Relativistic
Electrodynamics

% Relativistic actions/ Lagrangians

% The Maxwell Lagrangian

% Stress-energy tensor: another derivation
4 Back to Maxwell’s equations
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Relativistic electrodynamics

* During our exploration of Electrodynamics and its relation to Relativity, we saw
that, in covariant notation: the Maxwell equation are written as:

o0, F" = py J# , with 0, J¥ =0 being an integrability condition
0,F" =0 ,  Where F'# = ¢hvab F,s is the Hodge dual of F/** .
* The Faraday tensor includes both the electric and the magnetic fields:

F,=0,A,—0,A,

> v
0 +FE./c +E,/c +E,/c 0 —E,/c —FE,/c —E,/c
v _ —F,/c 0 +B, —B, roo_ E./c 0 +B. — B,
-E,/c —B, 0 + B, . E,/c —B, 0 + B,
—FE./c +B, —B, 0 E./c +B, —B, 0
v
U
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Relativistic electrodynamics

* The stress-energy tensor, which determines the intrinsic properties of the electric and magnetic fields, such as energy,
energy flux/momentum, pressure, stresses, etc., is given by:

T Lper, + Loop| = L |pwp, — Lsop2
= - — =— —— , or
H I vp 4 H o 124 4 H
1 1 5 5 E* —,
T = — |F*FF ——n™F , where recall that F* = -2 — - B
Ho 4 c?

We also showed that some of the components of this stress-energy tensor are familiar to us: e.g., the electromagnetic
energy density is given by:

| — I -
2 Ho

Therefore, the stress-energy tensor has dimensions of energy density.

. In fact, the scalar —F? has dimensions of energy density. Can we construct other scalars using only quadratic
Ho
combinations of the Faraday tensor? We could try, e.g.,

F'"™F,, =e"FF, . butthisis identically zero! (Show!!)

So, we are stuck with this quantity F2/u, as the only scalar function of F,,. and which has units of energy density

l/l
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Relativistic actions and Lagrangians

 Our goal now is to derive Maxwell’s equations (and the stress-energy tensor) from an 7}1(0
action principle, and a Lagrangian.

* So, let’s talk about relativistic actions and Lagrangians.

* We can start with a point particle with mass m. In non-relativistic mechanics, we have that
the Lagrangian of a point particle is simply:

1 —
L= mez —U(X) , sotheactionis
S = JdtL

* Minimization of this action (assuming fixed start/end points) leads to the dynamical
equations:

0 oL 0L ] .
oS=0 = — =0 , which we can also write as:

ot X' ox!

m?z—Vsz)

* But what about the relativistic particle?
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Relativistic actions and Lagrangians

We can get inspiration from the fact that the action must be an invariant: the equations of 7}1(0
motion must have the same form in any reference frame. So, “coordinate time" is out (it is
not invariant), and we can try instead “proper time"” (which is an invariant).

Therefore, we should try something like this:

Sz[dtL — [dTL

But what is this Lagrangian now? Notice that the action has dimensions of energy X time.
But what is the only scalar that one can construct using (mass)x(speed)2 ?

1 —
—mxi? —  mc?

When we combine the factor 1/y(v) from dz = dt/y(v) we get:

1 V2 |
— mct=11—— mc*t 2mct——mvV?+ ...
y(v) c? 2

= Spree = — {d’cm c?
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Relativistic actions and Lagrangians

* Ok, but how do we include the interactions of these particles? A
X n
« Usually, we think of potentials a scalar, and the force as F =— VU.

* However, for the EM fields, the potential is a 4-vector! Moreover, the force is the Lorentz force, which, as we saw earlier,
can be expressed in covariant notation as:

_dpe _ . .

Ju= e qF, U" forapoint charge, and

dp,

T F,J* for a distribution of charge/current densities
X

 So, in some sense the Lorentz force (F) must come out of something like a derivative of the potential (A4) in a way that
involves also the 4-velocity. Moreover, that term must be linear in the action!

* Now, what is the only scalar that we can construct using the 4-potential, that can go into some relativistic action? Clearly,
the only option is that, for a point charge g, we have something like:

q[AM dxt

 Notice that g A has dimensions of energy (potential energy), and dx has dimensions of length.

+ But the action has dimensions of (energy) X (time) , so we must somehow write (energy) X (space) X (time/space).
Obviously, the only universal constant which has units of (time/space) is the 1/c ! Therefore, we get that the potential
energy must be something like:

g[AM dx* , and we will show soon that this is exactly right!
c
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Action, Lagrangian and Hamiltonian

* So, collecting everything now we obtain: 7 (t)
n
Spree + St = — Jdrmc2+zJAﬂdx” —_ demc2+zj<—¢cdt+ A d?)
c c
1 5 — v
= |dt |-——mc"—q¢p +qgA - —
r(v) c

* It is interesting that, from the point of view of the dynamical equations, the conjugate momentum is now given by:

o
I
I

oL all

: : mc? — +Kl
Tow v | 7o) 9@ +ad

= y(v)mxi -+ zAi =p;+ zAl.
c c

 This means that we can write the Hamiltonian for the particle in an electromagnetic field as:

H=vi——-L=——0nqr——+ qo , which, after using the equation above to write V' in terms of F, yields:

* The non-relativistic limit of this expression is:

1 — q— 2
H=— (P -L14) +q¢
2m c
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Action, Lagrangian and Hamiltonian

Now let’s go back to our previous expression for the action of a point particle in the presence of Electromagnetic
fields:

1 — vV
Sfree + Sint = Jdt [__m Cz - CI¢ + qA ’ l]
y(v) c

We would now like to write this in spacetime parlance, and for a charge/current distribution. First, notice that the
interaction Lagrangian can be written as:

S = |de [a (-0)re+ a7 (7))

Now, notice that A¥ = {¢, X} , and A, = {—d, X} , s0 we can make the identification

dx*
Sint = dTAﬂ q d_ = dTA”()Cq) q U”(xq)

T

Finally, we have to generalize this “current" qU" to a distribution, J# .

— v 1 .
Sint = [d(cr) [Ao(t, Y)q+ ALY, - (q%)] = ;[d“x [AO(I,T)qc +A@lY)- (qV)] 5[X — X (1]

And now we can associate g{c, V'}6(X — X ) — J*, and write the invariant action:

int
C

1 4
> S - —|dxA

It is trivial to show that this reduces to the expression for a point particle.
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The electromagnetic Lagrangian

* Finally, we would like to put all this together and write the full Lagrangian for matter + fields + B
interactions: " W
-
m 1
SMat+SInt+SEM - - Zjdtﬂcz + _[dél-XAﬂJﬂ + SEM ’ or b
n y(n) ¢
1 4 1 4
SMat+SInt+SEM - — d ‘XLMat + — d .X:AMJ'M + SEM
c c ‘
where the factor 1/c appears here just because d*x = c dt d°x .

* The only part which is missing here is the expression for the action (or Lagrangian) of the “free" ?"

electromagnetic field. From our previous discussions, the only scalar that we can construct with the

fields, and which has dimensions of energy density, is:
Lgy ~ F*F,, = F? , and if we pay attention to the signs and dimensions we can write: ' E )

o, 11 E* -,
Lgy = FF=———|—-8B
4 pyc poc 2\ ¢

* So, we arrive finally at what is really an ansatz, that we must verify through the Euler-Lagrange equations:

Su+ S 4+ S, = ! d*x L +l d*x A JH +l d4xLF2
Mat Int EM — c '‘Mat c U c 4,“()
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The Euler-Lagrange equations for EM fields

* The very first thing we should verify is that this action gives us the Maxwell equations.

* We can derive those equations from the Euler-Lagrange equations for the total Lagrangian:

L = L A JH 1 /1% . . . . aLTot aLTot .
tor = Lypar + A" + —F"F,, and taking the derivatives: —0 =0

Auy 0A, ’ d(0,A,)

* Clearly, the matter Lagrangian does not depend on the 4-potential or its derivatives, so only the interaction and free EM parts
contribute. We have:

oL Tot
0A,

= JH

oL 10 1o
Tor_ _ {(aaAﬂ — 0P A) (0,4, aﬁAa>] - D [(a,?Al - 0,4,) (0.4 - aﬂAa)]
0 (aIJA/,t) 4:“0 0 (avAy) 4'MO 0 (aVAﬂ)

1
— an,, A v v v v
= [(5,755 - 58 ) (0,75 = 95, ) + (9,4, - 0,4, ) (825 - 5ﬂ55>]
1 1 . 0F*
= — [(0"An = 0a) + (0°Ar = 0a¥) | = —Fm [ie., = 4w ]
2,l/l() Ho a(aI/Aﬂ)
* Therefore, we obtain that the Euler-Lagrange equations give us:
1
JH =0, <—F””> =0 , whichisthe sameasd F" = pu,J" — alsoknow as the Maxwell equations !!!
Ho
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Stress-energy tensor (reload

* | will leave as an exercise for you to show that the Euler-Lagrange equations for matter (i.e., the Lorentz force for the point
particles) follow from the same action and Lagrangian we derived above — all you need to do is to vary the Lagrangian with
respect to the matter degrees of freedom.

* What we will do now is to obtain the stress-energy (or energy-momentum) tensor for the EM fields in a different way than we
did in our previous class. The idea is to start with the action and Lagrangian for the “free" EM fields:

1
Lgy = —F"F
EM 411g v

* In a completely general sense, if we have a system with a Lagrangian L(g, d,q) we can ask what are the conserved currents
associated with that Lagrangian (the Noether theorem). By varying the action and obtaining the Euler-Lagrange equations we
have, as before:

OL _ 0Ly, _
og " 0(0,9)

* Now, notice that:

oL L,
dﬂL = a—qaﬂq +

aa,q) 7

* Substituting dL/dq from the Euler-Lagrange equation we obtain:

0 LTot 0 LTot 0 LTot
oL = |o, 0,9 + 0,00,9) = 0, 0,4
g 00,9 | * 00,9 | * 00,q) "
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Stress-energy tensor (reload)

* Therefore, for any system with a Lagrangian we can write that:

aLTot .. .o
oL = 0, 0.4 ., so that it is trivial to see that:
8 200,q) "

aLTot
d, |0,L — 0 =0
00,9 "

* Now, let’s write the object inside these brackets as our “conserved current” (exchancing v < a):

oL
¢ = Lot 0,9 — 6L . so that
9(0,9)
0, T“ﬂ =0 , i.e., conservation of the stress-energy tensor T“M !

 Now, let's show that this calculation, in the case of the EM fields, lead to:

e =L lpep, 2o = L | per, - Lsep
Z 1o v g O 1o g e
. Clearly, the generalization now is ¢ - A, and d, g — J,A, , with Lpy, = —F"F, = —F? .

Ay Ay
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Stress-energy tensor (reload)

We write, therefore:

aLTot
T¢ = d,q —6,L

0Lgy "

0(0,A,) "

a“ v

Using the expression for the EM Lagrangian,

1
Lgy = —F"F,, = —F? , and our previous result that:
4o 4o
0F? _ 1 L,
= 4F" , We arrive at T“u = —F"”’()ﬂAU — 5/3‘—F
9(9,A,) Ho 4 Ho

Notice that this tensor is not quite right! The expression we derived earlier was:

e, = Lpmp, 5o L p2
Yo T T A

What is happening here is that we are missing a piece of the puzzle — a derivate of the action with respect to the A, from the interaction Lagrangian,
Ly, — AJ".

* The point is that this “exchange" of energy and momentum mean that the individual stress-energy tensor of each species is not conserved anymore: only
the total energy-momentum tensor is (see the discussion in our last class).

* In order to compensate for this, we must add a term to the stress-energy tensor which turns out to be (for details, see Landau, Ch. 32-33)

re, - T1%-—F"9,A, in such a way that the 4-divergence of that term gives us (in the absence of charges/currents):
Ho

1 1
0,T% = 9,T% -0, <ﬂ—OF aDAM) =0T~ (0,F™) 0,A, + F <6a0yAﬂ>] = 0,17,
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Stress-energy tensor (reload)

So we have, finally, the stress-energy tensor for the free Electromagnetic field:

Ty, = —F <aﬂAy — OUAM> — 5;;‘4—F2 . which is now identical to the one we derived before:
Ho Ho
re = Lpep, gl p
EM
(EM) p U HY H 4/"0

Before we move on, let’s obtain one final result here: we will show that the total stress-energy tensor is indeed
conserved, as a result of the equations of motion.

We know from our last class that the EM stress-energy tensor above actually observes the conservation law:

OaT“# =9, (Tg\/lat)ﬂ T T&Mﬂ) =0 ., or aOCT((;{Vlat)ﬂ :ﬁt - daT(‘fEM)M ! with fﬂ = Fup J?

Let's write the matter stress-energy tensor in a simplified form here, in terms of point masses. The action for a
point particle is:

[ m
S =—|dt—c? ,  so the Lagrangean for a distribution of point particles is:
Y
[ m, ¢ C N C
Sutar = d4xz —5(xX —X,) = Jd4x—2mn5(x -x,) = Jd4x—pm
| y < y
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Stress-energy tensor (reload)

« The stress-energy tensor for this distribution of point particles is, therefore:

" c " urs 0T ox“
L tary . = ;me U, = cp,U°U,— = cp,

U

# ot or "

Taking the stress-energy conservation for the matter component we have:

" ox* ox* ox*
daT(Mat)M = cd, | p,, py Uu = c meu 0, > + > 0, <meu>

The first term above is identically zero, but the second term remains, and can be expressed as:

ox“

0
0Ty = 5 %a(Palh) = ez (oalh)

But this is basically dp,/dt — the change of 4-momentum per unit volume, i.e., the force! The right-hand side can be

written for a point charge (momentum Pﬂ) and for a distribution of charges/currents (momentum density pﬂ) as:

dPM oo dpﬂ o
_ = PAEN —_— =
dt T dt w

So, we finally arrive at the expression for the force for a distribution of point charges/masses in an EM field:

Ol vtary y = FrwJI” which is exactly the Lorentz force!
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Relativistic Lagrangian and stress-energy

tensor: summary

* The total Lagrangian for matter + EM fields is therefore given by:

S +S, 48, = ! d*x L +l d*x A J# +l d4xLF2
Mat Int EM — c ‘Mat c U c 4//{()

* The stress-energy tensor describes the energy density, energy flux (momentum) as well as
all relevant dynamical properties of the matter and fields in the system.

* The conservation of the stress-energy tensor is simply the conservation of the Noether
currents associated with invariance under space-time translations (energy/momentum) and
rotations (angular momentum):

0,T% =0

* If any two parts of the system are interacting, it means that there can be exchange of
energy, momentum, and/or angular momentum between the two parts, and we have:

oT* +0 TH =0 — o T = f*

ap
@) > (2 @ (12 %ly) =

*(2) 2.1

where # =

1=~ é,l) is simply “Newton's 3rd Law"

* For the Electromagnetic field, the stress-energy tensor which describes all properties of
the free fields is given by:

T = LF‘”F"V— 5oL F? = LFO;FW— 5 p
(D Ho g Ho " g

:.‘2}511
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Next class:

Radiation from accelerated charges

Dipole radiation

Radiation from accelerated charges — fully relativistic calculation

Jackson, Ch.9& 12
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