Plasmas

7 What is a plasma, where can we find it?
7 Dielectric properties of plasmas
7 Faraday rotation
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Plasma: whatis it?

Plasma is a gas of electrically charged particles. The gas is usually neutral, on
average, but its constituents are either totally, or partially charged.

The negative charges in plasmas are usually electrons which are ionized —
and the positive charges are the ionized atoms or molecules from which those
electrons were pulled off.

Because the electrons are much lighter than the atoms/molecules, they are the
ones that move around, so it is usually a very good approximation to consider
only the electrons as the moving parts — but, of course, momentum
conservation means that the atoms/molecules also feel the same forces.

Maintaining the electrons as free particles, and the atoms/molecules ionized,
takes a lot of energy, therefore the temperatures of plasmas are typically very
high: typically, thousands of degrees Kelvin.

Plasmas are not only electrically polarized media, they also have magnetic
properties. The diffusion and propagation of electric and magnetic fields in
plasmas is quite different than what we usually see for typical dielectric and
magnetic materials. This will be the subject of the next two lectures.
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Motions in a plasma

Consider what happens to an electron (assumed to be approximately at rest) as an EM wave passes.

* To avery good approximation, it is the electric force that does most of the motion:

d*r —
meﬁ =—eE , wherethe charge of the electronisg = — e.
!

For simplicity, let’s assume that the field is polarized in the X direction, and that the wave is monochromatic. Hence at the electron’s position
the motion is given by:

d*x e : . . .
— = —— E, sin(wt) , which we can immediately solve:
2
dt m,
e EO . . . e EO
x(t) = sin(wt) , where the amplitude of the movement is x, = .
®?m, w?m,

* This movement generates an oscillating electric dipole:

M) =—ex(t)& = —pysin(wt) &, with py = e’Ey/(w*m,)

Notice that, in a plasma, the positive charges are ionized atoms, with nuclei that weigh much (thousands of times!) more than the electron,
hence their electric dipoles are negligible.

Now, let’s consider that, in our plasma, we have an average number density of free electrons that we express as:

dN,
n,=
d3x

Hence, if a plasma has n, free electrons per unit volume, then it has a density of electric dipoles given by:

®?m,
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Motions in a plasma

We have seen in Lecture 5 that the dielectric properties of any medium are given in terms of the polarization by:

—

ccE+P=D=¢E |,
where the last equality follows from assuming linear media, and we usually write:

€ :(1 +)(E)€0

Therefore, we can say that a medium with plenty of free electrons that are able to move around (i.e., they are not bound to atoms or molecules) has

— n,e’ — n,e’

w?m,

®?m,e

We usually write this in terms of the plasma frequency:

2
a)p = — )(E = — —2
m.€gp w

* You can see how this expression has a number of problems: the speed of light in a dielectric medium is given by:

1 c
c: = = , which would naively imply that light waves propagate faster than the speed of light.

Moreover, for w < w,, we have a negative dielectric constant, and an imaginary refractive index.

* Whatis going on??
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The plasma dispersion relation

* Let's look at a the electric field of a plane, monochromatic wave that propagates in this plasma, but now let’s write the space-dependent part explicitly
(which we neglected to do earlier):

—

E = E()2 e—i(a)t—kz)

* In this expression, the phase velocity appears when we write the phase above as:

0
goza)t—kz:k<?t—z> :k<vpt—z>

* The results above show that, for a plasma, the frequency is given by:

k2c?

w? = . => oz)z—Cz)g:Iczc2
%
(02

 We usually call this type of relation between the wave frequency and its wavenumber (k) a dispersion relation. For plasmas we get:
w*(k) = k*c® + a)lf

* In terms of the dispersion relation, the phase velocity is:

0] | (Ul%
vp—?—c +czk2

* Itis important to remember that the phase velocity can, in fact, be greater than the speed of light in vacuum, since it doesn't correspond to any motions
of particles, or flows of energy or momentum.
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The plasma dispersion relation

As you have probably guessed, what really matters is not so much the phase velocity, but the group velocity. Let’s remember what are those two things.

- Take a scalar wave in a medium with dispersion relation w (k) . A wave packet can then be expresses as:
w(t, x) = [dk R (9

« For the exercise below we will consider each phase ¢ = kx — wt of this wave.

. Let’s first look at a point xp(t) whose phase is fixed, and ask how fast that point moves. Since we

phase vel. = group vel. phase vel. = - group vel.

want the phase to be fixed in time, we want d¢ = 0 .Therefore:

dxp @
kdx,-—wdt=0 = —=—

dt k

phase vel. > group vel. phase vel. < group vel.

* Now, let’s ask about a feature in the wave, like a peak, or a trough, or a kink. How can we find the
speed with which that feature moves? What we need to recall is that a feature is something in the
form of the wave, which is more or less independent of time. This means that when a feature
moves, the phases of all the modes that contribute to that feature move in such a way that the
phase around that feature remain the same. group vel. = 0 phase vel. = 0

- In other words, if we write the phases for a feature x; at any time # and we demand that the

phases are invariant, we get:

d X .
dkx;—dot=0 = @ _ = v, isvr
dk t

* This is the group velocity, which tells us how fast a feature of the wave form moves in space.
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The plasma dispersion relation

* From the plasma dispersion relation,
w? =k*c? + a)g ,
we find that

d d
20)—0) =2kc? = LY c? =
dk k dk P8

* It's perhaps useful to note here that physically it is usually better to think of k = k(w) as opposed to w = w(k), since the frequency w of the wave is basically fixed, given.
* Explicitly, we have:

c
v, = > c¢ , and

1/l—colg/coz -
vg=c\/1—a)§/a)2 <c

* However, there is still the “mystery" about what happens when the frequency drops below the plasma frequency, and both the group and phase velocities become complex. What
is going on in there now?

* Inorder to see what is going on, it is better to write the phase as:

w(t,x) = [dk elk@x—oty gy where k%= (0?- cz)lg)/c2
. Forow < w, wegetk =1i/c /a)lf — w? , and then:
w(t,x) = [dk e~ Mx—iot g (k) e, the waveis attenuated (it decays).
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The plasma dispersion relation

* From the plasma dispersion relation,

w? = k*c* + a)g ,
we find that

dw @ dw 5

20— = 2kc? > 2
dk

EE=C = vag=C

- It's perhaps useful to note here that physically it is usually better to think of k = k(w) as opposed to w = w(k), since the
frequency w of the wave is basically fixed, given.

* Explicitly, we have:

> C , and

c
v, =
\/1 — coi%/co2

_ 272
vg—c\/l a)p/a) < c

* However, there is still the “mystery" about what happens when the frequency drops below the plasma frequency, and both
the group and phase velocities become complex. What is going on in there now?

ELECTRODYNAMICS I / IFUSP / LECTURE 18



The plasma dispersion relation

* In order to see what is going on, it is better to write the phase as:

w(t,x) = [dk ek x—ollg(y | where k%= (w’— a)lg)/c2
. Foro <w, wegetk =il/c a)g — w? , and then:
(t,x) = |dke Mx—i®tg k) | ie,thewave is attenuated (it decays).
4 v

. But what about the other root of the equation, k = —i/c 4/ a)lf — @? ?Those would be

exponentially growing solutions:

w(t,x) = Jdk et =i0 i (k)

What happens in this case is that, when a low-frequency waves hits the plasma, part of it
penetrates the plasma, and part of it is reflected back — just like a wave penetrates a
material with a certain“skin depth”. The boundary conditions of the electric and magnetic
fields guarantee that only the exponentially decaying mode gets inside the dielectric.
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Plasmas and radio communications

lonosphere - F Layer

 The Earth’s ionosphere (at 50-300 km altitude above sea level) is a series of layers of the
atmosphere that received direct ultra-violet (UV) light from the Sun. This radiation ionizes some of
the electrons of the gases and dust that make up the atmosphere, creating an environment

where one can find number densities of electrons of 10* — 10° electrons/cm? . It is a plasma!

Thermosphere

* The resulting plasma frequency of the ionosphere is approximately 1 MHz at the lower altitudes 160 km ]
(~100 km), raising to 10 MHz or more at higher altitudes — remember that a)lf =n,e*/(m,e). ok,

120 km

* Long- and medium-wave radio communications (that use frequencies < 1 MHz) rely on the S i 100k ]
ionosphere as a“mirror" that reflects those waves: those radio frequencies fall below the plasma
frequency of the ionosphere, hence they cannot propagate in that plasmal!

\
lonosphere / D Layer

* The Earth's surface is also a half-decent conductor, so it also acts as a mirror to those waves. The
result is that low/medium-frequency radio waves bounce up the ionosphere and down on the

) k ) i _A Troposphere
surface of the Earth multiple times, often reaching the other side of the planet!
500 km | EXOSPHERE \\

*  On the other hand, short-wave (high-frequency) radio, including FM and TV, use bands of N
frequencies above 10 MHz, so their frequencies are larger than the plasma frequency of the THERMOSPHERE | 'ONOSPHERE
ionosphere and they just propagate away. Therefore, short-wave radio only work for relatively 300 km 1 F /'
short distances: as soon as they get reflected towards the sky, they are “lost in space”. (//

)

* Aninteresting phenomenon takes place at night: with the Sun absent, the production of ionized 85 km 1 7"
electrons stops, and the number density of electrons in the ionosphere starts to drop. As a result, e \ MESOSPHERE
the plasma frequency also starts to drop, making communications harder and harder, and | ] STRATOSPHERE
limiting long-range communications to lower frequencies. During the day, the Sun replenishes TN TROPOSPHERE
the stock of free electrons and the radio waves start bouncing on the ionosphere again. et ——

Temperature (K) Electron density
(em?)
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Faraday rotation

* We will now study how free electrons in a plasma move when subjected to electric and magnetic fields.
However, we will now suppose that there is an external magnetic field which is more or less constant. z

* This situation can arise when there are magnetic fields “around" — from, e.g., Earth’s magnetism, or in a
cyclotron, or even in galaxies such as the Milky Way.

* In the non-relativistic limit, the equations of motion are:

d27 g d? —_—
m——=—e | E+—XB
dr? dt

* Just as before, we will assume that the electric field is varying as e ™! just like a plane monochromatic wave X
— and we can neglect the wave’s magnetic field. However, we leave the two polarization degrees of freedom

to be completely free.

- For simplicity, we assume that the magnetic field is aligned in the z direction, so B = B, Z, with B, >~ const.

Therefore, we get the equations:

e
§=—— Ex+vB>
 (roun
L e <E B)
=—— (E,—vV
y m, y xPz
e
f=—— (E,+0
— (E;+0)

e
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Faraday rotation

* The motion along the z axis is trivial, and was solved in earlier slides.

+ The motion on the plane x — y, on the other hand, is far more interesting. Since the only “dynamical" part is the factor

e~ of the electric field, it is clear that x(f) ~ e ™"’ and y(f) ~ ™" , so we get:

e .
—w?x =-—— (Ex —iw yBZ)
me
2 ¢ -
—w'y=—-—— |E,+iwxB,
me
This linear system can be easily solved for x and y . However, it is far more convenient here to replace the linear
polarizations E, and E, by the circular polarizations:

(“anti-clockwise”) , oriented in the directions:

E.=E + iEy (“clockwise”) and E_=E_ — iEy

1 1
F,=—(Xx+1y and F_=—(Xx—1y
In a similar fashion, instead of using x and y we use:

r,=x+iy and r_=x-—1iy

* The resulting equations are:

—a)2r+=—i(E+—a)r+Bz)
e
—o?r =< (E.—wr_B
0>r_ - (E_.—wr_B)
12
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Faraday rotation

* In terms of the circular polarizations, the solutions for the motion on the x — y plane are:

| ¢E, | | e(E +iE)
r, = = > . e, Xty = 3 >
| 4 — Me® 1 4+—= M
maw maw
1 eE_ . . 1 e(Ex_ lEy)
r_ = , l.e. , X—1ly =
| — 5 m, 02 d 1% m,0?
maw maw

- These solutions indicate that the magnetic field B, creates a kind of frequency Qp = eB_/m,, which is called the cyclotron frequency
for the electron’s motion in the magnetic field B,. Therefore, we have:

* Now, these two types of motions mean that the two circular polarizations generate two different electric polarizations in the plasma
medium:

— N N 7S
p+(t):_er+(t)r+ ’ 7’+:5(X+ly)

T =—er (OF , F_=
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Faraday rotation

* In other words: the two circular polarization modes have different dielectric properties:

w2
P
, and  €_=¢ [1—

w(w — Qp)

nee2 6013
€, =¢ |1— =¢ |1 -
m, ey w(1 + Qp/w) w(w + Qp)
* This means that the two circular polarizations propagate in different ways in a plasma!

* Recall that the relationship between the frequency and the wavenumber is given by:

e : (1+xp) theref tthat k2 o 1 %
— = e > — , therefore we get tha =—|1-
w2 H c? A J T2 o(w £ Qp)

* So, in a plasma, electromagnetic waves with left- and right-handed circular polarizations have different wavelengths, and travel with different velocities.

- Using the vacuum wavenumber k, = @w/c and the vacuum wavelength 4, = 2zc/w, let’s define the plasma wavenumber and the plasma wavelength

as:
/ w? w?
P P

- Now, assuming that @ > ), Q5 , the two circular polarizations have wavenumbers and wavelengths given by:

2 2
1 w, Qp 1 0y Qp
kiﬁkp<lia 3 ) , ﬂizﬁp<1+5 3
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Faraday rotation

* What this all means is that one polarization propagates a bit faster than the other!

+ Let’s see what happens with an EM wave as it enters a plasma. Consider a wave with a linear polarization E)(C) , Which in terms of
the circular polarizations is:

E,=E*iE = ES:%(E2+E9) ,E;’:%(Eg—EQ):o :

soitis clearthat EQ = EY = EV/2.
* Therefore, as this wave enters the plasma (atz = 0,1 = 0), it propagates in space and time as:
E(t.2) = EO 7, etk 1 07 _gitk-—on

* Let’s check that initially the wave is linearly polarized:

R . T 1
E(t,z=0)=e" (EQ?, +E2F_) = [EEE & +i9) + EEE (X - iy)]

1 1 '
— e—za)t E(E‘(’)' + EE))? + ZE(E_? — Eg) 57] = e—la)t E)(C))/(\?

2
1 w;Qp
. But notice what happens as the wave moves inside the plasma: since k. ~ kp <1 + 5 b 3 we can write:
)

— 1 . . .
E(t,z) = EE)?e’(kPZ‘a’t) [?Jr eidAke 4 7 e“AkZ] ,  where Ak ~k, a)g Qp/(2 )

[Incidentally, notice that this expression shows that the direction of the electric field is “real’, since the second term inside
the square brackets is the complex conjugate of the first term!]

A
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Faraday rotation

* Therefore, if we look at this wave at some point deeper into the plasma, the direction of the electric field will have rotated !

+ Suppose we go enough inside the plasma that Ak z = /4 . We will find that the field is now oriented in the direction:

E ~ P e 4 7 et = l()e+iy)1+i + l(fc—iy) Sl
2 \/5 2 \/5
L ForTY

NG

* Therefore, the polarization rotated by 45° in the anti-clockwise direction!

NN
'S

* This phenomenon is known as Faraday rotation.

\VV\/\ A
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Faraday rotation

* The phase change between the two circular polarizations grows linearly with the length that the wave travels inside the plasma. In
other words, the phase change is given by:

d—(pzAk =kpa)§QBNa)§QB _ ”ee3BZ
dz 2 w3 2w3c 2egwrmZc

* Since typically there are no physical mechanisms that change the frequency w of a wave , we find that the rotation of the wave’s
polarization is given by:

[dz n,(z) B,(z)

* Therefore, if we know the magnetic field strength, we can use a measurement of the Faraday rotation to measure the density of
electrons in a medium; or (more realistically), knowing the number density of free electrons, we can use Faraday rotation to measure
the strength of the magnetic field.

* Notice that we could only really measure Faraday rotation for an individual wave if we knew the original polarization state of the
wave, before it entered the plasma. But that can be very difficult, especially in Astrophysics, where we can't tell how the sources are
oriented. What do we do then? Think a little bit...

- The answer is that we can look at the spectrum of waves of different frequencies. Since ¢(z) ~ 1/@? , each frequency rotates by a Ao
different phase:
1 1 e’ ,
(o) —p(z;0") = — dz n,(z) B,(z) [Lower frequencies rotate faster!]
w? w?) 2¢ymZc

* Itis by comparing these phase differences that we can tell what the Faraday rotation is — and from them, we can compute either the
magnetic field or the number of ionized electrons.
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Collisional plasmas

We have been discussing plasma as a gas of free electrons, as if there were no interactions between them. This is not entirely true...

For a typical conductor, the current is roughly proportional to the electric field, and we express this as Ohm’s law:

J =06FE , whereo isthe conductivity of the medium.

Let’s recall what happens in a wave inside a conducting medium. Using the current above in Maxwell’s equations, assuming stationary currents and
— —

neglecting charge densities, V. E=V.J= 0, we obtain:

. _ 0B
VXE=—t , and
VXB=,MOJ+€,M()7

’E E  _,—

i(k - % —awt)

The solution is the usual one, E ~ ¢ , only that now we obtain:

—epuyw? —iwouy+k*=0 = k*=pyw(ew + io)

This dispersion relation means that the wave suffers an exponential attenuation as it enters the conductor — this is typically what happens when we
get a complex dispersion relation.
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Collisional plasmas

* Let’s see now what happens in a plasma, which is not quite a conductor, but it acts a bit like one.

* Let’s look at the equations of motion for the electrons in that medium, but let’s assume that the electrons can now interact (“collide”) with the other charged particles, such as ions, in the
medium. We have then:

m,¥ +m,y x =— ef ., Where y gives the rate of collisions of the electrons (it has dimensions of 1/time).

* Assuming the usual e~ dependence for all the time-dependent quantities, we obtain a solution for the trajectory:

¢E

i
P m,w(w + iy)

- —
r = 1%

* For a plasma with a number density of electrons given by 7, , the current is therefore:

. 2=
in,e E

TZ —e n7=—
e my(w + iy)

* From this we can find the conductivity:

J in,e? n, e’

E  mfo+iy) my—io)

Hence, in the limit @ < y the conductivity is (mostly) real, and the plasma acts as a conducting medium, dissipating the wave.

* In the presence of these collisions the dispersion relation becomes:

2 2
n,e 1 w;

K= pow(ew +io) = kK =pw |ew —-————| = = [0? - —L—
m,(@ + iy) c? ® + iy

212 _ 2 .2
k“=w W, ,
leads to the exponential attenuation of the wave in the medium. In other words, when there are lots of collisions going on, a plasma works like a conductor; and conversely, in the high-

frequency limit a conductor acts like a collisionless plasma.

Itis clear that for @ >> y this reduces to the dispersion relation in a plasma, ¢ and in the opposite limit we go back to the dispersion relation for a conductor, which
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That’s all folks!

- This is as much as | can say about plasma phenomena.

* You can learn more about it in Electrodynamics Il, with Prof. Galvao.

» This concludes the main topics of this graduate course. We will reconvene next
Friday for the presentations about topics.

* P2is scheduled for June 25th. It will be a “take-home” exam again (hand out
Friday, send in Monday), and we will cover all of Relativistic/Covariant
Electrodynamics, as well as radiation.
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