MANUAL RÁPIDO KIT NXP FREEDOM FRDM – KL25Z

0

Ó

PSI 3212 – LABORATÓRIO DE CIRCUITOS ELÉTRICOS

ARQUITETURA ARM CORTEX-M

- Baixo consumo e alta integração
- Alto desempenho e *clock* (acima de 16,0 [MHz])
- 32 bits
- Alta quantidade de memória
- Amplo espectro de periféricos
- NXP Kinetis KL25Z
 - ARM Cortex-M0+
 - Single core 48,0 MHz de clock
 - 128,0 KB FLASH ROM
 - 16 KB SRAM

KIT NXP FREEDOM FDRM-KL25Z

- Chip ARM CORTEX-M0+ NXP Kinetis MKL25Z128VLK4
- Sensores
 - Acelerômetro MEMS triaxial
 - Sensor touch slider capacitivo
- Atuadores
 - Um LED RGB (três LEDs RGB)

- Interface USB OTG ligada direto ao microcontrolador KL25Z
 - Terminais GPIO (General Purpose Input and Output)
 - Pinagem compatível com padrão Arduino Revisão 3 (R3)
- Cabo de programação OpenSDA embutido (outro ARM!) interface USB SDA

CUIDADOS NA UTILIZAÇÃO!

- Kit projetado para uso com outros dispositivos e interfaces COMPATÍVEIS
- Terminais e conectores de expansão NÃO podem ser ligados a qualquer componente, de qualquer forma, com qualquer tensão ou especificação
- Enquanto energizado, mantenha o kit afastado de objetos metálicos, condutores, fios, grafite, líquidos,...

PLACA DO KIT E SEUS RECURSOS

Botão de RESET de programas

Acessos às Entradas e Saídas da placa

Conectores de expansão Arduino R3

"Touch slider" Capacitivo

Microcontrolador

LED RGB

Acelerômetro 3D Micro-máquina MEMS: <u>Incline a placa.</u>

PLACA DO KIT / CONEXÃO AO PC

USB – mini B USB KL25Z

Botão de reset

USB – mini B USB SDA Usar esta para ligar ao PC

Placa FRDM-KL25Z

Observação: Há duas portas USB: uma denominada USB SDA e outra USB KL25Z.

CABO USB: Conectar ao computador a extremidade padrão A

e à placa a extremidade <u>padrão mini-B</u>

Atenção: USB tipo Micro-B, usado como carregador de smartphones, não é compatível!

NO SEU COMPUTADOR

- Surge um flash-drive junto aos demais dispositivos do seu computador
- Esse drive será utilizado para gravar novos programas no microcontrolador KL25Z

Dentro do Drive

- Alguns arquivos são links para páginas de internet
- Outros arquivos são os drivers de uma porta serial virtual que você precisa instalar no seu Windows

<u>Arquivo de *Status*</u>

PSI 3212 – LABORATÓRIO DE CIRCUITOS ELÉTRICOS

PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS VISITANDO O SITE DA NXP • No drive FRDM-KL25Z, clique duas vezes sobre o arquivo FSL_WEB.HTM X ▶ Calculon ▶ FRDM-KL25Z (Q:) Search FRDM-KL25Z (O. Organize 🔻 Share with 💌 Burn New folder 🚔 / 📕 Freedom Developme 🗙 Name 🗲 -> C 👬 🗋 www.nxp.com/products/software-and-tools/hardware-development-tools/freedom-development-boards/freedom-development-pls 🔆 Favorites FSL_WEB.HTM² 👤 Sign In or Register 🛛 🕕 English 🔻 🛛 🧮 Cart 🔆 Epellini Projetos NO Q ALL - Search SDA INFO.HTM Nesktop PRODUCTS L Downloads TOOLS.HTM NXP > Software and Tools > Hardware Development Tools > Freedom Development Board $\boxtimes \prec$ SERCDC89.CAT Publico FRDM-KL25Z: Freedom Development Platform for Kinetis KL14, KL15, KL24, KL25 MCUs 🕁 Repositorio SERCDC89.INF Getting Started Documentation Downloads Buy / Specifications Training & Support Recent Places Overview LASTSTAT.TXT Jump To Overview Google Drive Overview The Freedom KL25Z is an ultra-low-cost development platform for Kinetis L Series KL1x (KL14/15) and KL2x Features (KL24/25) MCUs built on ARM® Cortex®-M0+ processor. Supported Device: Features include easy access to MCU I/O, battery-ready, low-power operation, a standard-based form factor with Kit Contains expansion board options and a built-in debug interface for flash programming and run-control The FRDM-KL25Z is supported by a range of NXP and third-party development software Jump Start Your Design You can now use mbed.org at no charge, with full access to the online SDK, tools, reusable code—which means Related Products • Seu browser deve abrir a página do kit no downloads installations or licenses-and an active community of developer Community Discussion no site da NXP Freedom Development: Freedom Development Platform for KL14 KL15 KL24 KL25 MCUs Block Diagram FRDM-KL25Z: Freescale Freedom Development Platfo

QUICK START

• No site da NXP *Freedom Development* aberto, na seção "*Jump Start Your* Design", clique sobre "Start Here! Getting Started on your FRDM-KL25Z"

Features

Energy Efficiency with

reedom Developmen Kinetis L Series Platform for KL14. Entertaining MCUs KL15, KL24, KL25

MKL25Z128VLK4 MCU – 48 MHz, 128 KB

Capacitive touch "slider," MMA8451Q

Sophisticated OpenSDA debug interface Mass storage device flash programming

interface (default) - no tool installation required to evaluate demo apps

P&E Multilink interface provides run-control

accelerometer, tri-color LED Easy access to MCU I/O

flash, 16 KB SRAM, USB OTG (FS), 80LQFP

Getting Started with the FRDM-KI 257 Development Platform

How To

What is the Plus Fo Kinetis L Ultra Low Power ARM Cortex-

Click to view Interactive elements

Processor Expe (Driver Suite)

Supported Devices

Kinetis L Series: FTF

2012 - Demo

KL1x: Kinetis KL1x - 48 MHz, General Purpose, Connectivity, Ultra-Low-Power MCUs

M0+ - Introduction

KL2x: Kinetis KL2x - 48 MHz, USB, Connectivity, Ultra-Low-Power MCUs

Jump Start Your Design

Start Here! Getting Started on your FRDM-KL25Z

This page will help guide you through the process of learning about your FRDM-KL25Z board

• Selecione a aba "Downloads" e baixe todos os arquivos, principalmente o Quick Start Package (FRDM-KL25Z_QSP.ZIP)

TESTE DE PROGRAMAS EXEMPLO

- Gravação de novos programas via Flash-Drive
- Descomprima o arquivo "FRDM Quick Start Package FRDM-KL25Z_QSP.ZIP" em um diretório no seu computador
- Procure a pasta "Precompiled Examples"
- Conecte o Cabo USB
- Arraste qualquer arquivo com extensão .SREC para dentro do drive FRDM-KL25Z
- Observe o funcionamento de cada programa

Questions

FRDM KL05Z

MBED – PROGRAMAÇÃO NA NUVEM

- Acesse o site de desenvolvimento <u>http://developer.mbed.org</u>
- Clique em "*login or signup*" e crie uma conta pessoal
- Explore o Dashboard e o Compiler

MBED – COMPILER

- Suporte a várias plataformas, usuários e grupos
- Clique no canto superior direito e adicione a plataforma do kit FDRM-KL25Z no seu compilador
 KL25Z no seu compilador
- Clique em "New", escolha a plataforma "FRDM-KL25Z" e o template "Empty Program"
- Escolha um nome para seu primeiro programa (Teste) e clique em OK

Search mbed.ord

Development Platform for Devices

Getting Starte

mbed

MBED – COMPILER – BIBLIOTECA MBED

- Na seção "Program Workspace" clique com o botão direito sobre o seu programa (Teste), escolha "Import Library...", "From Import Wizard..."
- Na janela "Import a library from mbed.org", digite "mbed" no campo e clique em "search". Ao aparecer a lista, escolha a opção "mbed", do autor "mbed official", e clique no botão Import. Aceite as demais opções como padrão.

mbed		Л	1									
🖺 New 🗸 🎦 Import 🛛 🖵 Save	Save All	🛗 Compile 🗸 🛛 🕭 Con	n					Import	Wizard			
Program Workspace Program: Teste				Reference Save	E Save All	Compi	le 🗸 🕭 Con	imit 🗸 🛞	Revision 🗠 😋	#4 8	8 🔨	1 7
🗆 🛃 My Programs	Nar	me		<	Import Wiz	ard						7
 ✓ Tes ✓ New File ✓ New Folder ✓ New Library ✓ Import Library 	•	From Import Wizard 4			mbed	Import Select libra your works	a library fro my from the list.) pace.	m mbed. ′ou can also	org drag&drop them in	Im	port!	Aut Pub
Export Program		From URL			Programs	Libraries	Bookmarked	Upload	mbed		Search	Imp
🔍 Find in Program					Listing publis	hed libraries	on mbed.org mat	ching " mbe o	d"			Forl
③ Revisions	Ctrl-R				Name		Tage		Author	Importe	Modif	Con
Save As	Ptrl.ebift.e				mbed		Tays		mbed official	287553	15 Mai	Dep Dep
Commit	Ctrl-Shift-C				숬 <mark>mbed</mark> -rto	s	<u>cmsis</u> rtos RTX		mbed official	29815	15 Mai	Foll
Publish 0	Ctrl-Shift-U				숬 mbed-sro		mbed		mbed official	20938	30 Sep	
 ₽⇒ Copy	Ctrl-C				숬 Ethernet	nterface	ethernet ip mb	ed	l official	15000	18 Feb	<u> </u>
Paste	Ctrl-V				숬 USBDevic	e	device USB		d official	11260	18 Feb	
A Rename	F2 Del											
•••												

MBED – COMPILER – "IMPORT"

Você pode escolher bibliotecas e até mesmo programas já desenvolvidos para os mais variados fins, como comunicação com câmeras de video, com o Matlab, com chips comerciais etc.

 Selecione "Import" e depois "Programs" ou "Libraries", procure por palavra-chave e comece a testar!

Mas deixe isso para quando estiver mais familiarizado com o kit, por agora, vamos seguindo os passos iniciais

							1		Martin de Martin de Car	and the second			
m					Import Wizard								
New P	New 🎦 Import 🗌 🖓 Save 📮 Save Al			Save Al	🔛 Compile 🗸 🕭 Commit 🖌 🕜 Revision 🗠 😋 🎮 🇞 🔧 🛄 Help 🛛 FRDM-KL25Z 🐲								
Program Wo	rkspace	<	Im	port W	rd							Program Deta	ails
Hypro	grams m_gpio main.cpp mbed m. belloworld				Import a elect progra your workspa	am from the list ace.	t. You can a	ed.o	≻rg rag&drop them in	Im	port!	Name Author Published Last Updated	LifeCam Norimasa Okamoto 08 May 2012 31 Jul 2012
	m_nenowonu		Pr	rograms	Libraries	Bookmarked	Upload	vide	:0		Search	Imports	272
E 🙆	mann.cpp mhed		List	ting publis	hed programs (programs on mbed.org matching "video"				Forks	0		
🗆 🔽 frdi	m rabled			Nama		Tage			Author	Importe	Modif	Commits	5
	main.cpp			Name		Tags			Author	Imports	Moun	Dependents	0
E 💿	mbed		ਠਿ	OV7670_T	resting	camera OV767	0 video		Martin Smith	551	31 Mai	Dependencies	3
	DM_RGBLED		\mathbf{x}	LifeCam		msc USB UVC V	NEBCAM		Norimasa Okamol	272	31 Jul	Followers	<u>11</u>
🛨 🔯	mbed-KL25Z		숤	SimpleThi	ng_VIT				Ganesh Gore	165	30 Jun	🐼 P	rogram Homepage
_ 🗈 (main.cpp		숦	OV7670_v	with_AL422B_	AL422B camera	a FIFO OV7	<u>670 </u>	Sadaei Osakabe	140	18 Feb		
🗆 🛃 Lab	2		5	MbedCons	sole	console PS/2 T	erminal VG	A	Jordan Earls	75	15 Apr	Tags	
<u>.</u>	Vef.cpp		5.2	SoundLibr	arvExample N	melody sound :	speaker		suu pen	68	10 Nov	msc USB UVC W	/EBCAM
_ E 😒 ,	mbed		2	Ctrl Leds	Via Serial	led port printf	Serial		kailash Prahhu	56	04 No		
🗆 🛃 Tes	te		2	Nuclea re	_via_seriar	Ted pore prine :	Jerrar		marcelle ninna	40	17.04	Description	
	main.cpp		23	Nucleo_re	ad_voitage_v				marceno pinna	40	1/00	UVC/USB Video	(lace) host test program
⊟ 🥨	mbed		겂	SoundLibr	aryExample_T	pwm sound spe	<u>aaker</u> tone		suu pen	39	20 Nov	UVC(USD VILLEU	Class) host test program

13 \

14

MBED – HANDBOOK

• Selecione a aba "Handbook" para obter ajuda rápida e completa sobre como utilizar sua placa.

MBED – COMPILER – PRIMEIRO CÓDIGO FONTE

- Clique (botão direito) no seu projeto (Teste) e escolha "New File..."
- Escolha como nome para o arquivo: main.cpp
- Como conteúdo do arquivo main.cpp, digite seu primeiro programa em C para a plataforma do kit:

```
#include "mbed.h"
DigitalOut myled(LED1);
int main() {
    while(1) {
        myled = 1;
        wait(0.2);
        myled = 0;
        wait(0.2);
    }
}
```

- Atenção à sintaxe.
- Cuidado com maiúsculas e minúsculas.
- Clique em "Compile"
- Se tudo estiver correto, será gerado um arquivo com extensão .bin (onde o seu browser baixa arquivos)
- Salve-o dentro do drive FRDM-KL25Z

PENSE A RESPEITO E PESQUISE

- O que esse programa faz?
- Para que serve o #include "mbed.h"
- O que é *DigitalOut*?
- Porque o programa possui um laço do tipo *while(1)...*?
- O que faz a instrução *wait(0.2)*?
- Quem é *LED1*? Será que existe *LED2*? E *LED3* e *LED4*?
- Mas o que é *LED*?

PORTA SERIAL VIRTUAL

- Podemos criar uma porta serial virtual entre um computador e uma placa utilizando a USB que os conecta. Para que serve?
 - Para comunicação com o Kit
 - Para "debugar" o programa
- Com a placa conectada a um computador com S.O. Microsoft Windows (XP/Vista/7/8/10), surgem dois itens no Gerenciador de Dispositivos
- Os novos dispositivos necessitam da instalação do driver: http://www.pemicro.com/opensda/

PEDrivers_install.exe (Executar - como administrador - a instalação padrão)

Após a instalação, verifique o número da porta serial (COMx),

• EMULADOR DE TERMINAL

- Existem vários programas emuladores de terminais de comunicação serial.
- No Windows XP havia o "HyperTerminal". Esse programa não acompanha mais os pacotes do Microsoft Windows a partir da versão Vista.
- Recomenda-se instalar o programa "Tera Term" para dar suporte às comunicações seriais entre o kit e o computador através da porta serial virtual do kit KL25Z.
- Acesse <u>http://ttssh2.sourceforge.jp</u>, faça download da versão 4.9 ou superior e instale em seu computador. Cuidado: há versões comerciais desse programa. A versão que estamos apontando o link é <u>gratuita</u>.
- Deve-se prosseguir com a instalação padrão, aceitando todas as configurações sugeridas.

EXECUTANDO O TERA TERM

- Ao executar o TeraTerm, você será perguntado pela porta de conexão ao dispositivo externo.
 - Escolha a porta COMx da porta serial virtual citada no gerenciador de dispositivos do Windows (e clique "OK").
- Se as comunicações com o kit estiverem operacionais:
 - Comandos enviados pelo kit (printf e etc.) devem surgir no terminal.
 - Comandos teclados pelo usuário no terminal são enviados de volta para o kit

19

DICA DE COMUNICAÇÃO SERIAL

- A comunicação serial pode ser feita mais veloz, permitindo o envio de mais informações a uma velocidade superior que a normal.
 - Basta alterar o programa no MBED para que a serial seja configurada para uma velocidade de símbolos (*baud rate*) superior à tradicional.
 - O padrão de velocidade é 9600 bps. Pode-se mudar para outra.
- O programa TeraTerm também deve ser reconfigurado, senão não há comunicação
 - Acesse o menu "Setup", opção "Serial Port".
 - Altere o *baud rate* para a mesma taxa usada no MBED.
- As taxas padrão são: 9600, 19200, 38400, 57600 e 115200bps. Adicione essas linhas ao seu programa: Serial pc(USBTX, USBRX); //logo no começo do programa pc.baud(115200); //dentro do main()

PINOS, TENSÕES E CORRENTES DISPONÍVEIS

- Um mesmo pino pode assumir diferentes funções, segundo configuração no programa feita pelo usuário:
 - Entrada, que recebe um sinal digital proveniente de um sensor externo (por exemplo um botão), ou;
 - Saída, que envia um sinal digital para acionamento ou comando de um outro dispositivo (por exemplo, um LED ou relé eletromecânico).
- Porta USB alimentada com 5 V 9 V no pino "Vin"
- Saída regulada de 3.3 V para alimentar periféricos
- 5 V disponível da porta USB (se esta estiver conectada)

LIMITES OPERACIONAIS DO MICROCONTROLADOR

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
ID	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V

Cada terminal individual pode fornecer ou receber corrente com valor até 25,0 [mA], MAS...

...Todos os pinos de GPIO juntos só podem consumir ou fornecer no máximo 100,0 [mA]!!

5.1.3 Voltage and current operating behaviors

Description Symbol Min. Max. Unit Vон Output high voltage - high drive strength 2.7 V ≤ V_{DD} ≤ 3.6 V, I_{OH} = -10mA Vpp - 0.5 v v 1.71 V ≤ V_{DD} ≤ 2.7 V, I_{OH} = -3mA $V_{DD} - 0.5$ Output high voltage - low drive strength 2.7 V ≤ V_{DD} ≤ 3.6 V, I_{OH} = -2mA Vpp - 0.5 v ٧ 1.71 V ≤ V_{DD} ≤ 2.7 V, I_{OH} = -0.6mA V_{DD} – 0.5 Output high current total for all ports mΑ 100 I_{OHT} VOL Output low voltage - high drive strength 2.7 V ≤ V_{DD} ≤ 3.6 V, I_{OL} = 10mA 0.5 v 0.5 v 1.71 V ≤ V_{DD} ≤ 2.7 V, I_{OL} = 3mA Output low voltage - low drive strength 2.7 V ≤ V_{DD} ≤ 3.6 V, I_{OI} = 2mA 0.5 v 0.5 v 1.71 V ≤ V_{DD} ≤ 2.7 V, I_{OL} = 0.6mA Output low current total for all ports OLT 100 mΑ Input leakage current (per pin) I_{IN} 1 μA _ Hi-Z (off-state) leakage current (per pin) loz 1 μA Internal pullup resistors R_{PU} 30 50 kΩ R_{PD} Internal pulldown resistors 30 50 kΩ

Table 4. Voltage and current operating behaviors

PINOS DE INTERFACE I/O • No Homepage do MBED, vá em "Platforms" e selecione o kit KL25Z:

Esses são os nomes de cada pino e suas funções

23

PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS

LISTA DE PORTAS E TERMINAIS DO KL25Z

Microco Encapsular	ntrolador KL25Z mento de 80 pinos	Kit FREEDOM BOARD				
Terminal do chip	Nome e número do port	Disponível no conector e pino do kit	Nome padrão Arduino™ R3	Periférico do kit já conectado ao port		
1	PTE0	J2 20	D14	—		
2	PTE1	J2 18	D15	—		
3	PTE2	J9 09	—	—		
4	PTE3	J9 11	—	_		
5	PTE4	J9 13	_	_		
6	PTE5	J9 15	_	_		
13	PTE20	J10 01	_	_		
14	PTE21	J10 03	_	_		
15	PTE22	J10 05	_	_		
16	PTE23	J10 07	_	_		
21	PTE29	J10 09	_	_		
22	PTE30	J10 11	_	_		
23	PTE31	J2 13	_	_		
24	PTE24	_	_	Acelerometro		
25	PTE25	_	_	Acelerometro		
27	PTA1	J1 02	D0	_		
28	PTA2	J1 04	D1	_		
30	PTA4	J1 10	D4	_		
31	PTA5	J1 12	D5	_		
32	PTA12	J1 08	D3	_		
33	PTA13	J2 02	D8	_		
34	PTA14	_	_	Acelerometro		
35	PTA15	_	_	Acelerometro		
36	PTA16	J2 09	_	_		
37	PTA17	J2 11	_	_		
42	PTA20	J9 06	_	Botão Reset		
43	PTB0	J10 02	A0	_		
44	PTB1	J10 04	A1	_		
45	PTB2	J10 06	A2	_		
46	PTB3	J10 08	A3	_		
47	PTB8	J9 01	_	_		

0

Microco Encapsular	ntrolador KL25Z mento de 80 pinos	Kit FREEDOM BOARD					
Terminal do chip2	Nome e número do port3	Disponível no conector e pino do kit4	Nome padrão Arduino™ R3	Periférico do kit já conectado ao port5			
48	PTB9	J9 03	—	—			
49	PTB10	J9 05	_	_			
50	PTB11	J9 07	—	—			
51	PTB16	_	_	Touch Slider			
52	PTB17	—	—	Touch Slider			
53	PTB18	_	_	Led Vermelho			
54	PTB19	—	—	LED Verde			
55	PTC0	J1 03	_	_			
56	PTC1	J10 12	A5	—			
57	PTC2	J10 10	A4	_			
58	PTC3	J1 05	—	—			
61	PTC4	J1 07	_	_			
62	PTC5	J1 09	—	-			
63	PTC6	J1 11	_	_			
64	PTC7	J1 01	_	-			
65	PTC8	J1 14	D6	_			
66	PTC9	J1 16	D7	_			
67	PTC10	J1 13	_	_			
68	PTC11	J1 15	_	_			
69	PTC12	J2 01	_	_			
70	PTC13	J2 03	_	_			
71	PTC16	J2 05	_	_			
72	PTC17	J2 07	_	-			
73	PTD0	J2 06	D10				
74	PTD1	J2 12	D13	Led Azul			
75	PTD2	J2 08	D11	_			
76	PTD3	J2 10	D12	-			
77	PTD4	J1 06	D2				
78	PTD5	J2 04	D9	_			
79	PTD6	J2 17					
80	PTD7	J2 19	_	_			

24

> PERIFÉRICOS ANALÓGICOS I/O DO KIT KL25Z

- 6 canais de ADC
 - Limites para conversão da tensão de entrada 0 a 3,3 V
 - Tensão máxima admissível de 3,6 V. Mínima de -0,3 V
 - Taxa de amostragem até 12 MHz
 - Resolução de 16 bits
- 1 canal de um DAC
 - Limites da tensão de saída de 0 a 3,3 V
 - Frequência do sinal proporcional ao número de pontos em um período.
 - Corrente saída máxima de 1mA
 - Resolução 12 bits

ONVERSOR ANALÓGICO-DIGITAL (ADC)

- Como um computador/sistema eletrônico pode usar um sinal analógico?
 - Convertendo a grandeza física em uma tensão equivalente, ou fazendo sua transdução, usando um sensor por exemplo.
 - Transformando o valor instantâneo do sinal de tensão, em uma representação numérica simbólica, com uma regra de formação conhecida.
- Esse dispositivo é denominado de ADC Analog to Digital Converter
 - Dispositivo eletrônico capaz de gerar uma representação digital de uma grandeza analógica, tipicamente uma tensão.
 - Empregados na interface entre dispositivos digitais (microcontroladores, etc) e dispositivos analógicos, como sensores de temperatura, pressão, audio, vídeo, etc.

27

ADC – AMOSTRAGEM

- Computadores executam operações de forma cíclica, conforme seu *clock* (relógio interno), enquanto que um sinal analógico pode variar continuamente ao longo do tempo. Dessa forma, como deve-se registrar um sinal contínuo?
- Solução: O computador registra o valor dos sinais analógicos periodicamente, conforme uma dada frequência de aquisição, ajustada adequadamente pelo usuário. Um sinal contínuo tornase uma série, uma sequência de valores.

D ADC – AMOSTRAGEM

- Processo de capturar o valor de um sinal durante um intervalo de tempo.
- Normalmente, os ADCs são usados para capturar amostras em intervalos regulares de tempo.
- A taxa ou frequência de captura (amostras/s) deve ser escolhida corretamente para que seja possível continuar a representar (observar) o sinal original, mesmo após essa amostragem

Exemplos de frequência de amostragem insuficiente para representar o sinal original analógico. Os pontos em preto são as amostras do sinal orignal

DOC – AMOSTRAGEM / DIGITALIZAÇÃO

- A amostragem é realizada por um circuito chamado *sample-and-hold* (S/H)
- Ele mantém constante o valor do sinal analógico de entrada enquanto o circuito seguinte de digitalização realiza a quantização do sinal.
- A quantização é feita pelo conversor AD que classifica a tensão amostrada entre os níveis disponíveis. O nº de níveis depende do nº de bits existentes.
- O ADC do microcontrolador tem 16 bits de entrada, logo existem 2¹⁶ = 65536 níveis disponíveis para representar o sinal analógico.

Nível	Representação no seu programa	Tensão real		
0	0	0 V		
0 < nível <65535	nível * 1/65536	nível * 3,3/65536		
65535	1	3,3 V		

ABORATÓRIO DE CIRCUITOS ELÉTRICOS

QUANTIZAÇÃO E EXEMPLO

- Normalmente, um ADC escolhe o valor mais próximo da amostra atual de uma lista uniformemente espaçada.
- Pode haver algum erro de aproximação (erro de quantização no processo)
- Exemplo de Conversão
- Sinal senoidal de entrada:
 Frequência (fs) de 5 kHz, entre 0 e 10 V
- Taxa de amostragem (fa) de 100 kHz (100.000 amostras/s)
 - fa/fs=100k/5k=20 amostras/período

- ADC com:

2 bits → Resolução de 2,5 V 3 bits → Resolução $(10-0)/(2^3)=1,25$ V 16 bits → Resolução de 0,000152 V

- LABORATÓRIO DE CIRCUITOS ELÉT

30

CONVERSOR DIGITAL ANALÓGICO (DAC)

- Circuito eletrônico capaz de converter uma grandeza digital em uma grandeza analógica.
- Esse processo é denominado de síntese digital-analógica.
- Características Básicas:
 - Velocidade de conversão
 - Resolução ou quantidade de níveis para síntese do sinal analógico (nº de bits)

• EXEMPLO DE CÓDIGO – AMOSTRAGEM

#include "mbed.h"

AnalogOut saida(XXXXX); //saida é a variável relacionada à porta XXXXX

int main()
{
 while(1){
 saida=saida+0.01;
 wait_us(1);
 if (saida==1)
 saída=0;