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The term “System of Systems” (SoS) has been used since the 1950s to describe systems that are composed of
independent constituent systems, which act jointly towards a common goal through the synergism between
them. Examples of SoS arise in areas such as power grid technology, transport, production, and military
enterprises. SoS engineering is challenged by the independence, heterogeneity, evolution, and emergence
properties found in SoS. This article focuses on the role of model-based techniques within the SoS engineering
field. A review of existing attempts to define and classify SoS is used to identify several dimensions that
characterise SoS applications. The SoS field is exemplified by a series of representative systems selected
from the literature on SoS applications. Within the area of model-based techniques the survey specifically
reviews the state of the art for SoS modelling, architectural description, simulation, verification, and testing.
Finally, the identified dimensions of SoS characteristics are used to identify research challenges and future
research areas of model-based SoS engineering.
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1. INTRODUCTION

In many important domains, including infrastructure, healthcare, transportation,
emergency response, and defence, reliance is placed on the delivery of a service by a sys-
tem composed of largely independent, typically preexisting, systems. For example, the
successful treatment of a patient in an emergency results from the interaction of several
separately owned and managed systems including telephony, ambulance assignment,
information sharing, communications, and hospital management. These constituent
systems may have existed before requirements (e.g., to meet maximum response times
or to guarantee the confidentiality of patient data) were imposed on their collective be-
haviour. Advances in network and communications technology have made it possible to
conceive of deliberately engineering and maintaining such “Systems of Systems” (SoSs).

The SoS engineer faces several important challenges, not least the need to identify
the boundaries of the overall SoS and of the independent constituent systems within it.
These boundaries relate to both technical aspects such as interfaces, integration and
testing, and management aspects such as governance and stakeholder involvement.
Further challenges relate to the gaining of confidence in system operation, in terms
of behavioural correctness, performance qualities, and their validation. Many of these
challenges are already the foci of work in the field of systems engineering [Hitchins
2005]. SoS engineering is not a completely new or opposing discipline, but is a sub-
field of systems engineering that focuses on the boundaries and interactions between
independent, distributed, and evolving constituent systems and their stakeholders.

The distributed constituent systems in an SoS are owned and operated by inde-
pendent stakeholders, and consequently there are limitations on the exchange of
information about them. On the other hand, SoS behaviour is dependent on emergent
phenomena observed at the system boundaries. Consequently, there is a need for
engineering techniques that address such characteristics. The challenges that SoS
engineering encounters to a higher degree than traditional systems engineering are
described by Dahmann et al. and can be summarized as follows: stakeholders with
competing interests and priorities, no centralised authority over all the systems, added
complexity due to multiple system lifecycles, as well as balancing testing, behaviour
characteristics, and performance needs between the constituent systems and the SoS
[Dahmann et al. 2008].

SoSs arise in increasingly broad domains. A widely used example is in emergency
response, in which agencies (such as fire, police, hospital) with independently owned
and managed systems nevertheless collaborate to deliver a service on which reliance is
placed. Other instances of SoSs arise in infrastructure systems, which typically deliver
services through the collaborative operation of multiple providers. In road transport,
for example, local, regional, and national agencies, often operating to different priori-
ties, manage flow in interlinked traffic networks, but must offer services that remain
safe across their boundaries. Recent applications of SoS engineering have been in
less conventional domains, such as transport of radioactive source materials [Mauss
et al. 2015], and the design of audio/video networks that stream content from mul-
tiple providers to heterogeneous sets of devices [Bryans et al. 2014]. After surveying
the state of the art in model-based techniques for SoS engineering, we discuss some
significant examples of SoSs in Section 4.

Although SoSs arise in very diverse domains and may differ in architecture and
application, the engineering problems that they present have some commonalities.
These include the need to gain assurance of key properties of the SoS as a whole
in spite of the operational and managerial independence of the constituent systems,
their distributed, concurrent character, and their heterogeneity. In addition, the range
of stakeholders involved, including the owners and operators of constituent systems,
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their integrators, and ultimately those who experience the system behaviour of the
SoS, implies the need to employ methods and tools that support collaborative working
from the elicitation of requirements to testing and maintenance.

We regard a system as “a combination of interacting elements organized to achieve
one or more stated purposes” [INCOSE 2015; International Organization for Standard-
ization 2015]. An SoS is a system, some of whose elements are themselves designated
as systems. A discipline of SoS engineering has begun to emerge, aiming to extend
systems engineering with the ability to develop, maintain, and adapt SoSs effectively.
In common with other areas of systems engineering, there has also been considerable
interest in the use of model-based techniques [Cantot and Luzeaux 2011]. We will
use the term “model” to refer to an abstract description of a system of interest. The
particular abstraction decisions made in a given model are determined by the model’s
purpose [Kramer 2007]. For example, a model of an emergency response SoS con-
structed in order to analyse maximum response times is unlikely to include an explicit
representation of all the fields in a patient record.

Models may be used to describe real-world objects or phenomena to a certain level of
fidelity. Equally, models may be used during design to describe potential systems that
are yet to be realised. In SoS engineering, as in systems engineering more generally,
both kinds of model arise in the development and maintenance of a system or SoS. In
particular, descriptive models of the already existing elements of an SoS may be com-
bined with design models of elements that are to be constructed. Models can cover such
diverse aspects of an SoS as its structure, functionality, communications, and behaviour.

To gain confidence that an SoS architecture will respect key properties, it is
paramount to have a precise model of the constituents and the connectors between
them, the properties of the constituents, and the SoSs environment. Such a model
supports the “trade-off” of alternative designs at early development stages and the
precise determination of the contract that exists between each constituent system and
the SoS. Model-based approaches are already well accepted in industry for their ability
to manage and control the overall complexity of a system, reveal and document its
key structure and behaviour, and communicate these to stakeholders [Woodcock et al.
2009]. As the use of models evolves and matures, there is a clear need for verification
and validation technology that allows the value of models to be exploited.

Model-based SoS engineering is an active area, both of practice and research. There
is considerable evidence of activity in forums such as the IEEE Systems Engineering
Conference,1 the IEEE Conference on System of Systems Engineering,2 and INCOSE,3
which runs an industry-led working group on SoS engineering, as well as publications
of record in media such as the IEEE Systems Engineering Journal and the Journal of
System of Systems Engineering. Notable in the area of model-based methods is the joint
Model-Based Systems Engineering initiative of INCOSE and the Object Management
Group.4 In 2010, the European Commission funded a group of projects specifically
addressing SoS engineering,5 and has held a series of expert workshops aiming to help
determine the potential of research in the field up to 2020 [European Commission
2012]. There is a considerable and growing volume of work in the area, but the subject
is young, and general lessons and patterns that cut across applications remain to be

1http://www.ieeesyscon.org/.
2For example, http://www.sosengineering.org/2015/.
3http://www.incose.org.
4http://www.omgwiki.org/MBSE.
5These include two projects focussing on research in model-oriented methods for the design of SoSs: COM-
PASS (www.compass-research.eu) and DANSE (www.danse-ip.eu), T-AREA-SOS which promotes transat-
lantic cooperation (www.tareasos.eu/) and ROAD2SOS (www.road2sos-project.eu).
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learned. Therefore, the exact extent to which model-based engineering can be applied
to SoS engineering is still an open research question.

The purpose of this article is to provide a structured view of the state of the art in
model-based techniques in SoS engineering, and to identify challenges for research
in this field. We focus on the use and potential of models that have formal semantic
foundations. Our 2009 review of industrial applications of formal methods suggested
that the benefits of formal modelling were being increasingly realised in indus-
trial practice, particularly in hardware, and to a greater extent in software design
[Woodcock et al. 2009]. The field of SoS engineering is nascent, exciting, and at
a very early stage of development with as yet no formal foundation able to scale
from hardware and software to the level of the SoS itself. The scope of the article
is confined to the modelling of technical systems, since this covers the major part of
work to date. However, progress on sociotechnical aspects of the interaction between
humans and SoSs, and between humans mediated through the SoS, is essential to
success in providing a truly comprehensive approach to SoS engineering [Lock and
Sommerville 2010]. Business aspects, including requirements elicitation, tendering,
and procurement, although also outside the scope of the article, are essential to a
comprehensive understanding of SoS [Holt 2012].

This article concentrates on two aspects of model-based SoS engineering: firstly the
characteristics of SoSs that make them particularly challenging, and secondly the engi-
neering activities that form the core of model-based approaches, specifically modelling,
architectural description, simulation, testing, and verification. A review of the many
attempts to define and classify SoSs (Section 2) suggests that it may be beneficial to
view SoSs in terms of the dimensions that categorise them (Section 3), and that pose
particular modelling challenges. A review of several exemplars of SoS engineering from
the literature helps to ground the subsequent discussion (Section 4). In Section 5, cur-
rent and promising technologies for formal model-based SoS engineering are explored.
In Section 6, research challenges in realising the potential of each of these technologies
are identified and the steps necessary to provide a firmer foundation for model-based
SoS engineering is examined.

2. DEFINITION AND CHARACTERISTICS

As might be expected in an emerging field, there is yet no precise and widely accepted
definition of SoS to which the bulk of the literature conforms, making it difficult to
bound the field precisely. The literature is diverse, and there are many attempts to
define and characterise SoS. Several reviews have sought to achieve some conver-
gence [Keating 2005; Jamshidi 2005; Sharawi et al. 2006; Lane and Valerdi 2007;
Gorod et al. 2008; Jamshidi 2008].6 In this section, we review attempts to define, char-
acterise, or describe SoS, starting with an historical overview (Section 2.1), followed by
a focus on literature that describe SoS via characteristics (Section 2.2) or Taxonomies
(Section 2.3). Views on SoS in Industry (Section 2.4), Academia (Section 2.5), and En-
gineering Handbooks (Section 2.6) are presented, with the section ending with a focus
on literature that extend existing SoS definitions (Section 2.7).

2.1. Historical Overview of SoS Definition

The early ideas of SoS come from a variety of sources. Boulding’s paper on general
systems theory uses the term “system of systems” to describe the organisation of

6Note that some surveys include Jackson and Keys [1984] and Müller-Merbach [1994] that use SoS to
describe a system for the arrangement and ordering of various “systems methodologies” concepts. These are
not included in this survey, as we concentrate on the relationships between and behaviour of operational
constituent systems, and not on creating structures for analysis methodologies.
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theoretical constructs [Boulding 1956]. The SoS concept is described as “the arrange-
ment of theoretical systems and constructs in a hierarchy of complexity.” Boulding’s
classification of SoS consists of a static structure for system’s anatomy as well as a
dynamic dimension that enables the system to adapt over time, as the SoS is an “open
system” that can be affected by external events. There is a division of labour between
differentiated but mutually dependent parts, and the SoS has a “transcendent” and
“unknowable” element. Several features of Boulding’s description bear a clear resem-
blance to aspects of the more recent engineering notions of SoS considered in the
following. Later, both urban city planning, systems science structures, and biological
systems came to be characterised as SoS [Berry 1964; Ackoff 1971; Jacob 1974].

The United States’ Strategic Defense Initiative (SDI) from the late 1980s became
a key factor in establishing SoS as an engineering concept focused on joining inde-
pendent systems together [United States, Congress, Senate, Committee on Armed
Services 1988]. Subsequently, SoS research intensified in both academia and industry,
and attracted increased awareness. Nevertheless, it took another 15 years for SoS En-
gineering (SoSE) to develop as a recognised discipline, and by the early 21st century
was still regarded as being in its infancy [Keating et al. 2003].

2.2. Defining SoS via Characteristics

In a response to a widening recognition of SoSs combined with the lack of a shared
agreement on an SoS definition, Maier [1996]7 characterises SoS in terms of five prin-
cipal features sometimes referred to by the acronym “OMGEE”:

Operational Independence. Any system that is part of an SoS is independent and is
able to operate serviceably if the SoS is disassembled.

Managerial Independence. Despite collaborating with the other members of the SoS,
the individual systems are self-governing and individually managed so that they
“not only can operate independently, they do operate independently.”

Geographic Distribution. The parties collaborating in an SoS are distributed over
a large geographic extent. Although the geographic extent is defined vaguely, it
is stressed that the collaborating systems can only exchange information and not
considerable quantities of mass or energy.

Evolutionary Development. An SoS’s existence and development are evolutionary in
the sense that objectives and functionality can be under constant change, as they
can be added, modified, or removed with experience. Thus, an SoS never appears
completely formed.

Emergent Behaviour. Through the collaboration between the systems in an SoS a
synergism is reached in which the system behaviour fulfils a purpose that cannot
be achieved by, or attributed to, any of the individual systems.

Boardman and Sauser [2006] seek to identify characteristics that distinguish SoSs
from conventional systems and pay particular attention to the merging of new con-
stituents with existing systems to form the SoS. They identify five characteristics for
SoS (acronym “ABCDE”):

Autonomy. Each system is free and independent with its own purpose of operation.
Belonging. Systems function collaboratively to meet a common higher purpose.
Connectivity. Synergism is enabled by the highly dynamic distributed network.

7In the SoS literature, Maier [1998a] is widely cited. However, the characteristics originate from Maier
[1996], which also exists in a whitepaper version published online [Maier 1998b]. All these versions share
the title “Architecting Principles for Systems-of-Systems.”
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Diversity. The constituents are heterogeneous self-sufficient systems that are open
for enhancement by evolution and adaptation.

Emerging. The cumulative actions and interactions between the constituents of an
SoS give rise to the behaviours that can be attributed to the SoS as a whole.

Abbott argues that the SoS term should be reserved for systems that are qualitatively
and structurally different from traditional systems [Abbott 2006]. An SoS should not
be seen as a hierarchy of components, but as an environment where systems reside and
systems can join, operate, and interact within it. Abbott defines three characteristics
of such environments: (1) Open at the top, meaning that an SoS is continually open for
addition of new applications and systems, without any top-level system defining the
SoS. (2) Open at the bottom, meaning that the lowest level of the SoS, such as a specific
communication stack, may be changed at any time. (3) Continually evolving, but slowly:
an SoS is never complete as it evolves with changes in the surrounding environment.
At least three forms of system evolution exist: standards and interfaces adjustment,
technological changes, and feature modification.

2.3. Defining SoS via Taxonomies

Shenhar [1994] proposes a two-dimensional taxonomy for systems; a technological un-
certainty dimension describing the maturity of the technologies and the scope level
dimension classifying systems from a single-purpose assembly to an array of geograph-
ically dispersed systems interacting to achieve a common purpose. Shenhar and Bonen
[1997] later identify SoS with the array type.

DeLaurentis and Crossley [2005] propose a taxonomy for SoS analysis that described
how an SoS materialises when needs are met by a combination of independent systems
that rely on the interrelationships between one another. The taxonomy emphasises
three dimensions: (1) “Connectivity”: analysis of interdependencies and the dynamic
topology changes over time, (2) “Control/autonomy”: balance between authority con-
trol versus autonomous behaviour, and (3) “System type”: the balance between hard-
ware/software and human enterprise.

Finally, Karcanias and Hessami [2010] considers SoS as an evolution of composite
systems, focused on the integration challenges of autonomous and independent systems
in large-scale projects. SoSs are described as complex multisystems that define a global
goal and aggregate interdependent constituent systems.

2.4. Industrial Views on SoS

In industry there has been a focus on the SoS challenges that occur in the communica-
tion and exchange of data between systems.

Noam describes the change in the interconnection between carriers and “telecom-
munications integrators” in new telecommunication infrastructures as a move from
“network of networks” to SoS, because networks start separating into dynamic sys-
tems, which will allow integrators to deliver services to the consumers, without them
owning the telecommunication network [Noam 1994].

Focusing on data transmission and hierarchical structures, Kotov [1997] defines an
SoS as “large-scale concurrent and distributed systems the components of which are
complex systems themselves.” These complex systems are described as a result of hard-
ware, software, and network being merged into larger integrated system architectures
with constant growing complexity.

The SoS term is used to describe the type of systems emerging from rapidly im-
proving military capabilities on intelligence gathering and sharing [Owens 1995],
which expands to a focus on the integration and interoperability between C4I (Com-
mand, Control, Communication, Computers, and Intelligence) and ISR (Intelligence,
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Surveillance, Reconnaissance) systems [Manthorpe 1996] as being key in future bat-
tlefield scenarios [Pei 2000].

Within enterprise systems, SoSs are challenging because the continuous emerging
behaviour makes it difficult to capture their business value and the heterogeneity of
constituents means that each system has its own capabilities, users, and interfaces,
making integration a challenge [Carlock and Fenton 2001]. In the same way, Cocks
[2006] describes SoS as the result of a system engineering process involving systems
for which integration and lifecycle development are not under centralised control.

Boehm [2006] refers to Software-Intensive SoSs (SISoS) as a key factor in the
competitiveness of organisations that supply software services. Future demands will
require dynamically evolving systems consisting of numerous independently devel-
oped systems, that will have emergent requirements and sociotechnical issues as key
challenges.

2.5. Academic Views on SoS

Within academia there has been a focus on engineering discipline and engineering
education for SoS. Eisner et al. [1991] identify the need of focusing on the challenges
that arise from the scale and complexity of SoSs (there denoted “S2”), and builds this
around seven characteristics including notions of interdependence and—unusually—a
requirement for overall control of the constituents.

In the same way as Eisner et al., Roe assume an overarching authority that has
responsibility for overall SoS requirements, but focus on the use of formal specifications
to evaluate functional decomposition and interoperability between legacy systems. In
one of the first books on SoS simulation and modelling Cantot and Luzeaux describes
an SoS as an assembly of systems that are independently acquired and then operated
in order to maximise the performance of the global operation of the grouped systems
at certain periods [Cantot and Luzeaux 2009, 2011].

With a focus on education Lukasik [1998] describes an SoS as a self-organizing
system assembled from multiple distributed individual systems, and assembly that
has not been directly designed; instead, it follows from the evolution of the integration
of constituents. Chen and Clothier [2003] focuses on systems engineering practice, but
attempts to improve and adapt traditional methods by focusing on the design of the
environment in which the SoS constituents reside.

Keating et al. [2003] provide a perspective in which an SoS is described as a meta-
system of interrelated complex subsystems, constructed out of systems that integrate
in order to reach a high goal, despite the individual parts being unlike in technology,
geography, and operation. In relation to this, Crossley [2004] suggests that a change in
industry and defence acquisition, moving from specification of single systems towards
less implementation-specific specifications of capabilities, has allowed for more existing
and future systems interacting to fulfil a common mission.

2.6. Views in Professional Handbooks

The U.S. Department of Defense Systems Engineering Guide for Systems of Systems
defines an SoS as “a set or arrangement of systems that results when independent
and useful systems are integrated into a larger system that delivers unique capa-
bilities” OUSD(AT&L), DoD [2008] (originally from the Defense Acquisition Guide-
book [Department of Defense 2004]). SoS development involves the creation of sys-
tems, which are collections of legacy, evolving, and new systems, that must have a
high degree of flexibility and adaptability. Two of the main considerations are (1) the
lack of authority over the constituent systems because of their independent manage-
ment, funding, and objectives that may not align with those of the SoS as a whole; and
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(2) the emergent behaviour adding a large degree of unpredictability, as overall system
behaviour cannot be predicted by having individual knowledge of each constituent.

In its most recent edition, the INCOSE Systems Engineering Handbook [INCOSE
2015] (an update over the previous 2011 edition [INCOSE 2011]) treats an SoS as a sys-
tem whose elements are managerially and/or operationally independent systems, and
which together usually produce results that cannot be achieved by the individual sys-
tems alone. It cites Maier’s characterisation of SoSs, and further cites Dahmann’s “pain
points” [Dahmann 2014] as significant challenges facing SoS engineering: absence of
common authorities; leadership in the SoS organisational environment; variety of con-
stituent systems’ perspectives; management of diverse requirements and the overall
SoS capability; autonomy, interdependencies, and emergence; and the challenges of
validation, testing, and learning. Security is further identified as a pressing concern.
The handbook observes that SoS engineering demands a balance between linear pro-
cedural methods for systematic activity and holistic nonlinear methods in the face of
complexity arising from SoS emergence.

2.7. Extensions of Existing Definitions

Krygiel [1999] define SoS as “a set of different systems so connected or related as to
produce results unachievable by the individual systems alone,’ which is an adaption of
Maier and Rechtin [1997]. Sage and Cuppan [2001] build on Maier’s SoS characteristics
to apply a strategy for organisational structuring, while Bar-Yam et al. [2004] use mili-
tary, biological, and sociological case studies to supplement Maier’s characteristics with
a notion of interdependency arising from the interoperability of constituents. Fisher
[2006] builds on Maier’s characteristics to describe a class of large-scale software-
intensive systems that exhibit levels of complexity for which traditional engineering
methods are likely to prove fruitless. Baldwin and Sauser [2009] use Maier’s char-
acteristics to define an SoS as “a type of system composed of traditional systems and
distinguished by the dynamic properties of autonomy, belonging, connectivity, diversity,
and emergence.”

Cook et al. [1999] attempts to establish a methodology for developing military SoS
via a structure of different levels of complexity (essentially based on Boulding [1956]).
SoSs are regarded as self-maintaining, evolving, have a large human element and,
while they are loosely organised, they have a strong interaction through which they
work towards a common goal.

Based on a survey of SoS definitions, Sharawi et al. [2006] propose SoS characteristics
that are considered either essential or desirable with respect to the modelling and
simulation of SoS, for which essential concepts are independence, interoperability, and
a global goal, while a characteristic such as distribution is considered desirable.

2.8. Other System Types Related to SoS

Different kinds of systems and notions exist in the literature that bear a resemblance
to SoS by their name, structures, or characteristics but are not identified as such.

Sage and Cuppan [2001] describes a Federation of Systems (FoS) as having many of
the same challenges as SoS, but they are much more heterogeneous with respect to the
“trans-cultural and trans-national socio-political” dimensions. Krygiel [1999] describes
a FoS as a type of SoS, but with a very high degree of heterogeneity, autonomy, and
greater geographic distribution.

Ultra-Large-Scale systems (ULS) are described as having most of the characteristics
of an SoS, but in a much larger scale. Instead of being seen as an SoS they are regarded
as sociotechnical ecosystems on a large scale, as they involve multifaceted interac-
tions between people and technology that reside inside an environment of massively
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complex technical and managerial challenges, in which an “erosion of the people/system
boundary” will occur [Northrop et al. 2006].

A comparable system type is described in the UK-based Large-Scale Complex IT
Systems initiative that focused on the challenges arising from the integration between
large, complex IT systems [Sommerville et al. 2012]. These systems consist of a col-
lection of new and existing independently owned and managed software systems that
work together, which raise high demands for the interactions between systems, organ-
isations, and people. A Large-Scale Complex IT System consists of systems, potentially
systems of systems in their own right, that work together out of mutual interest but
are owned by individual organisations that may be competing. This means that they
would be categorized as a virtual SoS in the categorization presented in Section 3.10.
Sommerville et al. directly address virtual SoS that, however, is found unintuitive,
as “virtual” is found to be too ambiguous a term and the “system of” in SoS is seen
to imply something that has been intentionally designed to perform a purpose in an
organization, using Checkland’s definition of a system [Checkland 1999]. Instead, the
term a “coalition of systems” is used to describe systems that work together out of mu-
tual interest without being originally design for this purpose and often having hostile
relationships between stakeholders.

3. DIMENSIONS OF SOS

As Section 2 suggests, there is no single precise definition of SoS, but the literature
offers a rich set of descriptions of SoS properties that allow fine distinctions to be drawn
between SoS instances. Equally, these many approaches share common concepts. What
do these mean for the use of model-based techniques to develop and maintain SoSs and
constituent systems? We argue that the “space” of SoSs might usefully be described in
terms of several dimensions based on shared concepts that have a bearing on modelling
and analysis. The intention is that positioning an SoS engineering problem in the
space defined by these dimensions might suggest modelling patterns and analysis
approaches. In this section, we propose eight such dimensions derived from terms used
in the literature, taking account of the contexts in which the terms have been used.
For example, the term “independence” may denote independence of operations for self-
governing constituents [Maier 1996; Crossley 2004], the independence of capabilities
in terms of the variances in resources of constituents [Karcanias and Hessami 2010],
or it can refer to independent optimisation of the constituents [Sage and Cuppan 2001].

3.1. Autonomy of Constituents

Autonomy is the extent to which a constituent system’s behaviour is governed by its
own rules rather than by others external to the constituent. This is especially seen as a
result of individual ownership of the systems. The property of managerial independence
identified by Maier (Section 2.2) entails that constituents perform their own functions
in accordance with their own rules, while also participating in the SoS. Autonomy of
constituents is central to SoS Engineering as described by Keating et al. [2003]. For
Boardman and Sauser [2006], autonomy refers to the capacity of a constituent system
to pursue a specific purpose: constituents that were conceived as parts that exhibit no
autonomy are really enabling elements of the SoS, rather than (constituent) systems in
their own right. Cook [2001] acknowledges the need for independence in Maier’s sense,
and also identifies a requirement for constituents to be “purposeful” and set their own
goals.

Given the heterogeneity of an SoS, there is likely to be considerable variation in the
autonomy exhibited by constituents. Modelling and analysis techniques need to permit
the expression of a range of actions that an autonomous constituent may perform, but
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that may not be precisely predicted at the SoS level. This suggests that there is a need
for looseness or underspecification of constituent system behaviour.

3.2. Independence

Independence is the capacity of constituent systems to operate when detached from
the rest of the SoS. This is Maier’s “operational independence” characteristic, also
identified by Krygiel [1999] as the capability for independent action and by Jamshidi
[2008] as the extent to which systems are “independently operable.” Independence of
both design and operation is key to the SoS definition offered by Sharawi et al. [2006].

Independence implies that a given constituent system may offer a range of be-
haviours, some related to its role in an SoS, and others independent of it. The rela-
tionship between these classes of behaviour, and specifically the dependencies between
them, might be hidden from the SoS engineer. Model-based techniques therefore need
to be able to support information hiding.

3.3. Distribution

Distribution refers to the extent to which constituent systems are dispersed so that
some form of connectivity enables communication or information sharing. Distribution
may denote a geographical distance such as “arrays” of systems dispersed over wide
geographical areas as described by Shenhar [1994] and Maier’s geographical distri-
bution characteristic [Maier 1996]. In Kotov’s characterisation of SoS, it is clear that
distribution may refer to a network distribution of concurrent processes as well as
physical separation [Kotov 1997]. Manthorpe [1996], considering joint military opera-
tions, identifies the need to accurately spread data to thousands of locations enabled
by mobile platforms and sensors.

Modelling frameworks that support distribution require the ability to assign con-
stituent system processes to computational infrastructure, linked by a communication
medium. Descriptions of concurrency, communication, and particularly failures of com-
munication media, are necessary.

3.4. Evolution

Many SoSs are long-lasting and subject to change, whether in the functionality deliv-
ered, the quality of that functionality, or in the structure and composition of constituent
systems. Maier [1996] identifies evolutionary development as a key characteristic, and
Carlock and Fenton [2001] identify the lack of a permanent state of the SoS. Car-
ney et al. [2005] view evolution as taking place through a series of largely deliberate
preservative or adaptive interventions caused by, for example, upgrades to constituent
systems or a need to respond to an evolving environment, as identified by Crossley
[2004] and Despotou et al. [2003]. Abbott [2006] emphasises that an SoS is “continually
evolving, but slowly.” Bloomfield and Gashi [2008] observe that evolution is “incessant.”

Model-based approaches to SoS engineering require support for gaining assurance of
the preservation of specified properties under evolution steps. We may characterise this
as a need for verification of conformance of a constituent system’s interfaces to those
of the other constituents with which it must interact. Evolution may be manifested as
updates to constituent systems, requiring reverification of conformance.

3.5. Dynamic Reconfiguration

Dynamic reconfiguration is the capacity of an SoS to undertake changes to its struc-
ture and composition, typically without planned intervention. Several authors identify
the ability to undertake this kind of real-time change as an important characteristic,
especially in ensuring resilience of an SoS to faults and other threats. Boardman and
Sauser [2006] identify the need for “dynamic determination of connectivity,” requiring
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the autonomy of the constituent systems to deliver the functions required to disconnect
and reconnect constituent systems, and to modify interfaces. Crossley [2004] regards
SoS as dynamic entities, while Schneider and Trapp [2009] discuss approaches to the
use of runtime safety models to enable dynamic reconfiguration of open SoSs.

In contrast with evolution, which refers to the capacity to support planned changes
on a slow scale through intervention, this dimension refers to the technical abilities
an SoS has to change its composition during operation, such as on-the-fly swap-in and
a pluggable architecture. To support the dynamic reconfiguration, SoS models must
have abstractions for the dynamic modification of architectures and interfaces, and the
capacity to reason about such changing structures.

3.6. Emergence of Behaviour

Within the SoS literature, emergence refers to the behaviours that arise as a result of
the synergistic collaboration of constituents. Reliance is typically placed on the delivery
of some emergent behaviour in order to deliver a higher functionality than delivered
by the constituents separately. Several significant papers, including Maier [1996] and
Boardman and Sauser [2006], refer directly to the need for emergence, and Abbott
[2006] develops the characteristic of SoS being “open at the top” in this sense.

The reliance placed on emergence establishes important demands on modelling and
analysis methods. It is vital that global properties can be described at the SoS level;
it will often be the case that an emergent property on which SoS stakeholders depend
can only be sensibly articulated at the SoS level, and not at the level of constituent
systems. Modelling and analysis tools should permit the statement and verification
of emergence, and permit identification of emergent behaviour that one would like to
avoid, such as feature interactions [Zave 1993].

3.7. Interdependence

Interdependence refers to the mutual dependency that arises from the constituent sys-
tems having to rely on each other in order to fulfil the common goal of the SoS. If the
objective of a constituent system depends on the SoS, then the constituent system itself
may have to sacrifice some of its individual behaviour in order to meet the requirements
of joining the SoS. Examples of terms that have been joined under “Interdependent”
are interrelationships [Krygiel 1999], interdependencies [Sage and Cuppan 2001], in-
terdependency [Bar-Yam et al. 2004], and belonging [Boardman and Sauser 2006].

Including both “Independence” and “Interdependence” may appear contradictory.
However, some authors take the view that an SoS requires trade-offs between the
degree of independence in the constituent systems and the interdependence required
to reach the common goal [Sage and Cuppan 2001; Bar-Yam et al. 2004]. So while
the individual constituent systems are independent, the relations and interoperability
between requires some degree of interdependence.

Modelling and analysis techniques should allow the explicit identification of inter-
dependence, the tracing of mutual dependencies, and the ability to use these links to
assess the impact of constituent system changes.

3.8. Interoperability

Interoperability refers to the ability of the SoS to incorporate a range of heterogeneous
constituent systems. This involves the integration and adaptation of interfaces, pro-
tocols, and standards to enable bridging between legacy and newly designed systems.
The interoperability concept appears in the literature in the notions of simultaneous
functioning [Shenhar 1994], integration of capabilities [Manthorpe 1996], interoper-
ability and integration [Krygiel 1999], heterogeneity [Carlock and Fenton 2001; Cook
2001], “open at the bottom” [Abbott 2006], and diversity [Boardman and Sauser 2006].
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Table I. Mapping Concepts to SoS Dimensions
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Boulding [1956] 2.1 • • • •
Ackoff [1971] 2.1 • • •

Eisner et al. [1991] 2.5 • • • •
Noam [1994] 2.4 • • • • •

Shenhar et al. [1994] 2.3 • • •
Manthorpe [1996] 2.4 • • •

Maier [1996] 2.2 • • • • •
Kotov [1997] 2.4 • •

Lukasik [1998] 2.5 • • • •
Krygiel [1999] 2.7 • • • •

Roe [1999] 2.5 • • • •
Cook et al. [1999] 2.7 • • • • • •

Pei [2000] 2.4 • • •
Carlock and Fenton [2001] 2.4 • • • • •

Sage and Cuppan [2001] 2.7 • • • • •
Chen and Clothier [2003] 2.5 • • • • • • •

Keating et al. [2003] 2.5 • • • • •
Bar-Yam et al. [2004] 2.7 • • • • •

Crossley [2004] 2.5 • • • •
DeLaurentis and Crossley [2005] 2.3 • • • • • • •

Abbott [2006] 2.2 • •
Boardman and Sauser [2006] 2.2 • • • • • •

Cocks [2006] 2.4 • • • •
Boehm [2006] 2.4 • •
Fisher [2006] 2.7 • • • • • •

Sharawi et al. [2006] 2.7 • • • • • • •
DoD SE Guide for SoS [2008] 2.6 • • • • • • • •

Karcanias and Hessami [2010] 2.3 • • • • • •
INCOSE [2015] 2.6 • • • • • • • •

Count – 16 17 19 21 10 22 12 20

The need for interoperability places several requirements on modelling and analysis
methods; it reinforces the need for techniques supporting the verification of confor-
mance of constituent system interfaces. Models of SoS exhibiting a need for interoper-
ability are likely to incorporate heterogeneous models of the constituents. Mechanisms
for ensuring semantic consistency of diverse models, and rigorous analysis of those
very distinct model types, are required in order to meet the needs for verification of
both emergence and conformance.

3.9. Mapping Concepts to SoS Dimensions

Table I shows how the eight dimensions are mapped to the descriptions, definitions,
and characteristics the original authors have used to perceive and explore the SoS
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domain. The purpose of the mapping is to visualise the distribution of the dimensions
in relation to both author and year. The mapping shows that some dimensions are
used more than others, with “Evolution” and “Emergence of Behaviour” as the most
frequent. This result is not unexpected as both are matters that are difficult to grasp
and for which there is still limited knowledge in a systems development context. There-
fore, they get more attention in defining publications, while areas such as “Dynamic
Reconfiguration” and “Distributed” systems are more researched. This, however, does
not mean that the other dimensions are not important in an SoS context; instead, it
should be seen as an indicator of how they are regarded. For instance, “Evolution” and
“Emergence of Behaviour” are properties sought for or managed in SoS engineering,
while “Independence” and “Autonomy” can be seen as properties of the constituent
systems, indicated by their ownership.

The mapping also shows diversity, as only a few authors have the same marks for the
eight terms. This might suggest vagueness in SoS as a concept. Looking at the literature
there is some truth to this, but it is also worth mentioning that it seems to be the
tendency that the newer publications include more of the eight dimensions than earlier
publications, and that the engineering handbooks contain the vast majority of the eight.
A reason for this diversity can be that the SoS literature derives from multidisciplinary
collection of researchers, developers, and managers, each approaching the SoS field
from their specific background. Some take an operational point of view, others a focus
on management, while this survey has a modelling perspective.

This survey has studied a large part of the literature in the search for SoS charac-
teristics, as seen from a modelling perspective. This does not entail that the results in
Table I cannot be used by other perspectives or as an identification of SoS in general.
It is merely important to bear in mind in what perspective the table was created. The
eight dimensions in Table I are not intended to define a boundary separating SoSs from
non-SoSs, but allow an individual candidate SoS to be characterised in a way that may
be useful in determining the model-based engineering techniques that are applicable.

In the remainder of this article, these dimensions are used to structure the discus-
sions on current practice, research challenges, and the anticipated steps needed for a
strengthened SoS engineering discipline. This is done within the four areas of mod-
elling and architectures, simulation, testing, and verification. The eight dimensions
will be used as reference points to ensure that they are considered with relation to
each of these four areas.

3.10. Categorisation

The U.S. Department of Defense makes use of four categories of SoS [OUSD(AT&L),
DoD 2008]:

Directed. The SoS is built to fulfil specific purposes. Constituent systems have the
ability to operate independently, but are managed to satisfy a concrete purpose.

Collaborative. The constituent systems are not compelled to follow a central man-
agement, but voluntarily participate in a collaboration to fulfil the goal.

Acknowledged. The SoS recognises a common purpose and goal, while the con-
stituent systems retain independent control and objectives. Evolution of the com-
mon purpose is based on collaboration between the SoS and the constituent sys-
tems.

Virtual. The SoS is without either managerial control or a common purpose. This
makes the behaviour and the fulfilled goals highly emergent, but also entails that
the exact means and structures producing the system functionality are difficult
to discern and distinguish.
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Three of these categories were originally defined by Maier [1996], while the “Acknowl-
edged” type was later proposed by Dahmann and Baldwin [2008]. Maier argues that
SoSs should be considered equivalent merely because they have a similar complexity
and scope. A categorisation is required in order to guide the selection of architecting
principles. The categories are based on the degree of managerial control because this
determines how adaptable and cooperative each constituent system will be with respect
to requirements, interfaces, data formats, and technologies. In turn, this influences the
challenges faced when constructing the SoS.

In practice, the “Directed” SoS embodies a form of planned emergence because the
constituent systems are centrally managed. The other types of SoS have little or no
centralised managerial control. The “Collaborative” type has the notion of a centralised
management but with very limited or no powers to enforce decisions, while the “Vir-
tual” type is without any degree of management. Dahmann and Baldwin [2008] adds
the “Acknowledged” type to describe the scenarios found in many military systems.
This type is focused on establishing collaborative management at the SoS level, while
keeping the managerial and technical independence at the constituent level. The goal
is that autonomy and ownership are maintained, while at the same time ensuring that
changes can be collaborative and decided upon on the basis of some common objectives.
In practice, one would not expect the SoS type to be uniform within an SoS, but lo-
cal subsystems of differing types might arise. Indeed the heterogeneity of constituent
system ownership could be expected to lead to a wide range of (possibly inconsistent)
stakeolders’ views of the levels of control actually offered within an SoS.

We hypothesise that differing degrees of control might be reflected in relatively
stronger or weaker models of constituent system interfaces. Directed and collaborative
SoSs would require a relatively strong specification of a central decision-making au-
thority. Whilst work such as that of Ingram et al. [2014] draws some correspondences
between modelling patterns in SysML and SoS types, a theory of SoS types embodied
in rigorous models remains to be developed.

4. ILLUSTRATIVE EXAMPLES

The literature on SoSE covers a wide range of application domains. In this section,
we review a few applications described in the literature in order to illustrate the SoS
domain.

4.1. Transportation

Transport networks are often composed of independently owned and operated systems
that are geographically distributed. DeLaurentis [2005] illustrates how transportation
can be seen as an SoS covering all the eight dimensions from Section 3, emphasising
the evolutionary nature and the emergent properties as the main reasons why the
transportation sector needs SoS modelling and analysis techniques.

Air traffic management systems are often cited as examples of de facto SoSs. For
example, Ball Sr [1997] and Geddes et al. [1998] consider the movement to a “Free
Flight” model of air traffic operations in the United States as a transition from a di-
rected to a more distributed and collaborative SoS structure. Air traffic management
routinely has to balance competing concerns that dominate to different extents among
stakeholders. It is argued that these changes necessitate explicit mechanisms for the
following: promoting initiative, sharing of purpose, situation and planning; and effi-
cient communications. It is argued that the current barriers to collaboration suggest
that explicit support for the transition is required, and that a system of “associates”
following explicit sharing protocols can help to resolve them.

Mansouri et al. [2009] present a systematic discussion of the derivation of a frame-
work for the management of maritime SoS for the U.S. Maritime Transport System
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(MTS). The MTSoS is represented in terms of five “ABCDE” characteristics derived
from Boardman and Sauser [2006]. Opposing forces are considered on each dimension.
For example, the “Autonomy” dimension represents a tension between conformance
and independence; “Belonging” balances centralisation and decentralisation; “Connec-
tivity” ranges from platform-centric to network-centric; “Diversity” from homogeneity
to heterogeneity; and “Emergence” ranges from the foreseen to the indeterminable.

4.2. Smart Energy Grids

Smart grids integrate data on energy supply and consumption in order to deliver elec-
tricity in a cost-effective manner. There is a need to provide assurance of safety and
security of supply, and in doing so there is a significant engineering challenge in bal-
ancing dynamically changing availability and price from independent and autonomous
suppliers against varying demand [European Commission 2012]. There have been some
implementations of smart grid technology, such as the Smart Grid/Distribution Net-
work Management System developed as part of the Customer-led Network Revolution
project in the United Kingdom,8 which integrates computation and network technol-
ogy on a power generation and distribution network with multiple independent energy
suppliers and consumers.

From the perspective of model-based approaches, the heterogeneity of smart grid
systems is striking. Smart grids are cited as examples of cyberphysical systems requir-
ing novel combined models, for example, in Dillon et al. [2011] and Ilić et al. [2010].
Miller et al. [2012] use simulation to conduct a sensitivity analysis based on a model
that captures the physics of demand response and the behaviours of humans both as
individuals and in networks. Agusdinata and DeLaurentis [2008] discuss the role of
models in policy-making for the energy sector, illustrating the trade-off between the
levels of resolution afforded by models and the ease with which high-level views of SoS
behaviour can be obtained. However, few if any model-based studies in SoS link all
three types of element: cyber, physical, and human.

4.3. Emergency Management and Response

The agility required of an emergency response SoS, and the often unique circumstances
of each substantial emergency, lead to astronomically large models. In order to manage
this, Liu [2011] proposes a hierarchical SoS for emergency response in China. Even with
such a hierarchical approach, modelling of such a complex structure is only at an early
stage. In more constrained environments, simulation can be used to analyse SoS suc-
cessfully. For example, Mahulkar et al. [2009] report the construction of a substantial
MATLAB-based model of an SoS on board a naval vessel in order to explore the conse-
quences of changes in the on-board technology using simulation based on emergency
response scenarios. Emergency response technologies, based on networked sensors and
actuators, provide a significant application area. Daniel et al. [2009] present an archi-
tecture for swarms of micro-Unmanned Aerial Vehicles (UAVs) sensing and mapping
toxic atmospheric emissions following an incident such as an explosion or fire.

4.4. E-commerce

An example of SoS that many people encounter on a near daily basis is e-commerce,
the buying and selling of goods and services via online shopping. E-commerce involves
a number of different independent systems working together in order to reach the
overall goal of sale and delivery. These systems perform functions that provide the

8See http://www.networkrevolution.co.uk/. The network management system operates areas of network from
deployed on networks serving about 20,000 customers, using 17 smart enabled network interventions, as
well as central and distributed controllers.
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Fig. 1. Illustration of constituent systems in an e-commerce business.

virtual market place, the handling of payment transactions, management of inventory
and supply chains, as well as handling shipping and delivery [Ricker and Kalakota
1999]. Making all of these play well together requires an infrastructure that contains
the dimensions of a SoS. One of the premier E-commerce companies, Amazon.com
requires a highly scalable platform that can provide the performance, reliability, and
efficiency needed to support millions of customers [DeCandia et al. 2007]. Amazon’s
consists of a highly decentralized architecture consisting of hundreds of services and
systems that need to integrated as seamlessly as possible.

Figure 1 illustrates the multitude of systems involved in an e-commerce. The right
side of the dotted line contains the systems that are under the e-commerce company’s
ownership, while the left shows systems that are owned by other stakeholders. Large
e-commerce companies will have a number of fulfilment centres to physically handle
inventory, picking and packaging, as well as multiple data centres to deliver the data
storage and processing power required.

In order to run everything from sales, pricing, to warehousing as well as handling
a large number of suppliers, the e-commerce companies have a wide range of systems
that are under their ownership. All of these systems, which may either be developed in-
house or by a third party, all work towards the same goal and the integration between
them is key to the efficiency of the company. They do not, however, express all of the
dimensions of an SoS. Having ownership of their systems enables the companies to
have better control of the development strategies, a greater degree of flexibility, and
faster decision-making than they have with systems owned by third parties. There
are still vital systems that will be independently owned by other businesses, such as
payment transactions as well as the systems of suppliers and shipping companies.
This means that e-commerce companies are dependent on distributed development
strategies planned for the individual systems and on the quality of relationships and
communication between systems owners. This is where a combination of multiple SoS
dimensions makes the development much more challenging.
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4.5. Observations

The SoS engineering literature covers a very wide range of application areas be-
yond those illustrative examples mentioned previously, including communication sys-
tems [White and Jean 2011] and healthcare [Wickramasinghe et al. 2007]. It is worth
noting that SoSs are not always explicitly identified as such. Many of the examples in
the literature illustrate “SoS Thinking” for the derivation of management frameworks,
rather than the technological activity aimed at developing ICT artefacts like networks,
machines, or software. We find comparatively few accounts of applying model-based SoS
engineering techniques “in the wild”; the vast majority of application reports remain
at the proof of concept or pilot study stages.

5. STATE OF THE ART

Having reviewed a range of systems that form the subject of the SoS literature, we
focus on the state of the art in model-based techniques. In this section, we examine
the state of the art in modelling and architectural description (Section 5.1), simula-
tion (Section 5.2), testing (Section 5.3), and verification (Section 5.4).

5.1. Modelling and Architecture

As indicated in Section 1, modelling of systems, or specific aspects of systems, has been
carried out for many years in many different disciplines, and this has naturally spread
to SoS engineering [Cantot and Luzeaux 2011]. Models can be developed at a range of
abstraction levels, depending on their purpose and the forms of analysis that are to be
performed on them [Kramer 2007]. In order to gain the maximum engineering value
from model-based methods, there need to be well-defined relations between models and
their realisations. We will say that an implementation I refines a model M, written
M � I if the properties shown to hold of M also hold of I.

Models can be expressed in many forms ranging from graphical sketches or text to
mathematical formalisms. In this article, we will pay particular attention to models
that are expressible in a form that can be given an unambiguous semantics to permit
machine-assisted confirmation or refutation of properties of interest. The state of the
art of model-based SoS engineering is generally such that models are developed us-
ing existing notations and tools tailored to the application at hand. There have been
few attempts to define general-purpose languages for model-based SoS engineering
[Ludwig et al. 2011], although Woodcock et al. [2012] have proposed a formal language
for expression of refinable models of SoSs. The difference between a formal language for
expressing refinable models of SoS, as distinct from a language for expressing refinable
models of systems, is that the former must directly address the different dimensions of
SoS described in Table I.

5.1.1. Enterprise Architecture. In the context of this article, the term “architecture” cov-
ers not only structural properties such as system hierarchies and interfaces, but also
functional properties that may be affected by architectural decisions and changes. In
the existing literature the direct usage of the terms “architectural models” and “archi-
tectural modelling” in relation to SoS is rather sparse. Only a few authors have a direct
focus on SoS architecture, and mostly in relation to Enterprise Architectures [Lucke
et al. 2010].

Different Enterprise Architecture frameworks have been developed over the years,
including DoDAF and MODAF, originally to support the system engineering discipline.
They are used to create representations of large enterprises and to create methodologies
for capturing their structure and dynamics. Looking at the current state of Enterprise
Architectures a number of authors aim at generalising such enterprise architectures to
make them applicable to the engineering of SoSs [Carlock and Fenton 2001; Harmon
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2005]. However, in general, these papers do not take into account the real challenges
of engineering SoSs, indicated by the SoS dimensions listed in Section 3.

5.1.2. Architectural Frameworks. Looking outside the scope of Enterprise Architectures,
Kilicay-Ergin and Dagli [2008] see a limitation in using static frameworks and method-
ologies for architecture development of SoS. These do not provide a way to analyse
dynamic evolution of system state or behaviour, and consequently they point to a shift
towards executable models. Here they take our Autonomy and Evolution dimensions
into account. In conclusion Kilicay-Ergin et al. determines that simulation tools are
needed that combine both structural and executable models, in order to include all of
the behavioural views needed to comprehend an SoS.

Selberg and Austin [2008] describe the evolution from systems to SoSs and the
associated unmanageable increase of complexity. Here, the SoS characteristics Evolu-
tion and Emergence of Behaviour are considered explicitly. This article demonstrates
how using more standardised interfaces will better prepare for the integration of new
constituent systems in the future. In addition, there is a recommendation for the use
of general-purpose formal models supporting abstraction and analysis capabilities.
However, there is still a lack of formal methods supporting proper engineering of SoS.

5.2. Simulation

One of the most frequently used forms of model analysis is execution in some form.
Typically, this is called model simulation, indicating that it is an approximation of how
the real system would behave in the same scenario. In the existing literature on model
simulations of SoSs, the focus is primarily on using the models for training purposes
for different kinds of personnel. Because of this, the majority of the publications on
SoS simulation are also focused on the distribution of simulators connected together
and abilities to make use of agent-based systems (typically used to simulate different
kinds of people operating the systems).

5.2.1. Agent-Based Simulation. Agent-based technology is typically included when it is
desired to include the human in the simulation loop [Axelrod 1997]. Thus, such intel-
ligent agents are primarily used to explore sociotechnical aspects in an SoS setting.
This has also been used to explore different design choices for internal interoperability
in a ship environment [Mahulkar et al. 2009]. Gutierrez-Garcia et al. [2009] enhance
the agent-setting with formally expressed constraints with an emergency management
case study. These agent-based technologies support the Autonomy dimension very well.

5.2.2. Focused Simulation. Distribution aspects in a simulation setting typically focus
on interoperability between simulations of different constituent systems. Here, the
majority make use of High-Level Architecture (HLA) simulation interoperability [Lees
et al. 2007], which has been adopted as an IEEE standard [IEEE1516 2010]. HLA has
primarily been used for high-fidelity, defence-related simulations coupling different
existing simulators together to examine, for example, different possible war scenar-
ios. However, HLA has also been used in an SoS setting for exploring design choices
around the weight of an aircraft [Sharawi et al. 2006]. HLA primarily improves the
Interoperability dimension of SoS.

Within the area of modelling and simulation, a large part of the existing literature
is military focused. For example, the U.S. Future Combat System (FCS) has been
modelled and simulated using a specially developed SoS Application Toolkit (SoSAT)
for military missions [Campbell et al. 2005; Eddy et al. 2007]. This simulation uses
Statemate [Harel 1987] and fault tree analysis to conduct probabilistic simulations
focusing on potential faults appearing in constituent systems.
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In other works, professional simulation engines, such as ExtendSim9 have been
used [Jian et al. 2010]. These works are primarily focussed on limiting the SoS from
undesirable Emergence of Behaviour. Jian et al. uses the simulation engine for the
evaluation of SoS architectures using a two-level process. The higher level is focused
on capability requirements and on computing the SoS overall measure of performance.
At the lower level the quality of the capability requirements is obtained by simulation
of the SoS. The model simulates the interactions between the component systems in
order to assess the components’ ability to meet the specified capability requirements.

5.2.3. General Simulation. A few examples can be found that attempt to create a gen-
eral modelling and simulation approach aimed directly for SoS. One such example can
be found in Kotov [1997], where a C++-based library is presented for modelling and
simulation in an SoS setting. Here, constituent systems are hosted at multiple com-
puting nodes and the communication between these is incorporated. A similar generic
approach extending the Unity language to an SoS setting can be found in Gamble
and Gamble [2008]. All of these works can be seen as enhancing the Interoperability
between different models of constituent systems.

Sahin et al. [2007] presents a framework for the architectural representation and
simulation of an SoS based on Discrete Event System Specification (DEVS) and the ex-
change between constituent systems defined in XML. DEVS is also used by Berenji and
Jamshidi [2011] in a fuzzy-control setting for independent vehicles acting in a swarm
context. DEVS is a formalism for describing and simulating hierarchical systems via
components and their interconnection including the runtime addition/removal of cou-
plings and components. Support for HLA is also available. The use of DEVS in an SoS
setting is explained in Mittal et al. [2009]. This is an example of a practice aiming at
increasing the Interoperability between models of constituent systems in an SoS, as
well as investigating the Dynamic Reconfiguration of the system.

SoS simulation capabilities using formal models of SoSs at a higher level of abstrac-
tion is found in the CML tool, Symphony [Coleman et al. 2012]. Ideas are also present
to cope with simulations of evolution of SoSs dynamically [Nielsen and Larsen 2012].

5.3. Testing

5.3.1. Compositionality Versus SoS System-Level Testing. Considering the time and effort
required for SoS system-level testing, it is a scientifically valid question whether it
could be made redundant by means of V&V activities performed on the constituent
systems that are part of the SoS: the concept of compositionality has been elaborated
in the field of formal methods and specifies conditions allowing one to deduce emer-
gent properties of the complete system from the “local” properties of its constituents
[Hoare 1978; Roscoe 2010]. Indeed, the distribution and local autonomy of constituent
systems facilitate the application of compositional arguments, because prerequisites
like absence of shared resources (e.g., variables, processors) needed to apply such an
argument are generally fulfilled.

These considerations, however, obviously contradict practical experience with SoS
testing on system level, where it quite frequently turns out that the composed system
does not fulfil its expected emergent properties. This experience is not caused by the
preconditions for the compositionality argument being violated. Instead, there are quite
different reasons for SoS to fail on the system level:

9www.extendsim.com.

ACM Computing Surveys, Vol. 48, No. 2, Article 18, Publication date: September 2015.

file:www.extendsim.com


18:20 C. B. Nielsen et al.

(1) Crucial nonfunctional emergent properties—in particular, safety and security
[Leveson 1995]—are noncompositional. As a consequence, the combination of safety
or security mechanisms does not necessarily lead to a safe or secure system.

(2) Constituent systems frequently show a lack of quality at the point in time when
they are first delivered for the purpose of integration testing, so system-level tests
simply fail because some constituent systems do not meet their specifications.

(3) Constituent systems may show erroneous behaviour when operating in an SoS
configuration, due to undocumented assumptions made by the subsystem suppliers,
which are not fulfilled in the SoS configuration.

(4) System-level tests fail because emergent properties have been insufficiently cap-
tured during the requirements elaboration phase.

It is the purpose of SoS system-level testing to reveal these deviations, as will be
described in the following paragraphs (see also Peleska [2013]).

5.3.2. Coordination of Testing Activities. Using the terms of the military domain, testing
activities of constituent systems may be structured into developmental test and eval-
uation (DT&E), which is a verification activity, and operational test and evaluation
(OT&E), which is a validation activity [OUSD(AT&L), DoD 2008, p. 43]. As empha-
sised in [OUSD(AT&L), DoD [2008, p. 11] and Colombi et al. [2008], the managerial
independence between constituent systems generally does not allow one to synchro-
nise lifecycle activities between them. As a consequence, system integration testing on
SoS level cannot rely on all constituent systems being ready for this task at a given
point in time. The problem becomes even more severe if some constituent systems are
members of more than one SoS: at the point in time a system test is to be performed for
SoS 1, a constituent system may be occupied with changes targeted at its operation in
SoS 2 configurations. As a consequence, a synchronisation point where all constituent
systems of a SoS are in a baselined state that is ready for system integration testing
might never be reached.

This problem can be mitigated by interoperability test campaigns. Interoperability
testing verifies two or more constituent systems with the following objectives:

—Ensure their basic capabilities to exchange data over the intended interfaces.
—Verify that the synergetic properties expected from this cooperation are realised in

conformance with the SoS requirements.

The latter V&V activity is called end-to-end testing, since SoS functionality is inves-
tigated along the complete processing chain, from the initiating constituent system to
the systems supporting and finally to those utilising the established results.

In a systematically structured SoS test campaign it is first ensured that constituent-
level tests have been successfully completed to ensure systems comply with their
specifications. In particular, it should be ensured that conformance tests have been
performed in order to verify that each constituent system conforms to the applicable
(communication and/or functional) standards. Acceptance testing should ensure that
system-specific functional, structural, and nonfunctional properties are fulfilled. Then,
interoperability testing investigates whether the constituents cooperate adequately to
ensure the emergent SoS properties required.

5.3.3. Coping with Complexity. Liang and Rubin [2009] address the combinatorial explo-
sion problem caused by the size of SoS state and input vectors by adopting the concepts
of pairwise testing and orthogonal arrays for SoS system-level testing. These concepts
have been widely applied in software testing. Pairwise testing with orthogonal arrays
advocates test data generation according to the strategy by Tatsumi [1987], which
goes back to Taguchi’s original ideas on robust design [Taguchi 1987; Phadke 1989]:
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(1) Identify the input and state parameters influencing the System Under Test (SUT)
behaviour (these parameters are called factors in the Taguchi Method). (2) Partition
each single input or state vector component into equivalence classes (called levels in the
Taguchi Method). (3) Select level combinations, that is, vectors of values, each taken
from an equivalence class of the associated factor.

The selection of level combinations is typically performed using the orthogonal array
approach. This is a method for selecting level combinations that are balanced in the
sense that all combinations of a given dimension (n-tuples of levels associated with
n factors) occur an equal number of times. Typically, the orthogonal array method is
applied to pairs of different factors, so that for each pair the associated levels are
exhaustively combined, and each pair is exercised the same number of times (n = 2).

As may be expected (also in the light of several critical evaluations of the method,
such as Bach and Schroeder [2004]), pairwise testing does not solve all complexity
issues in SoS testing, as will be discussed in more detail in Section 6.4.

In the light of SoS dimensions (see Table I), Autonomy as well as Independence of
constituent systems is reflected by independent developmental and operational tests.
Conformance and Interoperability testing addresses the distributed nature of SoS.
Evolution of constituent system functions is addressed by coordinated constituent-
level and SoS-level testing campaigns, as long as the constituent system functionality
affects the SoS under consideration. Emergence of Behaviour is checked by means of
end-to-end tests.

5.4. Verification

The literature on verification of SoSs is rather thin, reflecting the fact that research
in this area is still in its infancy. However, there is an interest in introducing formal
verification at different levels of software architectures in an SoS setting [Michael et al.
2009]. In this section, we discuss why this is the case, given that systems development
is relatively well developed in comparison, as we review the key developments in SoS
verification.

5.4.1. Runtime Execution Monitoring. There are two general strategies that can be used
to verify a system: the first is to check in advance that the system has desirable prop-
erties; the second is to wait until runtime and check that an actual execution of the
system performs satisfactorily. Runtime Execution Monitoring (REM) is in the latter
category and is representative of methods for tracking the behaviour of an underlying
application. It ranges from the analysis of simple audit logs through to sophisticated
checking of states and transitions against formally specified assertions. Example uses
include the verification of the NASA Deep Impact fault-protection engine [Drusinsky
2003] and the verification of the U.S. Ballistic Missile Defence System battle manager
[Caffall and Michael 2004]. REM was chosen in the latter case because of its abil-
ity to scale and its support for real-time assertions. Much of the research on REMs
involves temporal logic for specifications [Drusinsky 2003; Havelund and Rosu 2001]
and there are both continuous [Maler and Nickovic 2004] and discrete-time applica-
tions [Drusinksy and Shing 2005].

5.4.2. Behavioural and Stochastic Verification. A key difficulty in SoS development and de-
ployment is to verify required overall properties while individual component systems
are heterogeneous and autonomous. Individual component systems tend to be extraor-
dinarily large and diverse and an SoS relies for its successful operation on Emergence
of Behaviour and feature interactions. It must be possible to predict the objectives of
an SoS in a dependable way, in spite of different and potentially conflicting local goals.
Calinescu and Kwiatkowska [2010] suggest that formal analysis and verification, in-
cluding model checking, quantitative model checking, and quantitative analysis and
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verification, are key technologies for the verification of SoS policies, contributing to
SoS dependability management and assurance. They envisage a reconfigurable policy
engine that uses online formal analysis and verification techniques for the implemen-
tation of a wide class of autonomic computing policies [Calinescu and Kwiatkowska
2009].

5.4.3. Contract-Based Specification. Payne and Fitzgerald [2010] argue that explicit con-
tracts should be recorded at the boundaries between constituent systems in order to
verify SoS-level properties. They survey different approaches to contract-based speci-
fication, both for behavioural and nonfunctional purposes, although they concentrate
on the latter. Raising those results to an SoS level has also started [Payne et al. 2012].

In the design-by-contract paradigm, the emphasis is on specifying the interfaces be-
tween components, usually involving preconditions, postconditions, and state invari-
ants [Meyer 1992] to document assumptions and commitments. The contract is this: if
the interface user guarantees to meet the precondition, then the interface implementer
guarantees to meet the postcondition. The implementer’s guarantee might be partial
correctness (if the interface operation terminates, then it is guaranteed correct), or it
may be total (the operation will terminate and be correct). Invariants are used to docu-
ment an abstract model satisfying these constraints. More sophisticated contracts deal
with concurrency and shared resources. For example, rely and guarantee conditions
may be used to document progress through intermediate states as well as reaching the
final state [Jones 1983a, 1983b]. Reactive systems may be specified using reactive pre-
and postconditions, where special auxiliary variables are used to record the history of
past interactions and the readiness of current events [Woodcock and Cavalcanti 2001,
2002].

Beugnard et al. [1999] describe contracts at architectural levels, suitable for describ-
ing SoSs. In their work, contracts are structured into four layers: (a) The syntactic
layer describes operation signatures. (b) The behavioural layer describes the effect of
operations using preconditions and postconditions. (c) The synchronisation layer de-
scribes real-time scheduling of component interactions and message passing. (d) The
quality of service layer describes nonfunctional aspects of operations.

5.4.4. Verifying Emergent Properties. The interaction of multiple system components
sometimes leads to the emergence of unexpected properties as the aggregation of dif-
ferent features react in unpredictable ways such as in a basic telephone system where
a telephone call involves precisely two parties, the initiator and the recipient. An ex-
tension to conference calling would allow many parties to enter and leave a call. An
undesirable emergent property is that there may be no one responsible for paying for
the call if the initiator is allowed to leave. This is known as weak emergence [Bedau
1997]; other examples occur in natural complex systems, including antforaging and
bird flocking; it is a significant technical challenge to model such systems so as to
reveal them. A classic example of weak emergence occurs in Conway’s Game of Life,
where global behaviours arise as the result of purely local rules. The game is played by
a cellular automaton with four rules for simulating a population of entities distributed
across the cells, whose life and death depends on the occupancy of adjacent cells.
Polack and Stepney [2005] argue that the weakly emergent behaviour of the well-
known glider pattern, made up from several entities, cannot be shown to be refined by
the local rules governing the life of entities in cells. Sanders and Smith [2012] show
that it can. They consider a different perspective on this problem: instead of trying to
discover emergent properties of existing systems, they consider the development of an
implementation with a required emergent property. Engineering emergent properties
is seen as the software engineering activity of refinement: taking an abstract property
and realising it in terms of local behaviours and component interactions.
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5.4.5. Verifying SoS Dimensions. As noted at the beginning of this section, formal verifi-
cation of SoSs is still in its infancy. This means that there is no best practice available
for most of the dimensions mentioned in Table I; however, formal methods do already
have something to say about these dimensions. As we have seen, autonomous sys-
tems can be verified using model checking and emergent behaviour using refinement.
Research at the systems level suggests that the best way to tackle independence, in-
terdependence, and interoperability is through compositional verification techniques,
whilst distribution, dynamic behaviour, and evolution can be modelled using process
algebra, Petri nets, and temporal logic and verified using theorem proving and model
checking. Theorem proving and model checking has been developed for the SoS-specific
modelling language CML [Coleman et al. 2012; Couto and Payne 2013].

6. CHALLENGES IN SYSTEM OF SYSTEMS ENGINEERING
AND STRENGTHENING THE DISCIPLINE

Having identified the state of the practice in model-based techniques for SoS, the
focus is shifted towards the research challenges in each of these areas and on how the
challenges can be faced by examining the steps necessary to provide a strengthened
foundation for model-based SoS engineering.

In this section, a short review of the literature on SoS challenges is presented (Sec-
tion 6.1), followed by an examination of the challenges in modelling and architectural
description (Section 6.2), simulation (Section 6.3), testing (Section 6.4), and verifica-
tion (Section 6.5).

6.1. Research Challenges for SoS in the Literature

A research agenda for SoS architecting is presented by Valerdi et al. [2008], with 10 ma-
jor research challenges linked to academic and industrial problems. The work focuses
on the entire lifecycle of an SoS and includes considerations from, for example, buyers,
developers, and maintainers. Some of the challenges include (a) evolution: research is
needed to develop methodologies that can deal with evolving and emergent behaviours
in SoS that dynamically adapt and absorb deviations in the system structure and
(b) “System vs. SoS attributes” that denotes a range of trade-offs between attributes
such as adaptability and modularity that can be simulated in SoS architecture models.

A different set of research challenges are presented by Maier [2005], that are foremost
focused on the representation and analysis of SoS. Methods and tools that can be used
for describing and analysing the “upper layers” of SoS are wanted. The upper layers
refer to interactions among network elements where division of functionality and the
interaction between systems are particular challenges.

The wish for better methods is also included by Ring and Madni [2005], who opt for
better theory, methods, and tools in order to anticipate unintended behaviour in SoS
operation.

These research challenges match well with those being proposed for system types
that resemble SoS, such as for ultra-large-scale systems and large-scale complex IT
systems. Northrop et al. [2006] see challenges in topics such as orchestrating activ-
ities between diverse stakeholders, in measuring and evaluating the effectiveness of
system design, and in creating adaptive system infrastructures. This calls for more
research in how to establish stronger support for system design at many levels of
abstraction and in increased computational engineering through automated tool sup-
port for assessing the behaviour of evolving system compositions. Sommerville et al.
[2012] complements this list by proposing research challenges related to the knowl-
edge sharing between dispersed stakeholders, the creation of adaptable models based
on real-time system monitoring data, handling resilience and recovery from failure, and
on performing verification of systems with no firm specification. These research topics
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are all directly applicable to SoS; however, Northrop et al. and Sommerville et al. have
a stronger emphasis on research related to sociotechnical systems, human interaction,
and the handling of acquisition and regulation policies, than what is seen in most SoS
publications.

6.2. Modelling and Architecture

One of the main challenges for modelling languages aimed at SoSs is to ensure that
they have well-founded semantics, as many of the modelling languages in the current
practice do not [Fitzgerald et al. 2012]. In order to strengthen the discipline of the SoS
engineering domain, creating modelling languages with a well-founded semantic basis
is essential. Such well-founded notations will enable the conceptual descriptions and
evaluations of SoS architectures. Only with the existence of such languages will it be
possible to conduct justifiable analysis of conceptual descriptions of an envisaged SoS.

As SoSs have a high degree of Distribution, the modelling languages must be able to
express the notion of multiple independent execution platforms that can be intercon-
nected. A particular focus should be the languages’ abilities to include Interoperability
challenges as part of modelling the individual constituent systems and their relation-
ships. Challenges connected to this would be how to define well-founded interfaces and
express desired policies between the systems. The high number of connections occur-
ring between the constituents in an SoS, calls for modelling languages that include
central aspects of Distribution through a strong focus on consistency and communi-
cation faults. Connections that also entail a high degree of Interoperability concerns,
that a modelling language must address as well. In order to handle these aspects it is
necessary to have ways of defining well-founded interfaces for each of the constituent
systems directly in models. Modelling languages that are effective for modelling dis-
tribution and those that can express clear interfaces need to be surveyed, in order to
provide the knowledge needed to establish a modelling notation with a stronger focus
at the SoS level.

In the current modelling efforts agent-based approaches are used to model the Auton-
omy of SoS. A main challenge of doing SoS modelling is to embed this aspect into more
modelling languages by including constructs that enable users to describe autonomous
behaviour; in particular, of how humans act in relation to the SoS. Therefore, it is key
that the modelling languages include constructs that enable the description of such
self-determining systems; constructs that can express the capabilities and responsibil-
ities of a system such that it can be self-controlling by using behavioural and reasoning
mechanisms and express self-coordinating behaviour based on observations. Likewise,
modelling languages need constructs that can describe the Dynamic Reconfiguration in
order for the models to express the dynamically changing infrastructures which enables
the constituent systems to initiate and break their interrelationships. Modelling lan-
guages are needed that not only can express the dynamically changing infrastructure,
but also model the interruption of data exchange, lost messages, and error handling.

It is clear that modelling an SoS does raise high demands for the modelling language
itself. For instance, for a dimension such as Evolution it can be a challenge to include
all the necessary system aspects in the language initially. This means that the model
may not be capable of including important details as the language cannot express it.
An SoS modelling language should have features that enable well-founded extensions
of the language to be defined by superusers in a semantics preserving fashion. This
is by no means trivial, so reaching the scientific basis for this is a long-term goal.
Equally, Emergence of Behaviour is difficult to express in a model, as it is doubtful if
an exactly described behaviour can be considered truly emergent. It is a challenging
SoS characteristic to incorporate into a modelling language, as it cannot be accurately
described. Instead, it is a characteristic that surfaces as a result of the other SoS
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characteristics. In a modelling context the emergence itself can only be expressed as
desirable or undesirable behaviours, while the behaviour itself only really becomes
apparent through simulation of the model.

The aspect of Independence between the different SoS stakeholders is another SoS
characteristic that can be challenging to include in a model. Not only can it be difficult
to express how the varied individual ownership affects the constituent systems and
the Interdependency between them, as seen in the e-commerce example in Section 4.4.
It can also be difficult to establish trust between stakeholders that may not want to
share their model or system details for confidentiality reasons, as will occur between
the competing stakeholders as, for instance, in the example of Smart Energy Grids
given in Section 4.2.

As the constituent systems in an SoS have independent ownership and will be sepa-
rately developed it should be possible to work with divided models, such that each con-
stituent system can be defined by its own model with well-defined interfaces. Not only
will it allow for the constituents to be modelled independently, it will also facilitate the
process of bringing the constituents together in the SoS. Having the Independence and
Interdependency dimensions of the constituents included directly into the modelling
language will improve the modelling effort. For instance, expressing the Interdepen-
dency between systems could be achieved by having rely/guarantee policies directly in
the modelling languages.

Concerning architecture, Meilich [2006] focuses on net-centric environments to de-
scribe some of the challenges of SoS architecture for nondirected SoSs. These include
(1) dependency issues between the constituent systems due to Interoperability charac-
teristics, (2) Emergence of Behaviour of SoSs due to trade-offs between predictability
and composability, and (3) collaboration between different Independent stakeholders
of the Distributed constituent systems.

Approaches are being proposed that shift focus from optimisation to runtime flexi-
bility and interoperability. Adaptive architectures are intended to enable system com-
position at runtime and to be more suited to the emergent behaviours found in SoSs.
Having such a flexible and dynamic architecture may come at the price of predictabil-
ity and potential lack of clarity on the system boundary. Model simulation is seen as a
response to these challenges and the way of engineering an SoS is to “experiment as
the system evolves.”

As we indicated in Section 1, model-based engineering for SoSs is a young subject,
and its limits have not yet been clearly mapped. The development of competent and
faithful SoS models is dependent on the ability to observe the state and operation of the
SoS itself with known levels of precision and accuracy, and remains an open research
topic.

6.3. Simulation

Being able to perform simulations of SoS by using executable subsets of models is
essential in the advancement towards a strengthened SoS engineering discipline. Sim-
ulations can be a very powerful tool in analysing and understanding the complexity
and behaviour of an SoS.

The DoD guidelines recommend modelling and simulation as an effective means
for grasping the complexity and Emergence of Behaviour of SoS [OUSD(AT&L), DoD
2008]. In order for the simulation of an SoS model to be efficient it must be able to
show the characteristics of an SoS. If the main characteristics can be incorporated into
the model, the volatile characteristic emergent behaviour has a much better chance of
being detected through simulation of the model.

Simulation makes it possible to gain insight into the modelled system’s functionality.
One SoS characteristic that is particularly well suited for simulation is the aspect
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of Autonomy. Simulating an SoS will show system behaviours and the constituents’
interactions, which would be very difficult to predict by merely analysing the models
or systems statically. An example of this would be the robot swarm systems described
in Section 4.3. Kilicay-Ergin and Dagli [2008] have proposed a framework named
“Artificial Life” that is aimed at analysing the influence architectural changes have on
system behaviour. The framework consists of several layers that, among others, include
computational intelligence tools, cognitive architecture, and a multiagent models level.
While Autonomy can be simulated with agent-based simulation tools, further advances
are needed for enabling users to interact with a simulation and reveal the autonomous
behaviour occurring when humans act in relation to a specific SoS; for instance, via
human-in-the-loop simulation.

An SoS simulation environment should also support the Independence of the con-
stituent systems, by allowing both stand-alone and combined simulation of models.
The constituent systems may be described in separate models that need to be simu-
lated both individually and in combination with models of other parts of the SoS. This
is particularly relevant in systems where competing concerns have to be balanced, such
with the air traffic management systems used as an example in Section 4.1. Allowing
each simulation to be performed individually for each constituent, while at the same
time enabling a joint model to be simulated with other parts of the SoS would support
the Independence of the constituent systems. As mentioned previously, confidentiality
may be important as owners of one constituent system participating in the SoS may
not wish to reveal the internals of their system through their model. In the same way
the simulators will be challenged by model languages that will need to evolve in order
to match the Evolving SoSs model.

An important outcome of doing simulations of SoS is to identify possible Emergence of
Behaviour. Simulations may be probabilistic, rather than definitive, so the aim would
be to demonstrate a low probability of undesirable emergent behaviour or a high prob-
ability of desirable emergent behaviour. This could be determined by observation of the
simulation result; however, a more powerful capability would be if such behaviour could
be flagged directly by the SoS simulation tool. The exact method for doing this needs to
be researched further, but one could focus on expressing the “desire and expectation”
policies of the SoS stakeholders directly in the modelling language notations. The tool
would then mark simulated variations from these policies as emergent behaviour of
the SoS. The Smart Energy Grids, described in Section 4.2, would be a good initial
starting point for such research as these systems aim for optimal energy pricing and
energy use already is policy based.

Given the many relations and interactions that occur between the constituent sys-
tems in an SoS, a simulation must be able to encompass the challenges found in
Distributed systems, such as concurrency, consistency, and communication faults. Iden-
tifying communication faults as well as newly initiated communication is necessary if
simulators are to be used for detecting aspects of Interdependency during simulation.

Because of the constant Evolution of an SoS, SoS simulation tool should enable
extensions of the simulator to be made. For instance, by enabling simulators to handle
extensions of the modelling language itself, or by enabling communication external to
the simulation environment, such as through remote procedure calls [Nielsen et al.
2012].

An SoS simulator should be capable of capturing the Dynamic Reconfiguration that
occurs as a result of the dynamically changing system topology, such that the dy-
namic changes can be communicated to stakeholders. There already exist tools that
have a semantically well-founded foundation and are capable of performing simulation
of distributed systems. Some of these allow for the inclusion of independent execu-
tion platform characteristics, with a focus on fault and data sharing. Fewer include
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the Dynamic Reconfiguration dimension, for which the altering system topologies en-
tail interoperability challenges, as well as overview challenges. A powerful simulator
should deliver mechanisms for keeping track of changes; for instance, by visually in-
dicating the current topology. In the same way, a strong SoS simulation tool needs to
have a focus on the interaction between the constituents. A simulation should show the
Interdependence between constituents, dataflow, and failed links between incompatible
constituents.

Finally, as an SoS will consist of systems that have different data formats, architec-
tures, and hardware, being able to include Interoperability aspects in the simulation
is a particularly interesting research topic. One such example could be to conduct
joint simulations with heterogeneous models that use different notations. Having this
ability could aid the construction of an SoS by allowing the integration of various het-
erogeneous models defined for different constituent systems that are to be joint in the
SoS.

6.4. Testing

The current challenges related to SoS testing can be classified according to the following
aspects:

(1) Complexity issues: For very large SoS, such as the Emergency Management and
Response example in Section 4.3, the size of the SoS state space will preclude,
for example, exhaustive testing [Chow 1978; Springintveld et al. 2001], as well as
search-based or exploratory testing [Spillner et al. 2006; Arcuri et al. 2010; Kaner
1999].

(2) Management issues: The multistakeholder situation that often is encountered in
SoS development, verification, and validation (V&V), such as the e-commerce ex-
ample given in Section 4.4, complicates capture of test cases for emergent SoS prop-
erties and the control of system integration test activities [Sledge 2006; Colombi
et al. 2008].

(3) Applicability of multiple standards: Different standards impose different V&V and
tool qualification requirements [Brauer et al. 2012]. This will be seen in SoS that are
composed of independently owned and operated systems that are geographically
distributed, such as the Transport networks described in Section 4.1.

(4) Dynamic evolution of SoS configurations: complicates test automation techniques
and requires acceptance testing at runtime [Gonzalez et al. 2008].

Gonzalez et al. [2008] point out that Dynamic Reconfiguration is a crucial aspect
of SoS behaviour. From testing and model checking object-oriented systems, it is well
known that this conceptually unbounded state space of dynamically generated objects
represents additional challenges. It has to be determined which numbers of objects
considered in test configurations are meaningful to ensure that the SoS behaviour will
be appropriate in any configuration that may occur.

In order to mitigate the risks associated with the challenges listed previously, the
guideline OUSD(AT&L), DoD [2008] recommends a model-based approach to SoS de-
velopment and V&V, since semantically well-defined models present a clearer view on
system capabilities than informal descriptions, and form the basis for automated de-
velopment and V&V activities. This view is backed up by various standards applicable
to complex, typically safety-critical systems: (1) The IEC standard [IEC61508-3 2010]
classifies Model-Based Testing (MBT) as a highly recommended method for testing
software and systems of the highest safety integrity levels SIL-3 and SIL-4. (2) The
avionic standard [RTCA SC-205/EUROCAE WG-71 2011b] devotes a complete sup-
plement to model-based development and verification; the latter includes simulation
and testing [RTCA SC-205/EUROCAE WG-71 2011a]. (3) The automotive standard
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[International Organization for Standardization 2009] acknowledges the capabilities
of model-based development and testing.

The benefits of MBT have been clearly identified [Baker et al. 2008], and case stud-
ies show the feasibility of the approach for industrial-size systems [Grieskamp 2010;
Peleska et al. 2011]. A particular benefit of the MBT approach consists in the possi-
bility to derive relevant test cases automatically from the model. Moreover, if model
elements are already linked to requirements, as supported, for example, by the SysML
modelling formalism [SysML1.2 2010], MBT can trace requirements to test cases and
procedures in an automated way. The feasibility proof, however, currently applies to
subsystems only: As of today, there exists no accepted methodology for combining con-
stituent system test models into an SoS testing model. Model-based testing for small
to medium size control systems may be fully automated, with potential additions of
user-defined test cases that may be specified, for example, already as parts of the test
model [Peleska et al. 2011].

Despite the commitment to MBT, which is visible in international standards, and
despite the available evidence about MBT efficiency, the model-based testing approach
cannot be regarded today as an industrial best practice of SoS V&V. It is more the case
that companies are currently evaluating the potential benefits of the approach. The
change of paradigm required for introducing MBT is enforced rather slowly by the re-
sponsible management, since it may also require a change of skills in the testing teams
involved: The focus of testing activities is shifted from test procedure programming
to model development. As a consequence, teaching model-based testing methodology
and adapting V&V process models to incorporate the MBT approach is a major chal-
lenge for SoS testing. Apart from these educational and managerial challenges, there
remain some technical ones to be overcome for applying MBT successfully in SoS test-
ing campaigns. Typical success stories from the MBT application area emphasise the
importance of the availability of a complete test model [Löding and Peleska 2010] as
the starting point of the test automation tool chain. This may be a major obstacle:
partly due to the number of cooperating constituent systems for which submodels have
to contribute to the SoS test model, and partly due to the complete SoS test model only
being available at the later stages of the development lifecycle. As a consequence, the
benefits of automation are in danger of being nullified by the disadvantage of delayed
start of SoS system-level testing. We conclude that for these reasons it is mandatory to
support incremental development cycles for test models and test objectives, such that
each cycle may be concluded with a test generation and execution campaign.

The need for incremental and even partially automated test model development has
gained attention in the research communities, and Vaandrager [2012] describes how
machine learning techniques can be applied to automatically construct test models by
incrementally deriving state machine models from test execution traces observed. This
approach is obviously attractive for MBT, since testing already starts while the model
is constructed.

Other research areas, however, emerge from the investigation of model-based SoS
testing and its specific needs. Extending the list of research foci shown at the beginning
of Section 6.4, we anticipate in-depth research on the following:

(5) SoS-specific formalisms for model-based testing: By abstracting constituent system
behaviour with the help of contracts, the complexity of SoS-level test models can
be considerably reduced [Coleman et al. 2012; Milius et al. 2011]. Relating require-
ments to model elements—as, for example, provided by SysML [Holt and Perry
2008]—enables automated tracing between requirements, test cases, procedures,
and results [Hallerstede et al. 2012].
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(6) Identification of test objectives for emergent properties: On SoS level, test objectives
can be identified by global mission threads or scenarios, and different constituent
system behaviours can be abstracted in equivalence classes [Colombi et al. 2008;
Kaner 2003].

(7) Methodology for incremental model-based SoS testing.

6.5. Verification

To realise the full potential of formal methods they must be integrated with other
techniques used in the development of SoSs. Verification technology complements sim-
ulation and testing by providing exhaustive coverage; it can support requirements
analysis, design, testing, and code generation. Work with formal verification has been
performed in diverse areas, such as hardware platforms, concurrency, communication
protocols, and real-time systems. More research is needed on how the integration of
verification techniques into development processes would strengthen their use in an
SoS context. In order to advance the SoS engineering discipline by enabling proofs of
correctness for SoS, there is a need for both new and extended theories and tools.

It is worth noting that verification assumes that the specification of the system of
interest is well understood and is clearly or formally articulated, so as to form a basis
for verification judgements. SoSs often arise because reliance comes to be placed on the
collective functioning of the constituent systems, and they evolve during operation as
constituents change. The derivation and maintenance of SoS specifications that can
serve as a basis for verification is thus a significant research challenge in itself, in
particular to identify and avoid unwanted emergence.

Aside from the identification and maintenance of specification, other significant chal-
lenges for SoS verification include extending the range of techniques available, linking
them together, and finding ways to apply them effectively in large. Creating new theo-
ries, and providing extensions to existing theories in order to enable SoS verification,
would provide a very strong advance in SoS engineering. Not only will it enable the
proof of correctness for the critical system embodied by many SoSs, it will also lead to
a more systematic engineering process.

An SoS experiences a constant Evolution, the self-contained constituents are Inde-
pendent and Autonomous, and there is a constant dynamic change of its configuration,
state, and operations to respond to spatial and temporal changes. Providing verification
support for all of these SoS characteristics is very challenging, as they can seem bound-
less and indeterminate. Such change will, for instance, occur often in e-commerce, given
as an example in Section 4.4, because of the constant development these systems face;
for instance, in terms of new suppliers or the addition of new platforms on which the
virtual market place need to run.

The large degree of change and continuous development of the SoS topology and
behaviour calls for new and extended theories and tools for verifying automatic, adap-
tive, and self-awareness properties. These include modelling systems that are state
rich, concurrent, distributed, autonomous, time sensitive, mobile, hybrid, discrete and
continuous, and probabilistic. Each of these areas has separate notations and modelling
techniques, and it is a challenge to unify them. The objective is to have a collection
of links that allow different aspects of SoSs and their component systems to be mod-
elled and therefore verified in the most suitable theoretical setting. Unification of these
modelling techniques would provide a coherent setting for understanding the SoS as
a whole. Unification of modelling techniques would address Independence, Autonomy,
and Distribution.

The key to scaling verification technology to realistic industrial SoSs is to model
and analyse them at different levels of abstraction and to use techniques that com-
pose cleanly. The link between different levels of abstraction is the use of refinement
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techniques, and research is needed to develop suitable theories for the unified view
discussed previously. A significant challenge is to discover techniques that allow us to
divide and conquer the verification of large SoSs. As described with the Emergency
Management and Response example in Section 4.3, the special and uncommon cir-
cumstances of a major emergency will involve a very large number of systems, which
again will lead to very large models. A compositional verification technique allows us
to forget the rest of the SoS when verifying a particular property or component system,
and yet know that any results we obtain can be safely extrapolated to the SoS as a
whole. Introducing techniques for abstraction and compositionality would help with
questions of scale and Dynamic Reconfiguration and Emergence of Behaviour.

In the same way, the challenges of Interoperability and Interdependence require a
strengthening of the theories of compositionality, information flow, and confidentiality
as well as techniques for verifying compliance. The most challenging SoS characteristic
for verification is the aspect of Emergence of Behaviour. There is a strong need for
continued research into the process of engineering emergent behaviour in general;
research, which can then be used to establish support for the verification of such a
process.

It is clear that different tools are required for analysing different properties, such
as response time, data integrity, and mutual exclusion of concurrent access, and these
too must be integrated. Each of these properties is best checked with a different tool
and an integrated tool set is required. This integration could be quite tight with tools
cooperating in verification tasks. For example, a model checker could subcontract a
theorem prover to establish some of its results. It is a major theoretical and engineering
challenge to integrate tools in this way.

Placing a sharp research focus on the development of strong tool support is important,
given that the engineers who work with SoS development come from very diverse fields,
and as such the expertise with verification techniques may be limited. Having powerful
and easy to use tools, for instance with automated proof-checking support, will not only
provide stronger results, it will also ease the reception and approval of the tool amongst
its users.

7. CONCLUDING REMARKS

Our objective in this article was to review the state of the art in model-based ap-
proaches to the engineering of SoSs. Faced with a large body of literature in what is
still a varied and lively research field within systems engineering, we analysed a wide
range of sources offering definitions or taxonomic bases of SoS concepts and identified
eight “dimensions” that might allow one to place examples within the SoS space. We
think that the unification conducted in deriving these dimensions will be useful in the
future for classifying the focus of different SoS applications. We went on to examine
model-based techniques for system description, simulation, testing, and verification,
relating these to the eight dimensions identified. We hope that these directions of fu-
ture challenges towards a strengthened discipline of SoS engineering will be taken up
by more researchers.

It should be noted that our survey did not address human or stochastic aspects of SoS
description, and we recognise that this means our story is necessarily partial. However,
it does reflect a relative paucity of research literature on “humans in the SoS.”

The review identifies a need for a growing body of case studies of SoS engineering
on which research can draw, either to establish and test new methods and theories or
to verify existing ones. Getting access to various types of SoS can, however, prove to
be difficult. Much of the work on SoS engineering to date originates in military and
aerospace applications, and these typically have a degree of confidentiality that makes
it difficult to gain access. Having multiple owners and stakeholders of constituent
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systems make data collection and testing difficult. Even for nonmilitary SoS the sheer
size and geographical location of constituent systems and stakeholders can make it
difficult to gain access and overview for logistical reasons. As the SoS field is still in
its infancy, there is a need for case studies that show examples of SoS and show the
effect that the SoS dimensions have on the engineering effort. A series of challenging
examples, proposed by practitioners and placed in the public domain can galvanise
competitive research, as illustrated in some measure by the Verified Software Initia-
tive [Hoare et al. 2009]. This may also involve identifying systems that have not yet
been seen as SoS, but may express many of the SoS dimensions.

Although some large-scale SoSs are engineered using conventional techniques, hav-
ing evolved over a long period, and may not be identified explicitly as SoSs, the opportu-
nities afforded by the convergence of embedded computing platforms and the Internet
mean that there may be many more SoSs engineered, and explicitly identified as such,
in the future.

A. OVERVIEW OF STATE OF PRACTICE

An overview of the current state of practice within SoS engineering and development
is supplied in Table II. The table lists the four focus areas with the eight dimensions
derived in Section 3 and for each combination the current state of practice is assessed
based on the literature surveyed in the current section.

Table II. Overview of State of Practice

Characteristics Modelling/Arch. Simulation Verification Testing
Autonomy Agent-based Agent-based Model checking Independent

DT&E, OT&E
Independence Independent

constituent
system model

Using stubs Compositionality Independent
DT&E, OT&E

Distribution HLA and DEVS Simulators
combined using
HLA

Theorem proving,
model checking

Conformance
testing,
Interoperability
testing

Evolution Software
engineering
principles

No best
practices
available

Theorem proving,
model checking

Repeated
interoperability
testing

Dynamic
Reconfiguration

Domain-specific
languages

Domain-specific
languages

Theorem proving,
model checking

No best practices
available

Emergence of
Behaviour

No best
practices
available

No best
practices
available

Refinement End-to-end testing

Interdependence Interface-level Interface-level Compositionality End-to-end testing
Interoperability HLA and

architectural
frameworks

HLA and DEVS Compositionality Conformance
testing and
interoperability
testing strategies
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B. OVERVIEW OF CHALLENGES IN SOS ENGINEERING

An overview of the research challenges in model-based techniques for SoS engineering
is supplied in Table III. The table lists the four focus areas with the eight dimensions
derived in Section 3 and for each combination the key research challenge is assessed
based on the literature surveyed in the current section.

Table III. Overview of Challenges in SoS Engineering

Characteristics Modelling/Arch. Simulation Test Verification
Autonomy Higher

abstraction
level

Human behaviour
and constituents’
interactions

No SoS-specific
challenges

Unification of
modelling
techniques

Independence Sharing and
trust

Combining models
and distributed
simulation

No SoS-specific
challenges

Unification of
modelling
techniques

Distribution Describing
independent
constituent
platforms

Concurrency,
consistency, and
communication
faults

Complexity Unification of
modelling
techniques

Evolution Ease of evolving
models

Handling evolving
semantics

Incremental test
modelling

Evolving
verification
arguments

Dynamic
Reconfiguration

Ability to
express
dynamic
evolution

Communicating
dynamic scenarios

Dynamic object
management

Techniques for
abstraction and
compositionality

Emergence of
Behaviour

Ability to
express desires

Detecting
emergent
properties
appearing

Specification of
SoS test objectives

Techniques for
abstraction and
compositionality

Interdependence Ability to
express rely/
guarantee
policies

Detecting
violations during
simulation

Complexity,
specification of SoS
test objectives

Unification of
verification
technologies

Interoperability Well-founded
interfaces and
desired policies

Including aspects
as data formats,
architectures, and
hardware

Complexity,
specification of SoS
test objectives

Unification of
verification
technologies
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C. OVERVIEW OF A STRENGTHENED SOS ENGINEERING DISCIPLINE

This section provides a summation of the areas for future research and improved
development methodologies, in order to establish a firmer foundation for model-based
SoS engineering. An overview of each discussed area is supplied in Table IV. The table
lists the four focus areas with the eight dimensions derived in Section 3 and for each
combination the areas of research interest are summarized.

Table IV. Overview of a Strengthened SoS Engineering Discipline

Characteristics Modelling/Arch. Simulation Test Verification
Autonomy Expressing

capabilities and
behaviour formally

Human-in-the-loop
simulation

“local” MBT Verification of
self-awareness
properties

Independence Divided models
and well-founded
sharing rules

Individual and
joint model
simulation

“local” MBT Theories for
modelling
unification and
confidentiality

Distribution Modelling of
consistency and
communication
faults

Simulating
platform
characteristics,
consistency and
faults

Contract-based
test models

Extending
existing
verification of
concurrency
and distribution

Evolution Well-founded
language
extensibility

Simulator
extensibility for
language
extensions

Incremental test
modelling

Theories for
system
composition

Dynamic
Reconfiguration

Expressing
dynamically
changing
infrastructures
and error handling

Easy
communication to
nontechnical
stakeholders

Dynamic object
creation/deletion in
test models

Verification of
adaptive
properties and
system
composition

Emergence of
Behaviour

Expressing
desirable and
undesirable
behaviours

Identification of
emergence on the
basis of policies

Deriving
verification
theories from more
universal research
in emergent
behaviours

Contract-based
test models, test
objectives for
emergent
properties

Interdependence Well-founded
policy for desired
properties

Detecting dataflow
and connection
policy violations

Test objectives for
emergent
properties

Techniques for
verifying
compliance and
information
flow

Interoperability Well-founded and
detailed
constituent
interfaces

Cosimulation to
enable
heterogeneous
simulation

Test objectives for
emergent
properties

Unification of
verification
methods for
data integrity
and composi-
tionality
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D. OVERVIEW OF SOS DEFINITIONS

Table V. Historical Overview of Publications Defining SoS

Author(s) Main characteristics Section
Boulding [1956] Static structure of “open systems” from different disciplines 2.1
Ackoff [1971] System science organising systems into structured framework 2.1
Eisner et al. [1991] Metasystems engineering framework combining independent systems 2.5
Shenhar et al.
[1994]

Taxonomy with technological uncertainty and scope 2.3

Noam [1994] Telecommunication infrastructure moving from “network of
networks” to an SoS

2.4

Manthorpe [1996] Focus on the jointness between C4I in a defence setting 2.4
Kotov [1997] Large-scale concurrent and distributed systems 2.4
Lukasik [1998] The importance of educating of engineers to deal with evolving

self-organizing systems
2.5

Maier [1998a] Most influential paper defining the OMGEE characteristics of SoS 2.2
Roe [1999] Systems engineering process for military SoS 2.5
Cook et al. [1999] SoS as a systems methodology for military systems with concerns for

hierarchy, emergence, and C2
2.7

Krygiel [1999] Focus on interoperability of information and data sharing 2.7
Pei [2000] SoS as a defining factor in future battlefield scenarios 2.4
Carlock and
Fenton [2001]

Enterprise Systems Engineering point of view 2.4

Sage and Cuppan
[2001]

Use of the strategy “new federalism” for organisational structuring 2.7

Chen and Clothier
[2003]

Focus on the SoS environment with a core in architecture
interoperability and dynamic behaviour

2.5

Keating et al.
[2003]

SoS as a metasystem of interrelated complex subsystems 2.5

Bar-Yam et al.
[2004]

Derives SoS characteristic from the fields military, biology, and
sociology

2.7

Crossley [2004] SoS as a multidisciplinary research in interoperability, individual
behaviour, and human behaviour

2.5

DeLaurentis and
Crossley [2005]

Three dimension taxonomy for SoS analysis and design 2.3

Abbott [2006] Open at the top, open at the bottom, and continually evolving, but
slowly

2.2

Boardman and
Sauser [2006]

The alphabet characteristics: autonomy, belonging, connectivity,
diversity, and emerging

2.2

Boehm [2006] Software-Intensive SoSs 2.4
Cocks [2006] An SoS may not be as much about the system mission, but about the

architecture of the selected solution
2.4

Fisher [2006] Composition of autonomous systems is an SoS 2.7
Sharawi et al.
[2006]

Independence, interoperability, and global goal are essential SoS
concepts for modelling and simulation

2.7

OUSD(AT&L),
DoD [2008]

SoS is an arrangement of independent and useful systems that
integrate to deliver unique capabilities

2.6

Karcanias and
Hessami [2010]

Evolution of the notion of composite systems to include automony and
independence

2.3

Cantot and
Luzeaux [2011]

Independently acquired systems operated in order to maximise the
performance of the global operation

2.5

INCOSE [2015] Multiple heterogeneous distributed systems addressing large-scale
and interdisciplinary problems; entail ambiguous requirements,
unclear boundaries, and interfaces

2.6
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and Cornelia Zahlten. 2011. A real-world benchmark model for testing concurrent real-time systems
in the automotive domain. In International Conference on Testing Software and Systems. (ICTSS’11)
(LNCS), Vol. 7019. Springer, 146–161.

M. S. Phadke. 1989. Quality Engineering Using Robust Design. Prentice Hall.
Fiona Polack and Susan Stepney. 2005. Emergent properties do not refine. Electronic Notes in Theoretical

Computer Science 137, 2 (2005), 163–181.
Fred R. Ricker and Ravi Kalakota. 1999. Order fulfillment: The hidden key to e-commerce success. Supply

Chain Management Review 11, 3 (Fall 1999), 60–70.
J. Ring and A. M. Madni. 2005. Key challenges and opportunities in “system of systems” engineering. In

2005 IEEE International Conference on Systems, Man and Cybernetics. 973–978.
A. W. Roscoe. 2010. Understanding Concurrent Systems. Springer.
RTCA SC-205/EUROCAE WG-71. 2011a. Model-Based Development and Verification Supplement to DO-

178C and DO-278A. Number RTCA/DO-331. RTCA, Inc., 1140 Connecticut Avenue, N.W., Suite 1020,
Washington, D.C. 20036.

RTCA SC-205/EUROCAE WG-71. 2011b. Software Considerations in Airborne Systems and Equipment Certi-
fication. Number RTCA/DO-178C. RTCA, Inc., 1140 Connecticut Avenue, N.W., Suite 1020, Washington,
D.C. 20036.

Andrew P. Sage and Christopher D. Cuppan. 2001. On the systems engineering and management of systems
of systems and federations of systems. Information Knowledge Systems Management 2, 4 (Dec. 2001),
325–345.

F. Sahin, M. Jamshidi, and P. Sridhar. 2007. A discrete event XML based simulation framework for system of
systems architectures. In IEEE International Conference on System of Systems Engineering (SoSE’07).

J. W. Sanders and Graeme Smith. 2012. Emergence and refinement. Formal Aspects of Computing 24, 1
(2012), 45–65.

Daniel Schneider and Mario Trapp. 2009. Runtime safety models in open systems of systems. IEEE Inter-
national Symposium on Dependable, Autonomic and Secure Computing, 455–460.

Scott A. Selberg and Mark A. Austin. 2008. Toward an Evolutionary System of Systems Architecture. Tech-
nical Report. Institute for Systems Research. INCOSE.

Abeer Sharawi, Serge N. Sala-Diakanda, Sergio Quijada, Nabeel Yousef, Luis Rabelo, and Jose Sepulveda.
2006. A distributed simulation approach for modeling and analyzing system of systems. In 2006 Winter
Simulation Conference.

Aaron J. Shenhar. 1994. A new systems engineering taxonomy. In 4th Annual International Symposium of
The National Council on Systems Engineering, Vol. 2. 261–276.

Aaron J. Shenhar and Zeev Bonen. 1997. The new taxonomy of systems: Toward an adaptive systems
engineering framework. IEEE Transactions on Systems, Man and Cybernetics 27, 2 (1997), 137–145.

Carol A. Sledge. 2006. Army ASSIP Systems-of-Systems Test Metrics Task. Technical Report. CMU/SEI-2006-
SR-011. Software Engineering Institute, Carnegie Mellon University.

Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta Kwiatkowska, John McDermid,
and Richard Paige. 2012. Large-scale complex IT systems. Communications of the ACM 55, 7 (2012).

Andreas Spillner, Tilo Linz, and Hans Schaefer. 2006. Software Testing Foundations. dpunkt.verlag.
J. G. Springintveld, F. W. Vaandrager, and P. R. D’Argenio. 2001. Testing timed automata. Theoretical

Computer Science 254, 1–2 (March 2001), 225–257.
SysML1.2 2010. OMG Systems Modeling Language (OMG SysMLTM). Technical Report Version 1.2. SysML

Modelling team. http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf.
Genichi Taguchi. 1987. System of Experimental Design, Volume 1 & 2. UNIPUB/Kraus Intl. Publications.

ACM Computing Surveys, Vol. 48, No. 2, Article 18, Publication date: September 2015.

http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf


SoS Engineering: Basic Concepts, Model-Based Techniques, and Research Directions 18:41

K. Tatsumi. 1987. Test case design support system. In International Conference on Quality Control (ICQC).
615–620.

United States, Congress, Senate, Committee on Armed Services. 1988. Restructuring of the Strategic Defense
Initiative (SDI) Program: US Senate. University of Michigan Library.

Frits Vaandrager. 2012. Active learning of extended finite state machines. In 24th IFIP International Con-
ference on Testing Software and Systems (ICTSS’12) (LNCS). Springer, 5–7.

Ricardo Valerdi, Elliot Axelband, Barry Boehm Thomas Baehren, Dave Dorenbos, Scott Jackson, Azad
Madni, Gerald Nadler, Paul Robitaille, and Stan Settles. 2008. A research agenda for systems of systems
architecting. International Journal of System of Systems Engineering 1, 1/2 (2008), 171–188.

B. E. White and P. N. Jean. 2011. Case study in system of systems engineering: NASA’s advanced commu-
nications technology satellite. In 2011 6th International Conference on System of Systems Engineering
(SoSE). 237–244.

N. Wickramasinghe, S. Chalasani, R. V. Boppana, and A. M. Madni. 2007. Healthcare system of systems. In
IEEE International Conference on System of Systems Engineering (SoSE’07). 1–6.

Jim Woodcock and Ana Cavalcanti. 2002. The semantics of circus. In 2nd International Conference of B and
Z Users on Formal Specification and Development in Z and B (ZB’02). Springer-Verlag, 184–203.

Jim Woodcock, Ana Cavalcanti, John Fitzgerald, Peter Larsen, A. Miyazawa, and S. Perry. 2012. Features of
CML: A formal modelling language for systems of systems. In 7th International Conference on System
of Systems Engineering (SoSE’12). IEEE.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009. Formal methods:
Practice and experience. ACM Computing Surveys 41, 4 (Oct. 2009), 1–36. DOI:http://dx.doi.org/
10.1145/1592434.1592436

Jim C. P. Woodcock and Ana L. C. Cavalcanti. 2001. A concurrent language for refinement. In 5th Irish
Workshop in Formal Methods (IWFM’01) (BCS Electronic Workshops in Computing).

P. Zave. 1993. Feature interactions and formal specifications in telecommunications. Computer 26, 8 (1993),
20–28. DOI:http://dx.doi.org/10.1109/2.223539

Received July 2013; revised January 2015; accepted June 2015

ACM Computing Surveys, Vol. 48, No. 2, Article 18, Publication date: September 2015.

http://dx.doi.org/10.1145/1592434.1592436
http://dx.doi.org/10.1145/1592434.1592436
http://dx.doi.org/10.1109/2.223539

