
ELECTRODYNAMICS I / IFUSP / LECTURE 13

Relativistic 
Electrodynamics

⚡The Lorentz force

⚡The stress-energy tensor

⚡Energy and momentum conservation
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Relativistic electrodynamics
• In our last class we saw that, the Maxwell equations are, in covariant notation:


       ,     with       being an integrability condition


            ,    where    is the Hodge dual of  .


• The Faraday tensor includes both the electric and the magnetic fields:


 


∂νFμν = μ0 Jμ ∂μJμ = 0

∂νF*μν = 0 F*μν = ϵμναβ Fαβ Fμν

Fμν = ∂μAν − ∂νAμ
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The Lorentz force
• We know from non-relativistic Electromagnetism that the force on a point charge is given by:





• But this doesn’t seem to be in covariant (relativistic) form: the force here doesn’t seem to be  
part of a 4-vector, and the fields are not organized in terms of the Faraday tensor,  .


• We can start to see what is going on by noting that the velocity is part of a 4-vector: 
 .


    ,    where the proper time is 


and remember that 


• This particle has a 4-momentum given by


    ,    which we can also write as:





• The idea now is to write the force as the rate of change of the 4-momentum.

⃗F = q ( ⃗E + ⃗v × ⃗B )

Fμν

Uμ = dxμ /dτ = γ{c, ⃗v }

Uμ =
dxμ

dτ
= γ{c, ⃗v } dτ = dt /γ(v)

| |U | |2 = ημνUμUν = UμUμ = − c2

pμ = mUμ = m γ{c, ⃗v } = {E/c, ⃗p }

pμ = ημν pν = {−E/c, ⃗p }
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The Lorentz force
• We start by noticing that the electric field is the time/space part of the Faraday tensor, while the magnetic field is already in 

the spatial part, in the form of an axial vector/vector product:


                                  , i.e.,   and  


• On the other hand, the 4-velocity and the 4-momentum have pure temporal parts (  and ), as well as pure spatial parts, 
  and   .


• The left-hand side of the force law,  , should be promoted to something like:


    ,    or    


• But what about the right-hand side, the electromagnetic force? We can try to combine the temporal and spatial parts of 4-
velocity and Faraday tensor, and the only way to accomplish this in a covariant way is to consider something like:





• This combination is a 4-vector, and its components are:


    ,    and


        


which is exactly what we want, at least in the non-relativistic limit ( ).

Fi0 = Ei /c F0j = − Ej /c

γc mγc
⃗v = γ ⃗v ⃗p = mγ ⃗v

⃗F = d ⃗p /dt

f μ =
d pμ

dτ
fμ =

d pμ

dτ

Fμν Uν

F0ν Uν = F00 U0 + F0i Ui = −
γ
c

⃗E ⋅ ⃗v

Fiν Uν = Fi0 U0 + Fij Uj =
Ei

c
γc + γϵijkBkv j → γ ( ⃗E + ⃗v × ⃗B )

v ≪ c , γ → 1
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The Lorentz force
• Therefore, we arrive at an ansatz for the covariant form of the Lorentz force:





• The spatial part of this expression is:


        ,    and going back to coordinate time using    , we get: 


          ,    which is exactly the expression we had for the Lorentz force!


• So, somehow magically the Lorentz force we know since high school is already in covariant form!


• But what about the temporal part of this expression,





       ,        which is simply the work done by the force on the particle!


• Another nice feature of the covariant form of the Lorentz form is that  .


• Finally, you can check that the Lorentz force (in fact, any force!) is orthogonal to the 4-velocity:


        [Exercise: prove this using the covariant form and the fact that  .]

fμ =
d pμ

dτ
= q Fμν Uν

d ⃗p
dτ

= q γ ( ⃗E + ⃗v × ⃗B ) dτ = dt /γ(v)

d ⃗p
dt

= q ( ⃗E + ⃗v × ⃗B )

d p0

dτ
= −

γ
c

dE
dt

= q F0ν Uν = −
q γ
c

⃗E ⋅ ⃗v

⇒
dE
dt

= q ⃗E ⋅ ⃗v

q Uμ → jμ

fμ Uμ = 0 UμUμ = − c2
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The Lorentz force
• It is useful to write also the Lorentz force in the case of a charge distribution,  . Let’s first go back to the non-

relativistic expression:


        ,    or even better:


        (force per unit volume)


• The left-hand side is basically the derivative with respect to the 4-volume,  . Now, it is interesting to note 
that the 4-volume element is invariant:





• In fact, for any manifold such as the Minkowski spacetime, endowed with a metric  , the volume element transforms 
with the determinant of the Jacobian:


        ,        


and since      ,  the invariance of     means that


     is an invariant .


• For the Minkowski spacetime,  , hence  , and therefore  .


• The discussion above implies that we can write the Lorentz force for a charge distribution as:


q Uμ → Jμ

⃗F = ∫ d3x (ρ ⃗E + ⃗J × ⃗B )
d ⃗F
d3x

=
d ⃗p

dt d3x
= ρ ⃗E + ⃗J × ⃗B

d4x = cdt d3x

xμ → x′￼μ = Λμ
ν xν ⇒ d4x → d4x′￼= d4x

gμν

xμ → x′￼μ = Λμ
ν xν ⇒ d4x → d4x′￼= det Λ d4x

d x′￼μ = Λμ
ν d xν ds2 = gμν d xμd xν = g′￼μν d x′￼μd x′￼ν = ds′￼2

| det gμν | d4x = | det g′￼μν | d4x′￼

gμν = ημν = diag{−1,1,1,1} | det ημν | = 1 d4x′￼= d4x

d pμ

d4x
= Fμν Jν
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The stress-energy tensor
• Since we are talking about forces, momentum and energy, let’s go back to the issue of the dynamical 

properties of the electromagnetic field. We can start by thinking like Maxwell, in the sense that the 
fields also reflect "mechanical" properties of a "fluid", and therefore are endowed with energy, 
momentum, pressure, fluxes, stresses, etc.


• If we think of a fluid, and we capture an element of that fluid, that element has a series of properties: 


‣energy density,   (to not confuse with charge density )


‣momentum, 


‣pressure, 


‣stress, 


‣angular momentum, 


• Obviously, all these properties are inter-connected, so they cannot be described by a 4-vector, or 
even by a combination of 4-vectors. We need an object that is more general, more complete.


• This object is the stress-energy tensor (also known as energy-momentum tensor). A generic non-
relativistic fluid has a stress-energy tensor given by something like:


                                      ,        where 


The stress-energy tensor is symmetric

ϵ ρ
⃗p

P

Π
⃗L

Tr Π = Πii = 0
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The stress-energy tensor
• For a perfect relativistic fluid the stress-energy tensor can be expressed in terms of the mass density  :


        or, equivalently,        


• From this expression, or from the expression in the previous page, we can obtain two very important equations from the 
4-divergence of the matter stress-energy tensor:


    where  expresses the external forces on the matter system (the fluid)


• The non-relativistic limits is more familiar to us, so let’s use the approximation  in the expression above.


• Taking first  we obtain:





• Typically, pressure is sub-dominant compared with energy — after all, energy has a factor of , . Hence, a good 
approximation to this expression is:





• Finally, notice that the gradient of the energy density is  , where  is the density of kinetic energy, and  is 
the potential energy. Since  is not a function of position, and   is the external force per unit volume, we obtain:


        , and therefore, in the absence of external forces we get


   which is simply the statement of energy continuity/conservation!

ρm = ϵ /c2

Tμν = (ρm +
P
c2 ) UμUν + Pημν Tμ

ν = (ρm +
P
c2 ) UμUν + Pδμ

ν

∂μTμν = f ν f ν

Uμ ≃ {c, ⃗v }

ν = 0

∂μTμ0 = ∂0T 00 + ∂i T i0 =
∂

c∂t [ 1
c2

(ϵ + P) c2 − P] + ∂i [ 1
c2

(ϵ + P) vic]
c2 ϵ = ρmc2

∂μTμ0 ≃
1
c [ ·ϵ + ϵ ⃗∇ ⋅ ⃗v + ( ⃗∇ ϵ) ⋅ ⃗v ]

⃗∇ ϵ = ⃗∇ (κ + u) κ u
κ ⃗∇ u = − ⃗f

∂μTμ0 = f 0 ⇒ ·ϵ + ϵ ⃗∇ ⋅ ⃗v − ⃗f ⋅ ⃗v = 0

·ρm + ρm
⃗∇ ⋅ ⃗v = 0
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The stress-energy tensor
• So, the 0-component of the 4-divergence of the stress-energy tensor gives the “continuity 

equation” for energy (i.e., energy conservation).


• Now, if we take  (spatial indices) we obtain:





        


• This equation takes a bit more algebra, but after we take the non-relativistic limit, the result is the 
Euler equation that determines the evolution of momentum and pressure in a fluid:





• Finally, a corollary of the stress-energy conservation is the fact that in the absence of external 
forces we also have angular momentum conservation. One can in fact show that:


        .


This anti-symmetric combination is in fact 6 equations, three of which yield the statement that 
 (the extra 3 equations are valid identically with the Euler and continuity equations)

ν = j

∂μTμj = ∂0T 0j + ∂i T ij

=
∂

c∂t [ 1
c2

(ϵ + P) vic] + ∂i [ 1
c2

(ϵ + P) viv j]

ϵ ( ∂v j

∂t
+ vi ∂i v j) + ∂iP = ⃗f

∂μTμν = 0 ⇒ ∂ν (xαTμν − xμTαν) = 0

d ⃗L /dt = ⃗τ
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The Maxwell stress-energy tensor
• Ok, but what we really want to know is the stress-energy tensor for the Electromagnetic 

fields, and in particular the the expression for  in terms of the Faraday tensor .


• But first, let’s think about the whole system — both the matter (particles with charge, mass, 
current, etc.) and the fields. They are interacting with each other, of course (through, e.g., 
Maxwell’s equations), but each have their own energy, momenta etc.


• Let’s define then the total stress-energy for matter + fields, and assume that all the 
interactions can do is to exchange energy and momentum between these two parts.


• Since the particles and fields are everything, we must have conservation of the total stress-
energy tensor:





• However, each part of this stress-energy tensor is not necessarily conserved separately, 
because of the forces: matter generates fields, pumping energy into the field configurations; 
and the fields affect the motion of the matter, doing work on the particles. Therefore:





• But, like we saw on the last few slides, the exchange of energy/momentum between matter 
and is given exactly by the forces, so:


Tμν Fμν

Tμν
Tot = Tμν

Mat + Tμν
EM ⇒ ∂μ Tμν

Tot = 0

∂μ Tμν
Mat = − ∂μ Tμν

EM

∂μ Tμν
Mat = f ν ⟺ ∂μ Tμν

EM = − f ν
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The Maxwell stress-energy tensor
• Let’s search for an expression for  in terms of the Faraday tensor . Clearly they cannot be one and the same thing, because 

the Faraday tensor is linear in the fields, while the energy, momentum, momentum flux, etc., are quadratic functions of the fields.


• Let’s start with the fact that we know that we should have stress-energy conservation, i.e.:


    ,    or           [We will suppress the subscript “EM" from now on, to relieve the notation.]


• Consider also the fact that the Faraday tensor itself also obeys a kind of “conservation equation”, in the sense that:





But the Lorentz force is given by   , so we can write:





• I will now manipulate this expression using the anti-symmetry , as well as the Jacobi identity, :





          ,   


where in the last line we used the fact that 

Tμν Fμν

∂μTμν
EM = − f ν ∂μTμ

EM , ν = − fν

∂νFμν = μ0 Jμ

fμ = Fμν Jν

fμ = Fμν Jν = Fμν ( 1
μ0

∂αFνα) =
1
μ0 [∂α (FμνFνα) − (∂αFμν) Fνα]

Fμν = − Fνμ ∂αFμν + ∂νFαμ + ∂μFνα = 0

fμ =
1
μ0 [∂α (FμνFνα) −

1
2 (∂αFμν + ∂νFαμ) Fνα] =

1
μ0 [∂α (FμνFνα) +

1
2 (∂μFνα) Fνα]

=
1
μ0 [∂α (FμνFνα) +

1
4

∂μ (FναFνα)]
∂μ (FναFνα) = (∂μFνα) Fνα + Fνα (∂μFνα) = 2Fνα (∂μFνα) = 2Fνα (∂μFνα)
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The Maxwell stress-energy tensor
• We can further simplify this expression using  , and the result is that: 





• Therefore, we should be very tempted to remember that:


        ,    and therefore we could write:





• And this is indeed the stress-energy tensor for the Electromagnetic field! This result was first shown in this way by Minkowski himself, in 1908.


• Let’s look at some of the components to see if we recognize some “old acquaintances”. But first, let’s compute the invariant:





• Now let’s compute the first component (time-time, 0-0) of the stress-energy tensor:





         ,    which is exactly what we expect since 

F2 = Fμν Fμν

fμ =
1
μ0

∂α [FμνFνα +
1
4

δα
μ F2]

∂αTα
μ = − fμ

Tα
μ = −

1
μ0 [FανFνμ +

1
4

δα
μ F2] =

1
μ0 [FανFμν −

1
4

δα
μ F2]

F2 = FμνFμν = − FμνFνμ = − 2 (
⃗E 2

c2
− ⃗B 2)

T 0
0 = −

1
μ0 [F0νFν0 +

1
4

F2] = −
1
μ0 [

⃗E 2

c2
+

1
4

F2] = −
1
μ0

⃗E 2

c2
−

1
2 (

⃗E 2

c2
− ⃗B 2)

= −
1
μ0 [ 1

2

⃗E 2

c2
+

1
2

⃗B 2] = − ( 1
2

ϵ0
⃗E 2 +

1
2

1
μ0

⃗B 2) = − ρEM T 0
0 = η0νT 0ν = − T 00 = − ϵ
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The Maxwell stress-energy tensor
• Now let’s compute the time-space components:





But this is exactly the Poynting vector,  , which gives the flux of energy, also known as momentum — in fact, the momentum density is 
 .


• Finally, we can compute the purely spatial components, which are:





After some algebra you can show that:





• It is useful to brake this object into a trace component (which we associate with the isotropic pressure) and a traceless component, which is the anisotropic 
stress. Taking the trace of this 3x3 matrix we get:





• Therefore, we can write this expression in the form known as the Maxwell stress tensor:





where  is the anisotropic stress, and the pressure is 

T 0
i = −

1
μ0

[F0νFνi + 0 × F2] = −
1
μ0

[F0jFjiF2] =
1
μ0

⃗E × ⃗B
c

⃗S = ⃗E × ⃗B /μ0
⃗p = ⃗S /c2

Ti
j = −

1
μ0 [FiνFνj +

1
4

δi
j F2]

Ti
j =

1
μ0 [ 1

c2
EiEj + BiBj −

1
2

δij (
⃗E 2

c2
+ ⃗B 2)]

Ti
i =

1
μ0 [

⃗E 2

c2
+ ⃗B 2 −

3
2 (

⃗E 2

c2
+ ⃗B 2)] = − ρEM

Ti
j = Ti

j −
1
3

δijT i
j +

1
3

δijT i
j = Πi

j +
1
3

δij ρEM

Π PEM =
1
3

ρEM
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The pressure of the EM field
• We should make several remarks now. First, why do you think it is that  ? What is 

the reason for this?


• Think about free electromagnetic fields — waves. For simplicity, think of these waves as 
bouncing inside a box. This equality means that freely propagating EM waves have not only an 
energy density, but also a pressure that is exactly 1/3 of the energy density.


• If you still can’t “see the light", think of light as particles — photons. What is the main 
property of the 4-momentum of photons? Let’s recall here:


    such that        ,


so the energy of a single photon is equal to its momentum (up to a factor of ). 


• Now, consider that for an ensemble of photons with random (isotropic) momenta, this energy 
is equally distributed in all directions, so… 1/3 for each direction…


• Yes! The fact that  follows directly from the fact that the electromagnetic field 

(the photon) has “zero mass” — something which is also manifested in the wave equation 
and associated propagator:


    but for Electromagnetism we have     , so  !

PEM =
1
3

ρEM

pμ = {E /c, ⃗p } = {p, ⃗p } pμpμ = 0

c

PEM =
1
3

ρEM

□ ψ − m2ψ = 0 □ Aμ = 0 m = 0
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EM stress-energy conservation
• Let’s now make a “sanity check” and see what equations follow from the conservation of the 

electromagnetic stress-energy tensor, i.e.:





• Consider first the component , and the expressions that we found above. You can show that:


    ,


which describes the rate of change of energy in terms of the flux of momentum ( ) 
and the work done to the system ( ).


• The spatial component, on the other hand, again takes a bit more algebra, but you can show that 
it yields:


    ,    


where  is the Lorentz force. This last equation describes momentum flux (since the density 
of momentum is ), including the force that is exerted on the system 
( ). The 3-divergence  includes both the pressure gradient ( ) and the 
shear ( ).

∂αTαμ + f α = 0

α = 0

∂αT 0μ + f 0 = 0 ⇒
∂ρEM

∂t
+ ⃗∇ ⋅ ⃗S + ⃗J ⋅ ⃗E = 0

⃗∇ ⋅ ⃗S
⃗J ⋅ ⃗E

∂αTiμ + f i = 0 ⇒
1
c2

∂Si

∂t
− ∂jT ij + f i = 0

⃗f
⃗p = ⃗S /c2

⃗f = ρ ⃗E + ⃗J × ⃗B ∂iT ij ⃗∇ P
∂iΠij
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• The Maxwell action and Lagrangian


• Another derivation of the stress-energy tensor


• Back to Maxwell’s equations


• L. Landau, “The Classical Theory of Fields”, Ch. 4

Next class:
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