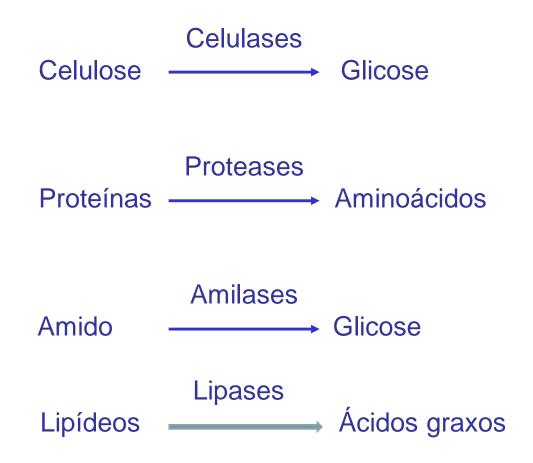
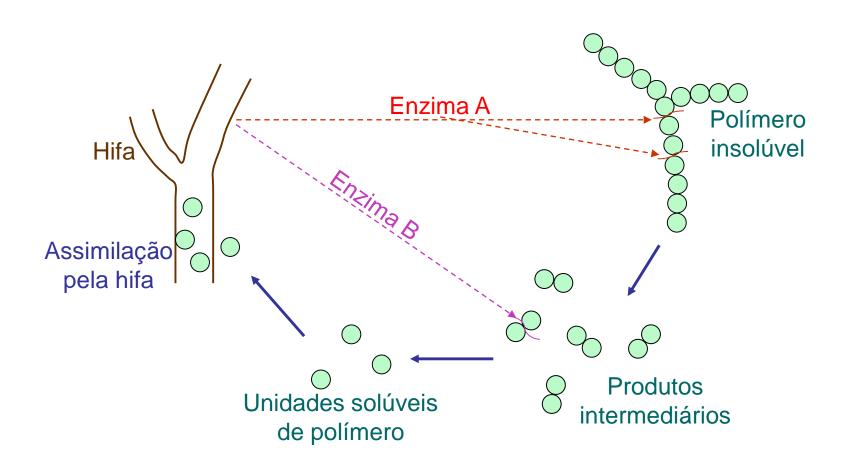

METABOLISMO DE MICRORGANISMOS: FUNGOS E BACTÉRIAS

Crescimento de fungos e bactérias





EXOENZIMAS

Enzimas extracelulares que degradam moléculas orgânicas complexas em moléculas simples assimiláveis pelo microrganismo

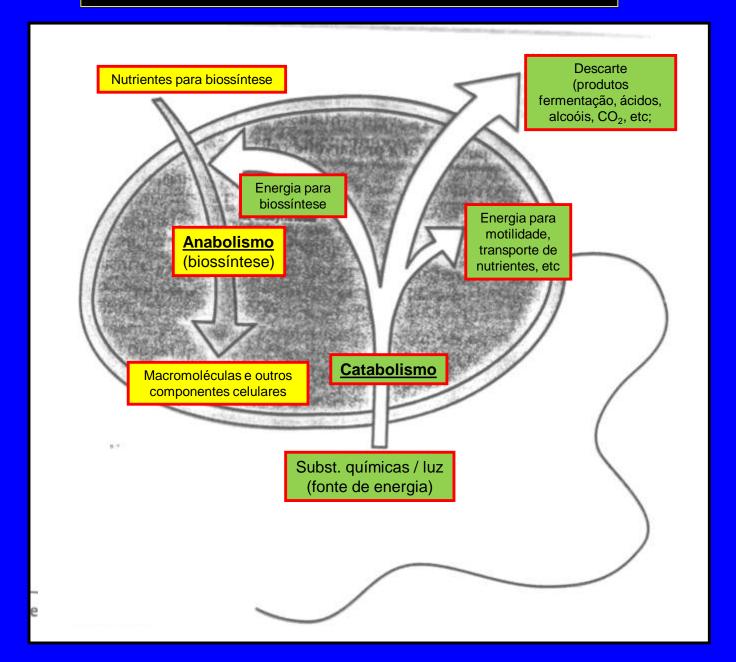
DIGESTÃO POR FUNGOS*

METABOLISMO

Soma total de todas as reações químicas que suportam a vida

CATABOLISMO

(reações exergônicas – quebra)


⇒ ATP, NADH, NADPH

ANABOLISMO

(reações endergônicas – síntese)

⇒ Carboidratos, proteínas, etc...

Visão simplificada do metabolismo celular

Toda a vida no planeta depende em última instância das atividades dos microrganismos!

"Unidade em bioquímica" – muitos dos processos bioquímicos que ocorrem nos microrganismos são essencialmente os mesmos em todas as formas de vida

METABOLISMO PRIMÁRIO

⇒ METABOLISMO DO CARBONO E ENERGÉTICO

- Glicólise
- Fermentação
- Respiração
 - Ciclo do ácido cítrico (tricarboxílico)
 - Cadeia de transporte de elétrons
- Gliconeogênese

⇒ METABOLISMO DO NITROGÊNIO

- Catabolismo do nitrogênio
- Anabolismo do nitrogênio
 - Assimilação de amônia
 - Biosíntese de amino ácidos
 - Biosíntese de nucleotídeos

⇒ SÍNTESE DE MACROMOLÉCULAS

- DNA
- RNA
- Proteínas
- Polissacarídeos
 - Quitina
 - β-Glucanas
 - Glicogênio

METABOLISMO PRIMÁRIO

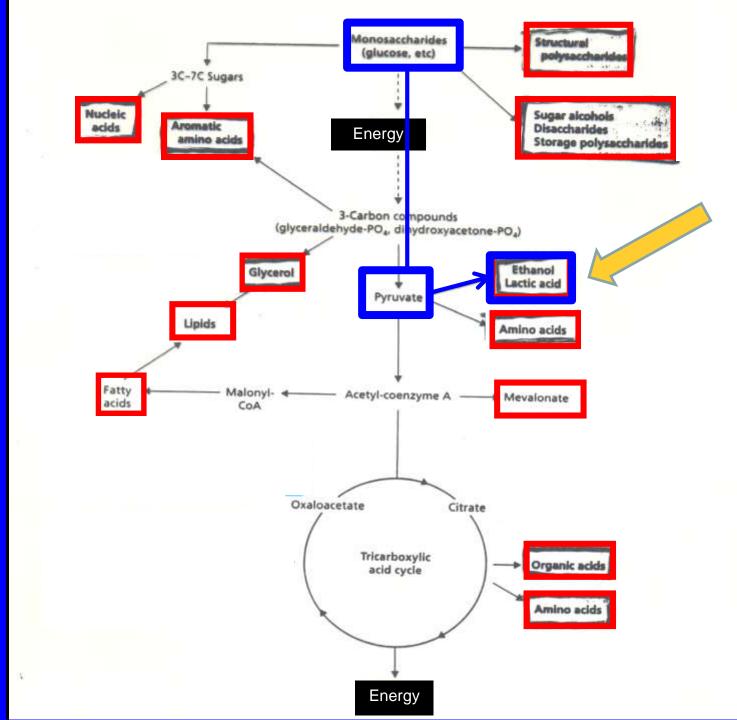
Monosaccharides Structural (glucose, etc) 3C-7C Sugars Sugar alcohols Disaccharides Nucleic acids Aromatic Energy amino acids Storage polysaccharides 3-Carbon compounds (glyceraldehyde-PO₄, dihydroxyacetone-PO₄) Ethanol Glycerol Lactic acid Pyruvate Lipids Amino acids Fatty Acetyl-coenzyme A Mevalonate acids COA Oxaloacetate Citrate Tricarboxylic Organic acids acid cycle Amino acids Energy

Caminhos metabólicos nos fungos

METABÓLITOS PRIMÁRIOS

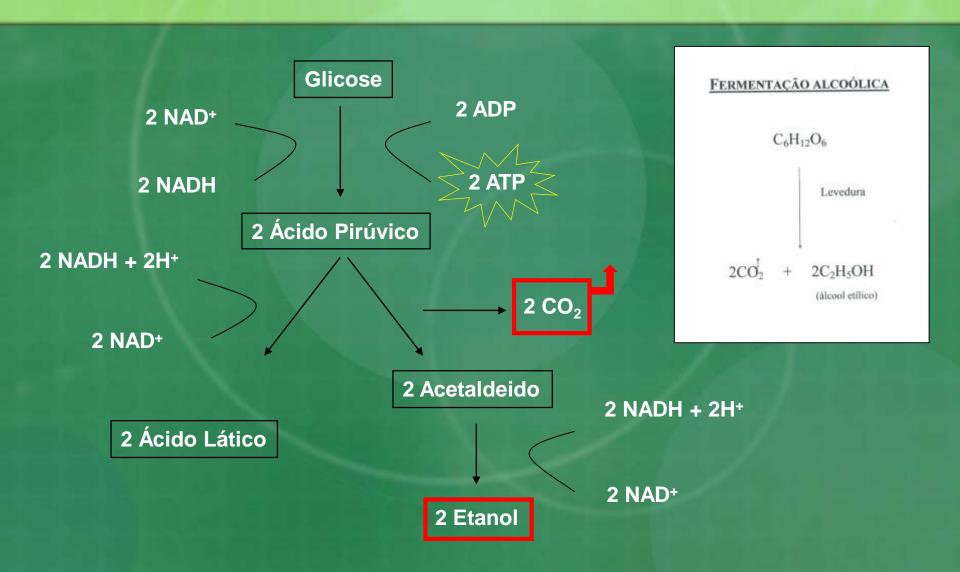
- Função conhecida
 - → estrutura das hifas
 - → metabolismo energético
 - → regulação do metabolismo
- Intermediários na biossíntese de compostos
- Ampla ocorrência na natureza

METABOLISMO PRIMÁRIO


Fermentação alcoólica / lática

- ⇒ METABOLISMO DO CARBONO E ENERGÉTICO
 - Glicólise
 - Fermentação
 - Respiração
 - Ciclo do ácido cítrico (tricarboxílico)
 - Cadeia de transporte de elétrons
 - Gliconeogênese

METABOLISMO PRIMÁRIO


Fermentação alcoólica / lática

Caminhos metabólicos nos fungos

Fermentação Alcoólica

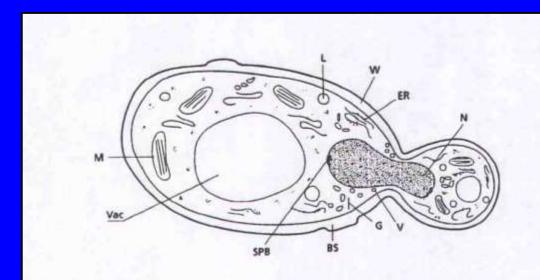
(Degradação parcial, anaeróbia, de glicose a CO2 e etanol)

Fermentação alcoólica

a) Degradação parcial, anaeróbia, de glicose a CO2 e etanol

$$C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2$$

b) Agente: levedura Saccharomyces cerevisiae


c) Substratos: Polissacarídeos

d) Produtos: Vinhos (polissacarídeos de frutas)

Cervejas (polissacarídeos de cereais)

Pão

Levedura Saccharomyces cerevisiae

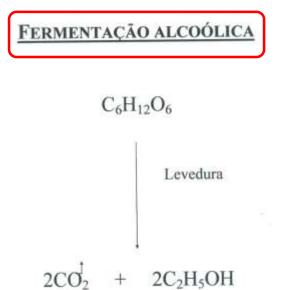
- Representação diagramática da levedura Saccharomyces cerevisiae (cerca de 5μm). W – parede celular; Vac – vacúolo central; BS – cicatriz de brotamento; M- mitocôndrio; L- corpúsculo de lipídeo; G – aparelho de Golgi; ER – retículo endoplasmático; V – vesícula; SPB – "spindle-pole body" equivalente ao centríolo em outros eucariotos; N – núcleo. Adaptado de Deacon (1997).

Formas leveduriformes não são fundamentalmente diferentes das hifas – apenas representam uma forma de crescimento diferente

Produção de álcool

Fonte de carboidratos complexos

(milho, beterraba, batata, uva)


Enzimas (cevada, fungos)

Açúcares fermentáveis simples

Enzimas (levedura)

 $2CO_2 + 2C_2H_5OH$

Cerveja Sakê Cevada (amido) + H₂O Arroz + Aspergillus Hidrólise do amido Hidrólise do amido Filtração Aquecimento com lúpulo Fermentação Fermentação (Sacarificação)

(álcool etílico)

METABOLISMO

SECUNDÁRIO

METABOLISMO SECUNDÁRIO

Metabólitos secundários

Derivam-se a partir de diferentes intermediários do metabolismo primário

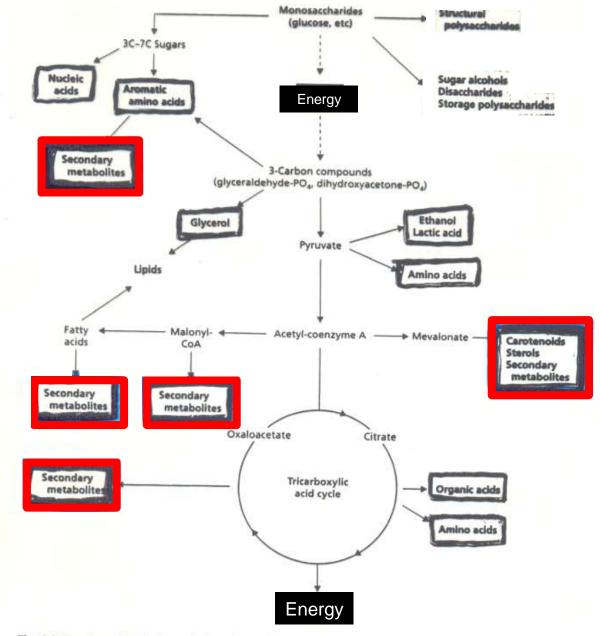


Fig. 6.1 Overview of the basic metabolic pathways of fungi, showing how the main energy-yielding pathways

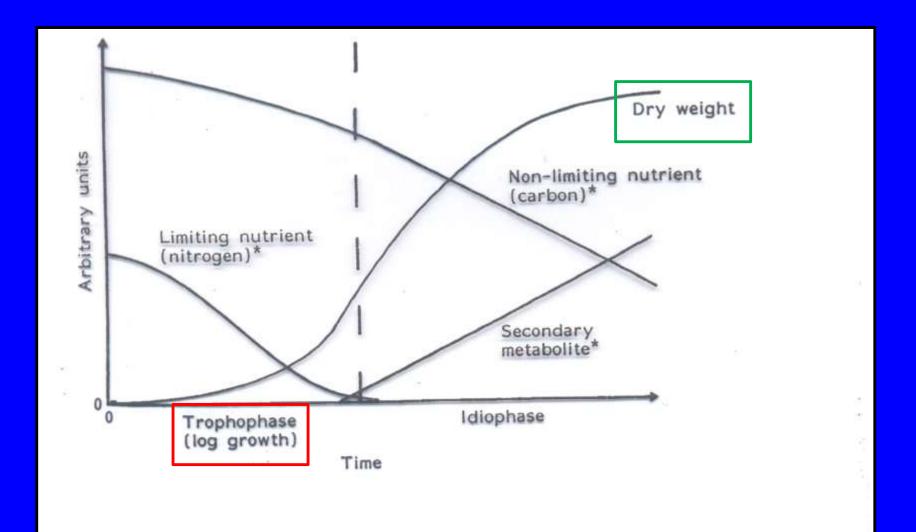
(spine of the diagram) provide the precursors for products used in growth and biosynthesis (boxes).

METABOLISMO SECUNDÁRIO

1) Antibióticos

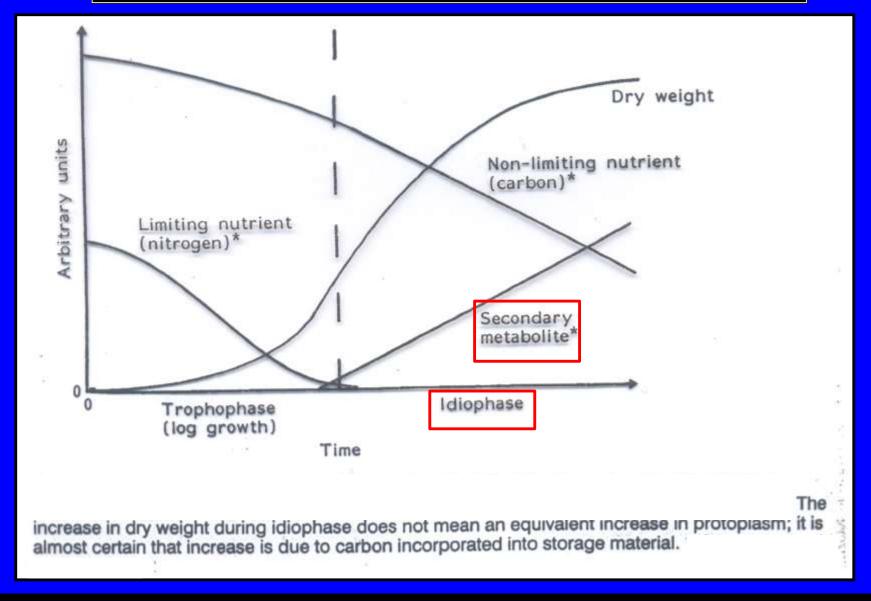
2) Toxinas

3) Pigmentos


4) Hormônios

METABÓLITOS SECUNDÁRIOS

- Frequentemente sem função conhecida
- Ocorrência restrita a poucas espécies ou gêneros
- Normalmente produzidos após a paralisação do crescimento


"Um metabólito secundário não é essencial para o crescimento vegetativo de um microrganismo em cultura pura"

Crescimento de um fungo filamentoso em meio de cultivo líquido

<u>Trofofase</u> – "feeding phase" – caracterizada pelo metabolismo primário / crescimento

Crescimento de um fungo filamentoso em meio de cultivo líquido

<u>Idiofase</u> – declínio da taxa de crescimento / início da reprodução / produção de metabólitos secundários

Metabólitos secundários

Derivam-se a partir de diferentes intermediários do metabolismo primário

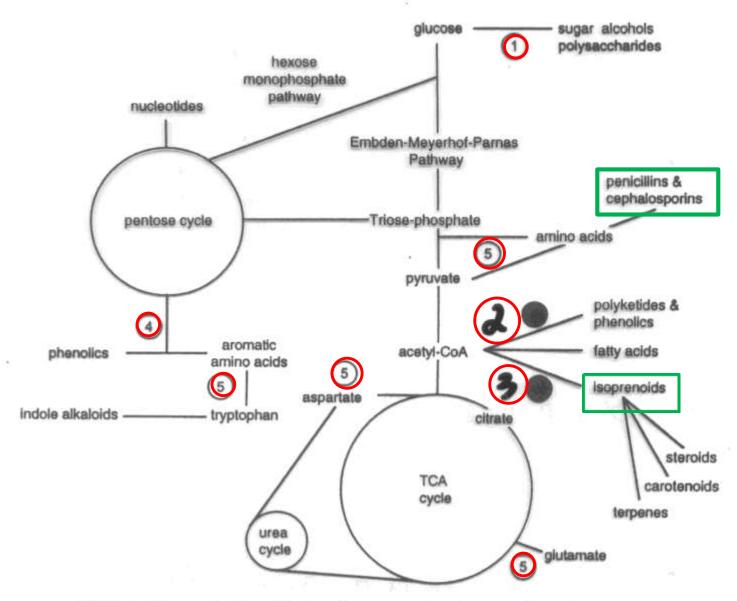
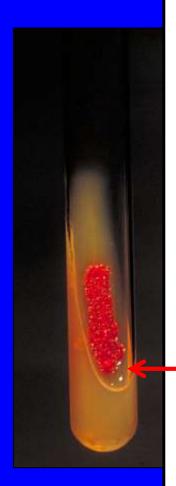



Figure 1. Interrelationships of metabolic pathways in primary and secondary metabolism. The principal pathways of secondary metabolism are numbered as follows: (1) glucose-derived metabolites; (2) acetate-malonate pathway; (3) mevalonic acid pathway; (4) shikimic acid pathway; and (5) amino acid-derived pathways.

1) ANTIBIÓTICO

Produto metabólico de um organismo que é prejudicial ou inibidor para certos microrganismos, em concentrações muito pequenas.

(Peclzar/Reid/Chan, 1981)

Tabela 10.1 — Origem dos principais antibióticos

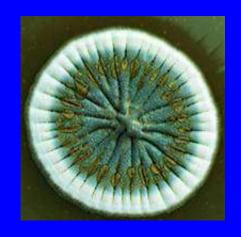
Microrganismos Produtores	Antibióticos	
Penicillium	penicilinas	
Cephalosporium	cefalosporinas	
Streptomyces	estreptocimina, neomicina, canamicina, tobramicina, cloranfenicol, eritromicina, rifampicina, vancomicina, tienamicina,	
Micromonospora	gentamicina, sisomicina	
Bacillus	polimixinas, bacitracina	
Chromobacterium	aztreonam	

ANTIBIÓTICOS BETA-LACTÂMICOS

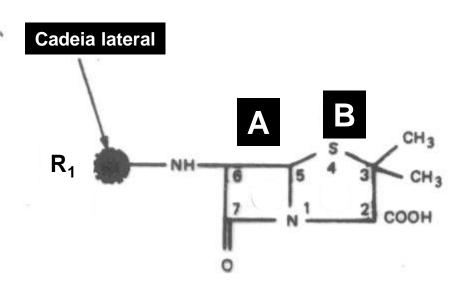
Penicilinas, cefalosporinas

- d Penicillium chrysogenum
- Acremonium chrysogenum (Cephalosporium acremonium)
- Membros do genero de procariotos Streptomyces

http://en.wikipedia.org/wiki/Acrem



PENICILINAS


- → Isoladas por Fleming em 1929 Penicillium notatum
- → Seletivas para bactérias gram-positivas, diplococos gram-negativos (Neisseria)
- → Núcleo básico da molécula: Ácido 6-amino penicilânico
- → As diferentes penicilinas se diferenciam através das cadeias laterais

Penicillium notatum, produtor de penicilina, inibindo a bactéria Bacillus subtilis

Ácido 6-amino-penicilânico

O ácido 6-amino-penicilânico é comum a todas as penicilinas, que se diferenciam pelo tipo de cadeia lateral que substitui um dos átomos de hidrogênio do grupo amino na posição 6. As penicilinas podem ser naturais ou semi-sintéticas. São chamadas naturais as penicilinas integralmente obtidas das culturas de *Penicillium* e semi-sintéticas, as penicilinas cujas cadeias laterais são adicionadas ao ácido penicilânico, no laboratório. Este ácido é normalmente obtido pela remoção enzimática da cadeia lateral das penicilinas naturais.

A – anel β-lactâmico

B – anel tiazolidínico

Cadeias laterais de algumas penicilinas

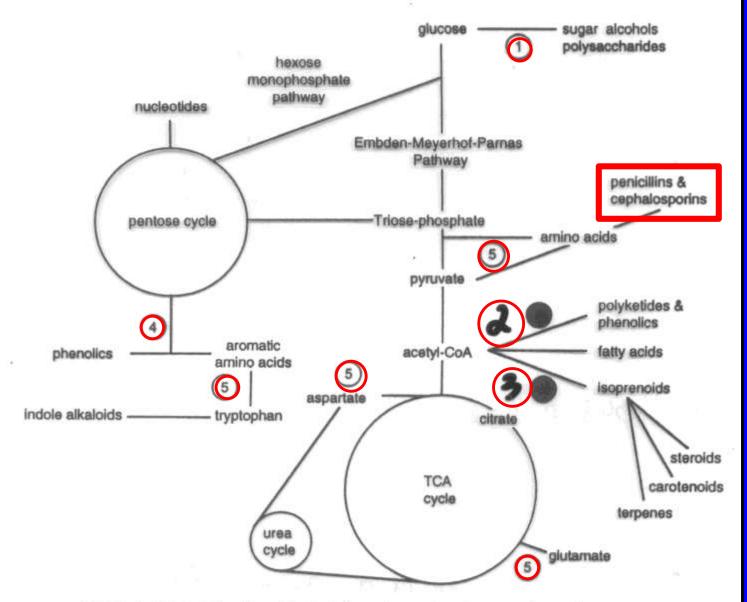
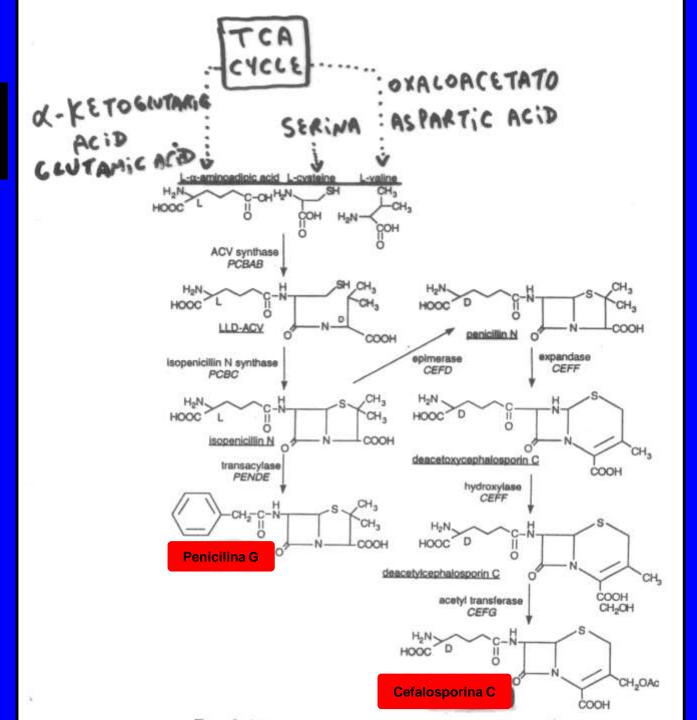



Figure 1. Interrelationships of metabolic pathways in primary and secondary metabolism. The principal pathways of secondary metabolism are numbered as follows: (1) glucose-derived metabolites; (2) acetate-malonate pathway; (3) mevalonic acid pathway; (4) shikimic acid pathway; and (5) amino acid-derived pathways.

β-Lactâmicos

Caminho biossíntese

Os nomes das enzimas e dos respectivos genes estão indicados

2) TOXINAS

Compostos que causam uma condição patológica em algum hospedeiro, planta ou animal

Pode envolver:

- Invasão do hospedeiro pelo fungo (parasitismo)
- Ingestão do fungo ("mushroom poisoning"; micetismo)
- Ingestão de produtos sobre os quais o fungo cresceu ("food poisoning"; micotoxicose)
- Respostas alérgicas

TOXINAS - NATUREZA QUÍMICA*

TOXINA	COMPOSIÇÃO/ C.METABOL.	FUNGO	AGRUPAMENTO
Esporodesmina	Trp/Ala	Aspergillus	Micotoxina
Amatoxinas	Peptideo cíclico (8 a.a.)	Amanita	Cogumelo venenoso
Toxina HC	Peptideo cíclico (5 a.a.)	Helminthosporium	Fitopatógeno
Aflatoxina	Policetídeo	Aspergillus	Micotoxina
 Zearalenona 	Policetídeo	Fusarium	Micotoxina
- Fusicoccina	Terpenóide	Fusicoccum	Fitopatógeno
Xantocilina	Shiquímico	Penicillium/ Aspergillus	Micotoxina

^{*)} Derivados de a.a. / fenóis, compostos aromáticos / terpenóides / polissacarídeos, glicoproteínas / reguladores de crescimento

Esporodesmina e α -Amanitina

Esporodesmina - (trp/ala) - fotossensibilização

<u>α-Amanitina</u> – (peptídeo cíclico – 8 a.a.) – inibidor RNA polimerase (mRNA)

TOXINAS - NATUREZA QUÍMICA*

TOXINA	COMPOSIÇÃO/ C.METABOL.	FUNGO	AGRUPAMENTO
Esporodesmina	Trp/Ala	Aspergillus	Micotoxina
Amatoxinas	Peptideo cíclico (8 a.a.)	Amanita	Cogumelo venenoso
Toxina HC	Peptideo ciclico (5 a.a.)	Helminthosporium	Fitopatógeno
Aflatoxina	Policetídeo	Aspergillus	Micotoxina
Zearalenona	Policetídeo	Fusarium	Micotoxina
Fusicoccina	Terpenóide	Fusicoccum	Fitopatógeno
Xantocilina	Shiquímico	Penicillium/ Aspergillus	Micotoxina

^{*)} Derivados de a.a. / fenóis, compostos aromáticos / terpenóides / polissacarídeos, glicoproteinas / reguladores de crescimento

Zearalenona e Fusicoccina

Zearalenona - (policetídeo) - atividade estrogênica em animais

<u>Fusicoccina A</u> – (terpenóide) – translocada pelo xilema / aumenta o volume celular / altera abertura dos estômatos

IDENTIFICAÇÃO DE TOXINAS

1) Produção da toxina em cultura pura

2) Bioensaio quantitativo *

 Fonte padrão de toxina para efeito de comparação (potência relativa)

*) Importante para diferenciar a toxina de outros metabolitos

Identificação de toxinas

Postulados de Koch

Bioensaios

- Animais Alimentação / injeção sobrevivência dos indivíduos
 - -Testes derme inflamação / necrose
- Plantas Mancha folha (injúria + toxina = área necrótica)
 - Liberação de eletrólitos
 - Inibição do crescimento

FITOTOXINAS

(Toxinas de fitopatógenos)

PRODUTOS QUÍMICOS DE FUNGOS E

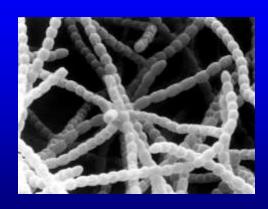
BACTÉRIAS, OS QUAIS MOSTRAM-SE

"TÓXICOS"* PARA PLANTAS SUPERIORES

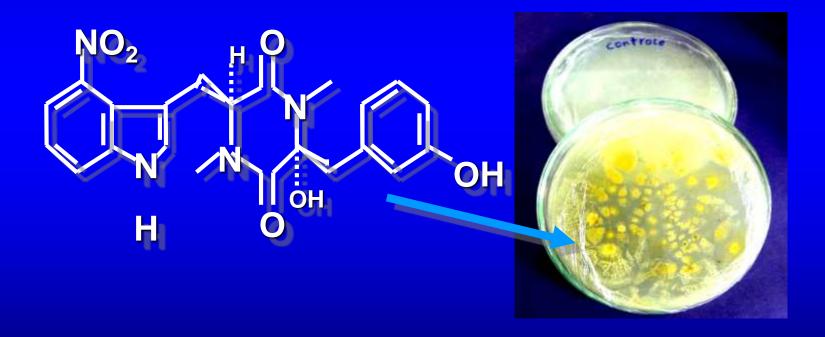
* Afetam o metabolismo da planta hospedeira, podendo causar a morte

FITOTOXINAS

(Toxinas de fitopatógenos)

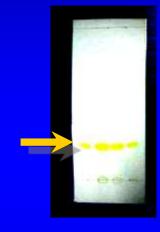

- Não agem sobre a integridade da parede celular
- Geralmente de baixo peso molecular
- "Móveis"
- Ativas em baixas concentrações
 - Não exibem ação enzimática ou hormonal

Sarna comum – doença em batata



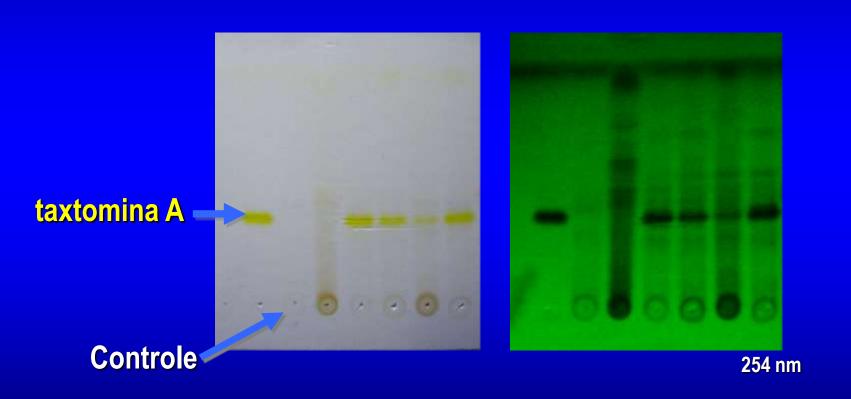
Agente causal – bactéria Streptomyces sp (S. scabies - mais comum)

Taxtomina A - fitotoxina



Importante para a colonização dos tecidos pela bactéria e manifestação dos sintomas da doença

Produção da taxtomina


cultivo em meio líquido (pH 7,2)

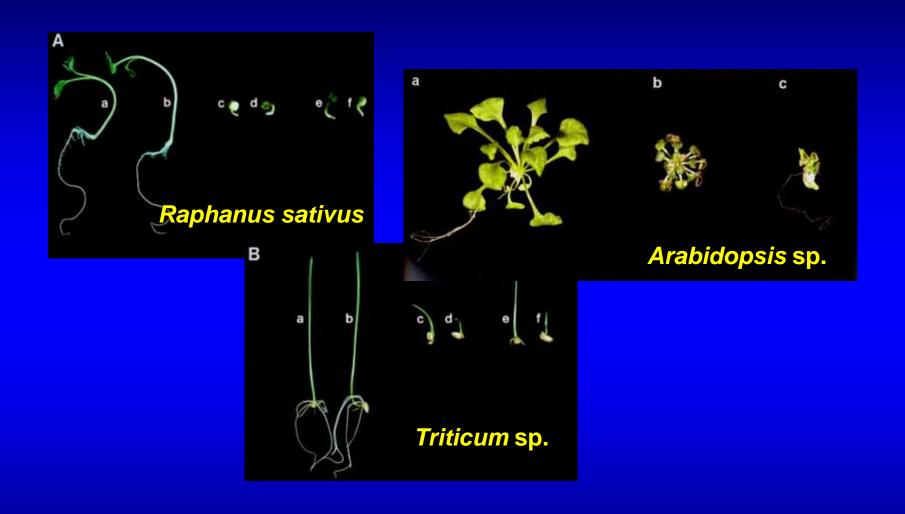
extração c/ acetato de etila identificação por TLC

quantificação por HPLC*

*(HPLC – high performance liquid chromatography)

Taxtomina A : Identificação

TLC = thin layer chromatography


Taxtomina A: produção por diferentes isolados da bactéria

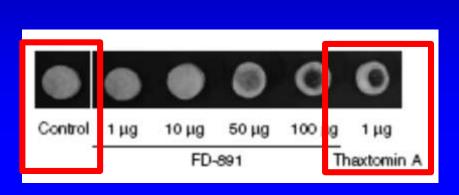
16 - Altamente produtor

79 – Intermediário

26 - Pouco produtor

✓ Ação sobre várias espécies vegetais

Taxtomina A – mecanismos de ação



Mecanismo de ação

- → Alterações no processo de divisão mitótica
 - → Bloqueio da biossíntese de celulose
 - Alterações no fluxo de Ca²⁺ e H⁺ na membrana plasmática
 - → Morte celular programada

Reação de cultivares de batata a taxtomina A

Secções de tubérculos de batata

24 horas

Taxtomina A

lesões necróticas

Reação de cultivares de batata a Taxtomina A

TOXINAS - NATUREZA QUÍMICA*

TOXINA	COMPOSIÇÃO/ C.METABOL.	FUNGO	AGRUPAMENTO
Esporodesmina	Trp/Ala	Aspergillus	Micotoxina
Amatoxinas	Peptideo cíclico (8 a.a.)	Amanita	Cogumelo venenoso
Toxina HC	Peptídeo cíclico (5 a.a.)	Helminthosporium	Fitopatógeno
Aflatoxina	Policetídeo	Aspergillus	Micotoxina
Zearalenona	Policetídeo	Fusarium	Micotoxina
Fusicoccina	Terpenóide	Fusicoccum	Fitopatógeno
Xantocilina	Shiquímico	Penicillium/ Aspergillus	Micotoxina

^{*)} Derivados de a.a. / fenóis, compostos aromáticos / terpenóides / polissacarídeos, glicoproteínas / reguladores de crescimento

Micotoxina

AFLATOXINAS

- Aspergillus flavus e A. parasiticus
- Propriedades carcinogênicas
- Policetídeo derivado de Acetil CoA
- Mínimo de 15 aflatoxinas conhecidas (B₁,B₂,G₁,G₂)

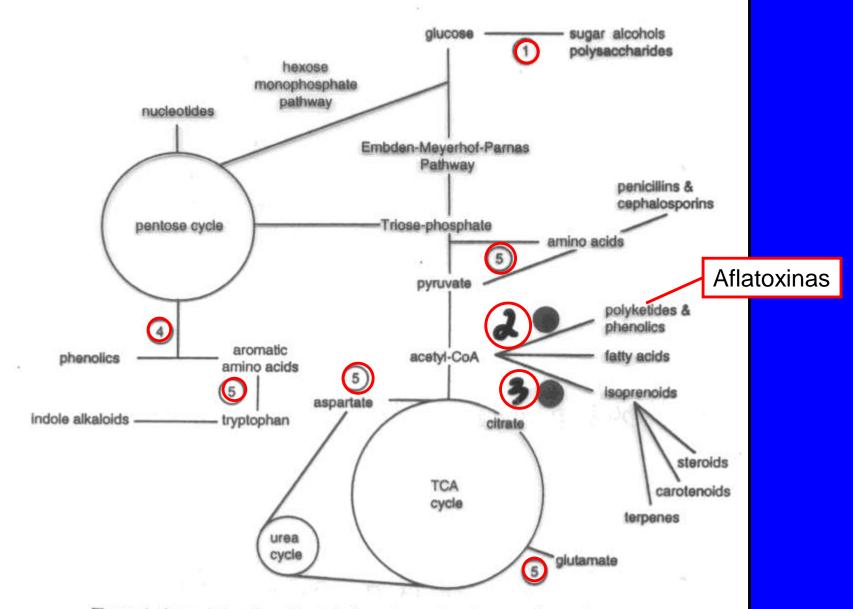
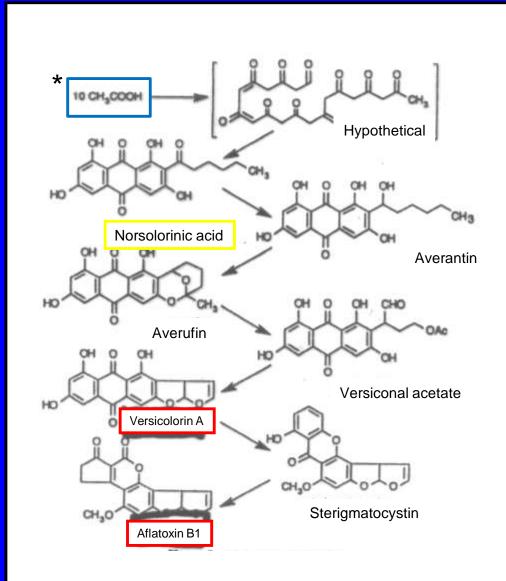



Figure 1. Interrelationships of metabolic pathways in primary and secondary metabolism. The principal pathways of secondary metabolism are numbered as follows: (1) glucose-derived metabolites; (2) acetate-malonate pathway; (3) mevalonic acid pathway; (4) shikimic acid pathway; and (5) amino acid-derived pathways.

Biossíntese da aflatoxina

21 enzimas envolvidas na biossíntese da aflatoxina B1

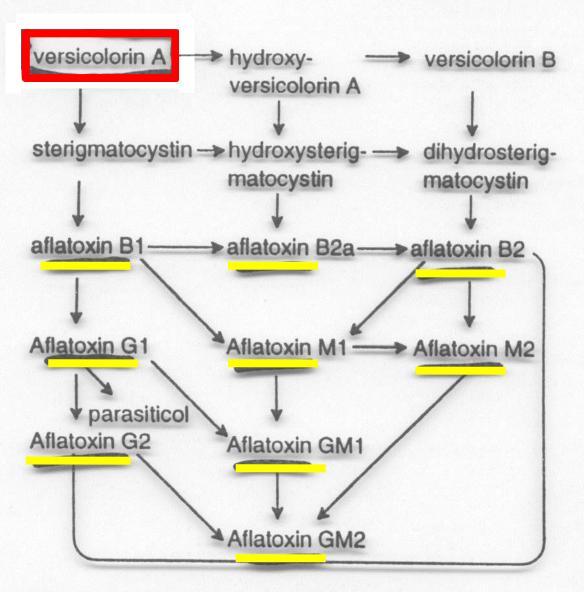
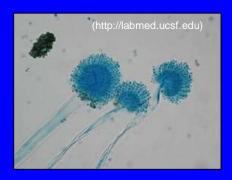


Figure 6. Network of aflatoxin interconversions from versicolorin A.

Os principais fungos produtores de micotoxinas são:

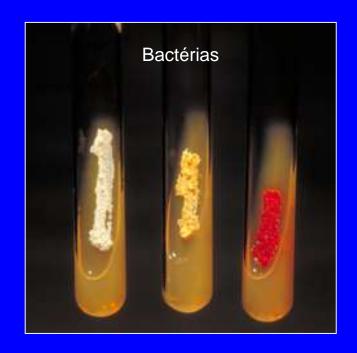
- Aspergillus sp
- Penicillium sp
- Fusarium sp

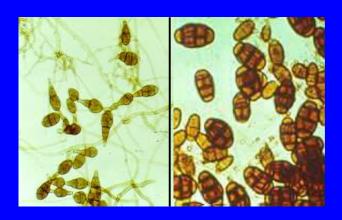

- Grande número de toxinas
- Grande variedade de toxinas

Fusarium graminearum

Penicillium citrinum

Aspergillus flavus




(http://www.bcrc.firdi.org.tw/fungi/fungal_detail.jsp?id=FU200802260014)

3) PIGMENTOS

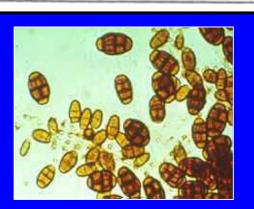
- Não são essenciais para o crescimento
- Associados com esporos, esporoforos ou estruturas relacionadas

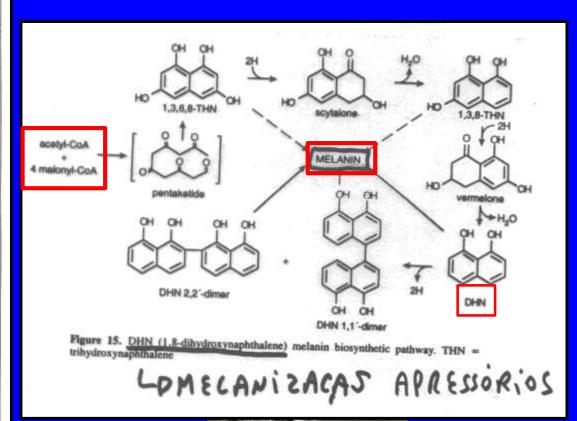
- Alguns importantes na resistência dos esporos sob condições adversas
- Alguns importantes no ciclo de vida

PIGMENTO	CÓR	ESTRUTURA	ORGANISMO
Fenicina	amarelo violeta	difenil-quinona	Penicillium phenicium
Espinolusina	vermelho	toluquinona	Aspergillus fumugatus
Fumigatina	castanho	toluquinona	Aspergillus niger
Fenicina Carviolacina	amarelo	metil-diquinona	Penicillium phaenicum
Catenarina	castanho claro	antraquinona	P. carmino-violaceum
Catenarina	vermelho	antraquinona	Helminthosporum catena- rium
Acido euródico	alaranjado	antraquinona	P. citreo-roseum
Eritroglaucina	vermelho	antraquinona	A. glaucus
Funiculosina	vermelho escuro	antraquinona	H. funiculosum
Helmitosporina	castanho	antraquinona	H. catenarium
Hidroxicurodina	alaranjado	antraquinona	P. citreo-roseum
Ficion (eurodina)	laranja	antraquinona	A. glaucus
Sulocrina	amarelo	benzofenona	Dospora sulfunea-ochra- cea
Ravenelina	amarelo	metil xantona	H. ravenelu
Citrivina	amarelo	quinóide	P. citrinum

PIGMENTOS - Bactérias

- compostos coloridos produzidos por algumas bactérias
- em meio de cultivo cores diversas: amarela, marrom, verde, azul, vermelho
- caracteres usados na identificação bactérias


Meio "ágar eosina-azul de metileno" (EMB)


Quadrante 1: Crescimento de *Escherichia coli* (**Gramnegativa**) - coloração verde metálica.

Quadrante 3: Crescimento de *Aerobacter aerogenes* (*Gram-negativa*) - coloração rosa.

MELANINAS

- Pigmentos marrom-escuro a preto
- Animais, plantas, fungos
- Melaninas fúngicas:
 - → parede celular das hifas e esporos
 - → natureza fenólica
 - → estrutura complexa não determinada

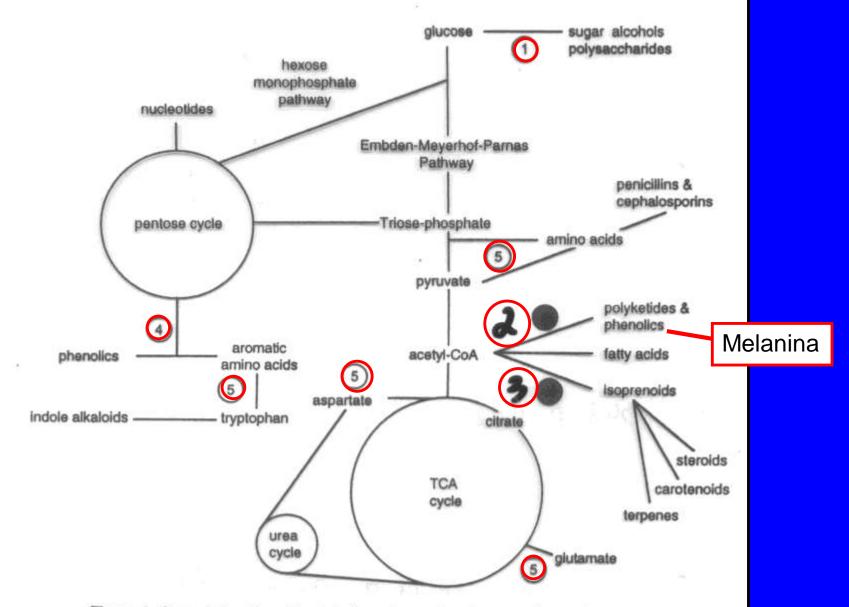
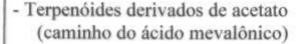


Figure 1. Interrelationships of metabolic pathways in primary and secondary metabolism. The principal pathways of secondary metabolism are numbered as follows: (1) glucose-derived metabolites; (2) acetate-malonate pathway; (3) mevalonic acid pathway; (4) shikimic acid pathway; and (5) amino acid-derived pathways.


CAROTENÓIDES

- Maior parte pigmentos:

→ amarelos

→ laranjas

→ vermelhos

- Geralmente com 40 carbonos
- Cor depende das ligações duplas nas moléculas

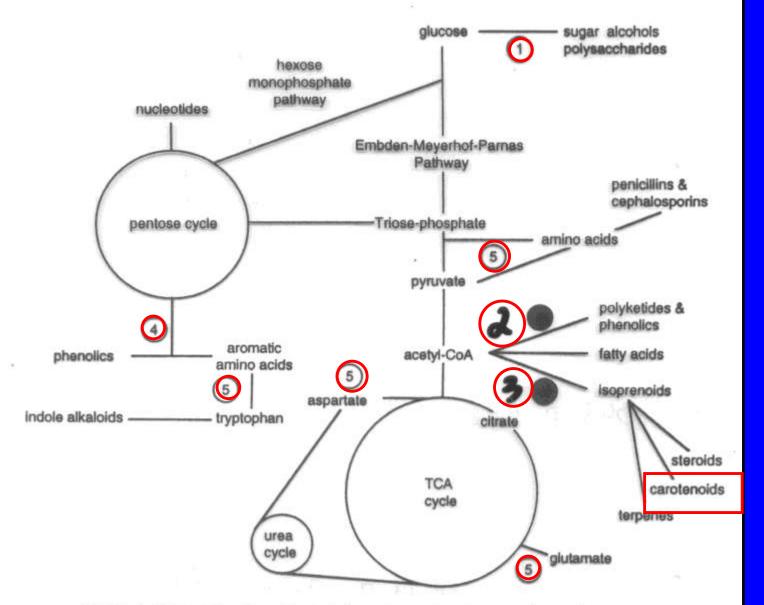


Figure 1. Interrelationships of metabolic pathways in primary and secondary metabolism. The principal pathways of secondary metabolism are numbered as follows: (1) glucose-derived metabolites; (2) acetate-malonate pathway; (3) mevalonic acid pathway; (4) shikimic acid pathway; and (5) amino acid-derived pathways.

CAROTENÓIDES - IMPORTÂNCIA

- Proteção células → espécies ativas de oxigênio
- <u>Carotenos</u>: precursores de hormônios sexuais em Zygomycetes

4) HORMÔNIOS SEXUAIS

- Atividades:
 - Indução de estruturas gaméticas
 - Quimiotaxia
 - Quimiotropismo

Hormônios – substâncias difusíveis regulando o processo de "acasalamento"

Hormônio Natureza		Fungo	<u>Função</u>	
Sirenina/ Parasina	Isoprenóide	Allomyces	Quimiotaxia	
Anteridiol/ Oogoniol	Esteróis	Achyla ambisexualis	Quimiotropismo / Indução gametângio / Diferenciação de gametas	
Ácido trispórico	Isoprenóide	Mucor mucedo	Indução de zigóforo	
Fatores a, α	Peptideo (12-13 a.a.)	Saccharo- myces cerevisiae	Formação de célula diplóide (gemulação ilimitada)	

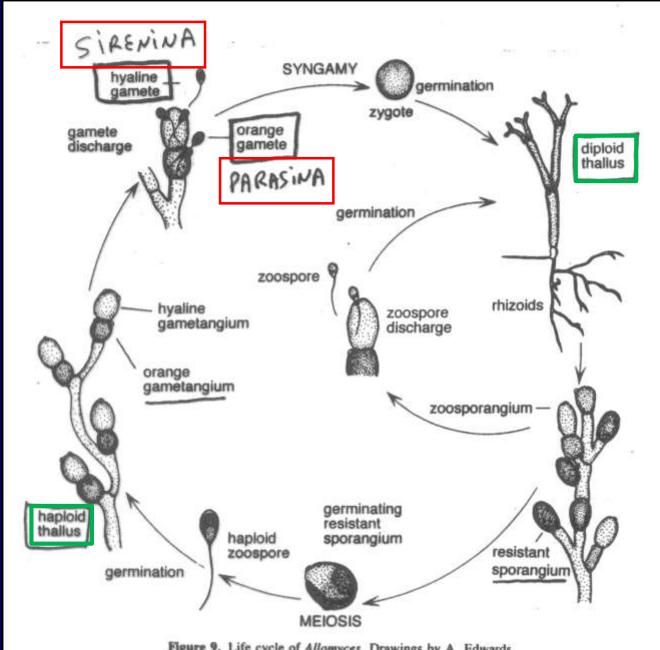


Figure 9. Life cycle of Allomyces. Drawings by A. Edwards.

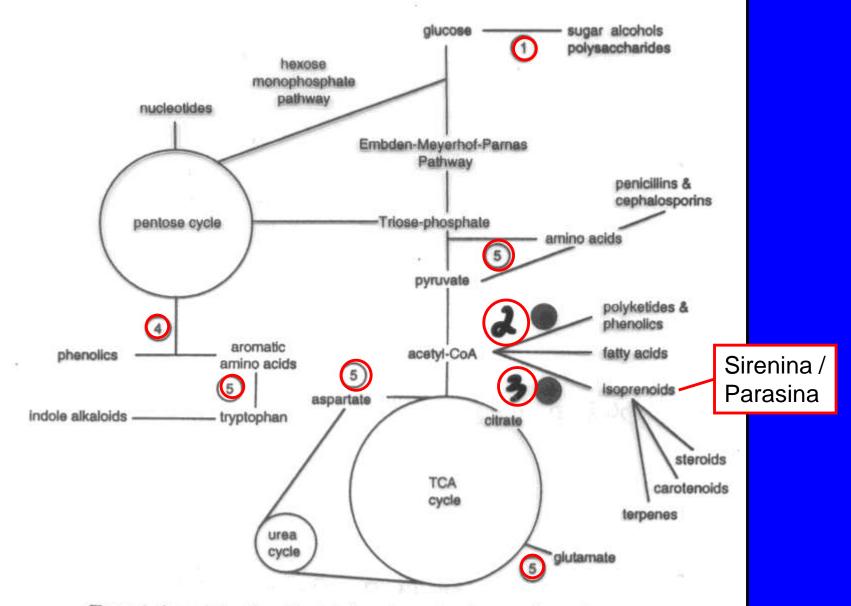


Figure 1. Interrelationships of metabolic pathways in primary and secondary metabolism. The principal pathways of secondary metabolism are numbered as follows: (1) glucose-derived metabolites; (2) acetate-malonate pathway; (3) mevalonic acid pathway; (4) shikimic acid pathway; and (5) amino acid-derived pathways.

FATORES INFLUENCIANDO O METABOLISMO SECUNDÁRIO

- Enzimas frequentemente ausentes / inativas durante crescimento vegetativo
- Limitação de nutrientes c/ excesso de carbono ⇒ estimula
- Nitrogênio disponível (fácil assimilação amônia) ⇒ inibe

OUTROS FATORES:

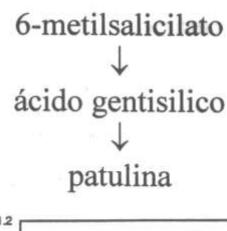
Incubação: agitação, aeração, etc.

<u>Temperatura</u>: (5-10 °C < faixa crescimento vegetativo)

Fosfato: 1 mM (favorece) / 10 mM (inibe)

Micronutrientes: Zn importante

Table 3. The Role of Trace Metals in Secondary Metabolism in Several Fungi [42]


Fungus	Metabolite	Metal	Conc. (µM)	Effect
Aspergillus flavus	Aflatoxin	Zn	5	Stimulate
		Zn	200	Inhibit
A. niger	Malformin	Mn	1	Stimulate
		Mn	10	Inhibit
Claviceps paspali	Lysergic acid	Zn	5	Stimulate
C. purpurea	Ergotamine	Zn	10	Stimulate
Fusarium vasinfectum	Fusaric acid	Zn	3	Stimulate
		Zn	6	Inhibit
Penicillium	Penicillin	Zn	1	Stimulate
chrysogenum		Zn	30	Inhibit
		Fe	20	Stimulate
		Cu	. 10	Inhibit
P. griseofulvum	Griseofulvin	Zn	200	Inhibit
P. urticae	6-Methylsalicylate	Zn	1	Inhibit
	Gentisyl alcohol	Zn	1	Stimulate
	19-2 Charlet . Contribution Contribution	Fe	15	Inhibit
	Patulin	Zn	1	Stimulate
		Fe	15	Stimulate

Meio rico Meio mínimo Isolado A isolado B 5h 30h 6-MSA 6-MSA

Os isolados exibiam curva crescimento (biomassa; peso seco) similar

Patulina

(antibiótico produzido por Penicillium urticae)

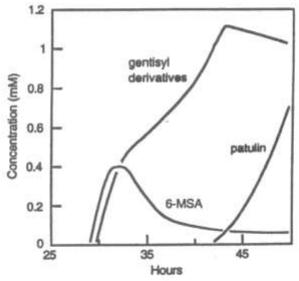
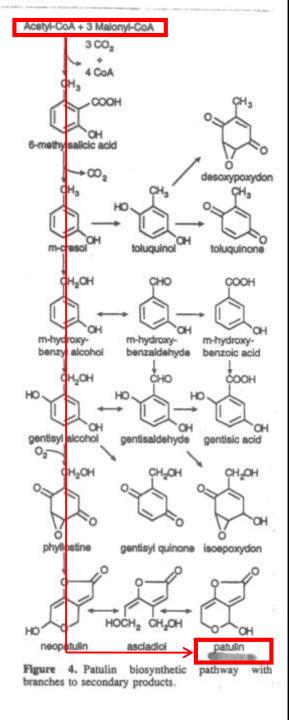



Figure 8. Accumulation of metabolites during patulin formation. From the data of Bu'Lock [26].

The multiplicity of products related to a common secondary pathway is typical of many microorganisms

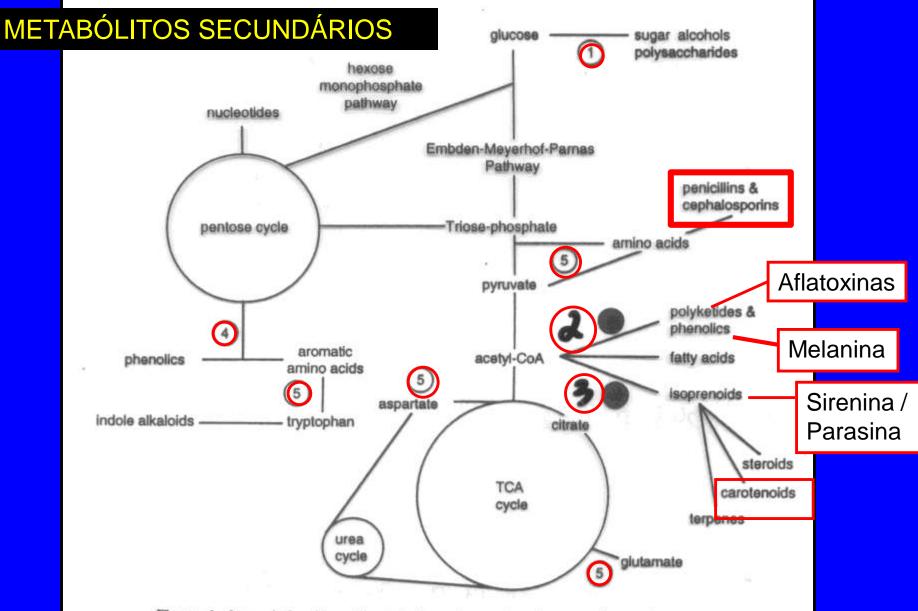


Figure 1. Interrelationships of metabolic pathways in primary and secondary metabolism. The principal pathways of secondary metabolism are numbered as follows: (1) glucose-derived metabolites; (2) acetate-malonate pathway; (3) mevalonic acid pathway; (4) shikimic acid pathway; and (5) amino acid-derived pathways.