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Electrodynamics 
⚡Laplace equation in spherical 
coordinates 
⚡Green’s functions 
⚡Boundary value problems 
⚡Laplace equation in 
cylindrical coordinates 

1



• In the last class we saw that (scalar) angular functions can be expressed in 
terms of a multipole expansion — a series over spherical harmonics: 

    ,  where:    

    . 

• But in electromagnetism we have not only the angular, but also the radial 
coordinate. In fact, we also showed that the basic “building block” of 
electrostatics, the potential of a point charge, can be written in terms of: 

    . 

• Now we want to express an arbitrary charge density using a similar expansion.
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• Let’s say that we start with the simplest problem: an “out" (“exterior”) solution for a charge 
density that lies all inside a radius .  

• If we think just a little bit about this, we see that we can express the potential as: 

    ,  where         and 

    ,    with   . 

Notice that the monopole is    ,  i.e., the total charge. 

• For the “in" type solution, when the charge densities are all outside some radius , we have 
the converse: 

    ,  where         and 

    ,    with   .
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• The solutions above are often sufficient to solve many problems where we specify a charge density, but they are not enough to tackle most 
boundary value problems. 

• A typical boundary value problem specifies the potential on some given radius. This can be an inner radius (for an “out" b.c. problem), or an 
outer radius (for an “in" b.c. problem). In those cases, it is very useful to have a Green’s function that can be adapted to those two situations. 

• To be more specific, we are searching for the solution of: 

 

• At this point it is worth recalling the completeness relation, which we obtained in the last class: 

     

• Remember also that   ,  with  . 

• This gives us a hint that we should try a solution to the Green’s function of the type: 

    ,    where the radial part gives us: 
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• This time, we will proceed to the construction of the Green’s function using the solutions to the homogeneous 
equation. 

 

• But the solutions to the homogeneous equation are precisely the radial functions that we found before: 

  

    

• The Green’s function is then constructed as: 

 

where  is the Heaviside (step) function, and the denominator is the Wronskian: 

    .
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• We thus recover the Green’s function for a point charge: 

     

which leads to: 

         

But remember that for a point charge  at the position   we have: 

    ,    where     
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• We want to build a Green’s functions that satisfy some boundary condition — e.g., we can 
require it to vanish at some inner radius  and at some outer radius  , so that we can 

solve a Dirichlet-type problem.  

• Now, recall that we can add any homogeneous solutions to the Green functions — 

exactly the  and  functions above! In practice, we simply take the solution above 
and substitute: 

    , which vanish for     ;    and           

.     Hence we have: 

     

which is trivial to see vanishes when  and when  .   
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• Let’s make a simple application of the Green’s function that we 
obtained above: 

 

• Let’s say that the charge is zero, and that the  potential at the 
boundaries  and  are given by some pure 
spherical harmonic mode — e.g.: 

 

. 

• The solution to the Laplace equation is then given by: 

    .
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• Notice that the surface has two disjoint pieces: the inner one at  and the outer one at  . 

Moreover, for the inner surface we get  , while for the outer surface we have   — but 
remember that the “outer" surface points inward! Therefore:  
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• The full solution is therefore: 

 

             

• Let’s take the first term (the “in” one). We have then:    

 

               

               

• In completely similar fashion, the “out”  term reads: 
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• In this way we have derived the “building blocks" of any kind of solution with in/out boundary conditions 
in spherical coordinates: 

    ,    where 

 

 

• You can check that the solution converges to the boundary condition both at   and     .  

Using that  we get that: 

    ,     

    ,     

• Another interesting check is to take   ,   , and   . Then we get: 

    ,     

which is simply the potential of a spherically symmetric charge distribution,  !
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• One last type of problem we want to address is when some kind of symmetry calls for us to use 
cylindrical coordinates. In that case the Laplace equation reads: 

 

• Clearly, the structure of each term gives us hints about the different types of solutions. For    and  
  it is more or less obvious what we will have: 

    ,    with 

      (with  integer) 

             (with  in units of ) 

• By re-scaling the cylindrical radius  , which in this way become adimensional, we 
obtain the following radial equation: 

    . 

This is a very famous equation: the Bessel equation. The solutions are… Bessel functions!
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Laplace equation in cylindrical coordinates
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• Notice that  is integer, but  is continous (so is , of course!). The Bessel functions are 
labelled by this integer, , and we have two types of orthogonal solutions: 

    and     

• The two functions above are like the    and    of the Fourier expansion, and we 

often combine them in a way similar to the  and  , into the so-called Hankel 
functions: 

       , 

    

where in this combination we have  

• This combination is particularly useful when we take the limit   , in which case we 
have: 

    

• Ok, but in what sense these functions form a complete set? Are they orthogonal? Can they 
be normalized…?
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2 − π

4 )

Laplace equation in cylindrical coordinates
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• Yes, yes and YES!  

• The Bessel functions are simply magical: not only are they orthogonal and normalized, they carry within 
themselves incredible relations that retain the “memory" of the geometry of the problems that they express. 

• Recursion relations (there are many more!): 

 

 

• The Bessel function of the first kind can also be expressed in terms of the Jacobi-Anger integral: 

     

• They obey the orthogonality relation: 

    : 

• They also obey a closure relation: 

    

2m
x
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∞
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∫
∞

0

dx
x

Jm(x) Jm′ (x) =
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∫
∞

0
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1
α
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Laplace equation in cylindrical coordinates

14ELECTRODYNAMICS I / IFUSP / LECTURE 3



• Finally, just like the trigonometric functions    and    , the Bessel functions have roots (when the 
function = zero), at intervals which become approximately fixed as the argument  . 

• For each index    we can order the roots of the Bessel function  as    (i=1,2,3,…) : 

 

 

 

• Now we can use these roots and construct orthogonality relations for a finite domain of : 

     

• These relations allow us to decompose not only functions in  , but also in some interval 

 : 

    ,    with 

     

• When we expand any function in terms of Bessel functions this is called a Fourier-Bessel series.

sin cos
x → ∞

m Jm(x) xmi

m = 0 : x01 = 2.405 , x02 = 5.520 , x03 = 8.654 , …

m = 1 : x11 = 3.832 , x12 = 7.016 , x13 = 10.173 , …

m = 2 : x21 = 5.136 , x22 = 8.417 , x23 = 11.620 , …

x

∫
1

0
dt t Jm(t xmi) Jm(t xmj) =

δij
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δij

2 [J′ m(xmi)]2

ρ ∈ [0,∞)
0 ≤ ρ ≤ R
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∞

∑
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f (m)
i Jm ( ρ xmi

R )
f (m)
i =

2
J2
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1

0
dt t Jm (t xmi) f (ρ = tR)

Laplace equation in cylindrical coordinates
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• Now, the solutions we found above correspond to one “branch" of the whole story. That is because we assumed 
that the eigenvalues of the function  were always positive:  

 

• This is, of course, because we assumed that the solutions should decay appropriately at  , as   ! 

• But suppose that we wanted to find some solutions for boundary value problems given at some lower and 
upper planes,   and    . Then, instead of exponential solutions, what we need are trigonometric 
functions! In that case, what we actually want is to set: 

    ,     

which would mean changing   in the previous Bessel functions: 

    ,    etc. 

• These are called Modified Bessel Functions (duh!), and they can be constructed from the original ones: 

    and     

• Now the asymptotic limits for  are not trigonometric, but exponential functions: 

    and    

Z(z)

d2Z
dz2

= + k2 Z

z → ± ∞ e∓z

z = z1 z = z2

d2Z
dz2
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Jm(kρ) → Jm(ikρ)

Jm(x) → Im(x) =
1
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Jm(ix) Nm(x) → Km(x) =
π
2

im+1 H(1)
m (ix)

x → ∞

lim
x→∞

Im(x) =
1

2πx
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x→∞
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π
2x

e−x

Laplace equation in cylindrical coordinates
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• So, to summarize: in a boundary value problem in 
cylindrical coordinates, we have two situations: 

(a) If the problem is unbounded in the  direction: 

the basis functions are exponential in   ( ) , but 
oscillatory in  (the Bessel functions) 

(b) If the problem is bounded in the  direction: 

the basis functions are oscillatory in  ( ) , but 
“exponential" in  (the modified Bessel functions) 

z

z e±kz

ρ

z

z e±ikz

ρ

Laplace equation in cylindrical coordinates
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• Let’s look at the simplest possible boundary value problem with cylindrical coordinates. 

• Let’s say we specify the potential in a thin of radius  disk which is placed at the  plane, inside a 
grounded cylinder of radius , in such a way that: 

    for        and       for     , 

and  

 

• On the other hand, the general expansion for the potential in cylindrical coordinates is: 

 

• We can immediately see that the boundary conditions at  and   are automatically satisfied if we 
set: 

 

• The solution is then immediate: for the upper/lower half of the volume we have: 

        ,    and 

        .

R z = 0
R

ϕ(ρ, φ) = ϕ0 Jn ( ρ
R

xnj) einφ ρ ≤ R ϕ = 0 ρ ≥ R

ϕ(ρ = R) = 0

ϕ(ρ, φ, z) = ∑
m

e±kz Jm(kρ) eimφ

z = 0 ρ = R

m → n , k →
xnj

R

ϕ(ρ, φ, z) = ϕ0 e−kz Jn(kρ) einφ z > 0

ϕ(ρ, φ, z) = ϕ0e+kz Jn(kρ) einφ z < 0

Boundary value problems in cylindrical 
coordinates
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• Here is another problem in cylindrical coordinates. Suppose that the potential in the  plane is given by: 

 

• In principle we should search for a solution like 

        ( ) 

• Clearly, the problem has azimuthal symmetry, which means only the mode  will appear: 

 

• In order to obtain the function  we remember the closure relation: 

    ,    so we integrate both sides of the equation above: 

 

                                                

                                               

z = 0

ϕ(ρ, φ) = ϕ0 sinc ( ρ
R ) = ϕ0

sin ρ /R
ρ /R

ϕ(ρ, φ, z) = ∑
m

eimφ ∫
∞

0
dk f (k) e−kz Jm(kρ) z ≥ 0

m = 0

ϕ(ρ, z) = ∫
∞

0
dk f (k) e−kz J0(kρ)

f (k)

∫
∞

0
dρ ρ Jm(kρ) Jm(qρ) =

1
k

δ(k − q)

∫
∞

0
dρ ρ J0(qρ)ϕ(ρ, z) = ∫

∞

0
dρ ρ J0(qρ)∫

∞

0
dk f (k) e−kz J0(kρ)

= ∫
∞

0
dk f (k) e−kz ∫

∞

0
dρ ρ J0(qρ) J0(kρ)

= ∫
∞

0
dk f (k) e−kz 1

q
δ(k − q) =

f (q)
q

e−qz

Boundary value problems in cylindrical 
coordinates
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• Now, the potential on left-hand side of the equation above gives us, at  : 

    ,    so the equation now reads, at : 

 

• As it turns out, the integral above is exact, and it yields the result: 

    for         ,      and            for      

• Therefore, the potential everywhere in the upper half-volume is: 

 

• You can in fact check that: 

 

• I will leave the expression for    in the integral form, but you can expand that if you want!

z = 0
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sin ρ/R
ρ/R
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∫
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0
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Boundary value problems in cylindrical 
coordinates
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• Electrostatics in conducting media 

• Dielectric media 

• Field discontinuities at boundaries of dielectrics 

• Jackson, Ch. 4

Next class:
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