Lei de Coulomb

$$\vec{F} = k \frac{qQ}{r^2} \hat{r}$$
 Campo elétrico $\vec{E} = k \frac{Q}{r^2} \hat{r}$

A lei de Coulomb descreve o campo elétrico criado por uma distribuição de cargas. Aprendemos que, dado um ponto, podemos determinar o campo produzido pela porção infinitesimal de carga em torno deste ponto. (Usamos a lei de Coulomb). Depois, calculamos o campo total usando o principio da superposição.

Ao desenhar diagramas de linhas de campo, adquirimos a visão de como uma distribuição de de cargas afeta todo o espaço: temos uma perspectiva global.

A seguir, vamos introduzir a *lei de Gauss*, que expressa esta relação global entre a carga e o campo. Ela não contém novas informações; simplesmente expressa a mesma informação que a lei de Coulomb, de uma forma diferente.

A partir deste ponto expressaremos a constante k por:

$$k = \frac{1}{4\pi\varepsilon_0}$$
 Campo elétrico $\vec{E} = \frac{(Q/\varepsilon_0)}{4\pi r^2} \hat{r}$

Fluxo elétrico

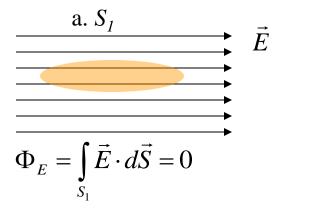
Para tornarmos quantitativa esta relação global entre a carga elétrica e o campo elétrico, precisamos introduzir a definição de *fluxo elétrico*, Φ_E .

$$\Phi_E = \int_S \vec{E} \cdot d\vec{S}$$

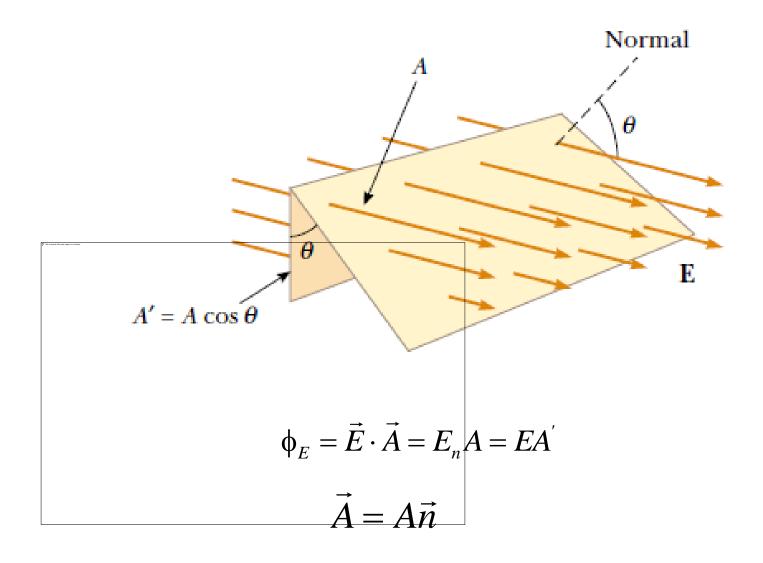
Onde a superfície S pode ser aberta ou fechada.

Exemplo

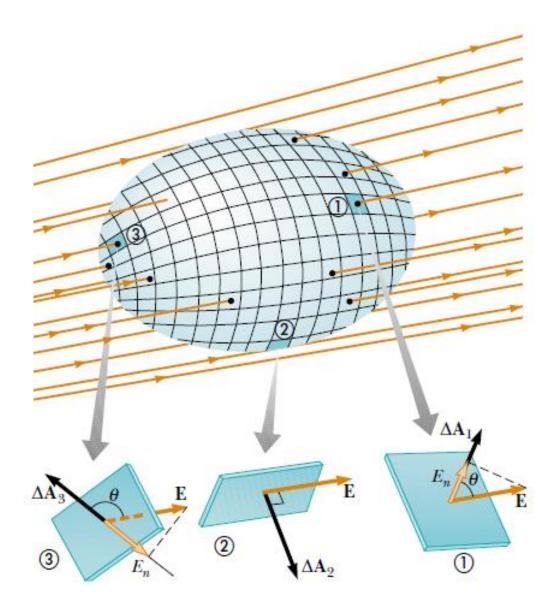
Em certa região do espaço temos um campo elétrico cujas linhas de campo estão separadas uniformemente (como entre as duas placas condutoras que estudamos anteriormente). Calcule o fluxo elétrico nas superfícies representadas na figura.



$$\vec{\Phi}_{E} = \int_{S_{2}} \vec{E} \cdot d\vec{S} = ES_{2}$$



Proporcional ao número de linhas de campo elétrico penetrando alguma superfície

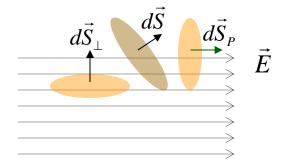


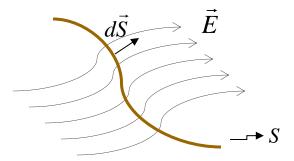
Fluxo elétrico

Observamos que o fluxo elétrico pode ser expresso por uma integral sobre elementos de superfície paralelos ao campo, dS_P .

$$\Phi_E = \int_S \vec{E} \cdot d\vec{S} = \int_S E dS_P = \int_S E_n dS$$

Na ilustração, representamos a decomposição do elemento de superfície em suas componentes paralela e perpendicular ao campo elétrico. (Os elementos estão separados para uma melhor visualização simbólica).





Visão lateral da superfície S

Fluxo elétrico

Exemplo

Calcule o fluxo elétrico através de uma caixa cúbica colocada num campo elétrico uniforme, tal que quatro de suas faces (S_1 , S_2 , S_3 e S_4) são perpendiculares ao campo.

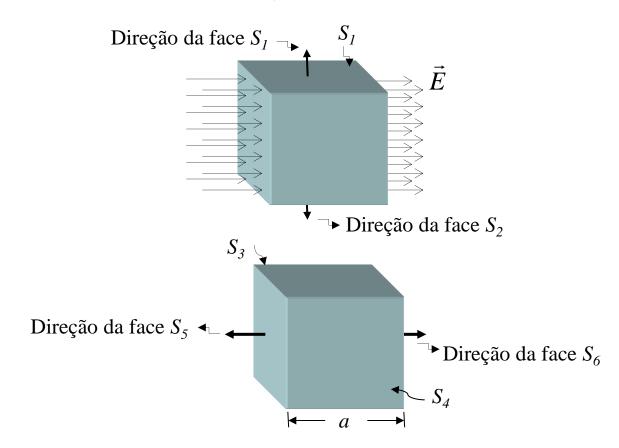
Resposta: $\Phi_E = 0$

Obsevamos que $\Phi_E = 0$ nas superfícies perpendiculares ao campo. Enquanto que

$$\Phi_{E \to S_5} = -Ea^2$$

e

$$\Phi_{E \to S_6} = +Ea^2$$



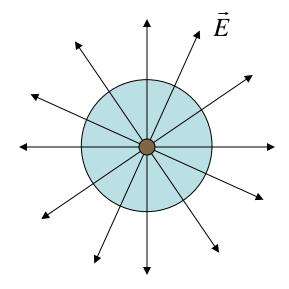
Fluxo elétrico

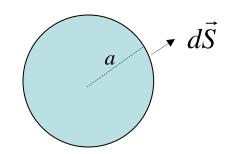
Exemplo

Uma carga puntiforme Q encontra-se na origem do sistema de coordenadas. Calcule o fluxo elétrico através de uma superfície esférica de raio r=a, centrada na origem.

Resposta $\Phi_E = \frac{Q}{\varepsilon_0}$

Carga Q na origem





Superfície imaginária de raio a

Fluxo elétrico

Exemplo

Uma carga puntiforme Q encontra-se na origem do sistema de coordenadas. Calcule o fluxo elétrico através de uma superfície esférica de raio r = a, centrada na origem.

O fluxo elétrico é calculado por:

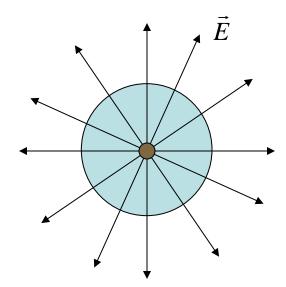
$$\Phi_E = \int_S \vec{E} \cdot d\vec{S}$$

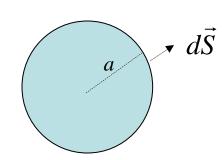
$$\Phi_E = \int_S E dS$$

$$\Phi_E = \int_{S} E dS$$

$$\Phi_E = \int_{S} \left[\frac{(Q/\varepsilon_0)}{4\pi a^2} \right] dS$$

Carga Q na origem





Superfície imaginária de raio a

$$\Phi_E = \left[\frac{(Q/\varepsilon_0)}{4\pi a^2}\right] \int_S dS = \left[\frac{(Q/\varepsilon_0)}{4\pi a^2}\right] (4\pi a^2) \qquad \Longrightarrow \quad \Phi_E = \frac{Q}{\varepsilon_0}$$

Lei de Gauss para o campo elétrico

A relação formal entre a carga elétrica e o fluxo elétrico é conhecida como *lei de Gauss*.

O fluxo de campo elétrico total emergindo de um volume arbitrário, V, é igual a carga elétrica efetiva Q contida neste volume dividida por ε_0 .

$$\Phi_E = \oint_S \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_0}$$

Onde a superfície S delimita o volume V.

Lei de Gauss

Exemplo

Uma caixa cúbica possui em seu interior uma carga efetiva de 6 μ C. O fluxo elétrico medido através de uma das faces do cubo é:

Qual o fluxo total através das outras cinco faces?

Resposta:

Isto é possível? Explique.

Lembre que: $\varepsilon_0 = 8.9 \times 10^{-12} \frac{C^2}{N \cdot m^2}$

$$\Phi = -1,26 \times 10^5 \frac{N \cdot m^2}{C}$$

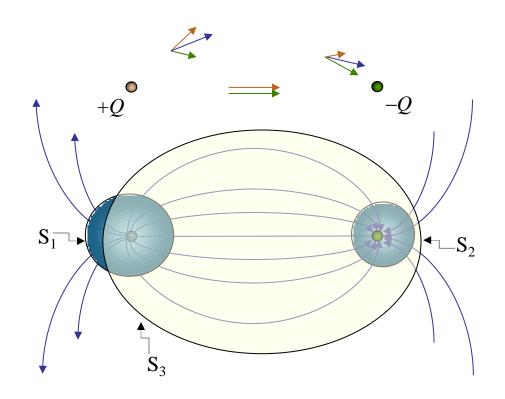
$$\phi_E = \frac{Q}{\varepsilon_0} = \frac{6 \times 10^{-6}}{8,9 \times 10^{-12}} = 6,74 \times 10^5$$

$$\phi_E = \phi_E(1 \text{face}) + \phi_E(5 \text{faces})$$

$$\phi_E(5 \text{faces}) = 6.74 \times 10^5 - 8.00 \times 10^5 = -1.26 \times 10^5 \frac{\text{Nm}^2}{\text{C}}$$

Exemplo

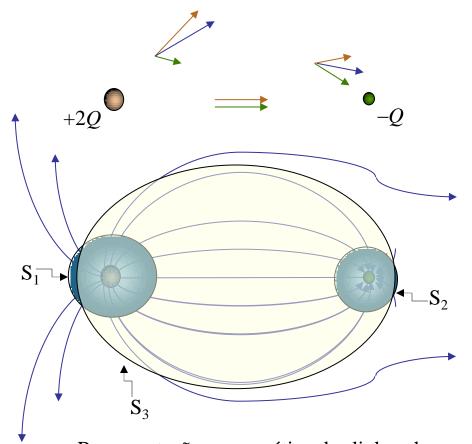
Calcule o fluxo elétrico nas superfícies S_1 , S_2 e S_3 da ilustração.



Representação esquemática das linhas de campo

Exemplo

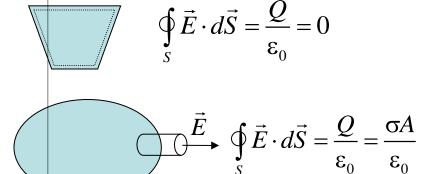
Calcule o fluxo elétrico nas superfícies S_1 , S_2 e S_3 da ilustração.



Representação esquemática das linhas de campo

Condutores em equilíbrio eletrostático

- (i) Campo elétrico é zero dentro de um condutor
- (ii) Se um condutor carrega uma carga livre, ela deve estar localizada na superfície.
- (iii) O campo elétrico justamente fora da superfície de um condutor é perpendicular a superfície e tem módulo igual a σ/ϵ_0
- (iv) Quando não existir nenhuma carga no interior de uma cavidade, a carga total sobre a superfície da cavidade é igual a zero



(v) Quando existir uma carga q no interior de uma cavidade condutora, a carga total na Superfície da cavidade é iqual a –q.

Usando a Lei de Gauss para o cálculo do campo elétrico – simetria plana.

Exemplo

Calcule o campo elétrico produzido por um plano (infinito) não condutor carregado com densidade superficial de carga $+\sigma$.

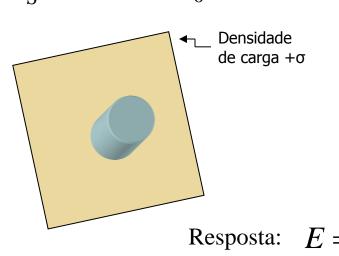
Densidade

Lei de Gauss

Procedimento

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_0}$$

A idéia é encontrar uma superfície (imaginária) para facilitar os cálculos. Por exemplo, parte dela perpendicular ao campo e parte paralela. Esta superfície imaginária é conhecida como *superfície gaussiana*.



Densidade de carga +
$$\sigma$$
 de carga + σ Area lateral da superfície cilíndrica \star Area arbitrária da 'tampa' gaussiana
$$E = \frac{\sigma}{2\varepsilon_0} \qquad \sigma = \frac{Q}{A}$$
 Area σ Area

Usando a Lei de Gauss para o cálculo do campo elétrico – simetria cilíndrica.

Exemplo

Calcule o campo elétrico produzido por um fio (infinito) não condutor carregado com densidade linear de carga $+\lambda$.

Lei de Gauss

Procedimento

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_0}$$

A idéia é encontrar uma superfície (imaginária) para facilitar os cálculos. Por exemplo, parte dela perpendicular ao campo e parte paralela. Esta superfície imaginária é conhecida como *superfície gaussiana*.

densidade linear de carga $+\lambda$

Superfície
gaussiana
cilíndrica,

concêntrica
ao fio.(As faces
da superfície estão omitidas
para melhor visualização.)

Fio r

Area lateral da superfície cilíndrica

Resposta: $E = \frac{\lambda}{2\pi r \varepsilon_0}$

Usando a Lei de Gauss para o cálculo do campo elétrico – simetria esférica.

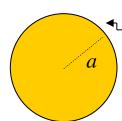
Exemplo

Uma esfera de raio a está uniformemente carregada com densidade volumétrica de carga ρ . a. Calcule o campo elétrico para r > a.

b. Calcule o campo elétrico para r < a.

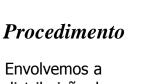
Lei de Gauss

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_0}$$



Distribuição volumétrica de carga com densidade ρ. A carga total é:

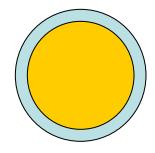
$$Q = \frac{4}{3}\pi a^3 \rho$$



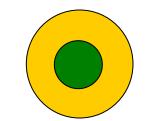
Envolvemos a distribuição de cargas concentricamente com as superfícies gaussianas observando que a direção do campo elétrico é paralela à direção das superfícies em ambos casos.

a.

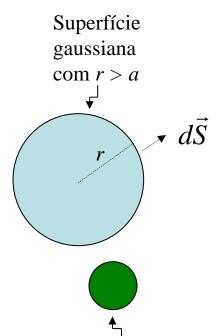
b.



Resposta:
$$E = \frac{(Q/\mathcal{E}_0)}{4\pi r^2}$$



Resposta:
$$E = \frac{(Q/\varepsilon_0)}{4\pi a^3} r$$



Superfície gaussiana com r < a

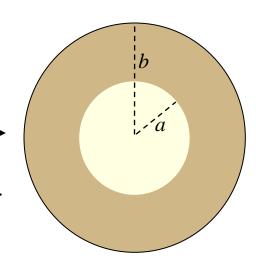
Usando a Lei de Gauss para o cálculo do campo elétrico – simetria esférica.

Exemplo Uma esfera de raio b está uniformemente carregada com densidade volumétrica de carga ρ . Esta esfera possui uma cavidade esférica de raio a, concêntrica à esfera, na qual $\rho = 0$.

Lei de Gauss

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_{0}}$$

Distribuição volumétrica de carga com densidade ρ.



- **a.** Calcule o campo elétrico para r < a.
- **b.** Calcule o campo elétrico para a < r < b.
- **c.** Calcule o campo elétrico para r > b.

Depois, uma pequena esfera de carga q é colocada no centro da cavidade. Explique como seus resultados anteriores se modificarão e obtenha os novos resultados fazendo o mínimo possível de cálculos.