
Technical Challenges of SoS Requirements Engineering

Stefan Hallerstede1, Finn Overgaard Hansen1, Jon Holt2, Rasmus Lauritsen3,
Lasse Lorenzen2 and Jan Peleska4

1 Aarhus University School of Engineering, Denmark, 2 Atego, UK
3 Bang & Olufsen, Denmark, 4 University of Bremen, Germany

Abstract – Taken by themselves separate aspects of sys-
tems of systems (SoS) can be addressed by conventional sys-
tem engineering techniques. That is, at least to a large de-
gree, we know how to address the problems of distribution,
emergence and evolution. The specific challenges posed by
SoS arise from their combination. Additionally, we have to
deal with independence of constituent systems (CS) of SoS, in
particular, managerial independence. In this article we fo-
cus on technical challenges of mastering SoS requirements.
Based on techniques for systems engineering we sketch prob-
lems that appear specifically in SoS engineering if we want to
be able to use conventional engineering techniques as much
as possible. The ultimate aim of our work is to develop tools
that can support SoS requirements engineering.

1 Introduction
The main objective of our work is an integrated approach

to requirements engineering of SoS that comprises model-
ing and validation of requirements as well as verification of
design and implementation relative to requirements models.
Within our current research we do not address the problem
of requirements elicitation of SoS. This research is carried as
part of the EU FP7 project COMPASS, addressing the mod-
eling of SoS by formal and informal means. Aspects such
as requirements elicitation are investigated separately within
the COMPASS project.

The purpose of this article is to provide an overview of the
technical challenges we face and their intimate relationships.
For example, dealing with requirements validation and veri-
fication in the sense above while allowing an SoS to evolve
continually demands strong support for requirements tracing.

We consider the following widely recognized characteris-
tics of SoS engineering [1] the main source of the technical
challenges we face:

i. Independence. The component systems are able to op-
erate and are managed separately.

ii. Distribution. The component systems are dispersed and
communicate over larger distances.

iii. Emergence. The behavior of an SoS exceeds the behav-
ior of its constituent systems (CS).

iv. Evolution. The SoS is in continual development and can
never be considered fully completed.

Some of the characteristics of SoS engineering pertain gen-
erally to systems engineering but are more pressing in the
context of SoS, e.g., evolution.

These characteristics are present to varying degrees in the
different types of SoS [2]. For our current work we assume
that an SoS falls into one of the two following categories:

i. Acknowledged. It is under control of one authority.
ii. Collaborative. It is not under control of one authority.
The industrial case studies described in Sections 2 and 3

present a case of each type. In Section 4 we sketch a re-
quirements engineering process for SoS. Specific technical
challenges are discussed in subsequent sections: validation
in Section 5, tracing in Section 6 and verification in Sec-
tion 7. Finally, section 8 draws some conclusions. Sections 2
to 7 have been structured into subsections dealing with inde-
pendence, distribution, emergence and evolution in turn.

2 Acknowledged Case
A case study of an acknowledged SoS is brought forward

by the Italian company Insiel. After describing this system
in general terms we analyze the case study with respect to
the SoS characteristics.

This case study deals with a new unified emergency call-
center SoS that is to operate in the Fruili Venezia Giulia re-
gion of North Italy. One key service of the center to the gen-
eral public is responding and coordinating efforts to handle
emergencies. A similar SoS for the services of the London
Emergency Services Liaison Panel (LESLP) has been stud-
ied in [3]. The Insiel system offers two views of the current
status of the SoS to the call operators. One view permits call
operators to get an overview of incoming calls. The other
view provides the call operator with a map of the region that
overlay on-going emergencies with deployed emergency re-
sponse units. The system has a room where several call op-
erators are situated. Each operator uses computer equipment
and radio to communicate with the system. The system al-
lows an operator to handle and group calls and to dispatch
emergency response vehicles to an event. In a major crisis
situation many incoming calls regarding the same crisis will
appear and operators will have means to group such calls to-
gether. An additional set of wall mounted monitors visible to
all operators in the call-center room are available to provide

Proc. of the 2012 7th International Conference on System of Systems Engineering, Genoa, Italy - 16-19 July 2012

573



a common operational view in such situations.
The principal stakeholders for the system include:

• The Italian government.
• Health care services.
• Police and Fire brigades.
• Insiel.
• The general public at large in case of emergencies.

CUS
Emergency Call Service

«subsystem»
Insiel Developed
system

Phone System

Civil Protection

Helicopter Service

Ambulances
Wall displays

Operator
Clients

Healtcare System

Emergency
Room

Figure 1: Overview of the Insiel CUS System of systems.

The CS developed by Insiel is communicating with several
other CS as depicted in Fig. 1. The most prominent ones are:
• The Phone System.
• The Helicopter Service for mountain and forest rescues.
• The Civil Protection authorities.
• The Healthcare System.
• The Ambulances.

Based on the preceding general description of the case
study, we analyse its SoS characteristics. The SoS is ordered
by the Italian government, which is considered its single re-
sponsible authority. However, on the managerial level stake-
holders owning the constituent systems clearly maintain their
independence.

2.1 Independence
Accounting for independence of the constituent system is

straightforward. As an example consider the phone system.
It is operationally and managerially independent. A private
phone company independent of the Italian government and
Insiel is responsible for it.

2.2 Emergence
Emergent behavior is clearly identifiable. For instance, the

overview of the region provided to the operators along with
a view of all allocated emergency response resources cannot
be provided by the constituent systems alone.

2.3 Evolution
The emergency response service is intended to have a long

lifespan. Therefore this system will inevitably evolve on the
basis of technological progress alone. One also expects that
within its lifetime laws and regulations concerning its oper-
ation are going to change. As an example of technological
change take the advent of the GPS that made navigational
systems omnipresent. Similar technological advances in the
future will place new demands on the capabilities of SoS in
operation.

3 Collaborative Case study
A collaborative SoS case study is represented by B&O in

form of the connected Audio-Video (AV) products challenge.
The AV range in the 1980ies was not as diverse as it is

today. At that time B&O could deliver a complete range of
AV equipment using proprietary technology to connect the
equipment. Offering a complete range of products, B&O
did not consider to make the proprietary technology publicly
available but kept it private to be used only with B&O prod-
ucts and a few select Home-Automation (HA) installers.

Today the trend is towards more open technologies with
interoperability as a major concern. The range of products in
the AV domain today is much more diverse and complex than
in the 1980ies making it expensive and difficult to deliver
quality products for the entire range. It is no longer feasible
to provide all connected AV products in a home installation
from one company.

The modern AV system is no longer limited to just one
supplier. Furthermore the border between the AV system and
the HA is disappearing, being replaced by the concept of in-
telligent homes. In future B&O will no longer be able to rely
solely on proprietary technology but instead have to follow
open standards. Despite of this, even closer integration with
HA installers will be necessary. To fulfill the goal of interop-
erability B&O needs an organisation do drive and specify an
interoperability protocol for AV products, so that B&O, the
HA installers and other consumer electronics providers have
a common baseline for their products. Today the Digital Liv-
ing Network Alliance (DLNA) is starting to become such an
organisation, and it provides a protocol [4] that specifies ba-
sic interoperability standards.

3.1 Independence
The focus of modern AV systems is to connect stand-alone

products into a combined system experience. The products
themselves are considered as independent systems and so is
their development which takes place at competing electron-
ics providers. In addition, the DLNA organisation—which
counts many electronics providers as its members—is devel-
oping the protocol and standard for product interoperability.
DLNA itself is an independent organisation.

In general B&O has no influence or control over how
other products are developed and how the DLNA organisa-
tion works with the interoperability protocol.

3.2 Distribution
An AV system is not necessarily situated in the same room

or even house, but can be dispersed over several different
geographic locations, e.g., summer house and car. However
the more common scenario would be different AV products
located in one house.

3.3 Emergence
The characteristic features on an AV systems are emer-

gent. A simple example of such a feature is the cooperation
of separate audio and video devices that can be controlled by

Proc. of the 2012 7th International Conference on System of Systems Engineering, Genoa, Italy - 16-19 July 2012

574



one remote control. The user expects that the devices and
the remote control work together without any additional in-
tervention just by placing them close enough to each other.

A more intricate example is dealing with Digital Rights
Management (DRM). Today each constituent system will
have to comply with DRM regulations. The difficulty with
DRM appears when many products are connected. It is nec-
essary to ensure that the AV system still complies with all
the constituent systems’ DRM regulations. One might even
end up in a situation where the constituent systems should be
able to form an AV system, but due to legal constraints in the
DRM regulations it is not allowed to do this.

3.4 Evolution
AV systems evolve per installation and by way of the un-

derlying technology. AV Systems may simply evolve by
adding new products, some of which may result in new emer-
gent properties. If an existing product is added it may also
lead to emergent properties such as audio streaming to mul-
tiple target devices.

As the AV market is very competitive and in constant evo-
lution, is is evident that the AV system has to follow that
evolution. For each new technology the SoS needs to adopt
this, but still ensure that the original SoS is not destructed.

3.5 Collaboration
A separate body, the DLNA, drives the interoperability

protocol for AV systems. The manufacturers of AV prod-
ucts try to attain collaboratively the minimum interoperabil-
ity level specified by the DLNA.

4 Requirements Process
4.1 Traditional versus SoS Requirement Engi-

neering
Traditional system engineering requirements processes

are defined to support development of complete new sys-
tems, where all important requirements are defined up-front,
before the system is architected and implemented. Another
typical characteristic is that these systems have a single au-
thority or customer, who controls the system development.
These processes are not adequate for the development of Sys-
tem of Systems as described in [5] and [6]. As shown in

Figure 2: SoS System Model - at an early life-cycle stage

Figure 2, a System of Systems is composed of a number of
constituent systems, some of which already exist and have
a purpose of their own and are managed by their own au-
thority. Another important aspect to consider is, that a given

constituent system in principle can belong to more than one
SoS, which could lead to conflicting requirements for the CS.

Figure 2 shows how the concepts of evolution and emer-
gence are related to the SoS and its CS, illustrating that evo-
lution can occur both at the SoS- and the CS-level, whereas
emergent behaviour is defined to be only at the SoS-level.

4.2 Independence
In the SoS literature high level system goals are called sys-

tem capabilities which are broken down to more specific re-
quirements for either the SoS as a whole or allocated as more
detailed requirements for the constituent systems participat-
ing in a given SoS.

Independence means operational as well as managerial in-
dependence of the constituent systems. This implies that new
system capabilities, requirements and changes shall be dealt
with at two levels, the SoS- and the CS-level. In relation to a
process for SoS requirement engineering this process should
account for this situation, where a given system capability
has to be broken down to requirements that belong to either
the SoS or to one or more of the constituent systems.

Handling an SoS requirement can be regarded as a top-
down process whereas handling a requirement for a con-
stituent system can be regarded as a bottom-up process.

An SoS requirement process has to account for these two
different scenarios and offer a different approach for each.
When a new capability, a specific requirement or a change
request is introduced it should, as one of the first steps, be
analyzed and characterized as either belonging to the SoS-
or to the CS-level and be handled by the corresponding au-
thority.

4.3 Distribution
An SoS will normally be a distributed system, where the

constituent systems are geographically distributed and ex-
change information based on commonly agreed upon com-
munication protocols. This implies that the stakeholders re-
quire a high coordination effort with respect to the develop-
ment process as well as other engineering aspects such as
verification of the complete SoS. Consequently, handling of
a distributed stakeholder and user community should be in-
cluded in a SoS requirement engineering process.

4.4 Emergence
As illustrated in Figure 2, emergence is a characteristic

which belongs to the SoS-level and describes behaviour ob-
tained at the SoS-level based on the collaboration of a num-
ber of CS to obtain this new behaviour. Somewhat simpli-
fied, an emergent SoS requirement is shown as a subtype but
can also have other relations to the original SoS. One ex-
ample could be an emergent SoS which both enhances and
changes some of the original SoS behaviour.

4.5 Evolution
As shown in Figure 3 evolution can be introduced at the

SoS-level or at the CS-level. Evolution is natural for these

Proc. of the 2012 7th International Conference on System of Systems Engineering, Genoa, Italy - 16-19 July 2012

575



long living SoS, where changes can be caused by techno-
logical changes, by new or changed user capabilities, or by
new legal regulations, introduced, for example, by the gov-
ernment.

Figure 3: SoS System Model - at a later life-cycle stage

In addition to this an SoS and its constituent systems have
long system life times, where each CS can be in a different
stage of its individual system life-cycle.

An SoS requirement process should therefore cover a con-
tinual development life-cycle scenario, where new capabili-
ties, requirements and changes to existing requirements are
to be handled by the process at the SoS- and the CS-level.

4.6 An SoS requirement engineering process
proposal

In further work we will fully define the COMPASS SoS re-
quirements engineering process proposal based on the pro-
cess requirements described above and plan to include ca-
pability engineering aspects as described in [7], where the
authors propose the following two parallel steps: (i) develop
SoS capability objectives and (ii) develop a concept of oper-
ations to improve the quality of the requirements. Following
these two steps a set of high level SoS requirements can be
formulated.

Another source to be incorporated in the COMPASS SoS
requirements process is the SoS requirement process pro-
posal described in [5] which consists of the following steps:

1. Identify SoS context
2. Identify SoS and individual system goals
3. Understand SoS interactions
4. Identify individual system capabilities and
5. Analyse the gap
We apply the initial proposal for the COMPASS SoS re-

quirement process to the two industrial cases described in
Sections 2 and 3.

5 Requirements Modeling
We consider semi-formal approaches, e.g. SysML [8] as

well as formal ones, e.g. VDM [9] to requirements modeling
and validation. In our experience semi-formal and formal
methods can be complementary and sometimes they can only
be deployed jointly [10].

The modeling approaches above (and similar ones) have
been proved useful for systems modeling and have been used
in industry to varying degrees. They assume that the devel-
opment and maintenance is under control of one authority.
Independence is not provided for. They may be able to deal
with evolving requirements but there is no explicit support
for this. The approaches have not been developed for this
purpose. A similar statement can be made about emergence.

5.1 Independence
Dealing with independence requires agreement among the

constituent systems about their functionality. Contract-based
modeling [11] could be used to enforce agreement. Note
that SoS requirements are naturally linked with architectural
concerns. It is not possible to delay architectural design that
concerns the composition of the CS themselves. This con-
straint introduces the partitioning of the requirements with
respect to emergence. The contracts describe non-emergent
properties of CS. Emergent properties are discussed below.

5.2 Distribution
Constituent systems of an SoS often are in distant loca-

tions. We take distant location to mean that the CS can
only communicate by means of some communication net-
work. Because of the resulting architectural concerns we
must also deal with communication facilities during require-
ments modeling. Specification techniques for high-level
modeling of communicating systems are known, e.g. [12].
However, specification of communication details –even ab-
stract details– can make requirement models overly complex.
Traditionally, one tries to avoid mentioning communication
details in requirements for that reason. The partitioning of
the requirements into emergent and non-emergent ones could
help to identify those requirements that can be modeled on
the level of the CS.

5.3 Emergence
We aim at an engineering method for SoS. As such we

have a limited view of emergence as properties that ex-
ceed those of the CS but are attainable by engineering.1

This is also referred to as weak emergence [13]. A formal
engineering-oriented view of weak emergence based on re-
finement is discussed in [14]. Refinement [15] is used to
bridge the abstraction gap between the emergent properties
to be verified and the model consisting solely of the CS. Re-
finement has also been used in [16, 17] to model require-
ments, and validation of such models has been discussed in
[18]. We believe, that some form of refinement will be nec-
essary in order to address the problem of emergence.

5.4 Evolution
System evolution is an issue for any system intended for

long-term use. What changes in the context of SoS is that

1As opposed to far-reaching philosophical definitions concerning, e.g.,
consciousness.

Proc. of the 2012 7th International Conference on System of Systems Engineering, Genoa, Italy - 16-19 July 2012

576



evolution is considered the normal case. Any method not tak-
ing evolution into account will be of no use. For our purposes
we understand by evolution any continued development of
an SoS and its CS. This may happen by adding, changing
or removing constituent systems, as well as, changing emer-
gent requirements. We observe that we have only little con-
trol over what is inside the CS. We know the contracts and
can change them or may be forced to change them. As a
consequence, emergent properties may fail to hold or new
emergent properties may hold. The most interesting problem
of evolution of SoS appears to be related to emergence and
high-level requirements on CS. In [19] a method and tool for
incremental modeling is discussed. It is incremental in two
respects: It supports frequent changes to models and it sup-
ports a notion of refinement that permits to add detail to a
model gradually. We believe, a similar approach could also
benefit the modeling of SoS requirements.

6 Requirements Tracing
6.1 Independence

Independence has two different aspects [1]: operational
independence and managerial independence. Operational in-
dependence imposes architectural constraints on the SoS. In
principle, it is known how to deal with this in conventional
requirements engineering for systems. Managerial indepen-
dence imposes that requirements may have to be distributed
among the stakeholders that supply constituent systems. As a
consequence, tracing requirements to stakeholders becomes
a dominant problem. Of course, conventional techniques of
tracing to designs and programs still apply. But special fo-
cus needs to be placed on impact analysis, in particular, to
constraining impact: If requirement changes affect too many
suppliers of constituent systems at once, they may be diffi-
cult and expensive to implement.

6.2 Distribution
Distribution will not pose new problems that do not al-

ready appear in conventional systems engineering. One
would expect, however, that there is some overlap between
independence and distribution. The architecture of an SoS
will usually match with managerial independence. Hence,
the SoS architecture may serve as the basis for tracing re-
quirements to different stakeholders. This is more evidence
in favor of including architectural concerns early in the re-
quirements modeling as opposed to the practice in traditional
requirements engineering.

6.3 Emergence
Emergent properties cannot be expressed on the level of

the CS. So we cannot expect to identify emergent require-
ments with CS. We have argued above that refinement could
address emergence in SoS. The employed notion of refine-
ment will have to provide the means to trace requirements.
The abstraction gap closed by refinement with respect to

property validation must also be closed with respect to re-
quirements tracing. Such a method of refinement with re-
quirements tracing is outlined in [17] for conventional sys-
tems engineering. It is based on the WRSPM model [20] for
reasoning about system requirements.

6.4 Evolution
Evolution can be split into the two broad categories: CS

evolution and SoS evolution. Potentially any change in the
configuration of an SoS concerns all stakeholders. In prac-
tice, often more than one will be concerned. Changes in the
contracts of some CS often affect correctness assumptions
made in other constituent systems. Because regular changes
are considered to be the normal case, predicting the effect
of the changes and determining who is involved is of central
importance.

When emergent requirements change, it will be important
to recognise as soon as possible who will be involved in ad-
dressing the change and in what way. It is possible that, in
order to implement the new emergent requirement, contracts
have to be changed. It will be necessary to see which parts
of the contracts are affected and how. Such information can
feed into the effort prediction of the different stakeholders.

7 Requirements Verification
Verification needs to take into account the heterogenous

characteristics of an SoS. Neither formal verification nor dy-
namic testing by themselves are sufficient for verifying SoS
on a realistic scale. In particular, the SoS size will nearly
always defeat any approach to comprehensively model soft-
ware and hardware in a formal way. As a consequence, the
proper integration of software and hardware has to be inves-
tigated by means of testing.

7.1 Independence
Verification has to be coordinated between the different

stakeholders. Contracts will form the basis for this. In
COMPASS we favor an approach where algorithmic proper-
ties of constituent systems should be formally verified, while
hardware/software integration is verified by means of test-
ing. On SoS level, constituent system properties are repre-
sented by contract abstractions, so that formal verification
can be performed again for checking component cooperation
logic. Again, system integration aspects have to be verified
by means of dynamic testing.

7.2 Distribution
SoS have open architectures where CS may join or leave.

On the one hand, this makes testing of the SoS difficult be-
cause only specific SoS configurations can be checked. On
the other hand, it makes formal verification difficult because
the assumptions that can be made about the CS are weak.
Combining the two approaches, we expect that the most crit-
ical properties can be formally verified while the other be-
havioural requirements can be checked by dynamic testing.
In the former case completeness of the verification is crucial,

Proc. of the 2012 7th International Conference on System of Systems Engineering, Genoa, Italy - 16-19 July 2012

577



whereas in the latter we only verify the existence of a suitable
implementation.

7.3 Emergence
Emergent properties cannot be verified on the various CS

separately. Whether formal verification is used for specific
properties or dynamic testing, the effort needs to be coordi-
nated. Both methods should support a notion of refinement
that could be used to bridge the abstraction gap between SoS
and CS.

7.4 Evolution
Regular changes in the requirements and their models

should be automatically taken into account as much as possi-
ble. A record about the amount of manually developed tests
connected to requirements should be available so that the ac-
tual effort of a change can be predicted. To deal with frequent
changes tracing of requirements to the tests that verify them
is required: failing tests should be related to the requirements
that they invalidate.

8 Conclusion
We have described technical aspects of requirements en-

gineering in the context of SoS. In the coming years we
intend to fully define and evaluate the development process
sketched in Section 4. The evaluation will be based on the
two case studies that we have described in Sections 2 and 3.

We have related the main technical activities of the re-
quirements process, validation, tracing and verification to the
core characteristics of SoS, namely, independence, distribu-
tion, emergence and evolution. This permits us to identify
the main technical challenges of SoS requirements engineer-
ing. Ultimately, defining the process and addressing these
challenges should clarify what kind of tool is needed in or-
der to support SoS requirements engineering. We believe, the
task of SoS requirements engineering will benefit from tools
for modelling, verifying and simulating scenarios of SoS as
does standard requirements engineering.

Acknowledgment
This research is funded by the EU FP7 COMPASS project

under grant agreement no.287829.

References
[1] M. W. Maier, “Architecting Principles for Systems-of-

Systems,” Systems Engineering, vol. 1, no. 4, 1998.

[2] J. S. Dahmann, G. R. Jr., and J. A. Lane., “Systems
engineering for capabilities,” CrossTalk Journal (The
Journal of Defense Software Engineering), vol. 21,
no. 11, pp. 4–9, 2008.

[3] J. W. Bryans, J. S. Fitzgerald, and T. McCutcheon,
“Refinement-based techniques in the analysis of infor-
mation flow policies for dynamic virtual organisations,”
in PRO-VE, 2011, pp. 314–321.

[4] ipTVnews., “Installed base of dlna devices ex-
ceeds 440mn,” January 2011. [Online]. Avail-
able: http://archive.iptv-news.com/iptv news/january
2011 2/installed base of dlna devices exceeds 440mn

[5] G. A. Lewis, E. Morris, P. Place, S. Simanta, and D. B.
Smith, “Requirements engineering for systems of sys-
tems,” in IEEE SysCon, 2009, pp. 1–6.

[6] C. Ncube, “On the engineering of systems of systems:
Key challenges for the requirements engineering com-
munity,” in RESS, 2011, pp. 1–4.

[7] J. S. Dahmann, G. R. Jr., J. A. Lane, and R. Lowry.,
“Systems engineering artifacts for sos,” ”IEEE A&E
Systems Magazine”, pp. 22–28, January 2011.

[8] J. Holt and S. Perry, SysML for Systems Engineering.
IET, 2008.

[9] J. Fitzgerald and P. G. Larsen, Modelling Systems –
Practical Tools and Techniques in Software Develop-
ment, 2nd ed. Cambridge University Press, 2009.

[10] R. Gmehlich, K. Grau, S. Hallerstede, M. Leuschel,
F. Lösch, and D. Plagge, “On fitting a formal method
into practice,” in ICFEM’2011, ser. LNCS, S. Qin and
Z. Qiu, Eds., vol. 6991. Springer, 2011, pp. 195–210.

[11] R. Payne and J. Fitzgerald, “Evaluation of architec-
tural frameworks supporting contract-based specifica-
tion,” University of Newcastle upon Tyne, Computing
Science, Tech. Rep., 2010.

[12] J. C. P. Woodcock and A. L. C. Cavalcanti, “A con-
current language for refinement,” in IWFM’01: 5th
Irish Workshop in Formal Methods, ser. BCS Electronic
Workshops in Computing, A. Butterfield and C. Pahl,
Eds., 2001.

[13] M. A. Bedau, “Weak emergence,” in Philosophical
Perspectives 11: Mind, Causation, and World, J. E.
Tomberlin, Ed. Blackwell, 1997, pp. 375–399.

[14] J. Sanders and G. Smith, “Emergence and refinement,”
Form. Asp. Comput, vol. 24, no. 1, pp. 45–65, 2012.

[15] C. C. Morgan, Programming from Specifications,
2nd ed. Prentice Hall, 1994.

[16] J.-R. Abrial, Modeling in Event-B: System and Soft-
ware Engineering. Cambridge University Press, 2010.

[17] M. Jastram, S. Hallerstede, and L. Ladenberger, “Mix-
ing formal and informal model elements for tracing re-
quirements,” in AVOCS 2011, 2011.

[18] S. Hallerstede, M. Leuschel, and D. Plagge, “Valida-
tion of formal models by refinement animation,” Sci.
Comput. Program., 2011.

[19] J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang,
F. Mehta, and L. Voisin, “Rodin: an open toolset for
modelling and reasoning in event-b,” STTT, vol. 12,
no. 6, pp. 447–466, 2010.

[20] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A
reference model for requirements and specifications,”
IEEE Softw., vol. 17, pp. 37–43, 2000.

Proc. of the 2012 7th International Conference on System of Systems Engineering, Genoa, Italy - 16-19 July 2012

578


