp.S00504JF899228JF899200Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 mXyloredo sp.S00503JF899229JF899201Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Sphenia perversa		AM774544	AM779718	
Teredo navalisS00486JF899222JF899194Collection panels, Belfast pier, Belfast, METeredora malleolusS00497JF899223JF899195Lagoen, Bonaire, NA, driftwoodTeredothyra dominicensisS00496JF899225JF899197Bachelor's Beach, Bonaire, NA, 3 mThyasira flexuosaS00470AJ581870AJ581903Port Alberni, BC, CanadaThyasira gouldiS00474JF899224JF899196Mill Bay, Salcombe, UKVenerupis philippinarumEF426293AM779742Xylophaga atlanticaS00472AY070123AY07013212 miles east of Southwest Harbor, ME, 100 mXylophaga sp.S00488JF899226JF899198SE of Port Dunford (29°02.2'S, 32°19.6'E)800 mXylophaga sp.S00504JF899228JF899200Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 mXyloredo sp.S00503JF899229JF899201Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Strigilla euronia		AM774525	AM779699	
Teredora malleolus S00497 JF899223 JF899195 Lagoen, Bonaire, NA, drittwood Teredothyra dominicensis S00496 JF899225 JF899197 Bachelor's Beach, Bonaire, NA, 3 m Thyasira flexuosa S00470 AJ581870 AJ581903 Port Alberni, BC, Canada Thyasira flexuosa S00474 JF899224 JF899196 Mill Bay, Salcombe, UK Venerupis philippinarum EF426293 AM779742 12 miles east of Southwest Harbor, ME, 100 m Xylophaga atlantica S00472 AY070123 AY070132 12 miles east of Southwest Harbor, ME, 100 m Xylophaga sp. S00488 JF899226 JF899199 Dredged wood, Friday Harbor, WA Xylophaga sp. S00504 JF89228 JF899200 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m Xyloredo sp. S00503 JF89229 JF899201 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Teredo navalis	S00486	JF899222	JF899194	Collection panels, Belfast pier, Belfast, ME
Teredothyra dominicensis S00496 JF899225 JF899197 Bachelor's Beach, Bonaire, NA, 3 m Thyasira flexuosa S00470 AJ581870 AJ581903 Port Alberni, BC, Canada Thyasira gouldi S00470 AJ581870 AJ581903 Port Alberni, BC, Canada Thyasira gouldi S00474 JF899224 JF899196 Mill Bay, Salcombe, UK Venerupis philippinarum EF426293 AM779742 12 miles east of Southwest Harbor, ME, 100 m Xylophaga atlantica S00472 AY070123 AY070132 12 miles east of Southwest Harbor, ME, 100 m Xylophaga sp. S00488 JF899226 JF899198 SE of Port Dunford (29°02.2'S, 32°19.6'E)800 m Xylophaga washingtona S00481 JF899228 JF899200 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m Xylopredo sp. S00503 JF899229 JF899201 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Teredora malleolus	S00497	JF899223	JF899195	Lagoen, Bonaire, NA, driftwood
Thyasira flexuosa S00470 AJS81870 AJS81903 Port Alberni, BC, Canada Thyasira gouldi S00474 JF899224 JF899196 Mill Bay, Salcombe, UK Venerupis philippinarum EF426293 AM779742 Xylophaga atlantica S00472 AY070123 AY070132 12 miles east of Southwest Harbor, ME, 100 m Xylophaga sp. S00488 JF899226 JF899198 SE of Port Dunford (29°02.2'S, 32°19.6'E)800 m Xylophaga washingtona S00481 JF899227 JF899199 Dredged wood, Friday Harbor, WA Xylopholas sp. S00504 JF899228 JF899200 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m Xyloredo sp. S00503 JF899229 JF899201 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Teredothyra dominicen	sis S00496	JF899225	JF899197	Bachelor's Beach, Bonaire, NA, 3 m
Inyasira goulai S004/4 JF899224 JF899196 Mill Bay, Salcombe, UK Venerupis philippinarum EF426293 AM779742 Xylophaga atlantica S00472 AY070123 AY070132 12 miles east of Southwest Harbor, ME, 100 m Xylophaga sp. S00488 JF899226 JF899199 SE of Port Dunford (29°02.2'S, 32°19.6'E)800 m Xylophaga washingtona S00481 JF899227 JF899199 Dredged wood, Friday Harbor, WA Xylopholas sp. S00504 JF899228 JF899200 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m Xyloredo sp. S00503 JF899229 JF899201 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	Thyasira flexuosa	S00470	AJ581870	AJ581903	Port Alberni, BC, Canada
venerupis pniuppinarum EF426293 AM7/9/42 Xylophaga atlantica S00472 AY070123 AY070132 12 miles east of Southwest Harbor, ME, 100 m Xylophaga sp. S00488 JF899226 JF899198 SE of Port Dunford (29°02.2'S, 32°19.6'E)800 m Xylophaga washingtona S00481 JF899227 JF899199 Dredged wood, Friday Harbor, WA Xylopholas sp. S00504 JF899228 JF899200 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m Xyloredo sp. S00503 JF899229 JF899201 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	i hyasira gouldi	5004/4	JF899224	JF899196	MIII Bay, Salcombe, UK
xyiopnaga attantica S00472 AY070123 AY070132 12 miles east of Southwest Harbor, ME, 100 m Xylophaga sp. S00488 JF899226 JF899198 SE of Port Dunford (29°02.2'S, 32°19.6'E)800 m Xylophaga washingtona S00481 JF899227 JF899199 Dredged wood, Friday Harbor, WA Xylopholas sp. S00504 JF899228 JF899200 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m Xyloredo sp. S00503 JF899229 JF899201 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	venerupis philippinarui	m 500.172	EF426293	AM//9/42	12 miles and affect the state to MD 400
Xylophaga sp. S00488 JF899226 JF899198 SE of Port Dunford (29°02.2'S, 32°19.6'E)800 m Xylophaga washingtona S00481 JF899227 JF899199 Dredged wood, Friday Harbor, WA Xylopholas sp. S00504 JF899228 JF899200 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m Xyloredo sp. S00503 JF899229 JF899201 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	xyiophaga atlantica	SUU4/2	AYU/U123	AYU/UI32	12 miles east of Southwest Harbor, ME, 100 m
Xylophaga washingtona S00481 JF859227 JF859199 Dredged wood, Friday Harbor, WA Xylopholas sp. S00504 JF899228 JF899200 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m Xyloredo sp. S00503 JF899229 JF899201 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	xyiophaga sp.	SUU488	JF899226	JF899198	SE OF PORT Dunford (29°02.2'S, 32°19.6'E)800 m
Xylopnolas sp. SU0504 JF859228 JF859200 Gult of Mexico (27°44.75'N, 91°13.31'W) 540 m Xyloredo sp. S00503 JF899229 JF899201 Gulf of Mexico (27°44.75'N, 91°13.31'W) 540 m	xylophaga washington	a SUU481	JF899227	14899199	Dredged wood, Friday Harbor, WA
xyloreao sp. 500503 JF899229 JF899201 Guit of Mexico (27°44.75'N, 91°13.31'W) 540 m	xyiopholas sp.	500504	JF899228	JF899200	Guir or Mexico (27°44.75′N, 91°13.31′W) 540 m
	луюreao sp.	200203	Jrøaa77a	JF899201	Guii oi wiexico (27°44.75°N, 91°13.31°W) 540 m

* Voucher specimens archived in the Ocean Genome Resource and can be accessed via the Ocean Genome Legacy, Ocean Genome Resource database. Published on the Web at: www.oglf.org/Catalog.htm; accessed 27 April 2011).

formed. Trees constrained to the optimal topology obtained in ML searches were compared to trees constrained to agree with published taxonomic or evolutionary hypotheses.

The states of 17 morphological characters were encoded (Table S1) and traced to the BI phylogeny presented in Fig. 2 using Mesquite v.2.74. Ancestral state reconstruction was performed using the parsimony method with discrete unordered character states.

3. Results

The resolving power of the examined data partitions was 18S < 28S < [18S + 28S], as evidenced by the fraction of resolved nodes and nodes with significant statistical support (i.e., nodes

with bootstrap proportions (bp) >70% in ME, ML or MP analyses or posterior probabilities (pp) > 0.90 in BI analyses). The compatibility of 18S and 28S data sets was confirmed by the partition homogeneity test (p = 0.01) (Cunningham, 1997). Although resolving power varied, topologies of phylogenetic trees inferred independently for all data partitions, inference methods and substitution models were consistent with respect to all statistically supported nodes (bp > 70% and pp > 0.90). Optimal tree topologies inferred by ME, ML, MP and BI using the combined [18S + 28S] data partition were identical with respect to resolved nodes and so only one (BI) is shown here (Fig. 2).

The phylogenetic hypothesis presented here (Fig. 2 B) indicates that the subfamily Xylophagainae of the family Pholadidae and the D.L. Distel et al./Molecular Phylogenetics and Evolution 61 (2011) 245-254

Table 2

Oligonucleotides used for	or sequencing and to prim	e polymerase chain reaction	(PCR) amplification of nuclear	18S and 28S rRNA genes.
0				0

Target-Primer Name	Primer Sequence $(5' \rightarrow 3')$	Sense	References
18S-EukF [*]	WAYCTGGTTGATCCTGCCAGT	Forward	(Medlin et al., 1988)
18S-EukR [*]	TGATCCTTCYGCAGGTTCACCTAC	Reverse	(Medlin et al., 1988)
18S-581F	CAAGTCTGGTGCCAGCAGCCGC	Forward	(Distel, 2000)
18S-560R	GCGGCTGCTGGCACCAGACTTG	Reverse	(Distel, 2000)
18S-926F	AAACTYAAAKGAATTGACGG	Forward	(Lane, 1991)
18S-907R	CCGTCAATTCMTTTRAGTTT	Reverse	(Distel, 2000)
28S-NLF184-21*	ACCCGCTGAAYTTAAGCATAT	Forward	www.psb.ugent.be/rRNA
28S-1600R*	AGCGCCATCCATTTTCAGG	Reverse	This study
28S-D23F	GAGAGTTCAAGAGTACGTG	Forward	(Park and O' Foighil, 2000)
28S-D24R	CACGTACTCTTGAACTCTC	Reverse	(Park and O' Foighil, 2000)
28S-D5CF	ACACGGACCAAGGAGTCT	Forward	(Park and O' Foighil, 2000)
28S-D4RB	TGTTAGACTCCTTGGTCCGTGT	Reverse	(Park and O' Foighil, 2000)
28S-D6R	CCAGCTATCCTGAGGGAAACTTCG	Reverse	(Park and O' Foighil, 2000)
28S-NLF105-22	CCGAAGTTTCCCTCAGGATAGC	Forward	www.psb.ugent.be/rRNA

* Denotes PCR primer pairs.

family Teredinidae are sister taxa and that the family Pholadidae is paraphyletic. Similarly, the subfamily Teredininae of the family Teredinidae is shown to be polyphyletic and the subfamily Bankiinae paraphyletic. Also, consistent with previous phylogenetic analyses based on molecular sequences e.g. (Dreyer et al., 2003; Giribet and Distel, 2003; Harper et al., 2006; Taylor et al., 2007), the tree topology presented here (Fig. 2A-B) does not support the monophyly of the order Myoida according to Newell (1969). Constraining the aforementioned assemblages to be monophyletic resulted in trees that are significantly less likely under the ML criteria (p < 0.05) as determined by the KH and SH tests (Table 3).

Cladograms displaying the results of ancestral state reconstructions for 17 characters related to xylotrepesis, xylotrophy and taxonomic diagnosis are displayed in supplemental data Figs. S1–S17. Character states inferred for critical nodes are summarized in Table 4.

4. Discussion

4.1. Anatomical features of xylotrophic bivalves and their proposed adaptive significance

The chaotic state of the taxonomy of xylotrophic bivalves no doubt reflects the difficulty of interpreting the unusual anatomy of Teredinidae. In adopting their modern worm-like shape, teredinids have undergone remarkable changes from the typical bivalve body plan (Fig. 1). During development, the visceral mass migrates so that most of the major organs are shifted ventral and posterior to the posterior adductor muscle. This places the bulk of the viscera, including the gills, heart, kidneys, gonads, and most of the digestive system, outside of the protective enclosure of valves (Fig. 1b). The heart and kidneys are inverted both in the dorsalventral and anterior-posterior axes and the rectum is separated from the pericardial cavity and does not traverse the heart as it does in other bivalves (Fig. 1c). Moreover, as the shipworm bores into wood, its burrow becomes lined with a calcareous secretion, forming a tube that is bounded by the excavation face of the burrow at the anterior end and open to the external environment at the posterior end. The shipworm can seal the burrow entrance using shell-like plates called pallets, which attach to musculature at the base of the siphons, and which in some species may be ornately sculpted. The sculpture and form of the pallets has been a primary source of characters for taxonomic diagnosis of the family Teredinidae and its subfamilies, genera, and species.

The described anatomical modifications have important consequences for teredinid biology and development. Together, the surrounding wood, calcified burrow lining, and pallets provide protection against predation, dehydration, and other environmental challenges. This frees the valves from their ancestral protective function, allowing them to become specialized as boring tools ornamented with microscopic rasp-like teeth. At the same time, the migration of the visceral organs outside the confines of the valves allows the viscera to become greatly elongated and increased in size relative to the valves as the animal grows to fill the expanding cavity of the burrow. The posterior migration of the gills and heart also allows increased volume for storage and degradation of wood in the caecum without impeding the function of these organs. These adaptations (along with many others detailed in Table 5) give teredinids the worm-like appearance and destructive habits that have earned them the common name of shipworms.

Because most published treatments of teredinid anatomy, taxonomy, and evolution preceded the discovery of the gill endosymbionts, the putative origins and adaptive significance of the features described above bear reconsideration. For example, it is now evident that enlargement and elongation of the gills increases the volume of intralamellar tissue available to accommodate bacteriocytes and symbiotic bacteria. Similarly, the transition to a single gill demibranch in Teredinidae and Xylophagainae and the fusion of the right and left gill lamellae in Teredinidae also allow for increased gill thickness and intralamellar volume. Therefore, although once considered evidence of greater reliance on filter feeding and decreased wood utilization (Turner, 1966), gill enlargement might now be reinterpreted to indicate a greater reliance on symbiotic xylotrophy.

In contrast to the wormlike Teredinidae, Xylophagainae display much more typical bivalve morphology. The gills and visceral mass are contained wholly between the valves, falling largely between the anterior and posterior adductor muscle attachments. The visceral organs have not undergone elongation or dramatic changes in orientation as observed in Teredinidae, and the intestine traverses the pericardial cavity and heart as in Pholadidae and other Bivalvia. Xylophagainae also lack pallets (common to Teredinidae) and apophyses (lever-like shell protrusions that serve as pedal retractor muscle attachments in Teredinidae and other Pholadidae). Finally, unlike Teredinidae, Xylophagainae and other Pholadidae possess accessory shell plates that protect the foot, hinge ligaments, and siphons during burrowing.

4.2. Morphological evidence for common ancestry of xylotrophic bivalves

Although inconsistent with most widely accepted taxonomic treatments, the recent common ancestry inferred here for

Fig. 2. Phylogenetic hypothesis for xylotrophic bivalves and related taxa. Phylogram inferred by Bayesian analysis (see methods) of concatenated partial sequences of small and large subunit nuclear rRNA genes. Posterior probabilities greater than 0.90 (BI) and bootstrap proportions greater than 70% (ML) are indicated at the associated nodes. (A) Root part of the tree. (B) Subtree rooted at node (α) in (A). Taxa displayed within the dark gray box are xylotrophic Myoida (with the exception of *K. polythalamia*). Dashed box denotes deep-water taxa (found primarily in depths >100 m). The light gray boxes circumscribe other Myoida. Asterisks indicate sequences determined in this study. Numbers within closed ovals correspond to traits described in Table 5. Text colors correspond to taxonomic designations as follows: subfamilies: Teredininae (red), Bankiinae (dark blue), Kuphinae (orange), Xylophagainae (green); other Pholadidae (light blue), other Myoida (light green). Insets: (a) siphonal plates of *Xylopholas altenae* (with permission from (Turner, 1906)); (b and d) pallets of *Teredora malleolus* (unsegmented), Bankia carinata (segmented) and Lyrodus pedicellatus (unsegmented) (with permission from (Turner, 1966)); (c) *Mya truncata*, (f) *Martesia striata*, (g) *Xylophaga washingtona*, (h) *Dicyathifer manni*, (i) *Bankia setacea*, (j) *Lyrodus pedicellatus*. Scale bars in (e–j) are approximately 1 cm. Roman numerals indicate major teredinid groups as defined by (Turner, 1966).

Table 3

Results of Kishino-Hasegawa (KH) and Shimodaira-Hasegawa (SH) tests under Maximum Likelihood for the sequence dataset using RELL bootstrap analysis and the one-tailed test.

Constraints ^a	Difference in				
	−ln L	-ln <i>L</i> values ^b	<i>p</i> -Value ^c		
Unconstrained tree	30448.18730	Best			
(Teredininae)	30890.97722	442.78992	0.000*		
(Bankiinae)	30628.58968	180.40238	0.000*		
((Teredininae) (Bankiinae))	30890.97722	442.78992	0.000*		
((Teredininae)(Bankiinae)(Pholadidae))	31256.53401	808.34671	0.000*		
(Pholadidae)	30480.30983	32.12253	0.013*		
((Teredinidae) (Pholadidae))	30480.30983	32.12253	0.013*		
(Myoida)	30794.49036	346.30306	0.000*		

^a Monophyly is indicated by ().

^b Difference between the unconstrained (=best ML, Fig. 2B) and constrained trees.

^c Probability of getting a more extreme *T*-value under the null hypothesis of no difference between the two trees (one-tailed test) with significance at p < 0.05 (*).

Table 4	
Summary of inferred ancestral character states.	

		Inferred ancestral character state in the most recent common ancestor of the clade containing:						
		Pd + Xn + Td	Xn + Td	Xn	Td	Tn	Bn	Ly
1	Accessory shell plates	±	±	+	_	_	_	-
2	Apophysis	±	±	_	+	+	+	+
3	Burrows: calcareous lining	-	-	_	+	+	+	+
4	Deep water habitat	-	-	+	_	-	_	_
5	Gill endosymbionts	-	+	+	+	+	+	+
6	Gills: single demibranch	-	+	+	+	+	+	+
7	Intestine: loops forward	NA	NA	NA	+	+	_	_
8	Intestine: traversing heart	+	+	+	_	_	_	_
9	Larvipary	-	-	-	_	-	_	+
10	Pallets	-	-	-	+	+	+	+
11	Pallet segmentation	NA	NA	NA	_	-	+	_
12	Stomach: elongate	-	-	-	_	-	+	+
13	Valves: fine denticulation	-	+	+	+	+	+	+
14	Viscera: posterior to PA	_	-	-	+	+	+	+
15	Wood ingestion	_	+	+	+	+	+	+
16	Wood-storing caecum	-	+	+	+	+	+	+
17	Xylotrepesis: obligate	_	+	+	+	+	+	+

Pd; Pholadidae, Xn; Xylophagainae, Td; Teredinidae, Tn; Teredininae, Bn; Bankiinae, Ly; Lyrodus clade, PA; Posterior Adductor, +; present, -; absent, ±; equivocal, NA, not applicable.

Xylophagainae and Teredinidae is consistent with a number of unusual features shared by nearly all members of both groups but absent from other Pholadoidea. These include (1) obligate xylotrepesis (2) ingestion of wood particles (3) the presence of a caecum that becomes engorged with wood particles, (4) possession of a single gill demibranch, (5) presence of microscopic cutting teeth on the anterior slope of the valves, and (6) the presence of bacterial endosymbionts within specialized cells of a thickened and modified interlamellar tissue. Previously these similarities have been proposed to be the result of convergent adaptations to the common requirements of wood boring and wood feeding (Turner, 1966, 1967, 1973, 2002).

Additional similarities may also be due to common ancestry. For example, like Teredinidae, members of the most recently described xylophagainid genera (*Xyloredo* and *Xylopholas*) form lined burrows (Turner, 2002). Those of *Xyloredo* are partially calcified and closely resemble the tubes of Teredinidae while those of *Xylopholas* and some *Xylophaga* are composed of a proteinaceous membrane that does not become calcified. In addition, members of the genus *Xylopholas* have calcified structures (siphonal plates; Fig. 2a) at the base of the siphons (Turner, 2002) that closely resemble the pallets of Teredinidae in appearance, location, and muscle insertion.

Ancestral state reconstructions suggest that pallets and lined burrows are equivocal or absent in the ancestral xylotroph (Figs. S3, S10). However, in Teredinidae, pallets and lined burrows function together to prevent dehydration when the animals are exposed to the atmosphere in intertidal or floating wood. Given this function, it is unlikely that these features arose independently in selected members of Xylophagainae, a group of deep-sea organisms that have not been observed to occur in floating or intertidal wood (Turner, 2002). We suggest that pallets and lined burrows are more likely ancestral features that were retained in a few, but lost in most Xylophagainae species after the invasion of deep-water habitats by a shallow water ancestor.

4.3. Evidence for non-monophyly of Teredininae and Bankiinae

The principal diagnostic character that distinguishes the major subfamilies of Teredinidae is the presence of segmented pallets in Bankiinae and unsegmented pallets in Teredininae. The phylogeny proposed here, however, suggests (1) that unsegmented pallets are the ancestral condition in the family Teredinidae, (2) that segmented pallets first emerged with the subfamily Bankiinae, and (3) that this characteristic was subsequently lost in a recent clade, hereafter referred to as the Lyrodus clade, that emerged within Bankiinae (see Supplemental Fig. S11). The Lyrodus clade, which is assigned to the subfamily Teredininae because of its unsegmented pallets, forms a strongly supported nested clade within the subfamily Bankiinae (Fig. 2B), indicating that both of these nominal subfamilies are non-monophyletic. This conclusion

Table 5

Hypothesis for evolution of wood-boring and wood feeding in bivalvia^{*}.

	Trait	Description	Putative functions/Notes
1	Accessory	Shell-like plates lying over the upper or lower margin, or attached to	May protect tissues (e.g., ligament and siphons) from abrasion caused
2	plates Apophyses	the internal ligament Lever-like projections of the inner valve surface to which pedal muscles attach	by burrowing in hard substrates May increase strength and leverage of muscle attachment required for hurrowing in hard substrates
3	Denticulated valves	Valves with sculpted teeth on the outer surface	Facilitates burrowing in hard substrates e.g. wood
4	Xylotrepesis	Habit of burrowing preferentially in wood	Likely evolved independently in Martesianae and xylotrophic bivalves (Teredinidae + Xylophagainae)
5	Symbiosis	Acquisition of bacterial endosymbionts in in interlamellar tissue of the rills	Symbionts are known to fix nitrogen and may aid in lignocellulose degradation and utilization by the bost
6	Unpaired gill demibranchs	Loss of outer gill demibranch, thickening of the inner demibranch	May increase volume of symbiont-bearing interlamellar tissue
7	Lined burrows	Calcareous tube lining the inner surface of the burrow	Along with 8, protects against dehydration and other environmental threats
8	Pallets	Paired calcareous plates that insert into the burrow entrance to form a watertight seal	Alleviates dehydration risk during exposure to air, facilitates colonization of floating or intertidal wood
9	Caecum (appendix)	Blind sac connected to the posterior end of the stomach	Functions in storage [1] and digestion [40] of wood particles excavated during burrowing
10	Invasion of the deep sea	Growth and reproduction largely restricted to depths >150 m	Utilization of deep-sea wood deposits, expansion into previously underexploited niche
11	Loss of lined burrows	Except in Xyloredo and Xylopholas where burrows are partially lined	Loss may reflect reduced dehydration risk and/or increased cost of maintaining calcareous structures in deep sea habitats
12	Loss of pallets	Except in Xyloredo (siphonal plates)	
13	Loss of apophyses	Pedal muscles attach directly to valve surface	May reflect adaptation to burrowing in softer waterlogged wood available on the sea floor
14	Vermiform body plan	 (a) During development the major visceral organs migrate posterior and ventral to the posterior adductor muscle and the protective enclosure of the valves (b) Lengthening and posterior migration of caecum, gonads, heart, 	Frees the valves from their ancestral protective function, may result in increased length and volume of symbiont-bearing tissue in gills and increased room for wood storage and digestion in the caecum Specialization of the valves for wood grinding, protective functions of
		kidney, and gills (c) Separation of the rectum and pericardium	valves and accessory plates assumed by burrow, tube, and pallets
		(d) Reduction of valves relative to body mass (e) Loss of accessory shell plates (except pallets, likely derived from the	
		siphon plates)	Increases volume of interlamellar tissues available to house
		(1) rusion of fert and right gin demotiations	endosymbiotic bacteria
15	Segmented pallets	Pallets composed of a series nested cups with flexible interdigitating sheaths of periostracum	May result in more effective closure of burrow after damage or wear to the tips of the tube and pallets
16	Elongate (Type III) stomach	Stomach long, not globular as in Pholadidae, Xylophagainae, and more basal Teredininae.	Proposed to facilitate digestion of wood particles [1]
17	Loss of anterior intestinal loop	Intestine proceeds from the midgut posteriorly, does not loop anteriorly over the style sac	
18	Larvipary	(a) Internal fertilization,	Capacity for rapid settlement and metamorphoses without prolonged planktonic phase, may facilitate rapid colonization of sparsely distributed marine wood deposits
		(b) development of internal brood pouchs, and (c) retention of fertilized embryos to the veliger stage of larval	
19	Loss of pallet	development Pallets composed of a single cup-shaped unit with prominent	May reduce risk of larvae becoming lodged between pallet segments
20	segmentation	perisotracal cap	in these larviparous species
20	xylotrepesis and xylotrophy	specializations for feeding on and burrowing in wood	

* Numbers at left refer to nodes depicted by closed ovals in Fig. 2.

is supported by the observation that trees inferred under the constraints of monophyly for Teredininae or Bankiinae are statistically less likely (p < 0.05, KH and SH test) than unconstrained optimal ML trees.

Although the proposed relationship between Bankiinae and the Lyrodus clade is not consistent with widely accepted taxonomy, it is notably consistent with reproductive strategies and anatomy of the stomach, intestines, and gills. For example, with the exception of the Lyrodus clade, members of Teredininae have globular (Type II) stomachs (Turner, 1966), resembling those of Xylophagainae and other Pholadidae, and the intestine loops forward over the style sac before proceeding anteriorly toward the caecum. However, in Bankiinae and the Lyrodus clade the stomach is elongate (Type III) (Turner, 1966) and the intestine proceeds immediately toward the posterior without looping forward over the

style sac. In addition, members of the Lyrodus clade are larviparous. In these species, fertilization is internal and the larvae are retained within specialized brood pouches on the dorsal surface of the gills. In contrast, other Teredininae and all Bankiinae are broadcast spawners. Thus, the phylogeny presented here suggests that the Type II stomach is ancestral and that the emergence of the Type III stomach and loss of the anterior loop of the intestine occurred just once in Teredinidae, rather than having evolved independently in Teredininae and Bankiinae as previously proposed (Turner, 1966). Moreover, this phylogeny suggests that internal fertilization, larvipary, and internal brood pouches appear to have evolved recently within Bankiinae rather than in Teredininae.

In this regard, it is interesting to note that *Bankia carinata* is well supported as the most basal member of the clade containing the larviparous branch of Teredininae. This is significant because juveniles of *B. carinata* have unsegmented pallets that become segmented only in mature adults (Turner, 1966). This observation suggests that the loss of pallet segmentation in larviparous Teredininae is an example of neoteny (retention of a juvenile characteristic into the adult stage). This secondary loss of pallet segmentation may be adaptive for these larviparous species because unsegmented pallets are less likely to trap newly released larvae that might otherwise become lodged between pallet segments, thereby damaging larvae and hindering the ability of the adult to seal its burrow.

4.4. Inferred characteristics of the ancestral xylotrophic bivalve

The phylogeny presented here contradicts the previously proposed hypothesis that the common ancestor of Teredinidae was a non-xylotrophic "worm-like mud-borer with a pholad-like stomach" most closely resembling the extant teredinid subfamily Kuphinae (Turner, 1966). Modern Kuphinae is represented by a single genus and species, Kuphus polythalamia. This species is extremely rare and has been described only from preserved specimens. Although no reliable description of its life habits has been published, adult specimens are reported to burrow in sediment rather than wood. Turner (Turner, 1966) considered this species to represent the most primitive branch of Teredinidae because it has a simple stomach (Type I) and lacks a caecum, shell denticulation, and other apparent adaptations for consumption of wood. The analysis presented here indicates that K. polythalamia falls clearly within the radiation of Teredinidae, suggesting that its unique characteristics are derived rather than ancestral. Thus, these results do not support the view that the worm-like body plan preceded xylotrepesis and xylotrophy in Teredinidae.

Based on the molecular phylogeny presented here and the distribution of traits associated with wood-boring and wood-feeding habits among extant species (Table 4, Figs. S1-S17), it is possible to infer the likely characteristics of the hypothetical ancestor of xylotrophic bivalves, and to propose a plausible ordered set of events leading to the evolution of the divergent characteristics observed in modern taxa (Fig. 2B and Table 5). These analyses suggest that the last common ancestor of Teredinidae and Xylophagainae burrowed in and fed on wood, and had a caecum for wood storage and digestion. It possessed unpaired gill demibranchs that contained xylotrophic symbionts in bacteriocytes housed within the interlamellar tissue. This ancestor likely displayed a mix of features resembling modern Teredinidae and Xylophagainae. It was not wormlike but instead had a typical bivalve body plan with the intestines traversing the heart and the visceral organs located between the anterior and posterior adductor muscles and largely enclosed by the valves. Like modern teredinids, this common ancestor may have possessed apophyses and formed lined burrows that were sealed by paired pallets. This hypothesis requires each of these unusual shared traits to have emerged just once in Bivalvia, rather than twice as is demanded by the currently accepted taxonomy.

5. Conclusions

The conclusion that Teredinidae and Xylophagainae share a recent common ancestor suggests that xylotrophy, and by extension, xylotrophic symbiosis, evolved just once in Bivalvia. This ancestral xylotrophic lineage then diverged into two morphologically and ecologically distinct lineages, respectively confined to shallow- and deep-water habitats. The observation that gill endo-symbiosis appears roughly concomitantly with the onset of xylotrophy suggests that symbiont acquisition may have contributed to the success of this lineage in utilizing wood, a previously underexploited food source. This in turn facilitated the invasion

of diverse habitats, ranging from brackish to marine salinities, intertidal to abyssal depths, and tropical to temperate latitudes, as well as substrates ranging from floating or sunken wood, plant fibers and nut hulls to living mangrove roots and sea grass rhizomes. Furthermore, it appears that only one extant taxon, represented by a single genus and species, has subsequently lost the xylotrophic habit. Thus, by most measures, the acquisition of xylotrophy and xylotrophic symbioses must be considered a formidable evolutionary success.

5.1. Taxonomic recommendations

The phylogenetic and ancestral state analysis presented here, as well as a recent cladistic analysis of morphological features of these taxa (Monari, 2009), combine to form a strong argument that the family Teredinidae and the subfamily Xylophagainae of the family Pholadidae are sister taxa that should be afforded equal taxanomic rank. This might be accomplished by elevating the subfamily Xylophagainae to the rank of family, as suggested by (Purchon, 1941), or by transferring the subfamily Xylophagainae from the family Pholadidae to the sister family Teredinidae. In either case, additional phylogenetic analyses will be required to resolve finer taxonomic divisions within the resulting taxonomic units.

Acknowledgements

This manuscript is dedicated to the memory of Dr. Ruth D. Turner, whose meticulous and pioneering research on the biology of wood-boring bivalves made the current effort possible. The work described in this manuscript was supported by grants from the National Science Foundation (DEB0629255 and IOS920540), the Philippine Mollusk Symbiont ICBG NIH 1U01TW008163, and New England Biolabs, and Ocean Genome Legacy, Inc. We also thank Dr. Robin Gutell and Jamie Cannone (Comparative RNA Web Site and Project, University of Texas, Austin) for assistance with secondary structure analysis and sequence alignments. We thank Dr. Hans Truper and Dr. Mark T. Riley for coining the term "xylotrepesis", first used here to describe the habit of burrowing preferentially in wood. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or Ocean Genome Legacy, Inc.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ympev.2011.05.019.

References

- Cobb, K., 2002. Return of castaway. Sci. News 162, 72-74.
- Cole, T., Turner, R.D., 1978. Genetic relations of deep-sea wood borers. Bull. Am. Malacol. Union 1977, 19–25.
- Cole, T.J., Turner, R.D., 1977. Genetic similarities of wood-boring bivalves (Pholadidae and Teredinidae) based on comparisons of allozymes. Biol. Bull. 153, 420.
- Cunningham, C.W., 1997. Can three incongruence tests predict when data should be combined?. Mol. Biol. Evol. 14, 733–740.
- Distel, D.L., 2000. Phylogenetic relationships among Mytilidae (Bivalvia): 18S rRNA data suggest convergence in mytilid body plans. Mol. Phylogenet. Evol. 15, 25– 33.
- Distel, D.L., 2003. The biology of marine wood boring bivalves and their bacterial endosymbionts. In: Goodell, B., Nicholas, D.D., Schultz, T.P. (Eds.), Wood Deterioration and Preservation. American Chemical Society Press, Washington, pp. 253–271.
- Distel, D.L., Beaudoin, D.J., Morrill, W., 2002a. Coexistence of multiple proteobacterial endosymbionts in the gills of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl. Environ. Microbiol. 68, 6292–6299.
- Distel, D.L., Morrill, W., MacLaren-Toussaint, N., Franks, D., Waterbury, J., 2002b. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic,

endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int. J. Syst. Evol. Microbiol. 52, 2261–2269.

- Distel, D.L., Roberts, S.J., 1997. Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and Xylophaga washingtona. Biol. Bull. 192, 253–261.
- Dreyer, H., Steiner, G., Harper, E.M., 2003. Molecular phylogeny of Anomalodesmata (Mollusca: Bivalvia) inferred from 18S rRNA sequences. Zool. J. Linn. Soc. 139, 229–246.
- Gallager, S.M., Turner, R.D., Berg, C.J., 1981. Physiological aspects of wood consumption, growth, and reproduction in the shipworm Lyrodus pedicellatus Quatrefages. J. Exp. Mar. Biol. Ecol. 52, 63–77.
- Giribet, G., Distel, D.L., 2003. Bivalve phylogeny and molecular data. In: Lydeard, C., Lindberg, D.R. (Eds.), Molecular Systematics and Phylogeography of Mollusks. Smithsonian Institution Press, Washington, D.C., pp. 45–90.
- Haigler, C.H., Weimer, P.J. (Eds.), 1991. Biosynthesis and biodegradation of cellulose. M. Dekker, New York, NY.
- Harper, E.M., Dreyer, H., Steiner, G., 2006. Reconstructing the Anomalodesmata (Mollusca: Bivalvia): morphology and molecules. Zool. J. Linn. Soc. 148, 395– 420.
- Hasegawa, M., Kishino, K., Yano, T., 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22..
- Hoagland, K.E., 1986. Genetic variation in seven wood boring teredinid and pholadid bivalves with different patterens of life history and dispersal. Malacologia 27, 323–329.
- Hoagland, K.E., Turner, R.D., 1981. Evolution and adaptive radiation of wood-boring bivalves (Pholadacea). Malacologia 21, 111–148.
- Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
- Jenner, H.A., Rajagopal, S., Van Der Velde, G., Daud, M.S., 2003. Perforation of ABS pipes by boring bivalve Martesia striata: a case study. Int. Biodeterior. Biodegrad. 52, 229–232.
- Kishino, H., Hasegawa, M., 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29, 170–179.
- Lane, D.J., 1991. 16S/23S sequencing. In: Stackebrandt, E., Goodfellow, M. (Eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley, New York, pp. 115–175.
- Lechene, C.P., Luyten, Y., McMahon, G., Distel, D.L., 2007. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317, 1563– 1566.
- Liu, D.L., Walden, C.C., 1970. Enzymes of glucose metabolism in the caecum of the marine borer Bankia setacea. J. Fish. Res. Bd. Can. 27, 1141–1146.
- Luyten, Y.A., Thompson, J.R., Morrill, W., Polz, M.F., Distel, D.L., 2006. Extensive variation in intracellular symbiont community composition among members of a single population of the wood-boring bivalve *Lyrodus pedicellatus* (Bivalvia: Teredinidae). Appl. Environ. Microbiol. 72, 412–417.
- Maniatis, T., Fritsch, E.F., Sambrook, J., 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York.

- Medlin, L., Elwood, H.J., Stickel, S., Sogin, M.L., 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499.
- Monari, S., 2009. Phylogeny and biogeography of pholadid bivalve Barnea (Anchomasa) with considerations on the phylogeny of Pholadoidea. Acta Paleo. Pol. 54, 315–335.
- Newell, N.D., 1969. Classification of Bivalvia. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology. The Geological Society of America and the University of Kansas, pp. 205–224.
- Park, J., O' Foighil, D., 2000. Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments. Mol. Phylogenet. Evol. 14, 75–88.
- Posada, D., Crandall, K.A., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
- Purchon, R.D., 1941. On the biology and relationships of the lamellibranch *Xylophaga dorsalis* (Turton). J. Mar. Biol. Assoc. UK. 25, 1–39.
- Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Santos, S.M.L., Tagliaro, C.H., Beasley, C.R., Schneider, H., Sampaio, I., Santos, C., Muller, A.C.D., 2005. Taxonomic implications of molecular studies on northern Brazilian Teredinidae (Mollusca, Bivalvia) specimens. Genet. Mol. Biol. 28, 175– 179.
- Scott, P.J.B., 1991. Rapid destruction of pvc piping by boring bivalves. Int. Biodeter. 27, 87–92.
- Shimodaira, H., Hasegawa, M., 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114–1116.
- Springer, V.G., Beeman, E.R., 1960. Penetration of lead by the wood piddock Martesia striata. Science 131, 1378–1379.
- Swofford, D., 2003. Phylogenetic Analysis Using Parsimony (*and Other Methods) Sinauer Associates, Sunderland, Massachusetts..
- Taylor, J.D., Williams, S.T., Glover, E.A., Dyal, P., 2007. A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes. Zool. Scripta 36, 587–606.
- Turner, R.D., 1955. The family Pholadidae in the western Atlantic and eastern Pacific Part II – Martesiinae, Jouannetiinae and Xylophagainae. Johnsonia 3, 65–160.
- Turner, R.D., 1966. A survey and illustrated catalogue of the Teredinidae (Mollusca: Bivalvia). The Museum of Comparative Zoology, Harvard University, Cambridge, MA..
- Turner, R.D., 1967. Xylophagainae and Teredinidae a study in contrasts. Am. Malacol. Union Ann. Reports 1967, 46–48.
- Turner, R.D., 1973. Wood-boring bivalves, opportunistic species in the deep sea. Science 180, 1377–1379.
- Turner, R.D., 2002. On the subfamily Xylophagainae (Family Pholadidae, Bivalvia, Mollusca). Bull. Museum Comp. Zool. 157, 223–308.
- Waterbury, J.B., Calloway, C.B., Turner, R.D., 1983. A cellulolytic-nitrogen fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). Science 221, 1401–1403.