Mecânica para Geologia -FAP0192

2° Semestre de 2013

Instituto de Física Universidade de São Paulo

Professor: Luiz Carlos C. M. Nagamine

E-mail: nagamine@if.usp.br

Fone: 3091.6877

Movimento Unidimensional

Alguns conceitos gerais

Semestre de 2013 Sistema Internacional de unidades (SI)

Grandeza (dimensão)	Definição inicial	Definição hoje
Tempo (T) em segundos (s)	(1/60)(1/60)(1/24) do dia solar médio	9 192 631 458 períodos de uma transição específica do
Comprimento (L) em metros (m)	1/10000000 da distância do equador ao	Distância percorrida pela luz em (1/299 792 458) segundos
Massa (M) em quilogramas (kg)	Massa de um litro de água a 4°C	Massa de um cilindro de Pt-Ir existente no BIPM-França

Múltiplos e sub-múltiplos das unidades

10 ¹	Deca (da)	
102	Hecto (h)	
10 ³	Quilo (k)	
10 ⁶	Mega (M)	
10 ⁹	Giga (G)	
10 ¹²	Tera (T)	
10 ¹⁵	Peta (P)	
10 ¹⁸	Exa (E)	

10-1	Deci (d)
10-2	Centi (c)
10-3	Mili (m)
10-6	Micro (µ)
10-9	Nano (n)
10-12	Pico (p)
10 ⁻¹⁵	Femto (f)
10-18	Ato (a)

Dimensões das grandezas físicas

Quantidade	Símbolo	Dimensão
Área	Α	[A]= L ²
Volume	V	Γ_3
Velocidade	V	L/T
Aceleração	а	L/T ²
Força	F	ML/T ²
Pressão (F/A)	р	M/LT ²
Densidade (M/V)	ρ	M/L ³
Energia	E	ML ² /T ²
Potência (E/T)	Р	ML ² /T ³

A pressão em um fluido em movimento depende da sua densidade e da sua velocidade. Encontre uma combinação destas grandezas que tenha a dimensão de pressão.

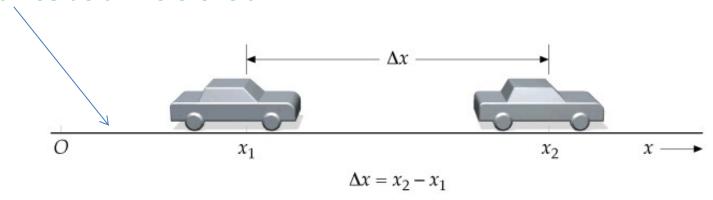
Resposta: $[P]=[\rho][v^2]$

Notação científica

Vamos convencionar escrever as quantidades físicas no formato:

A x 10ⁿ

onde n é um número inteiro e A se encontra entre 1 e 10.


O número de algarismos de A, indica a precisão da quantidade indicada (algarismos significativos).

A parte 10ⁿ, indica a ordem de grandeza da quantidade indicada.

Deslocamento, velocidade e rapidez

Para descrever o movimento de uma partícula, precisamos descrever a posição da partícula e como esta posição varia ao longo do seu movimento.

Precisamos de um referencial.

O deslocamento do carro entre os instantes t_1 e t_2 é Δx e corresponde à variação da posição do carro.

(deslocamento é uma quantidade vetorial)

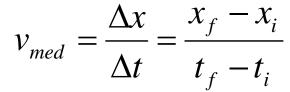
Mas, a distância percorrida é uma quantidade escalar (comprimento do caminho percorrido).

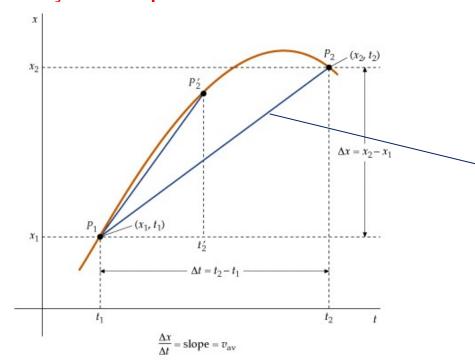
Rapidez média

Definimos a rapidez média de uma partícula, como a razão entre a distância percorrida e o tempo total do percurso. (grandeza escalar)

$$rapidez_m\'edia = \frac{dist\^ancia_total}{tempo_total} = \frac{s}{\Delta t}$$

Velocidade média

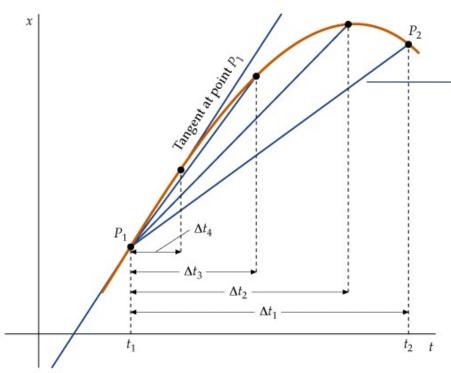

A velocidade média é definida como a razão entre o deslocamento (Δx) e o intervalo de tempo (Δt) do movimento.


(velocidade média é uma grandeza vetorial)

$$v_{med} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$
 e $\Delta x = v_{med} \Delta t$

Velocidade média

Gráfico da posição de uma partícula em função do tempo.


$$v_{m_{1-2}} = \frac{x_2 - x_1}{t_2 - t_1}$$

Corresponde à inclinação da reta que une os pontos P_1 e P_2 .

A velocidade média entre os pontos P₁ e P'₂ é maior ou menor que entre P₁ e P₂ ?

Velocidade instantânea

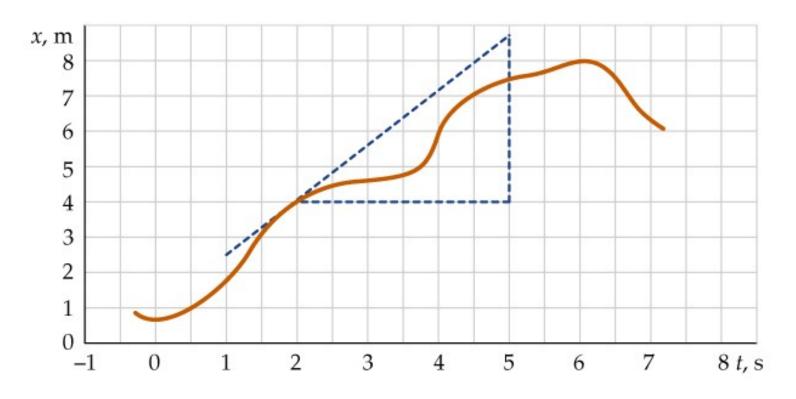
Gráfico da posição de uma partícula em função do tempo.

$$v_{m_{1-2}} = \frac{x_2 - x_1}{t_2 - t_1}$$

Reduzindo-se o intervalo de tempo para o cálculo, converge-se para a tangente à curva (vermelha) no ponto P₁.

Define-se a velocidade instantânea como a inclinação da tangente no ponto considerado.

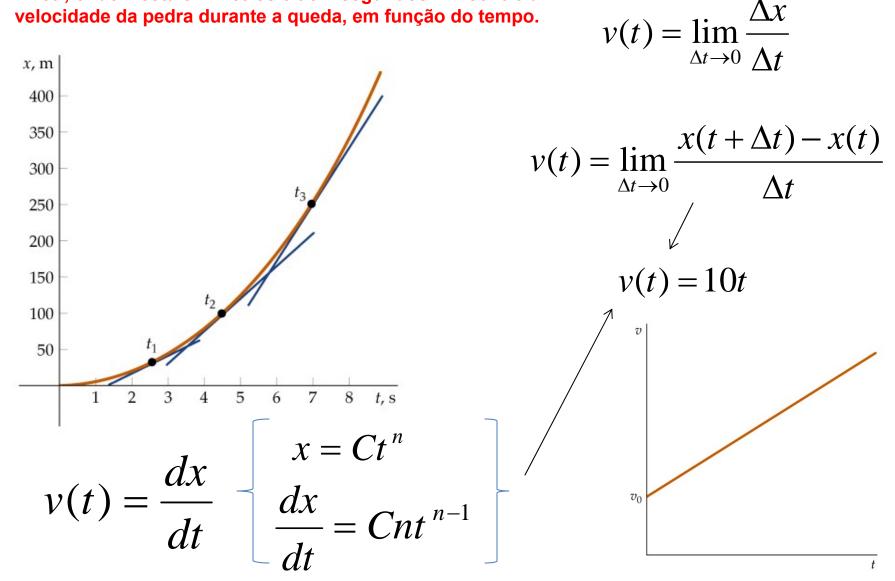
Isto corresponde a se tomar o intervalo $\Delta t \rightarrow 0$.


$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$
Derivada $\rightarrow v(t) = \frac{dx}{dt}$

2°

Velocidade instantânea

 $v(t) = \frac{dx}{dt}$


Gráfico da posição de uma partícula em função do tempo.

- 1) Determine a velocidade instantânea no instante t= 1,8 s.
- 2) Quando a velocidade é maior? Quando ela é nula? Ela chega a ser negativa?

Velocidade instantânea

A posição uma pedra largada de um penhasco é descrita por x= 5t², onde x está em metros e t em segundos. Encontre a velocidade da pedra durante a queda, em função do tempo.

Aceleração média

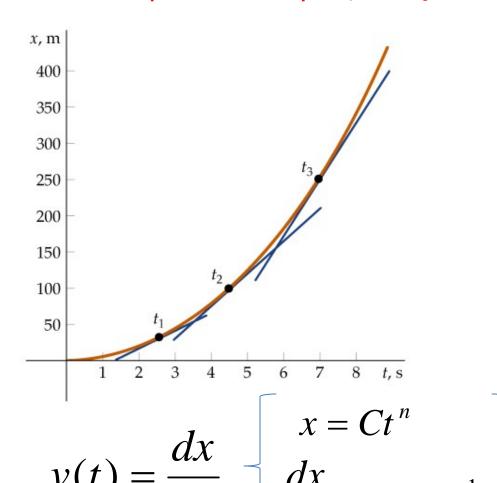
A aceleração média é definida como a taxa de variação da velocidade (Δv) em relação ao intervalo de tempo (Δt) do movimento.

$$a_{med} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$$
 e $\Delta v = a_{med} \Delta t$

Aceleração instantânea

A aceleração instantânea é o limite da razão $\Delta x/\Delta t$, quando Δt tende a zero. Em um gráfico de velocidade em função do tempo, a aceleração instantânea é a inclinação da reta tangente em um dado ponto.

$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} \qquad \longrightarrow \qquad a(t) = \frac{dv}{dt} = \frac{d(dx/dt)}{dt} = \frac{d^2x}{dt^2}$$


Velocidade e aceleração instantâneas

A posição uma pedra largada de um penhasco é descrita por x= 5t², onde x está em metros e t em segundos. Encontre a velocidade da pedra durante a queda, em função do tempo.

$$a(t) = 10m/s^{2}$$

$$a(t) = \frac{dv}{dt} = \frac{d(dx/dt)}{dt} = \frac{d^{2}x}{dt^{2}}$$

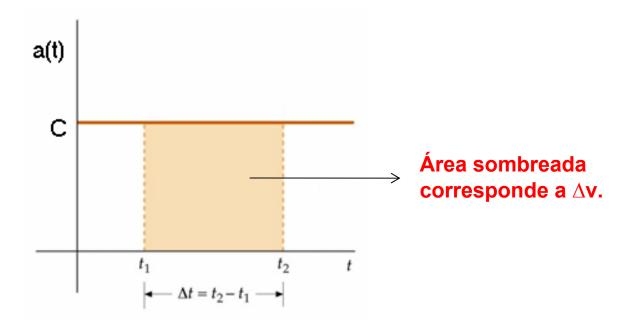
$$v(t) = 10t$$

Velocidade e aceleração instantâneas

Suponha que a posição uma partícula seja descrita por x= Ct³, onde x está em metros e t em segundos. Encontre as expressões para as suas velocidade e a aceleração, em função do tempo.

$$v(t) = \frac{dx}{dt} \longrightarrow v(t) = 3Ct^2$$

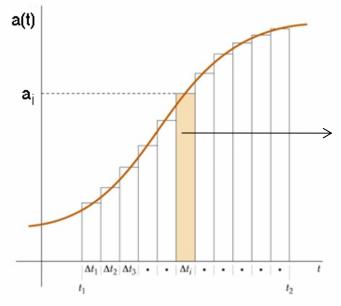
$$a(t) = \frac{dv}{dt} = \frac{d(dx/dt)}{dt} = \frac{d^2x}{dt^2} \longrightarrow a(t) = 6Ct$$


$$\int x = Ct^{n}$$

$$\frac{dx}{dt} = Cnt^{n-1}$$

Equações cinemáticas para aceleração constante

Suponha que a aceleração de uma partícula seja descrita por a= C. Encontre a expressão para a sua velocidade, em função do tempo.


$$\Delta v = a_{med} \Delta t = a \Delta t \qquad \longrightarrow \qquad v_2 - v_1 = a(t_2 - t_1)$$

Equações cinemáticas para aceleração constante

Suponha que a aceleração de uma partícula seja descrita por a= f(t). Encontre as expressões para as suas velocidade e a posição, em função do tempo.

$$\Delta v = a_{med} \Delta t = a \Delta t \qquad \longrightarrow \qquad v_2 - v_1 = a(t_2 - t_1)$$

Área sombreada corresponde a Δv .

$$v(t) - v_0 = \sum_{i} a_i \Delta t \xrightarrow{\text{para } \Delta t \to 0} v(t) - v_0 = \int_{t_0}^{t} a(t) dt$$

Equações cinemáticas para aceleração constante

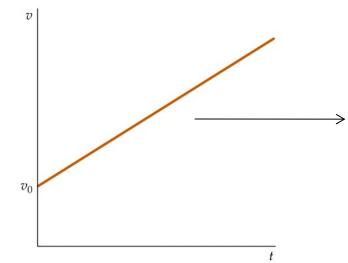
Suponha que a aceleração de uma partícula seja descrita por a= C. Encontre a expressão para a sua velocidade, em função do tempo.

$$\Delta v = a_{med} \Delta t = a \Delta t \qquad v_2 - v_1 = a(t_2 - t_1)$$

$$v(t) - v(t_0) = \int_{t_0}^t a(t) dt$$

$$v(t) - v_0 = \int_0^t a(t) dt$$

$$v(t) - v_0 = \int_0^t a(t) dt$$


$$v(t) - v_0 = Ct$$

Semestre de 2013

Equações cinemáticas para aceleração constante

Suponha que a aceleração de uma partícula seja descrita por a= C. Encontre a expressão para a sua posição, em função do tempo.

$$v(t) - v_0 = Ct \longrightarrow v(t) = v_0 + Ct$$

Área sob a curva corresponde a Δx .

$$x(t) - x_0 = \int_0^t v(t)dt$$

$$x(t) = x_0 + v_0 t + \frac{C}{2}t^2$$

Equações cinemáticas para aceleração constante

Suponha que a aceleração de uma partícula seja descrita por a= C. Encontre a expressão para a sua velocidade, em função da posição.

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{a}{2}t^2$$

$$x - x_0 = v_0 \left(\frac{v - v_0}{a}\right) + \frac{a}{2} \left(\frac{v - v_0}{a}\right)^2$$
 x(2a)

$$2a\Delta x = 2v_0(v - v_0) + (v - v_0)^2 \longrightarrow v^2 = v_0^2 + 2a\Delta x$$

Eq. De Torricelli

Integrais e derivadas

$$v(t) = \frac{dx(t)}{dt} \longleftrightarrow x(t) = \int v(t)dt$$
Integrals indefinidas
$$a(t) = \frac{dv(t)}{dt} \longleftrightarrow v(t) = \int a(t)dt$$

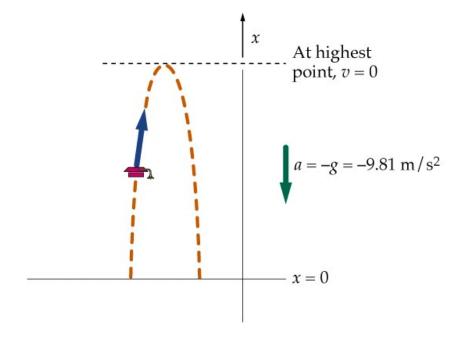
$$a(t) = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2}$$

Integrais definidas

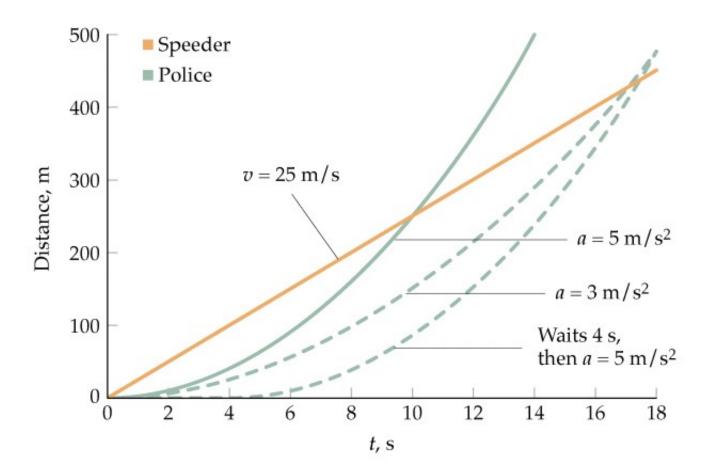
$$x(t_2) - x(t_1) = \int_{t_1}^{t_2} v(t)dt$$

$$v(t_2) - v(t_1) = \int_{t_1}^{t_2} a(t)dt$$

Alguns exercícios


- 1) Um carro é freiado até parar com a velocidade decrescendo a uma taxa constante de 5,0 m/s/s. Se a velocidade inicial é de 30 m/s, qual é a distância percorrida durante a frenagem? Quanto tempo leva até o carro parar? Qual a distância percorrida no último segundo do movimento?
- 2) Em um teste de colisão, um carro viajando a 100 km/h atinge uma parede de concreto imóvel. Qual a aceleração do carro durante a colisão? Compare com a aceleração da gravidade.

- 3) Uma pedra atirada para cima com velocidade de 14,7 m/s. Sabendo que a aceleração da gravidade no local é de 9,81 m/s², (a) Quanto tempo leva para a pedra atingir o ponto mais alto da trajetória? (b) Qual a altura atingida? (c) Voltando ao ponto de origem, qual é o tempo total do percurso?
- 4) Um carro corre com velocidade de 90 km/h em uma zona escolar. Um carro de polícia parte do repouso quando o corredor passa por ele e acelera à taxa de 5,0 m/s². (a) quando a polícia alcançará o carro? (b) qual será a velocidade da polícia ao alcançá-lo?


Alguns exercícios

3) Uma pedra atirada para cima com velocidade de 14,7 m/s. Sabendo que a aceleração da gravidade no local é de 9,81 m/s², (a) Quanto tempo leva para a pedra atingir o ponto mais alto da trajetória? (b) Qual a altura atingida? (c) Voltando ao ponto de origem, qual é o tempo total do percurso?

Alguns exercícios

4) Um carro corre com velocidade de 90 km/h em uma zona escolar. Um carro de polícia parte do repouso quando o corredor passa por ele e acelera à taxa de 5,0 m/s². (a) quando a polícia alcançará o carro? (b) qual será a velocidade da polícia ao alcançá-lo?

